amdgpu_vm_pt.c revision 1.2
1// SPDX-License-Identifier: GPL-2.0 OR MIT
2/*
3 * Copyright 2022 Advanced Micro Devices, Inc.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
22 */
23
24#include <drm/drm_drv.h>
25
26#include "amdgpu.h"
27#include "amdgpu_trace.h"
28#include "amdgpu_vm.h"
29
30/*
31 * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt
32 */
33struct amdgpu_vm_pt_cursor {
34	uint64_t pfn;
35	struct amdgpu_vm_bo_base *parent;
36	struct amdgpu_vm_bo_base *entry;
37	unsigned int level;
38};
39
40/**
41 * amdgpu_vm_pt_level_shift - return the addr shift for each level
42 *
43 * @adev: amdgpu_device pointer
44 * @level: VMPT level
45 *
46 * Returns:
47 * The number of bits the pfn needs to be right shifted for a level.
48 */
49static unsigned int amdgpu_vm_pt_level_shift(struct amdgpu_device *adev,
50					     unsigned int level)
51{
52	switch (level) {
53	case AMDGPU_VM_PDB2:
54	case AMDGPU_VM_PDB1:
55	case AMDGPU_VM_PDB0:
56		return 9 * (AMDGPU_VM_PDB0 - level) +
57			adev->vm_manager.block_size;
58	case AMDGPU_VM_PTB:
59		return 0;
60	default:
61		return ~0;
62	}
63}
64
65/**
66 * amdgpu_vm_pt_num_entries - return the number of entries in a PD/PT
67 *
68 * @adev: amdgpu_device pointer
69 * @level: VMPT level
70 *
71 * Returns:
72 * The number of entries in a page directory or page table.
73 */
74static unsigned int amdgpu_vm_pt_num_entries(struct amdgpu_device *adev,
75					     unsigned int level)
76{
77	unsigned int shift;
78
79	shift = amdgpu_vm_pt_level_shift(adev, adev->vm_manager.root_level);
80	if (level == adev->vm_manager.root_level)
81		/* For the root directory */
82		return round_up(adev->vm_manager.max_pfn, 1ULL << shift)
83			>> shift;
84	else if (level != AMDGPU_VM_PTB)
85		/* Everything in between */
86		return 512;
87
88	/* For the page tables on the leaves */
89	return AMDGPU_VM_PTE_COUNT(adev);
90}
91
92/**
93 * amdgpu_vm_pt_num_ats_entries - return the number of ATS entries in the root PD
94 *
95 * @adev: amdgpu_device pointer
96 *
97 * Returns:
98 * The number of entries in the root page directory which needs the ATS setting.
99 */
100static unsigned int amdgpu_vm_pt_num_ats_entries(struct amdgpu_device *adev)
101{
102	unsigned int shift;
103
104	shift = amdgpu_vm_pt_level_shift(adev, adev->vm_manager.root_level);
105	return AMDGPU_GMC_HOLE_START >> (shift + AMDGPU_GPU_PAGE_SHIFT);
106}
107
108/**
109 * amdgpu_vm_pt_entries_mask - the mask to get the entry number of a PD/PT
110 *
111 * @adev: amdgpu_device pointer
112 * @level: VMPT level
113 *
114 * Returns:
115 * The mask to extract the entry number of a PD/PT from an address.
116 */
117static uint32_t amdgpu_vm_pt_entries_mask(struct amdgpu_device *adev,
118					  unsigned int level)
119{
120	if (level <= adev->vm_manager.root_level)
121		return 0xffffffff;
122	else if (level != AMDGPU_VM_PTB)
123		return 0x1ff;
124	else
125		return AMDGPU_VM_PTE_COUNT(adev) - 1;
126}
127
128/**
129 * amdgpu_vm_pt_size - returns the size of the page table in bytes
130 *
131 * @adev: amdgpu_device pointer
132 * @level: VMPT level
133 *
134 * Returns:
135 * The size of the BO for a page directory or page table in bytes.
136 */
137static unsigned int amdgpu_vm_pt_size(struct amdgpu_device *adev,
138				      unsigned int level)
139{
140	return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_pt_num_entries(adev, level) * 8);
141}
142
143/**
144 * amdgpu_vm_pt_parent - get the parent page directory
145 *
146 * @pt: child page table
147 *
148 * Helper to get the parent entry for the child page table. NULL if we are at
149 * the root page directory.
