rt2560.c revision 1.8
1/*	$OpenBSD: rt2560.c,v 1.8 2006/01/13 21:06:09 damien Exp $  */
2
3/*-
4 * Copyright (c) 2005, 2006
5 *	Damien Bergamini <damien.bergamini@free.fr>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20/*-
21 * Ralink Technology RT2560 chipset driver
22 * http://www.ralinktech.com/
23 */
24
25#include "bpfilter.h"
26
27#include <sys/param.h>
28#include <sys/sockio.h>
29#include <sys/sysctl.h>
30#include <sys/mbuf.h>
31#include <sys/kernel.h>
32#include <sys/socket.h>
33#include <sys/systm.h>
34#include <sys/malloc.h>
35#include <sys/timeout.h>
36#include <sys/conf.h>
37#include <sys/device.h>
38
39#include <machine/bus.h>
40#include <machine/endian.h>
41#include <machine/intr.h>
42
43#if NBPFILTER > 0
44#include <net/bpf.h>
45#endif
46#include <net/if.h>
47#include <net/if_arp.h>
48#include <net/if_dl.h>
49#include <net/if_media.h>
50#include <net/if_types.h>
51
52#include <netinet/in.h>
53#include <netinet/in_systm.h>
54#include <netinet/in_var.h>
55#include <netinet/if_ether.h>
56#include <netinet/ip.h>
57
58#include <net80211/ieee80211_var.h>
59#include <net80211/ieee80211_rssadapt.h>
60#include <net80211/ieee80211_radiotap.h>
61
62#include <dev/ic/rt2560reg.h>
63#include <dev/ic/rt2560var.h>
64
65#include <dev/pci/pcireg.h>
66#include <dev/pci/pcivar.h>
67#include <dev/pci/pcidevs.h>
68
69#ifdef RAL_DEBUG
70#define DPRINTF(x)	do { if (rt2560_debug > 0) printf x; } while (0)
71#define DPRINTFN(n, x)	do { if (rt2560_debug >= (n)) printf x; } while (0)
72int rt2560_debug = 0;
73#else
74#define DPRINTF(x)
75#define DPRINTFN(n, x)
76#endif
77
78int		rt2560_alloc_tx_ring(struct rt2560_softc *,
79		    struct rt2560_tx_ring *, int);
80void		rt2560_reset_tx_ring(struct rt2560_softc *,
81		    struct rt2560_tx_ring *);
82void		rt2560_free_tx_ring(struct rt2560_softc *,
83		    struct rt2560_tx_ring *);
84int		rt2560_alloc_rx_ring(struct rt2560_softc *,
85		    struct rt2560_rx_ring *, int);
86void		rt2560_reset_rx_ring(struct rt2560_softc *,
87		    struct rt2560_rx_ring *);
88void		rt2560_free_rx_ring(struct rt2560_softc *,
89		    struct rt2560_rx_ring *);
90struct		ieee80211_node *rt2560_node_alloc(struct ieee80211com *);
91void		rt2560_node_copy(struct ieee80211com *ic,
92		    struct ieee80211_node *, const struct ieee80211_node *);
93int		rt2560_media_change(struct ifnet *);
94void		rt2560_next_scan(void *);
95void		rt2560_iter_func(void *, struct ieee80211_node *);
96void		rt2560_rssadapt_updatestats(void *);
97int		rt2560_newstate(struct ieee80211com *, enum ieee80211_state,
98		    int);
99uint16_t	rt2560_eeprom_read(struct rt2560_softc *, uint8_t);
100void		rt2560_encryption_intr(struct rt2560_softc *);
101void		rt2560_tx_intr(struct rt2560_softc *);
102void		rt2560_prio_intr(struct rt2560_softc *);
103void		rt2560_decryption_intr(struct rt2560_softc *);
104void		rt2560_rx_intr(struct rt2560_softc *);
105void		rt2560_beacon_expire(struct rt2560_softc *);
106void		rt2560_wakeup_expire(struct rt2560_softc *);
107int		rt2560_ack_rate(struct ieee80211com *, int);
108uint16_t	rt2560_txtime(int, int, uint32_t);
109uint8_t		rt2560_plcp_signal(int);
110void		rt2560_setup_tx_desc(struct rt2560_softc *,
111		    struct rt2560_tx_desc *, uint32_t, int, int, int,
112		    bus_addr_t);
113int		rt2560_tx_bcn(struct rt2560_softc *, struct mbuf *,
114		    struct ieee80211_node *);
115int		rt2560_tx_mgt(struct rt2560_softc *, struct mbuf *,
116		    struct ieee80211_node *);
117struct		mbuf *rt2560_get_rts(struct rt2560_softc *,
118		    struct ieee80211_frame *, uint16_t);
119int		rt2560_tx_data(struct rt2560_softc *, struct mbuf *,
120		    struct ieee80211_node *);
121void		rt2560_start(struct ifnet *);
122void		rt2560_watchdog(struct ifnet *);
123int		rt2560_ioctl(struct ifnet *, u_long, caddr_t);
124void		rt2560_bbp_write(struct rt2560_softc *, uint8_t, uint8_t);
125uint8_t		rt2560_bbp_read(struct rt2560_softc *, uint8_t);
126void		rt2560_rf_write(struct rt2560_softc *, uint8_t, uint32_t);
127void		rt2560_set_chan(struct rt2560_softc *,
128		    struct ieee80211_channel *);
129void		rt2560_disable_rf_tune(struct rt2560_softc *);
130void		rt2560_enable_tsf_sync(struct rt2560_softc *);
131void		rt2560_update_plcp(struct rt2560_softc *);
132void		rt2560_update_slot(struct rt2560_softc *);
133void		rt2560_set_basicrates(struct rt2560_softc *);
134void		rt2560_update_led(struct rt2560_softc *, int, int);
135void		rt2560_set_bssid(struct rt2560_softc *, uint8_t *);
136void		rt2560_set_macaddr(struct rt2560_softc *, uint8_t *);
137void		rt2560_get_macaddr(struct rt2560_softc *, uint8_t *);
138void		rt2560_update_promisc(struct rt2560_softc *);
139void		rt2560_set_txantenna(struct rt2560_softc *, int);
140void		rt2560_set_rxantenna(struct rt2560_softc *, int);
141const char	*rt2560_get_rf(int);
142void		rt2560_read_eeprom(struct rt2560_softc *);
143int		rt2560_bbp_init(struct rt2560_softc *);
144int		rt2560_init(struct ifnet *);
145void		rt2560_stop(struct ifnet *, int);
146
147/*
148 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
149 */
150static const struct ieee80211_rateset rt2560_rateset_11a =
151	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
152
153static const struct ieee80211_rateset rt2560_rateset_11b =
154	{ 4, { 2, 4, 11, 22 } };
155
156static const struct ieee80211_rateset rt2560_rateset_11g =
157	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
158
159/*
160 * Default values for MAC registers; values taken from the reference driver.
161 */
162static const struct {
163	uint32_t	reg;
164	uint32_t	val;
165} rt2560_def_mac[] = {
166	{ RT2560_PSCSR0,      0x00020002 },
167	{ RT2560_PSCSR1,      0x00000002 },
168	{ RT2560_PSCSR2,      0x00020002 },
169	{ RT2560_PSCSR3,      0x00000002 },
170	{ RT2560_TIMECSR,     0x00003f21 },
171	{ RT2560_CSR9,        0x00000780 },
172	{ RT2560_CSR11,       0x07041483 },
173	{ RT2560_CNT3,        0x00000000 },
174	{ RT2560_TXCSR1,      0x07614562 },
175	{ RT2560_ARSP_PLCP_0, 0x8c8d8b8a },
176	{ RT2560_ACKPCTCSR,   0x7038140a },
177	{ RT2560_ARTCSR1,     0x1d21252d },
178	{ RT2560_ARTCSR2,     0x1919191d },
179	{ RT2560_RXCSR0,      0xffffffff },
180	{ RT2560_RXCSR3,      0xb3aab3af },
181	{ RT2560_PCICSR,      0x000003b8 },
182	{ RT2560_PWRCSR0,     0x3f3b3100 },
183	{ RT2560_GPIOCSR,     0x0000ff00 },
184	{ RT2560_TESTCSR,     0x000000f0 },
185	{ RT2560_PWRCSR1,     0x000001ff },
186	{ RT2560_MACCSR0,     0x00213223 },
187	{ RT2560_MACCSR1,     0x00235518 },
188	{ RT2560_RLPWCSR,     0x00000040 },
189	{ RT2560_RALINKCSR,   0x9a009a11 },
190	{ RT2560_CSR7,        0xffffffff },
191	{ RT2560_BBPCSR1,     0x82188200 },
192	{ RT2560_TXACKCSR0,   0x00000020 },
193	{ RT2560_SECCSR3,     0x0000e78f }
194};
195
196/*
197 * Default values for BBP registers; values taken from the reference driver.