150 */
151static struct amdgpu_vm_bo_base *
152amdgpu_vm_pt_parent(struct amdgpu_vm_bo_base *pt)
153{
154	struct amdgpu_bo *parent = pt->bo->parent;
155
156	if (!parent)
157		return NULL;
158
159	return parent->vm_bo;
160}
161
162/**
163 * amdgpu_vm_pt_start - start PD/PT walk
164 *
165 * @adev: amdgpu_device pointer
166 * @vm: amdgpu_vm structure
167 * @start: start address of the walk
168 * @cursor: state to initialize
169 *
170 * Initialize a amdgpu_vm_pt_cursor to start a walk.
171 */
172static void amdgpu_vm_pt_start(struct amdgpu_device *adev,
173			       struct amdgpu_vm *vm, uint64_t start,
174			       struct amdgpu_vm_pt_cursor *cursor)
175{
176	cursor->pfn = start;
177	cursor->parent = NULL;
178	cursor->entry = &vm->root;
179	cursor->level = adev->vm_manager.root_level;
180}
181
182/**
183 * amdgpu_vm_pt_descendant - go to child node
184 *
185 * @adev: amdgpu_device pointer
186 * @cursor: current state
187 *
188 * Walk to the child node of the current node.
189 * Returns:
190 * True if the walk was possible, false otherwise.
191 */
192static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev,
193				    struct amdgpu_vm_pt_cursor *cursor)
194{
195	unsigned int mask, shift, idx;
196
197	if ((cursor->level == AMDGPU_VM_PTB) || !cursor->entry ||
198	    !cursor->entry->bo)
199		return false;
200
201	mask = amdgpu_vm_pt_entries_mask(adev, cursor->level);
202	shift = amdgpu_vm_pt_level_shift(adev, cursor->level);
203
204	++cursor->level;
205	idx = (cursor->pfn >> shift) & mask;
206	cursor->parent = cursor->entry;
207	cursor->entry = &to_amdgpu_bo_vm(cursor->entry->bo)->entries[idx];
208	return true;
209}
210
211/**
212 * amdgpu_vm_pt_sibling - go to sibling node
213 *
214 * @adev: amdgpu_device pointer
215 * @cursor: current state
216 *
217 * Walk to the sibling node of the current node.
218 * Returns:
219 * True if the walk was possible, false otherwise.
220 */
221static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev,
222				 struct amdgpu_vm_pt_cursor *cursor)
223{
224
225	unsigned int shift, num_entries;
226	struct amdgpu_bo_vm *parent;
227
228	/* Root doesn't have a sibling */
229	if (!cursor->parent)
230		return false;
231
232	/* Go to our parents and see if we got a sibling */
233	shift = amdgpu_vm_pt_level_shift(adev, cursor->level - 1);
234	num_entries = amdgpu_vm_pt_num_entries(adev, cursor->level - 1);
235	parent = to_amdgpu_bo_vm(cursor->parent->bo);
236
237	if (cursor->entry == &parent->entries[num_entries - 1])
238		return false;
239
240	cursor->pfn += 1ULL << shift;
241	cursor->pfn &= ~((1ULL << shift) - 1);
242	++cursor->entry;
243	return true;
244}
245
246/**
247 * amdgpu_vm_pt_ancestor - go to parent node
248 *
249 * @cursor: current state
250 *
251 * Walk to the parent node of the current node.
252 * Returns:
253 * True if the walk was possible, false otherwise.
254 */
255static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor)
256{
257	if (!cursor->parent)
258		return false;
259
260	--cursor->level;
261	cursor->entry = cursor->parent;
262	cursor->parent = amdgpu_vm_pt_parent(cursor->parent);
263	return true;
264}
265
266/**
267 * amdgpu_vm_pt_next - get next PD/PT in hieratchy
268 *
269 * @adev: amdgpu_device pointer
270 * @cursor: current state
271 *
272 * Walk the PD/PT tree to the next node.
273 */
274static void amdgpu_vm_pt_next(struct amdgpu_device *adev,
275			      struct amdgpu_vm_pt_cursor *cursor)
276{
277	/* First try a newborn child */
278	if (amdgpu_vm_pt_descendant(adev, cursor))
279		return;
280
281	/* If that didn't worked try to find a sibling */
282	while (!amdgpu_vm_pt_sibling(adev, cursor)) {
283		/* No sibling, go to our parents and grandparents */
284		if (!amdgpu_vm_pt_ancestor(cursor)) {
285			cursor->pfn = ~0ll;
286			return;
287		}
288	}
289}
290
291/**
292 * amdgpu_vm_pt_first_dfs - start a deep first search
293 *
294 * @adev: amdgpu_device structure
295 * @vm: amdgpu_vm structure
296 * @start: optional cursor to start with
297 * @cursor: state to initialize
298 *
299 * Starts a deep first traversal of the PD/PT tree.
300 */
301static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev,
302				   struct amdgpu_vm *vm,
303				   struct amdgpu_vm_pt_cursor *start,
304				   struct amdgpu_vm_pt_cursor *cursor)
305{
306	if (start)
307		*cursor = *start;
308	else
309		amdgpu_vm_pt_start(adev, vm, 0, cursor);
310
311	while (amdgpu_vm_pt_descendant(adev, cursor))
312		;
313}
314
315/**
316 * amdgpu_vm_pt_continue_dfs - check if the deep first search should continue
317 *
318 * @start: starting point for the search
319 * @entry: current entry
320 *
321 * Returns:
322 * True when the search should continue, false otherwise.
323 */
324static bool amdgpu_vm_pt_continue_dfs(struct amdgpu_vm_pt_cursor *start,
325				      struct amdgpu_vm_bo_base *entry)
326{
327	return entry && (!start || entry != start->entry);
328}
329
330/**
331 * amdgpu_vm_pt_next_dfs - get the next node for a deep first search
332 *
333 * @adev: amdgpu_device structure
334 * @cursor: current state
335 *
336 * Move the cursor to the next node in a deep first search.
337 */
338static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev,
339				  struct amdgpu_vm_pt_cursor *cursor)
340{
341	if (!cursor->entry)
342		return;
343
344	if (!cursor->parent)
345		cursor->entry = NULL;
346	else if (amdgpu_vm_pt_sibling(adev, cursor))
347		while (amdgpu_vm_pt_descendant(adev, cursor))
348			;
349	else
350		amdgpu_vm_pt_ancestor(cursor);
351}
352
353/*
354 * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs
355 */
356#define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry)		\
357	for (amdgpu_vm_pt_first_dfs((adev), (vm), (start), &(cursor)),		\
358	     (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\
359	     amdgpu_vm_pt_continue_dfs((start), (entry));			\
360	     (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor)))
361
362/**
363 * amdgpu_vm_pt_clear - initially clear the PDs/PTs
364 *
365 * @adev: amdgpu_device pointer
366 * @vm: VM to clear BO from
367 * @vmbo: BO to clear
368 * @immediate: use an immediate update
369 *
370 * Root PD needs to be reserved when calling this.
371 *
372 * Returns:
373 * 0 on success, errno otherwise.
374 */
375int amdgpu_vm_pt_clear(struct amdgpu_device *adev, struct amdgpu_vm *vm,
376		       struct amdgpu_bo_vm *vmbo, bool immediate)
377{
378	unsigned int level = adev->vm_manager.root_level;
379	struct ttm_operation_ctx ctx = { true, false };
380	struct amdgpu_vm_update_params params;
381	struct amdgpu_bo *ancestor = &vmbo->bo;
382	unsigned int entries, ats_entries;
383	struct amdgpu_bo *bo = &vmbo->bo;
384	uint64_t addr;
385	int r, idx;
386
387	/* Figure out our place in the hierarchy */
388	if (ancestor->parent) {
389		++level;
390		while (ancestor->parent->parent) {
391			++level;
392			ancestor = ancestor->parent;
393		}
394	}
395
396	entries = amdgpu_bo_size(bo) / 8;
397	if (!vm->pte_support_ats) {
398		ats_entries = 0;
399
400	} else if (!bo->parent) {
401		ats_entries = amdgpu_vm_pt_num_ats_entries(adev);
402		ats_entries = min(ats_entries, entries);
403		entries -= ats_entries;
404
405	} else {
406		struct amdgpu_vm_bo_base *pt;
407
408		pt = ancestor->vm_bo;
409		ats_entries = amdgpu_vm_pt_num_ats_entries(adev);
410		if ((pt - to_amdgpu_bo_vm(vm->root.bo)->entries) >=
411		    ats_entries) {
412			ats_entries = 0;
413		} else {
414			ats_entries = entries;
415			entries = 0;
416		}
417	}
418
419	r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
420	if (r)
421		return r;
422
423	if (vmbo->shadow) {
424		struct amdgpu_bo *shadow = vmbo->shadow;
425
426		r = ttm_bo_validate(&shadow->tbo, &shadow->placement, &ctx);
427		if (r)
428			return r;
429	}
430
431	if (!drm_dev_enter(adev_to_drm(adev), &idx))
432		return -ENODEV;
433
434	r = vm->update_funcs->map_table(vmbo);
435	if (r)
436		goto exit;
437
438	memset(&params, 0, sizeof(params));