198 */
199static const struct {
200	uint8_t	reg;
201	uint8_t	val;
202} rt2560_def_bbp[] = {
203	{  3, 0x02 },
204	{  4, 0x19 },
205	{ 14, 0x1c },
206	{ 15, 0x30 },
207	{ 16, 0xac },
208	{ 17, 0x48 },
209	{ 18, 0x18 },
210	{ 19, 0xff },
211	{ 20, 0x1e },
212	{ 21, 0x08 },
213	{ 22, 0x08 },
214	{ 23, 0x08 },
215	{ 24, 0x80 },
216	{ 25, 0x50 },
217	{ 26, 0x08 },
218	{ 27, 0x23 },
219	{ 30, 0x10 },
220	{ 31, 0x2b },
221	{ 32, 0xb9 },
222	{ 34, 0x12 },
223	{ 35, 0x50 },
224	{ 39, 0xc4 },
225	{ 40, 0x02 },
226	{ 41, 0x60 },
227	{ 53, 0x10 },
228	{ 54, 0x18 },
229	{ 56, 0x08 },
230	{ 57, 0x10 },
231	{ 58, 0x08 },
232	{ 61, 0x60 },
233	{ 62, 0x10 },
234	{ 75, 0xff }
235};
236
237/*
238 * Default values for RF register R2 indexed by channel numbers; values taken
239 * from the reference driver.
240 */
241static const uint32_t rt2560_rf2522_r2[] = {
242	0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
243	0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
244};
245
246static const uint32_t rt2560_rf2523_r2[] = {
247	0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
248	0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
249};
250
251static const uint32_t rt2560_rf2524_r2[] = {
252	0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
253	0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
254};
255
256static const uint32_t rt2560_rf2525_r2[] = {
257	0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
258	0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
259};
260
261static const uint32_t rt2560_rf2525_hi_r2[] = {
262	0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
263	0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
264};
265
266static const uint32_t rt2560_rf2525e_r2[] = {
267	0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
268	0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
269};
270
271static const uint32_t rt2560_rf2526_hi_r2[] = {
272	0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
273	0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
274};
275
276static const uint32_t rt2560_rf2526_r2[] = {
277	0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
278	0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
279};
280
281/*
282 * For dual-band RF, RF registers R1 and R4 also depend on channel number;
283 * values taken from the reference driver.
284 */
285static const struct {
286	uint8_t		chan;
287	uint32_t	r1;
288	uint32_t	r2;
289	uint32_t	r4;
290} rt2560_rf5222[] = {
291	{   1, 0x08808, 0x0044d, 0x00282 },
292	{   2, 0x08808, 0x0044e, 0x00282 },
293	{   3, 0x08808, 0x0044f, 0x00282 },
294	{   4, 0x08808, 0x00460, 0x00282 },
295	{   5, 0x08808, 0x00461, 0x00282 },
296	{   6, 0x08808, 0x00462, 0x00282 },
297	{   7, 0x08808, 0x00463, 0x00282 },
298	{   8, 0x08808, 0x00464, 0x00282 },
299	{   9, 0x08808, 0x00465, 0x00282 },
300	{  10, 0x08808, 0x00466, 0x00282 },
301	{  11, 0x08808, 0x00467, 0x00282 },
302	{  12, 0x08808, 0x00468, 0x00282 },
303	{  13, 0x08808, 0x00469, 0x00282 },
304	{  14, 0x08808, 0x0046b, 0x00286 },
305
306	{  36, 0x08804, 0x06225, 0x00287 },
307	{  40, 0x08804, 0x06226, 0x00287 },
308	{  44, 0x08804, 0x06227, 0x00287 },
309	{  48, 0x08804, 0x06228, 0x00287 },
310	{  52, 0x08804, 0x06229, 0x00287 },
311	{  56, 0x08804, 0x0622a, 0x00287 },
312	{  60, 0x08804, 0x0622b, 0x00287 },
313	{  64, 0x08804, 0x0622c, 0x00287 },
314
315	{ 100, 0x08804, 0x02200, 0x00283 },
316	{ 104, 0x08804, 0x02201, 0x00283 },
317	{ 108, 0x08804, 0x02202, 0x00283 },
318	{ 112, 0x08804, 0x02203, 0x00283 },
319	{ 116, 0x08804, 0x02204, 0x00283 },
320	{ 120, 0x08804, 0x02205, 0x00283 },
321	{ 124, 0x08804, 0x02206, 0x00283 },
322	{ 128, 0x08804, 0x02207, 0x00283 },
323	{ 132, 0x08804, 0x02208, 0x00283 },
324	{ 136, 0x08804, 0x02209, 0x00283 },
325	{ 140, 0x08804, 0x0220a, 0x00283 },
326
327	{ 149, 0x08808, 0x02429, 0x00281 },
328	{ 153, 0x08808, 0x0242b, 0x00281 },
329	{ 157, 0x08808, 0x0242d, 0x00281 },
330	{ 161, 0x08808, 0x0242f, 0x00281 }
331};
332
333int
334rt2560_attach(void *xsc, int id)
335{
336	struct rt2560_softc *sc = xsc;
337	struct ieee80211com *ic = &sc->sc_ic;
338	struct ifnet *ifp = &ic->ic_if;
339	int error, i;
340
341	timeout_set(&sc->scan_ch, rt2560_next_scan, sc);
342	timeout_set(&sc->rssadapt_ch, rt2560_rssadapt_updatestats, sc);
343
344	/* retrieve RT2560 rev. no */
345	sc->asic_rev = RAL_READ(sc, RT2560_CSR0);
346
347	/* retrieve MAC address */
348	rt2560_get_macaddr(sc, ic->ic_myaddr);
349	printf(", address %s\n", ether_sprintf(ic->ic_myaddr));
350
351	/* retrieve RF rev. no and various other things from EEPROM */
352	rt2560_read_eeprom(sc);
353
354	printf("%s: MAC/BBP RT2560 (rev 0x%02x), RF %s\n", sc->sc_dev.dv_xname,
355	    sc->asic_rev, rt2560_get_rf(sc->rf_rev));
356
357	/*
358	 * Allocate Tx and Rx rings.
359	 */
360	error = rt2560_alloc_tx_ring(sc, &sc->txq, RT2560_TX_RING_COUNT);
361	if (error != 0) {
362		printf("%s: could not allocate Tx ring\n",
363		    sc->sc_dev.dv_xname);
364		goto fail1;
365	}
366
367	error = rt2560_alloc_tx_ring(sc, &sc->atimq, RT2560_ATIM_RING_COUNT);
368	if (error != 0) {
369		printf("%s: could not allocate ATIM ring\n",
370		    sc->sc_dev.dv_xname);
371		goto fail2;
372	}
373
374	error = rt2560_alloc_tx_ring(sc, &sc->prioq, RT2560_PRIO_RING_COUNT);
375	if (error != 0) {
376		printf("%s: could not allocate Prio ring\n",
377		    sc->sc_dev.dv_xname);
378		goto fail3;
379	}
380
381	error = rt2560_alloc_tx_ring(sc, &sc->bcnq, RT2560_BEACON_RING_COUNT);
382	if (error != 0) {
383		printf("%s: could not allocate Beacon ring\n",
384		    sc->sc_dev.dv_xname);
385		goto fail4;
386	}
387
388	error = rt2560_alloc_rx_ring(sc, &sc->rxq, RT2560_RX_RING_COUNT);
389	if (error != 0) {
390		printf("%s: could not allocate Rx ring\n",
391		    sc->sc_dev.dv_xname);
392		goto fail5;
393	}
394
395	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
396	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
397	ic->ic_state = IEEE80211_S_INIT;
398
399	/* set device capabilities */
400	ic->ic_caps =
401	    IEEE80211_C_IBSS |		/* IBSS mode supported */
402	    IEEE80211_C_MONITOR |	/* monitor mode supported */
403	    IEEE80211_C_HOSTAP |	/* HostAp mode supported */
404	    IEEE80211_C_TXPMGT |	/* tx power management */
405	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
406	    IEEE80211_C_SHSLOT |	/* short slot time supported */
407	    IEEE80211_C_WEP;		/* s/w WEP */
408
409	if (sc->rf_rev == RT2560_RF_5222) {
410		/* set supported .11a rates */
411		ic->ic_sup_rates[IEEE80211_MODE_11A] = rt2560_rateset_11a;
412
413		/* set supported .11a channels */
414		for (i = 36; i <= 64; i += 4) {
415			ic->ic_channels[i].ic_freq =
416			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
417			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
418		}
419		for (i = 100; i <= 140; i += 4) {
420			ic->ic_channels[i].ic_freq =
421			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
422			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
423		}
424		for (i = 149; i <= 161; i += 4) {
425			ic->ic_channels[i].ic_freq =
426			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
427			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
428		}
429	}
430
431	/* set supported .11b and .11g rates */
432	ic->ic_sup_rates[IEEE80211_MODE_11B] = rt2560_rateset_11b;
433	ic->ic_sup_rates[IEEE80211_MODE_11G] = rt2560_rateset_11g;
434
435	/* set supported .11b and .11g channels (1 through 14) */
436	for (i = 1; i <= 14; i++) {
437		ic->ic_channels[i].ic_freq =
438		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
439		ic->ic_channels[i].ic_flags =
440		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
441		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
442	}
443
444	ifp->if_softc = sc;
445	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