439	params.adev = adev;
440	params.vm = vm;
441	params.immediate = immediate;
442
443	r = vm->update_funcs->prepare(&params, NULL, AMDGPU_SYNC_EXPLICIT);
444	if (r)
445		goto exit;
446
447	addr = 0;
448	if (ats_entries) {
449		uint64_t value = 0, flags;
450
451		flags = AMDGPU_PTE_DEFAULT_ATC;
452		if (level != AMDGPU_VM_PTB) {
453			/* Handle leaf PDEs as PTEs */
454			flags |= AMDGPU_PDE_PTE;
455			amdgpu_gmc_get_vm_pde(adev, level, &value, &flags);
456		}
457
458		r = vm->update_funcs->update(&params, vmbo, addr, 0,
459					     ats_entries, value, flags);
460		if (r)
461			goto exit;
462
463		addr += ats_entries * 8;
464	}
465
466	if (entries) {
467		uint64_t value = 0, flags = 0;
468
469		if (adev->asic_type >= CHIP_VEGA10) {
470			if (level != AMDGPU_VM_PTB) {
471				/* Handle leaf PDEs as PTEs */
472				flags |= AMDGPU_PDE_PTE;
473				amdgpu_gmc_get_vm_pde(adev, level,
474						      &value, &flags);
475			} else {
476				/* Workaround for fault priority problem on GMC9 */
477				flags = AMDGPU_PTE_EXECUTABLE;
478			}
479		}
480
481		r = vm->update_funcs->update(&params, vmbo, addr, 0, entries,
482					     value, flags);
483		if (r)
484			goto exit;
485	}
486
487	r = vm->update_funcs->commit(&params, NULL);
488exit:
489	drm_dev_exit(idx);
490	return r;
491}
492
493/**
494 * amdgpu_vm_pt_create - create bo for PD/PT
495 *
496 * @adev: amdgpu_device pointer
497 * @vm: requesting vm
498 * @level: the page table level
499 * @immediate: use a immediate update
500 * @vmbo: pointer to the buffer object pointer
501 */
502int amdgpu_vm_pt_create(struct amdgpu_device *adev, struct amdgpu_vm *vm,
503			int level, bool immediate, struct amdgpu_bo_vm **vmbo)
504{
505	struct amdgpu_bo_param bp;
506	struct amdgpu_bo *bo;
507	struct dma_resv *resv;
508	unsigned int num_entries;
509	int r;
510
511	memset(&bp, 0, sizeof(bp));
512
513	bp.size = amdgpu_vm_pt_size(adev, level);
514	bp.byte_align = AMDGPU_GPU_PAGE_SIZE;
515	bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
516	bp.domain = amdgpu_bo_get_preferred_domain(adev, bp.domain);
517	bp.flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
518		AMDGPU_GEM_CREATE_CPU_GTT_USWC;
519
520	if (level < AMDGPU_VM_PTB)
521		num_entries = amdgpu_vm_pt_num_entries(adev, level);
522	else
523		num_entries = 0;
524
525	bp.bo_ptr_size = struct_size((*vmbo), entries, num_entries);
526
527	if (vm->use_cpu_for_update)
528		bp.flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
529
530	bp.type = ttm_bo_type_kernel;
531	bp.no_wait_gpu = immediate;
532	if (vm->root.bo)
533		bp.resv = vm->root.bo->tbo.base.resv;
534
535	r = amdgpu_bo_create_vm(adev, &bp, vmbo);
536	if (r)
537		return r;
538
539	bo = &(*vmbo)->bo;
540	if (vm->is_compute_context || (adev->flags & AMD_IS_APU)) {
541		(*vmbo)->shadow = NULL;
542		return 0;
543	}
544
545	if (!bp.resv)
546		WARN_ON(dma_resv_lock(bo->tbo.base.resv,
547				      NULL));
548	resv = bp.resv;
549	memset(&bp, 0, sizeof(bp));
550	bp.size = amdgpu_vm_pt_size(adev, level);
551	bp.domain = AMDGPU_GEM_DOMAIN_GTT;
552	bp.flags = AMDGPU_GEM_CREATE_CPU_GTT_USWC;
553	bp.type = ttm_bo_type_kernel;
554	bp.resv = bo->tbo.base.resv;
555	bp.bo_ptr_size = sizeof(struct amdgpu_bo);
556
557	r = amdgpu_bo_create(adev, &bp, &(*vmbo)->shadow);
558
559	if (!resv)
560		dma_resv_unlock(bo->tbo.base.resv);
561
562	if (r) {
563		amdgpu_bo_unref(&bo);
564		return r;
565	}
566
567	(*vmbo)->shadow->parent = amdgpu_bo_ref(bo);
568	amdgpu_bo_add_to_shadow_list(*vmbo);
569
570	return 0;
571}
572
573/**
574 * amdgpu_vm_pt_alloc - Allocate a specific page table
575 *
576 * @adev: amdgpu_device pointer
577 * @vm: VM to allocate page tables for
578 * @cursor: Which page table to allocate
579 * @immediate: use an immediate update
580 *
581 * Make sure a specific page table or directory is allocated.