446	ifp->if_init = rt2560_init;
447	ifp->if_ioctl = rt2560_ioctl;
448	ifp->if_start = rt2560_start;
449	ifp->if_watchdog = rt2560_watchdog;
450	IFQ_SET_READY(&ifp->if_snd);
451	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
452
453	if_attach(ifp);
454	ieee80211_ifattach(ifp);
455	ic->ic_node_alloc = rt2560_node_alloc;
456	ic->ic_node_copy = rt2560_node_copy;
457
458	/* override state transition machine */
459	sc->sc_newstate = ic->ic_newstate;
460	ic->ic_newstate = rt2560_newstate;
461	ieee80211_media_init(ifp, rt2560_media_change, ieee80211_media_status);
462
463#if NBPFILTER > 0
464	bpfattach(&sc->sc_drvbpf, ifp, DLT_IEEE802_11_RADIO,
465	    sizeof (struct ieee80211_frame) + 64);
466
467	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
468	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
469	sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2560_RX_RADIOTAP_PRESENT);
470
471	sc->sc_txtap_len = sizeof sc->sc_txtapu;
472	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
473	sc->sc_txtap.wt_ihdr.it_present = htole32(RT2560_TX_RADIOTAP_PRESENT);
474#endif
475
476	return 0;
477
478fail5:	rt2560_free_tx_ring(sc, &sc->bcnq);
479fail4:	rt2560_free_tx_ring(sc, &sc->prioq);
480fail3:	rt2560_free_tx_ring(sc, &sc->atimq);
481fail2:	rt2560_free_tx_ring(sc, &sc->txq);
482fail1:	return ENXIO;
483}
484
485int
486rt2560_detach(void *xsc)
487{
488	struct rt2560_softc *sc = xsc;
489	struct ifnet *ifp = &sc->sc_ic.ic_if;
490
491	timeout_del(&sc->scan_ch);
492	timeout_del(&sc->rssadapt_ch);
493
494	ieee80211_ifdetach(ifp);
495	if_detach(ifp);
496
497	rt2560_free_tx_ring(sc, &sc->txq);
498	rt2560_free_tx_ring(sc, &sc->atimq);
499	rt2560_free_tx_ring(sc, &sc->prioq);
500	rt2560_free_tx_ring(sc, &sc->bcnq);
501	rt2560_free_rx_ring(sc, &sc->rxq);
502
503	return 0;
504}
505
506int
507rt2560_alloc_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring,
508    int count)
509{
510	int i, nsegs, error;
511
512	ring->count = count;
513	ring->queued = 0;
514	ring->cur = ring->next = 0;
515	ring->cur_encrypt = ring->next_encrypt = 0;
516
517	error = bus_dmamap_create(sc->sc_dmat, count * RT2560_TX_DESC_SIZE, 1,
518	    count * RT2560_TX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
519	if (error != 0) {
520		printf("%s: could not create desc DMA map\n",
521		    sc->sc_dev.dv_xname);
522		goto fail;
523	}
524
525	error = bus_dmamem_alloc(sc->sc_dmat, count * RT2560_TX_DESC_SIZE,
526	    PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
527	if (error != 0) {
528		printf("%s: could not allocate DMA memory\n",
529		    sc->sc_dev.dv_xname);
530		goto fail;
531	}
532
533	error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
534	    count * RT2560_TX_DESC_SIZE, (caddr_t *)&ring->desc,
535	    BUS_DMA_NOWAIT);
536	if (error != 0) {
537		printf("%s: could not map desc DMA memory\n",
538		    sc->sc_dev.dv_xname);
539		goto fail;
540	}
541
542	error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
543	    count * RT2560_TX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
544	if (error != 0) {
545		printf("%s: could not load desc DMA map\n",
546		    sc->sc_dev.dv_xname);
547		goto fail;
548	}
549
550	memset(ring->desc, 0, count * RT2560_TX_DESC_SIZE);
551	ring->physaddr = ring->map->dm_segs->ds_addr;
552
553	ring->data = malloc(count * sizeof (struct rt2560_tx_data), M_DEVBUF,
554	    M_NOWAIT);
555	if (ring->data == NULL) {
556		printf("%s: could not allocate soft data\n",
557		    sc->sc_dev.dv_xname);
558		error = ENOMEM;
559		goto fail;
560	}
561
562	memset(ring->data, 0, count * sizeof (struct rt2560_tx_data));
563	for (i = 0; i < count; i++) {
564		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
565		    RT2560_MAX_SCATTER, MCLBYTES, 0, BUS_DMA_NOWAIT,
566		    &ring->data[i].map);
567		if (error != 0) {
568			printf("%s: could not create DMA map\n",
569			    sc->sc_dev.dv_xname);
570			goto fail;
571		}
572	}
573
574	return 0;
575
576fail:	rt2560_free_tx_ring(sc, ring);
577	return error;
578}
579
580void
581rt2560_reset_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring)
582{
583	struct ieee80211com *ic = &sc->sc_ic;
584	struct rt2560_tx_desc *desc;
585	struct rt2560_tx_data *data;
586	int i;
587
588	for (i = 0; i < ring->count; i++) {
589		desc = &ring->desc[i];
590		data = &ring->data[i];
591
592		if (data->m != NULL) {
593			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
594			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
595			bus_dmamap_unload(sc->sc_dmat, data->map);
596			m_freem(data->m);
597			data->m = NULL;
598		}
599
600		if (data->ni != NULL) {
601			ieee80211_release_node(ic, data->ni);
602			data->ni = NULL;
603		}
604
605		desc->flags = 0;
606	}
607
608	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
609	    BUS_DMASYNC_PREWRITE);
610
611	ring->queued = 0;
612	ring->cur = ring->next = 0;
613	ring->cur_encrypt = ring->next_encrypt = 0;
614}
615
616void
617rt2560_free_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring)
618{
619	struct ieee80211com *ic = &sc->sc_ic;
620	struct rt2560_tx_data *data;
621	int i;
622
623	if (ring->desc != NULL) {
624		bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
625		    ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
626		bus_dmamap_unload(sc->sc_dmat, ring->map);
627		bus_dmamem_unmap(sc->sc_dmat, (caddr_t)ring->desc,
628		    ring->count * RT2560_TX_DESC_SIZE);
629		bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
630	}
631
632	if (ring->data != NULL) {
633		for (i = 0; i < ring->count; i++) {
634			data = &ring->data[i];
635
636			if (data->m != NULL) {
637				bus_dmamap_sync(sc->sc_dmat, data->map, 0,
638				    data->map->dm_mapsize,
639				    BUS_DMASYNC_POSTWRITE);
640				bus_dmamap_unload(sc->sc_dmat, data->map);
641				m_freem(data->m);
642			}
643
644			if (data->ni != NULL)
645				ieee80211_release_node(ic, data->ni);
646
647			if (data->map != NULL)
648				bus_dmamap_destroy(sc->sc_dmat, data->map);
649		}
650		free(ring->data, M_DEVBUF);
651	}
652}
653
654int
655rt2560_alloc_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring,
656    int count)
657{
658	struct rt2560_rx_desc *desc;
659	struct rt2560_rx_data *data;
660	int i, nsegs, error;
661
662	ring->count = count;
663	ring->cur = ring->next = 0;
664	ring->cur_decrypt = 0;
665
666	error = bus_dmamap_create(sc->sc_dmat, count * RT2560_RX_DESC_SIZE, 1,
667	    count * RT2560_RX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
668	if (error != 0) {
669		printf("%s: could not create desc DMA map\n",
670		    sc->sc_dev.dv_xname);
671		goto fail;
672	}
673
674	error = bus_dmamem_alloc(sc->sc_dmat, count * RT2560_RX_DESC_SIZE,
675	    PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
676	if (error != 0) {
677		printf("%s: could not allocate DMA memory\n",
678		    sc->sc_dev.dv_xname);
679		goto fail;
680	}
681
682	error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
683	    count * RT2560_RX_DESC_SIZE, (caddr_t *)&ring->desc,
684	    BUS_DMA_NOWAIT);
685	if (error != 0) {
686		printf("%s: could not map desc DMA memory\n",
687		    sc->sc_dev.dv_xname);
688		goto fail;
689	}
690
691	error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
692	    count * RT2560_RX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
693	if (error != 0) {
694		printf("%s: could not load desc DMA map\n",
695		    sc->sc_dev.dv_xname);
696		goto fail;
697	}
698
699	memset(ring->desc, 0, count * RT2560_RX_DESC_SIZE);
700	ring->physaddr = ring->map->dm_segs->ds_addr;
701
702	ring->data = malloc(count * sizeof (struct rt2560_rx_data), M_DEVBUF,
703	    M_NOWAIT);
704	if (ring->data == NULL) {
705		printf("%s: could not allocate soft data\n",
706		    sc->sc_dev.dv_xname);
707		error = ENOMEM;
708		goto fail;
709	}
710
711	/*
712	 * Pre-allocate Rx buffers and populate Rx ring.