582 *
583 * Returns:
584 * 1 if page table needed to be allocated, 0 if page table was already
585 * allocated, negative errno if an error occurred.
586 */
587static int amdgpu_vm_pt_alloc(struct amdgpu_device *adev,
588			      struct amdgpu_vm *vm,
589			      struct amdgpu_vm_pt_cursor *cursor,
590			      bool immediate)
591{
592	struct amdgpu_vm_bo_base *entry = cursor->entry;
593	struct amdgpu_bo *pt_bo;
594	struct amdgpu_bo_vm *pt;
595	int r;
596
597	if (entry->bo)
598		return 0;
599
600	amdgpu_vm_eviction_unlock(vm);
601	r = amdgpu_vm_pt_create(adev, vm, cursor->level, immediate, &pt);
602	amdgpu_vm_eviction_lock(vm);
603	if (r)
604		return r;
605
606	/* Keep a reference to the root directory to avoid
607	 * freeing them up in the wrong order.
608	 */
609	pt_bo = &pt->bo;
610	pt_bo->parent = amdgpu_bo_ref(cursor->parent->bo);
611	amdgpu_vm_bo_base_init(entry, vm, pt_bo);
612	r = amdgpu_vm_pt_clear(adev, vm, pt, immediate);
613	if (r)
614		goto error_free_pt;
615
616	return 0;
617
618error_free_pt:
619	amdgpu_bo_unref(&pt->shadow);
620	amdgpu_bo_unref(&pt_bo);
621	return r;
622}
623
624/**
625 * amdgpu_vm_pt_free - free one PD/PT
626 *
627 * @entry: PDE to free
628 */
629static void amdgpu_vm_pt_free(struct amdgpu_vm_bo_base *entry)
630{
631	struct amdgpu_bo *shadow;
632
633	if (!entry->bo)
634		return;
635	shadow = amdgpu_bo_shadowed(entry->bo);
636	if (shadow) {
637		ttm_bo_set_bulk_move(&shadow->tbo, NULL);
638		amdgpu_bo_unref(&shadow);
639	}
640	ttm_bo_set_bulk_move(&entry->bo->tbo, NULL);
641	entry->bo->vm_bo = NULL;
642
643	spin_lock(&entry->vm->status_lock);
644	list_del(&entry->vm_status);
645	spin_unlock(&entry->vm->status_lock);
646	amdgpu_bo_unref(&entry->bo);
647}
648
649void amdgpu_vm_pt_free_work(struct work_struct *work)
650{
651	struct amdgpu_vm_bo_base *entry, *next;
652	struct amdgpu_vm *vm;
653	DRM_LIST_HEAD(pt_freed);
654
655	vm = container_of(work, struct amdgpu_vm, pt_free_work);
656
657	spin_lock(&vm->status_lock);
658	list_splice_init(&vm->pt_freed, &pt_freed);
659	spin_unlock(&vm->status_lock);
660
661	/* flush_work in amdgpu_vm_fini ensure vm->root.bo is valid. */
662	amdgpu_bo_reserve(vm->root.bo, true);
663
664	list_for_each_entry_safe(entry, next, &pt_freed, vm_status)
665		amdgpu_vm_pt_free(entry);
666
667	amdgpu_bo_unreserve(vm->root.bo);
668}
669
670/**
671 * amdgpu_vm_pt_free_dfs - free PD/PT levels
672 *
673 * @adev: amdgpu device structure
674 * @vm: amdgpu vm structure
675 * @start: optional cursor where to start freeing PDs/PTs
676 *
677 * Free the page directory or page table level and all sub levels.