713	 */
714	memset(ring->data, 0, count * sizeof (struct rt2560_rx_data));
715	for (i = 0; i < count; i++) {
716		desc = &sc->rxq.desc[i];
717		data = &sc->rxq.data[i];
718
719		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
720		    0, BUS_DMA_NOWAIT, &data->map);
721		if (error != 0) {
722			printf("%s: could not create DMA map\n",
723			    sc->sc_dev.dv_xname);
724			goto fail;
725		}
726
727		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
728		if (data->m == NULL) {
729			printf("%s: could not allocate rx mbuf\n",
730			    sc->sc_dev.dv_xname);
731			error = ENOMEM;
732			goto fail;
733		}
734
735		MCLGET(data->m, M_DONTWAIT);
736		if (!(data->m->m_flags & M_EXT)) {
737			printf("%s: could not allocate rx mbuf cluster\n",
738			    sc->sc_dev.dv_xname);
739			error = ENOMEM;
740			goto fail;
741		}
742
743		error = bus_dmamap_load(sc->sc_dmat, data->map,
744		    mtod(data->m, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
745		if (error != 0) {
746			printf("%s: could not load rx buf DMA map",
747			    sc->sc_dev.dv_xname);
748			goto fail;
749		}
750
751		desc->flags = htole32(RT2560_RX_BUSY);
752		desc->physaddr = htole32(data->map->dm_segs->ds_addr);
753	}
754
755	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
756	    BUS_DMASYNC_PREWRITE);
757
758	return 0;
759
760fail:	rt2560_free_rx_ring(sc, ring);
761	return error;
762}
763
764void
765rt2560_reset_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring)
766{
767	int i;
768
769	for (i = 0; i < ring->count; i++) {
770		ring->desc[i].flags = htole32(RT2560_RX_BUSY);
771		ring->data[i].drop = 0;
772	}
773
774	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
775	    BUS_DMASYNC_PREWRITE);
776
777	ring->cur = ring->next = 0;
778	ring->cur_decrypt = 0;
779}
780
781void
782rt2560_free_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring)
783{
784	struct rt2560_rx_data *data;
785	int i;
786
787	if (ring->desc != NULL) {
788		bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
789		    ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
790		bus_dmamap_unload(sc->sc_dmat, ring->map);
791		bus_dmamem_unmap(sc->sc_dmat, (caddr_t)ring->desc,
792		    ring->count * RT2560_RX_DESC_SIZE);
793		bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
794	}
795
796	if (ring->data != NULL) {
797		for (i = 0; i < ring->count; i++) {
798			data = &ring->data[i];
799
800			if (data->m != NULL) {
801				bus_dmamap_sync(sc->sc_dmat, data->map, 0,
802				    data->map->dm_mapsize,
803				    BUS_DMASYNC_POSTREAD);
804				bus_dmamap_unload(sc->sc_dmat, data->map);
805				m_freem(data->m);
806			}
807
808			if (data->map != NULL)
809				bus_dmamap_destroy(sc->sc_dmat, data->map);
810		}
811		free(ring->data, M_DEVBUF);
812	}
813}
814
815struct ieee80211_node *
816rt2560_node_alloc(struct ieee80211com *ic)
817{
818	struct rt2560_node *rn;
819
820	rn = malloc(sizeof (struct rt2560_node), M_DEVBUF, M_NOWAIT);
821	if (rn == NULL)
822		return NULL;
823
824	memset(rn, 0, sizeof (struct rt2560_node));
825
826	return &rn->ni;
827}
828
829void
830rt2560_node_copy(struct ieee80211com *ic, struct ieee80211_node *dst,
831    const struct ieee80211_node *src)
832{
833	*(struct rt2560_node *)dst = *(const struct rt2560_node *)src;
834}
835
836int
837rt2560_media_change(struct ifnet *ifp)
838{
839	int error;
840
841	error = ieee80211_media_change(ifp);
842	if (error != ENETRESET)
843		return error;
844
845	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
846		rt2560_init(ifp);
847
848	return 0;
849}
850
851/*
852 * This function is called periodically (every 200ms) during scanning to
853 * switch from one channel to another.
854 */
855void
856rt2560_next_scan(void *arg)
857{
858	struct rt2560_softc *sc = arg;
859	struct ieee80211com *ic = &sc->sc_ic;
860	struct ifnet *ifp = &ic->ic_if;
861
862	if (ic->ic_state == IEEE80211_S_SCAN)
863		ieee80211_next_scan(ifp);
864}
865
866/*
867 * This function is called for each neighbor node.
868 */
869void
870rt2560_iter_func(void *arg, struct ieee80211_node *ni)
871{
872	struct rt2560_node *rn = (struct rt2560_node *)ni;
873
874	ieee80211_rssadapt_updatestats(&rn->rssadapt);
875}
876
877/*
878 * This function is called periodically (every 100ms) in RUN state to update
879 * the rate adaptation statistics.
880 */
881void
882rt2560_rssadapt_updatestats(void *arg)
883{
884	struct rt2560_softc *sc = arg;
885	struct ieee80211com *ic = &sc->sc_ic;
886
887	ieee80211_iterate_nodes(ic, rt2560_iter_func, arg);
888
889	timeout_add(&sc->rssadapt_ch, hz / 10);
890}
891
892int
893rt2560_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
894{
895	struct rt2560_softc *sc = ic->ic_if.if_softc;
896	enum ieee80211_state ostate;
897	struct ieee80211_node *ni;
898	struct mbuf *m;
899	int error = 0;
900
901	ostate = ic->ic_state;
902	timeout_del(&sc->scan_ch);
903
904	switch (nstate) {
905	case IEEE80211_S_INIT:
906		timeout_del(&sc->rssadapt_ch);
907
908		if (ostate == IEEE80211_S_RUN) {
909			/* abort TSF synchronization */
910			RAL_WRITE(sc, RT2560_CSR14, 0);
911
912			/* turn association led off */
913			rt2560_update_led(sc, 0, 0);
914		}
915		break;
916
917	case IEEE80211_S_SCAN:
918		rt2560_set_chan(sc, ic->ic_bss->ni_chan);
919		timeout_add(&sc->scan_ch, hz / 5);
920		break;
921
922	case IEEE80211_S_AUTH:
923		rt2560_set_chan(sc, ic->ic_bss->ni_chan);
924		break;
925
926	case IEEE80211_S_ASSOC:
927		rt2560_set_chan(sc, ic->ic_bss->ni_chan);
928		break;
929
930	case IEEE80211_S_RUN:
931		rt2560_set_chan(sc, ic->ic_bss->ni_chan);
932
933		ni = ic->ic_bss;
934
935		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
936			rt2560_update_slot(sc);
937			rt2560_set_basicrates(sc);
938			rt2560_set_bssid(sc, ni->ni_bssid);
939		}
940
941		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
942		    ic->ic_opmode == IEEE80211_M_IBSS) {
943			m = ieee80211_beacon_alloc(ic, ni);
944			if (m == NULL) {
945				printf("%s: could not allocate beacon\n",
946				    sc->sc_dev.dv_xname);
947				error = ENOBUFS;
948				break;
949			}
950
951			error = rt2560_tx_bcn(sc, m, ni);
952			if (error != 0)
953				break;
954		}
955
956		/* turn assocation led on */
957		rt2560_update_led(sc, 1, 0);
958
959		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
960			timeout_add(&sc->rssadapt_ch, hz / 10);
961			rt2560_enable_tsf_sync(sc);
962		}
963		break;
964	}
965
966	return (error != 0) ? error : sc->sc_newstate(ic, nstate, arg);
967}
968
969/*
970 * Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or
971 * 93C66).