678 */
679static void amdgpu_vm_pt_free_dfs(struct amdgpu_device *adev,
680				  struct amdgpu_vm *vm,
681				  struct amdgpu_vm_pt_cursor *start,
682				  bool unlocked)
683{
684	struct amdgpu_vm_pt_cursor cursor;
685	struct amdgpu_vm_bo_base *entry;
686
687	if (unlocked) {
688		spin_lock(&vm->status_lock);
689		for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry)
690			list_move(&entry->vm_status, &vm->pt_freed);
691
692		if (start)
693			list_move(&start->entry->vm_status, &vm->pt_freed);
694		spin_unlock(&vm->status_lock);
695		schedule_work(&vm->pt_free_work);
696		return;
697	}
698
699	for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry)
700		amdgpu_vm_pt_free(entry);
701
702	if (start)
703		amdgpu_vm_pt_free(start->entry);
704}
705
706/**
707 * amdgpu_vm_pt_free_root - free root PD
708 * @adev: amdgpu device structure
709 * @vm: amdgpu vm structure
710 *
711 * Free the root page directory and everything below it.
712 */
713void amdgpu_vm_pt_free_root(struct amdgpu_device *adev, struct amdgpu_vm *vm)
714{
715	amdgpu_vm_pt_free_dfs(adev, vm, NULL, false);
716}
717
718/**
719 * amdgpu_vm_pt_is_root_clean - check if a root PD is clean
720 *
721 * @adev: amdgpu_device pointer
722 * @vm: the VM to check
723 *
724 * Check all entries of the root PD, if any subsequent PDs are allocated,
725 * it means there are page table creating and filling, and is no a clean
726 * VM
727 *
728 * Returns:
729 *	0 if this VM is clean
730 */
731bool amdgpu_vm_pt_is_root_clean(struct amdgpu_device *adev,
732				struct amdgpu_vm *vm)
733{
734	enum amdgpu_vm_level root = adev->vm_manager.root_level;
735	unsigned int entries = amdgpu_vm_pt_num_entries(adev, root);
736	unsigned int i = 0;
737
738	for (i = 0; i < entries; i++) {
739		if (to_amdgpu_bo_vm(vm->root.bo)->entries[i].bo)
740			return false;
741	}
742	return true;
743}
744
745/**
746 * amdgpu_vm_pde_update - update a single level in the hierarchy
747 *
748 * @params: parameters for the update
749 * @entry: entry to update
750 *
751 * Makes sure the requested entry in parent is up to date.
752 */
753int amdgpu_vm_pde_update(struct amdgpu_vm_update_params *params,
754			 struct amdgpu_vm_bo_base *entry)
755{
756	struct amdgpu_vm_bo_base *parent = amdgpu_vm_pt_parent(entry);
757	struct amdgpu_bo *bo = parent->bo, *pbo;
758	struct amdgpu_vm *vm = params->vm;
759	uint64_t pde, pt, flags;
760	unsigned int level;
761
762	for (level = 0, pbo = bo->parent; pbo; ++level)
763		pbo = pbo->parent;
764
765	level += params->adev->vm_manager.root_level;
766	amdgpu_gmc_get_pde_for_bo(entry->bo, level, &pt, &flags);
767	pde = (entry - to_amdgpu_bo_vm(parent->bo)->entries) * 8;
768	return vm->update_funcs->update(params, to_amdgpu_bo_vm(bo), pde, pt,
769					1, 0, flags);
770}
771
772/*
773 * amdgpu_vm_pte_update_flags - figure out flags for PTE updates
774 *
775 * Make sure to set the right flags for the PTEs at the desired level.