972 */
973uint16_t
974rt2560_eeprom_read(struct rt2560_softc *sc, uint8_t addr)
975{
976	uint32_t tmp;
977	uint16_t val;
978	int n;
979
980	/* clock C once before the first command */
981	RT2560_EEPROM_CTL(sc, 0);
982
983	RT2560_EEPROM_CTL(sc, RT2560_S);
984	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
985	RT2560_EEPROM_CTL(sc, RT2560_S);
986
987	/* write start bit (1) */
988	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D);
989	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C);
990
991	/* write READ opcode (10) */
992	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D);
993	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C);
994	RT2560_EEPROM_CTL(sc, RT2560_S);
995	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
996
997	/* write address (A5-A0 or A7-A0) */
998	n = (RAL_READ(sc, RT2560_CSR21) & RT2560_93C46) ? 5 : 7;
999	for (; n >= 0; n--) {
1000		RT2560_EEPROM_CTL(sc, RT2560_S |
1001		    (((addr >> n) & 1) << RT2560_SHIFT_D));
1002		RT2560_EEPROM_CTL(sc, RT2560_S |
1003		    (((addr >> n) & 1) << RT2560_SHIFT_D) | RT2560_C);
1004	}
1005
1006	RT2560_EEPROM_CTL(sc, RT2560_S);
1007
1008	/* read data Q15-Q0 */
1009	val = 0;
1010	for (n = 15; n >= 0; n--) {
1011		RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
1012		tmp = RAL_READ(sc, RT2560_CSR21);
1013		val |= ((tmp & RT2560_Q) >> RT2560_SHIFT_Q) << n;
1014		RT2560_EEPROM_CTL(sc, RT2560_S);
1015	}
1016
1017	RT2560_EEPROM_CTL(sc, 0);
1018
1019	/* clear Chip Select and clock C */
1020	RT2560_EEPROM_CTL(sc, RT2560_S);
1021	RT2560_EEPROM_CTL(sc, 0);
1022	RT2560_EEPROM_CTL(sc, RT2560_C);
1023
1024	return val;
1025}
1026
1027/*
1028 * Some frames were processed by the hardware cipher engine and are ready for
1029 * transmission.
1030 */
1031void
1032rt2560_encryption_intr(struct rt2560_softc *sc)
1033{
1034	struct rt2560_tx_desc *desc;
1035	int hw;
1036
1037	/* retrieve last descriptor index processed by cipher engine */
1038	hw = (RAL_READ(sc, RT2560_SECCSR1) - sc->txq.physaddr) /
1039	    RT2560_TX_DESC_SIZE;
1040
1041	for (; sc->txq.next_encrypt != hw;) {
1042		desc = &sc->txq.desc[sc->txq.next_encrypt];
1043
1044		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
1045		    sc->txq.next_encrypt * RT2560_TX_DESC_SIZE,
1046		    RT2560_TX_DESC_SIZE, BUS_DMASYNC_POSTREAD);
1047
1048		if (letoh32(desc->flags) &
1049		    (RT2560_TX_BUSY | RT2560_TX_CIPHER_BUSY))
1050			break;
1051
1052		/* for TKIP, swap eiv field to fix a bug in ASIC */
1053		if ((letoh32(desc->flags) & RT2560_TX_CIPHER_MASK) ==
1054		    RT2560_TX_CIPHER_TKIP)
1055			desc->eiv = swap32(desc->eiv);
1056
1057		/* mark the frame ready for transmission */
1058		desc->flags |= htole32(RT2560_TX_BUSY | RT2560_TX_VALID);
1059
1060		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
1061		    sc->txq.next_encrypt * RT2560_TX_DESC_SIZE,
1062		    RT2560_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
1063
1064		DPRINTFN(15, ("encryption done idx=%u\n",
1065		    sc->txq.next_encrypt));
1066
1067		sc->txq.next_encrypt =
1068		    (sc->txq.next_encrypt + 1) % RT2560_TX_RING_COUNT;
1069	}
1070
1071	/* kick Tx */
1072	RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_TX);
1073}
1074
1075void
1076rt2560_tx_intr(struct rt2560_softc *sc)
1077{
1078	struct ieee80211com *ic = &sc->sc_ic;
1079	struct ifnet *ifp = &ic->ic_if;
1080	struct rt2560_tx_desc *desc;
1081	struct rt2560_tx_data *data;
1082	struct rt2560_node *rn;
1083
1084	for (;;) {
1085		desc = &sc->txq.desc[sc->txq.next];
1086		data = &sc->txq.data[sc->txq.next];
1087
1088		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
1089		    sc->txq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1090		    BUS_DMASYNC_POSTREAD);
1091
1092		if ((letoh32(desc->flags) & RT2560_TX_BUSY) ||
1093		    (letoh32(desc->flags) & RT2560_TX_CIPHER_BUSY) ||
1094		    !(letoh32(desc->flags) & RT2560_TX_VALID))
1095			break;
1096
1097		rn = (struct rt2560_node *)data->ni;
1098
1099		switch (letoh32(desc->flags) & RT2560_TX_RESULT_MASK) {
1100		case RT2560_TX_SUCCESS:
1101			DPRINTFN(10, ("data frame sent successfully\n"));
1102			if (data->id.id_node != NULL) {
1103				ieee80211_rssadapt_raise_rate(ic,
1104				    &rn->rssadapt, &data->id);
1105			}
1106			ifp->if_opackets++;
1107			break;
1108
1109		case RT2560_TX_SUCCESS_RETRY:
1110			DPRINTFN(9, ("data frame sent after %u retries\n",
1111			    (letoh32(desc->flags) >> 5) & 0x7));
1112			ifp->if_opackets++;
1113			break;
1114
1115		case RT2560_TX_FAIL_RETRY:
1116			DPRINTFN(9, ("sending data frame failed (too much "
1117			    "retries)\n"));
1118			if (data->id.id_node != NULL) {
1119				ieee80211_rssadapt_lower_rate(ic, data->ni,
1120				    &rn->rssadapt, &data->id);
1121			}
1122			ifp->if_oerrors++;
1123			break;
1124
1125		case RT2560_TX_FAIL_INVALID:
1126		case RT2560_TX_FAIL_OTHER:
1127		default:
1128			printf("%s: sending data frame failed 0x%08x\n",
1129			    sc->sc_dev.dv_xname, letoh32(desc->flags));
1130			ifp->if_oerrors++;
1131		}
1132
1133		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1134		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1135		bus_dmamap_unload(sc->sc_dmat, data->map);
1136		m_freem(data->m);
1137		data->m = NULL;
1138		ieee80211_release_node(ic, data->ni);
1139		data->ni = NULL;
1140
1141		/* descriptor is no longer valid */
1142		desc->flags &= ~htole32(RT2560_TX_VALID);
1143
1144		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
1145		    sc->txq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1146		    BUS_DMASYNC_PREWRITE);
1147
1148		DPRINTFN(15, ("tx done idx=%u\n", sc->txq.next));
1149
1150		sc->txq.queued--;
1151		sc->txq.next = (sc->txq.next + 1) % RT2560_TX_RING_COUNT;
1152	}
1153
1154	sc->sc_tx_timer = 0;
1155	ifp->if_flags &= ~IFF_OACTIVE;
1156	rt2560_start(ifp);
1157}
1158
1159void
1160rt2560_prio_intr(struct rt2560_softc *sc)
1161{
1162	struct ieee80211com *ic = &sc->sc_ic;
1163	struct ifnet *ifp = &ic->ic_if;
1164	struct rt2560_tx_desc *desc;
1165	struct rt2560_tx_data *data;
1166
1167	for (;;) {
1168		desc = &sc->prioq.desc[sc->prioq.next];
1169		data = &sc->prioq.data[sc->prioq.next];
1170
1171		bus_dmamap_sync(sc->sc_dmat, sc->prioq.map,
1172		    sc->prioq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1173		    BUS_DMASYNC_POSTREAD);
1174
1175		if ((letoh32(desc->flags) & RT2560_TX_BUSY) ||
1176		    !(letoh32(desc->flags) & RT2560_TX_VALID))
1177			break;
1178
1179		switch (letoh32(desc->flags) & RT2560_TX_RESULT_MASK) {
1180		case RT2560_TX_SUCCESS:
1181			DPRINTFN(10, ("mgt frame sent successfully\n"));
1182			break;
1183
1184		case RT2560_TX_SUCCESS_RETRY:
1185			DPRINTFN(9, ("mgt frame sent after %u retries\n",
1186			    (letoh32(desc->flags) >> 5) & 0x7));
1187			break;
1188
1189		case RT2560_TX_FAIL_RETRY:
1190			DPRINTFN(9, ("sending mgt frame failed (too much "
1191			    "retries)\n"));
1192			break;
1193
1194		case RT2560_TX_FAIL_INVALID:
1195		case RT2560_TX_FAIL_OTHER:
1196		default:
1197			printf("%s: sending mgt frame failed 0x%08x\n",
1198			    sc->sc_dev.dv_xname, letoh32(desc->flags));
1199		}
1200
1201		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1202		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1203		bus_dmamap_unload(sc->sc_dmat, data->map);
1204		m_freem(data->m);
1205		data->m = NULL;
1206		ieee80211_release_node(ic, data->ni);
1207		data->ni = NULL;
1208
1209		/* descriptor is no longer valid */
1210		desc->flags &= ~htole32(RT2560_TX_VALID);
1211
1212		bus_dmamap_sync(sc->sc_dmat, sc->prioq.map,
1213		    sc->prioq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1214		    BUS_DMASYNC_PREWRITE);
1215
1216		DPRINTFN(15, ("prio done idx=%u\n", sc->prioq.next));
1217
1218		sc->prioq.queued--;
1219		sc->prioq.next = (sc->prioq.next + 1) % RT2560_PRIO_RING_COUNT;
1220	}
1221
1222	sc->sc_tx_timer = 0;
1223	ifp->if_flags &= ~IFF_OACTIVE;
1224	rt2560_start(ifp);
1225}
1226
1227/*
1228 * Some frames were processed by the hardware cipher engine and are ready for
1229 * transmission to the IEEE802.11 layer.
1230 */
1231void
1232rt2560_decryption_intr(struct rt2560_softc *sc)
1233{
1234	struct ieee80211com *ic = &sc->sc_ic;
1235	struct ifnet *ifp = &ic->ic_if;
1236	struct rt2560_rx_desc *desc;
1237	struct rt2560_rx_data *data;
1238	struct rt2560_node *rn;
1239	struct ieee80211_frame *wh;
1240	struct ieee80211_node *ni;
1241	struct mbuf *mnew, *m;
1242	int hw, error;
1243
1244	/* retrieve last decriptor index processed by cipher engine */
1245	hw = (RAL_READ(sc, RT2560_SECCSR0) - sc->rxq.physaddr) /
1246	    RT2560_RX_DESC_SIZE;
1247
1248	for (; sc->rxq.cur_decrypt != hw;) {
1249		desc = &sc->rxq.desc[sc->rxq.cur_decrypt];
1250		data = &sc->rxq.data[sc->rxq.cur_decrypt];
1251
1252		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1253		    sc->rxq.cur_decrypt * RT2560_TX_DESC_SIZE,
1254		    RT2560_TX_DESC_SIZE, BUS_DMASYNC_POSTREAD);
1255
1256		if (letoh32(desc->flags) &
1257		    (RT2560_RX_BUSY | RT2560_RX_CIPHER_BUSY))
1258			break;
1259
1260		if (data->drop) {
1261			ifp->if_ierrors++;
1262			goto skip;
1263		}
1264
1265		if ((letoh32(desc->flags) & RT2560_RX_CIPHER_MASK) != 0 &&
1266		    (letoh32(desc->flags) & RT2560_RX_ICV_ERROR)) {
1267			ifp->if_ierrors++;
1268			goto skip;
1269		}
1270
1271		/*
1272		 * Try to allocate a new mbuf for this ring element and load it
1273		 * before processing the current mbuf.  If the ring element
1274		 * cannot be loaded, drop the received packet and reuse the old
1275		 * mbuf.  In the unlikely case that the old mbuf can't be
1276		 * reloaded either, explicitly panic.
1277		 */
1278		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1279		if (mnew == NULL) {
1280			ifp->if_ierrors++;
1281			goto skip;
1282		}
1283
1284		MCLGET(mnew, M_DONTWAIT);
1285		if (!(mnew->m_flags & M_EXT)) {
1286			m_freem(mnew);
1287			ifp->if_ierrors++;
1288			goto skip;
1289		}
1290
1291		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1292		    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1293		bus_dmamap_unload(sc->sc_dmat, data->map);
1294
1295		error = bus_dmamap_load(sc->sc_dmat, data->map,
1296		    mtod(mnew, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
1297		if (error != 0) {
1298			m_freem(mnew);
1299
1300			/* try to reload the old mbuf */
1301			error = bus_dmamap_load(sc->sc_dmat, data->map,
1302			    mtod(data->m, void *), MCLBYTES, NULL,
1303			    BUS_DMA_NOWAIT);
1304			if (error != 0) {
1305				/* very unlikely that it will fail... */
1306				panic("%s: could not load old rx mbuf",
1307				    sc->sc_dev.dv_xname);
1308			}
1309			ifp->if_ierrors++;
1310			goto skip;
1311		}
1312
1313		/*
1314		 * New mbuf successfully loaded, update Rx ring and continue
1315		 * processing.
1316		 */
1317		m = data->m;
1318		data->m = mnew;
1319		desc->physaddr = htole32(data->map->dm_segs->ds_addr);
1320
1321		/* finalize mbuf */
1322		m->m_pkthdr.rcvif = ifp;
1323		m->m_pkthdr.len = m->m_len =
1324		    (letoh32(desc->flags) >> 16) & 0xfff;
1325
1326#if NBPFILTER > 0
1327		if (sc->sc_drvbpf != NULL) {
1328			struct mbuf mb;
1329			struct rt2560_rx_radiotap_header *tap = &sc->sc_rxtap;
1330			uint32_t tsf_lo, tsf_hi;
1331
1332			/* get timestamp (low and high 32 bits) */
1333			tsf_lo = RAL_READ(sc, RT2560_CSR16);
1334			tsf_hi = RAL_READ(sc, RT2560_CSR17);
1335
1336			tap->wr_tsf =
1337			    htole64(((uint64_t)tsf_hi << 32) | tsf_lo);
1338			tap->wr_flags = 0;
1339			tap->wr_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
1340			tap->wr_chan_flags =
1341			    htole16(ic->ic_ibss_chan->ic_flags);
1342			tap->wr_antenna = sc->rx_ant;
1343			tap->wr_antsignal = desc->rssi;
1344
1345			M_DUP_PKTHDR(&mb, m);
1346			mb.m_data = (caddr_t)tap;
1347			mb.m_len = sc->sc_txtap_len;
1348			mb.m_next = m;
1349			mb.m_pkthdr.len += mb.m_len;
1350			bpf_mtap(sc->sc_drvbpf, &mb);
1351		}
1352#endif
1353
1354		wh = mtod(m, struct ieee80211_frame *);
1355		ni = ieee80211_find_rxnode(ic, wh);
1356
1357		/* send the frame to the 802.11 layer */
1358		ieee80211_input(ifp, m, ni, desc->rssi, 0);
1359
1360		/* give rssi to the rate adatation algorithm */
1361		rn = (struct rt2560_node *)ni;
1362		ieee80211_rssadapt_input(ic, ni, &rn->rssadapt, desc->rssi);
1363
1364		/* node is no longer needed */
1365		ieee80211_release_node(ic, ni);
1366
1367skip:		desc->flags = htole32(RT2560_RX_BUSY);
1368
1369		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1370		    sc->rxq.cur_decrypt * RT2560_TX_DESC_SIZE,
1371		    RT2560_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
1372
1373		DPRINTFN(15, ("decryption done idx=%u\n", sc->rxq.cur_decrypt));
1374
1375		sc->rxq.cur_decrypt =
1376		    (sc->rxq.cur_decrypt + 1) % RT2560_RX_RING_COUNT;
1377	}
1378
1379	/*
1380	 * In HostAP mode, ieee80211_input() will enqueue packets in if_snd
1381	 * without calling if_start().
1382	 */
1383	if (!IFQ_IS_EMPTY(&ifp->if_snd) && !(ifp->if_flags & IFF_OACTIVE))
1384		rt2560_start(ifp);
1385}
1386
1387/*
1388 * Some frames were received. Pass them to the hardware cipher engine before
1389 * sending them to the 802.11 layer.
1390 */
1391void
1392rt2560_rx_intr(struct rt2560_softc *sc)
1393{
1394	struct rt2560_rx_desc *desc;
1395	struct rt2560_rx_data *data;
1396
1397	for (;;) {
1398		desc = &sc->rxq.desc[sc->rxq.cur];
1399		data = &sc->rxq.data[sc->rxq.cur];
1400
1401		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1402		    sc->rxq.cur * RT2560_RX_DESC_SIZE, RT2560_RX_DESC_SIZE,
1403		    BUS_DMASYNC_POSTREAD);
1404
1405		if (letoh32(desc->flags) &
1406		    (RT2560_RX_BUSY | RT2560_RX_CIPHER_BUSY))
1407			break;
1408
1409		data->drop = 0;
1410
1411		if (letoh32(desc->flags) &
1412		    (RT2560_RX_PHY_ERROR | RT2560_RX_CRC_ERROR)) {
1413			/*
1414			 * This should not happen since we did not request
1415			 * to receive those frames when we filled RXCSR0.
1416			 */
1417			DPRINTFN(5, ("PHY or CRC error flags 0x%08x\n",
1418			    letoh32(desc->flags)));
1419			data->drop = 1;
1420		}
1421
1422		if (((letoh32(desc->flags) >> 16) & 0xfff) > MCLBYTES) {
1423			DPRINTFN(5, ("bad length\n"));
1424			data->drop = 1;
1425		}
1426
1427		/* mark the frame for decryption */
1428		desc->flags |= htole32(RT2560_RX_CIPHER_BUSY);
1429
1430		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1431		    sc->rxq.cur * RT2560_RX_DESC_SIZE, RT2560_RX_DESC_SIZE,
1432		    BUS_DMASYNC_PREWRITE);
1433
1434		DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur));
1435
1436		sc->rxq.cur = (sc->rxq.cur + 1) % RT2560_RX_RING_COUNT;
1437	}
1438
1439	/* kick decrypt */
1440	RAL_WRITE(sc, RT2560_SECCSR0, RT2560_KICK_DECRYPT);
1441}
1442
1443/*
1444 * This function is called periodically in IBSS mode when a new beacon must be
1445 * sent out.