776 */
777static void amdgpu_vm_pte_update_flags(struct amdgpu_vm_update_params *params,
778				       struct amdgpu_bo_vm *pt,
779				       unsigned int level,
780				       uint64_t pe, uint64_t addr,
781				       unsigned int count, uint32_t incr,
782				       uint64_t flags)
783
784{
785	if (level != AMDGPU_VM_PTB) {
786		flags |= AMDGPU_PDE_PTE;
787		amdgpu_gmc_get_vm_pde(params->adev, level, &addr, &flags);
788
789	} else if (params->adev->asic_type >= CHIP_VEGA10 &&
790		   !(flags & AMDGPU_PTE_VALID) &&
791		   !(flags & AMDGPU_PTE_PRT)) {
792
793		/* Workaround for fault priority problem on GMC9 */
794		flags |= AMDGPU_PTE_EXECUTABLE;
795	}
796
797	params->vm->update_funcs->update(params, pt, pe, addr, count, incr,
798					 flags);
799}
800
801/**
802 * amdgpu_vm_pte_fragment - get fragment for PTEs
803 *
804 * @params: see amdgpu_vm_update_params definition
805 * @start: first PTE to handle
806 * @end: last PTE to handle
807 * @flags: hw mapping flags
808 * @frag: resulting fragment size
809 * @frag_end: end of this fragment
810 *
811 * Returns the first possible fragment for the start and end address.
812 */
813static void amdgpu_vm_pte_fragment(struct amdgpu_vm_update_params *params,
814				   uint64_t start, uint64_t end, uint64_t flags,
815				   unsigned int *frag, uint64_t *frag_end)
816{
817	/**
818	 * The MC L1 TLB supports variable sized pages, based on a fragment
819	 * field in the PTE. When this field is set to a non-zero value, page
820	 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
821	 * flags are considered valid for all PTEs within the fragment range
822	 * and corresponding mappings are assumed to be physically contiguous.
823	 *
824	 * The L1 TLB can store a single PTE for the whole fragment,
825	 * significantly increasing the space available for translation
826	 * caching. This leads to large improvements in throughput when the
827	 * TLB is under pressure.
828	 *
829	 * The L2 TLB distributes small and large fragments into two
830	 * asymmetric partitions. The large fragment cache is significantly
831	 * larger. Thus, we try to use large fragments wherever possible.
832	 * Userspace can support this by aligning virtual base address and
833	 * allocation size to the fragment size.
834	 *
835	 * Starting with Vega10 the fragment size only controls the L1. The L2
836	 * is now directly feed with small/huge/giant pages from the walker.
837	 */
838	unsigned int max_frag;
839
840	if (params->adev->asic_type < CHIP_VEGA10)
841		max_frag = params->adev->vm_manager.fragment_size;
842	else
843		max_frag = 31;
844
845	/* system pages are non continuously */
846	if (params->pages_addr) {
847		*frag = 0;
848		*frag_end = end;
849		return;
850	}
851
852	/* This intentionally wraps around if no bit is set */
853	*frag = min_t(unsigned int, ffs(start) - 1, fls64(end - start) - 1);
854	if (*frag >= max_frag) {
855		*frag = max_frag;
856		*frag_end = end & ~((1ULL << max_frag) - 1);
857	} else {
858		*frag_end = start + (1 << *frag);
859	}
860}
861
862/**
863 * amdgpu_vm_ptes_update - make sure that page tables are valid
864 *
865 * @params: see amdgpu_vm_update_params definition
866 * @start: start of GPU address range
867 * @end: end of GPU address range
868 * @dst: destination address to map to, the next dst inside the function
869 * @flags: mapping flags
870 *
871 * Update the page tables in the range @start - @end.
872 *
873 * Returns:
874 * 0 for success, -EINVAL for failure.
875 */
876int amdgpu_vm_ptes_update(struct amdgpu_vm_update_params *params,
877			  uint64_t start, uint64_t end,
878			  uint64_t dst, uint64_t flags)
879{
880	struct amdgpu_device *adev = params->adev;
881	struct amdgpu_vm_pt_cursor cursor;
882	uint64_t frag_start = start, frag_end;
883	unsigned int frag;
884	int r;
885
886	/* figure out the initial fragment */
887	amdgpu_vm_pte_fragment(params, frag_start, end, flags, &frag,
888			       &frag_end);
889
890	/* walk over the address space and update the PTs */
891	amdgpu_vm_pt_start(adev, params->vm, start, &cursor);
892	while (cursor.pfn < end) {
893		unsigned int shift, parent_shift, mask;
894		uint64_t incr, entry_end, pe_start;
895		struct amdgpu_bo *pt;
896
897		if (!params->unlocked) {
898			/* make sure that the page tables covering the
899			 * address range are actually allocated
900			 */
901			r = amdgpu_vm_pt_alloc(params->adev, params->vm,
902					       &cursor, params->immediate);
903			if (r)
904				return r;
905		}
906
907		shift = amdgpu_vm_pt_level_shift(adev, cursor.level);
908		parent_shift = amdgpu_vm_pt_level_shift(adev, cursor.level - 1);
909		if (params->unlocked) {
910			/* Unlocked updates are only allowed on the leaves */
911			if (amdgpu_vm_pt_descendant(adev, &cursor))
912				continue;
913		} else if (adev->asic_type < CHIP_VEGA10 &&
914			   (flags & AMDGPU_PTE_VALID)) {
915			/* No huge page support before GMC v9 */
916			if (cursor.level != AMDGPU_VM_PTB) {
917				if (!amdgpu_vm_pt_descendant(adev, &cursor))
918					return -ENOENT;
919				continue;
920			}
921		} else if (frag < shift) {
922			/* We can't use this level when the fragment size is
923			 * smaller than the address shift. Go to the next
924			 * child entry and try again.