1446 */
1447void
1448rt2560_beacon_expire(struct rt2560_softc *sc)
1449{
1450	struct ieee80211com *ic = &sc->sc_ic;
1451	struct rt2560_tx_data *data;
1452
1453	if (ic->ic_opmode != IEEE80211_M_IBSS &&
1454	    ic->ic_opmode != IEEE80211_M_HOSTAP)
1455		return;
1456
1457	data = &sc->bcnq.data[sc->bcnq.next];
1458
1459#if NBPFILTER > 0
1460	if (ic->ic_rawbpf != NULL)
1461		bpf_mtap(ic->ic_rawbpf, data->m);
1462#endif
1463
1464	DPRINTFN(15, ("beacon expired\n"));
1465}
1466
1467void
1468rt2560_wakeup_expire(struct rt2560_softc *sc)
1469{
1470	DPRINTFN(15, ("wakeup expired\n"));
1471}
1472
1473int
1474rt2560_intr(void *arg)
1475{
1476	struct rt2560_softc *sc = arg;
1477	uint32_t r;
1478
1479	/* disable interrupts */
1480	RAL_WRITE(sc, RT2560_CSR8, 0xffffffff);
1481
1482	r = RAL_READ(sc, RT2560_CSR7);
1483	RAL_WRITE(sc, RT2560_CSR7, r);
1484
1485	if (r & RT2560_BEACON_EXPIRE)
1486		rt2560_beacon_expire(sc);
1487
1488	if (r & RT2560_WAKEUP_EXPIRE)
1489		rt2560_wakeup_expire(sc);
1490
1491	if (r & RT2560_ENCRYPTION_DONE)
1492		rt2560_encryption_intr(sc);
1493
1494	if (r & RT2560_TX_DONE)
1495		rt2560_tx_intr(sc);
1496
1497	if (r & RT2560_PRIO_DONE)
1498		rt2560_prio_intr(sc);
1499
1500	if (r & RT2560_DECRYPTION_DONE)
1501		rt2560_decryption_intr(sc);
1502
1503	if (r & RT2560_RX_DONE)
1504		rt2560_rx_intr(sc);
1505
1506	/* re-enable interrupts */
1507	RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK);
1508
1509	return 1;
1510}
1511
1512/* quickly determine if a given rate is CCK or OFDM */
1513#define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1514
1515#define RAL_ACK_SIZE	14	/* 10 + 4(FCS) */
1516#define RAL_CTS_SIZE	14	/* 10 + 4(FCS) */
1517
1518#define RAL_SIFS		10	/* us */
1519
1520#define RT2560_RXTX_TURNAROUND	10	/* us */
1521
1522/*
1523 * Return the expected ack rate for a frame transmitted at rate `rate'.
1524 * XXX: this should depend on the destination node basic rate set.
1525 */
1526int
1527rt2560_ack_rate(struct ieee80211com *ic, int rate)
1528{
1529	switch (rate) {
1530	/* CCK rates */
1531	case 2:
1532		return 2;
1533	case 4:
1534	case 11:
1535	case 22:
1536		return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
1537
1538	/* OFDM rates */
1539	case 12:
1540	case 18:
1541		return 12;
1542	case 24:
1543	case 36:
1544		return 24;
1545	case 48:
1546	case 72:
1547	case 96:
1548	case 108:
1549		return 48;
1550	}
1551
1552	/* default to 1Mbps */
1553	return 2;
1554}
1555
1556/*
1557 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1558 * The function automatically determines the operating mode depending on the
1559 * given rate. `flags' indicates whether short preamble is in use or not.
1560 */
1561uint16_t
1562rt2560_txtime(int len, int rate, uint32_t flags)
1563{
1564	uint16_t txtime;
1565
1566	if (RAL_RATE_IS_OFDM(rate)) {
1567		/* IEEE Std 802.11a-1999, pp. 37 */
1568		txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1569		txtime = 16 + 4 + 4 * txtime + 6;
1570	} else {
1571		/* IEEE Std 802.11b-1999, pp. 28 */
1572		txtime = (16 * len + rate - 1) / rate;
1573		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1574			txtime +=  72 + 24;
1575		else
1576			txtime += 144 + 48;
1577	}
1578	return txtime;
1579}
1580
1581uint8_t
1582rt2560_plcp_signal(int rate)
1583{
1584	switch (rate) {
1585	/* CCK rates (returned values are device-dependent) */
1586	case 2:		return 0x0;
1587	case 4:		return 0x1;
1588	case 11:	return 0x2;
1589	case 22:	return 0x3;
1590
1591	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1592	case 12:	return 0xb;
1593	case 18:	return 0xf;
1594	case 24:	return 0xa;
1595	case 36:	return 0xe;
1596	case 48:	return 0x9;
1597	case 72:	return 0xd;
1598	case 96:	return 0x8;
1599	case 108:	return 0xc;
1600
1601	/* unsupported rates (should not get there) */
1602	default:	return 0xff;
1603	}
1604}
1605
1606void
1607rt2560_setup_tx_desc(struct rt2560_softc *sc, struct rt2560_tx_desc *desc,
1608    uint32_t flags, int len, int rate, int encrypt, bus_addr_t physaddr)
1609{
1610	struct ieee80211com *ic = &sc->sc_ic;
1611	uint16_t plcp_length;
1612	int remainder;
1613
1614	desc->flags = htole32(flags);
1615	desc->flags |= htole32(len << 16);
1616	desc->flags |= encrypt ? htole32(RT2560_TX_CIPHER_BUSY) :
1617	    htole32(RT2560_TX_BUSY | RT2560_TX_VALID);
1618
1619	desc->physaddr = htole32(physaddr);
1620	desc->wme = htole16(
1621	    RT2560_AIFSN(2) |
1622	    RT2560_LOGCWMIN(3) |
1623	    RT2560_LOGCWMAX(8));
1624
1625	/* setup PLCP fields */
1626	desc->plcp_signal  = rt2560_plcp_signal(rate);
1627	desc->plcp_service = 4;
1628
1629	len += IEEE80211_CRC_LEN;
1630	if (RAL_RATE_IS_OFDM(rate)) {
1631		desc->flags |= htole32(RT2560_TX_OFDM);
1632
1633		plcp_length = len & 0xfff;
1634		desc->plcp_length_hi = plcp_length >> 6;
1635		desc->plcp_length_lo = plcp_length & 0x3f;
1636	} else {
1637		plcp_length = (16 * len + rate - 1) / rate;
1638		if (rate == 22) {
1639			remainder = (16 * len) % 22;
1640			if (remainder != 0 && remainder < 7)
1641				desc->plcp_service |= RT2560_PLCP_LENGEXT;
1642		}
1643		desc->plcp_length_hi = plcp_length >> 8;
1644		desc->plcp_length_lo = plcp_length & 0xff;
1645
1646		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1647			desc->plcp_signal |= 0x08;
1648	}
1649}
1650
1651int
1652rt2560_tx_bcn(struct rt2560_softc *sc, struct mbuf *m0,
1653    struct ieee80211_node *ni)
1654{
1655	struct rt2560_tx_desc *desc;
1656	struct rt2560_tx_data *data;
1657	int rate, error;
1658
1659	desc = &sc->bcnq.desc[sc->bcnq.cur];
1660	data = &sc->bcnq.data[sc->bcnq.cur];
1661
1662	rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1663
1664	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1665	    BUS_DMA_NOWAIT);
1666	if (error != 0) {
1667		printf("%s: could not map mbuf (error %d)\n",
1668		    sc->sc_dev.dv_xname, error);
1669		m_freem(m0);
1670		return error;
1671	}
1672
1673	data->m = m0;
1674	data->ni = ni;
1675
1676	rt2560_setup_tx_desc(sc, desc, RT2560_TX_IFS_NEWBACKOFF |
1677	    RT2560_TX_TIMESTAMP, m0->m_pkthdr.len, rate, 0,
1678	    data->map->dm_segs->ds_addr);
1679
1680	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1681	    BUS_DMASYNC_PREWRITE);
1682	bus_dmamap_sync(sc->sc_dmat, sc->bcnq.map,
1683	    sc->bcnq.cur * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1684	    BUS_DMASYNC_PREWRITE);
1685
1686	return 0;
1687}
1688
1689int
1690rt2560_tx_mgt(struct rt2560_softc *sc, struct mbuf *m0,
1691    struct ieee80211_node *ni)
1692{
1693	struct ieee80211com *ic = &sc->sc_ic;
1694	struct rt2560_tx_desc *desc;
1695	struct rt2560_tx_data *data;
1696	struct ieee80211_frame *wh;
1697	uint16_t dur;
1698	uint32_t flags = 0;
1699	int rate, error;
1700
1701	desc = &sc->prioq.desc[sc->prioq.cur];
1702	data = &sc->prioq.data[sc->prioq.cur];
1703
1704	rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1705
1706	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1707	    BUS_DMA_NOWAIT);
1708	if (error != 0) {
1709		printf("%s: could not map mbuf (error %d)\n",
1710		    sc->sc_dev.dv_xname, error);
1711		m_freem(m0);
1712		return error;
1713	}
1714
1715#if NBPFILTER > 0
1716	if (sc->sc_drvbpf != NULL) {
1717		struct mbuf mb;
1718		struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
1719
1720		tap->wt_flags = 0;
1721		tap->wt_rate = rate;
1722		tap->wt_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
1723		tap->wt_chan_flags = htole16(ic->ic_ibss_chan->ic_flags);
1724		tap->wt_antenna = sc->tx_ant;
1725
1726		M_DUP_PKTHDR(&mb, m0);
1727		mb.m_data = (caddr_t)tap;
1728		mb.m_len = sc->sc_txtap_len;
1729		mb.m_next = m0;
1730		mb.m_pkthdr.len += mb.m_len;
1731		bpf_mtap(sc->sc_drvbpf, &mb);
1732	}
1733#endif
1734
1735	data->m = m0;
1736	data->ni = ni;
1737
1738	wh = mtod(m0, struct ieee80211_frame *);
1739
1740	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1741		flags |= RT2560_TX_ACK;
1742
1743		dur = rt2560_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) +
1744		    RAL_SIFS;
1745		*(uint16_t *)wh->i_dur = htole16(dur);
1746
1747		/* tell hardware to add timestamp for probe responses */
1748		if ((wh->i_fc[0] &
1749		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1750		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1751			flags |= RT2560_TX_TIMESTAMP;
1752	}
1753
1754	rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 0,
1755	    data->map->dm_segs->ds_addr);
1756
1757	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1758	    BUS_DMASYNC_PREWRITE);
1759	bus_dmamap_sync(sc->sc_dmat, sc->prioq.map,
1760	    sc->prioq.cur * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1761	    BUS_DMASYNC_PREWRITE);
1762
1763	DPRINTFN(10, ("sending mgt frame len=%u idx=%u rate=%u\n",
1764	    m0->m_pkthdr.len, sc->prioq.cur, rate));
1765
1766	/* kick prio */
1767	sc->prioq.queued++;
1768	sc->prioq.cur = (sc->prioq.cur + 1) % RT2560_PRIO_RING_COUNT;
1769	RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_PRIO);
1770
1771	return 0;
1772}
1773
1774/*
1775 * Build a RTS control frame.