925			 */
926			if (amdgpu_vm_pt_descendant(adev, &cursor))
927				continue;
928		} else if (frag >= parent_shift) {
929			/* If the fragment size is even larger than the parent
930			 * shift we should go up one level and check it again.
931			 */
932			if (!amdgpu_vm_pt_ancestor(&cursor))
933				return -EINVAL;
934			continue;
935		}
936
937		pt = cursor.entry->bo;
938		if (!pt) {
939			/* We need all PDs and PTs for mapping something, */
940			if (flags & AMDGPU_PTE_VALID)
941				return -ENOENT;
942
943			/* but unmapping something can happen at a higher
944			 * level.
945			 */
946			if (!amdgpu_vm_pt_ancestor(&cursor))
947				return -EINVAL;
948
949			pt = cursor.entry->bo;
950			shift = parent_shift;
951			frag_end = max(frag_end, roundup2(frag_start + 1,
952				   1ULL << shift));
953		}
954
955		/* Looks good so far, calculate parameters for the update */
956		incr = (uint64_t)AMDGPU_GPU_PAGE_SIZE << shift;
957		mask = amdgpu_vm_pt_entries_mask(adev, cursor.level);
958		pe_start = ((cursor.pfn >> shift) & mask) * 8;
959		entry_end = ((uint64_t)mask + 1) << shift;
960		entry_end += cursor.pfn & ~(entry_end - 1);
961		entry_end = min(entry_end, end);
962
963		do {
964			struct amdgpu_vm *vm = params->vm;
965			uint64_t upd_end = min(entry_end, frag_end);
966			unsigned int nptes = (upd_end - frag_start) >> shift;
967			uint64_t upd_flags = flags | AMDGPU_PTE_FRAG(frag);
968
969			/* This can happen when we set higher level PDs to
970			 * silent to stop fault floods.
971			 */
972			nptes = max(nptes, 1u);
973
974			trace_amdgpu_vm_update_ptes(params, frag_start, upd_end,
975						    min(nptes, 32u), dst, incr,
976						    upd_flags,
977						    vm->task_info.tgid,
978						    vm->immediate.fence_context);
979			amdgpu_vm_pte_update_flags(params, to_amdgpu_bo_vm(pt),
980						   cursor.level, pe_start, dst,
981						   nptes, incr, upd_flags);
982
983			pe_start += nptes * 8;
984			dst += nptes * incr;
985
986			frag_start = upd_end;
987			if (frag_start >= frag_end) {
988				/* figure out the next fragment */
989				amdgpu_vm_pte_fragment(params, frag_start, end,
990						       flags, &frag, &frag_end);
991				if (frag < shift)
992					break;
993			}
994		} while (frag_start < entry_end);
995
996		if (amdgpu_vm_pt_descendant(adev, &cursor)) {
997			/* Free all child entries.
998			 * Update the tables with the flags and addresses and free up subsequent
999			 * tables in the case of huge pages or freed up areas.
1000			 * This is the maximum you can free, because all other page tables are not
1001			 * completely covered by the range and so potentially still in use.
1002			 */
1003			while (cursor.pfn < frag_start) {
1004				/* Make sure previous mapping is freed */
1005				if (cursor.entry->bo) {
1006					params->table_freed = true;
1007					amdgpu_vm_pt_free_dfs(adev, params->vm,
1008							      &cursor,
1009							      params->unlocked);
1010				}
1011				amdgpu_vm_pt_next(adev, &cursor);
1012			}
1013
1014		} else if (frag >= shift) {
1015			/* or just move on to the next on the same level. */
1016			amdgpu_vm_pt_next(adev, &cursor);
1017		}
1018	}
1019
1020	return 0;
1021}
1022