1776 */
1777struct mbuf *
1778rt2560_get_rts(struct rt2560_softc *sc, struct ieee80211_frame *wh,
1779    uint16_t dur)
1780{
1781	struct ieee80211_frame_rts *rts;
1782	struct mbuf *m;
1783
1784	MGETHDR(m, M_DONTWAIT, MT_DATA);
1785	if (m == NULL) {
1786		sc->sc_ic.ic_stats.is_tx_nombuf++;
1787		printf("%s: could not allocate RTS frame\n",
1788		    sc->sc_dev.dv_xname);
1789		return NULL;
1790	}
1791
1792	rts = mtod(m, struct ieee80211_frame_rts *);
1793
1794	rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL |
1795	    IEEE80211_FC0_SUBTYPE_RTS;
1796	rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1797	*(uint16_t *)rts->i_dur = htole16(dur);
1798	IEEE80211_ADDR_COPY(rts->i_ra, wh->i_addr1);
1799	IEEE80211_ADDR_COPY(rts->i_ta, wh->i_addr2);
1800
1801	m->m_pkthdr.len = m->m_len = sizeof (struct ieee80211_frame_rts);
1802
1803	return m;
1804}
1805
1806int
1807rt2560_tx_data(struct rt2560_softc *sc, struct mbuf *m0,
1808    struct ieee80211_node *ni)
1809{
1810	struct ieee80211com *ic = &sc->sc_ic;
1811	struct ifnet *ifp = &ic->ic_if;
1812	struct rt2560_tx_desc *desc;
1813	struct rt2560_tx_data *data;
1814	struct rt2560_node *rn;
1815	struct ieee80211_rateset *rs;
1816	struct ieee80211_frame *wh;
1817	struct mbuf *mnew;
1818	uint16_t dur;
1819	uint32_t flags = 0;
1820	int rate, error;
1821
1822	wh = mtod(m0, struct ieee80211_frame *);
1823
1824	/* XXX this should be reworked! */
1825	if (ic->ic_fixed_rate != -1) {
1826		if (ic->ic_curmode != IEEE80211_MODE_AUTO)
1827			rs = &ic->ic_sup_rates[ic->ic_curmode];
1828		else
1829			rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
1830
1831		rate = rs->rs_rates[ic->ic_fixed_rate];
1832	} else {
1833		rs = &ni->ni_rates;
1834		rn = (struct rt2560_node *)ni;
1835		ni->ni_txrate = ieee80211_rssadapt_choose(&rn->rssadapt, rs,
1836		    wh, m0->m_pkthdr.len, -1, NULL, 0);
1837		rate = rs->rs_rates[ni->ni_txrate];
1838	}
1839	rate &= IEEE80211_RATE_VAL;
1840
1841	/* assert tx rate is non-null so we don't end up dividing by zero */
1842	KASSERT(rate != 0);
1843
1844	if (ic->ic_flags & IEEE80211_F_WEPON) {
1845		m0 = ieee80211_wep_crypt(ifp, m0, 1);
1846		if (m0 == NULL)
1847			return ENOBUFS;
1848
1849		/* packet header may have moved, reset our local pointer */
1850		wh = mtod(m0, struct ieee80211_frame *);
1851	}
1852
1853	/*
1854	 * IEEE Std 802.11-1999, pp 82: "A STA shall use an RTS/CTS exchange
1855	 * for directed frames only when the length of the MPDU is greater
1856	 * than the length threshold indicated by [...]" ic_rtsthreshold.
1857	 */
1858	if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1859	    m0->m_pkthdr.len > ic->ic_rtsthreshold) {
1860		struct mbuf *m;
1861		uint16_t dur;
1862		int rtsrate, ackrate;
1863
1864		rtsrate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1865		ackrate = rt2560_ack_rate(ic, rate);
1866
1867		dur = rt2560_txtime(m0->m_pkthdr.len + 4, rate, ic->ic_flags) +
1868		      rt2560_txtime(RAL_CTS_SIZE, rtsrate, ic->ic_flags) +
1869		      rt2560_txtime(RAL_ACK_SIZE, ackrate, ic->ic_flags) +
1870		      3 * RAL_SIFS;
1871
1872		m = rt2560_get_rts(sc, wh, dur);
1873
1874		desc = &sc->txq.desc[sc->txq.cur_encrypt];
1875		data = &sc->txq.data[sc->txq.cur_encrypt];
1876
1877		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
1878		    BUS_DMA_NOWAIT);
1879		if (error != 0) {
1880			printf("%s: could not map mbuf (error %d)\n",
1881			    sc->sc_dev.dv_xname, error);
1882			m_freem(m);
1883			m_freem(m0);
1884			return error;
1885		}
1886
1887		/* avoid multiple free() of the same node for each fragment */
1888		ieee80211_ref_node(ni);
1889
1890		data->m = m;
1891		data->ni = ni;
1892
1893		/* RTS frames are not taken into account for rssadapt */
1894		data->id.id_node = NULL;
1895
1896		rt2560_setup_tx_desc(sc, desc, RT2560_TX_ACK |
1897		    RT2560_TX_MORE_FRAG, m->m_pkthdr.len, rtsrate, 1,
1898		    data->map->dm_segs->ds_addr);
1899
1900		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1901		    data->map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1902		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
1903		    sc->txq.cur_encrypt * RT2560_TX_DESC_SIZE,
1904		    RT2560_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
1905
1906		sc->txq.queued++;
1907		sc->txq.cur_encrypt =
1908		    (sc->txq.cur_encrypt + 1) % RT2560_TX_RING_COUNT;
1909
1910		/*
1911		 * IEEE Std 802.11-1999: when an RTS/CTS exchange is used, the
1912		 * asynchronous data frame shall be transmitted after the CTS
1913		 * frame and a SIFS period.
1914		 */
1915		flags |= RT2560_TX_LONG_RETRY | RT2560_TX_IFS_SIFS;
1916	}
1917
1918	data = &sc->txq.data[sc->txq.cur_encrypt];
1919	desc = &sc->txq.desc[sc->txq.cur_encrypt];
1920
1921	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1922	    BUS_DMA_NOWAIT);
1923	if (error != 0 && error != EFBIG) {
1924		printf("%s: could not map mbuf (error %d)\n",
1925		    sc->sc_dev.dv_xname, error);
1926		m_freem(m0);
1927		return error;
1928	}
1929	if (error != 0) {
1930		/* too many fragments, linearize */
1931
1932		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1933		if (mnew == NULL) {
1934			m_freem(m0);
1935			return ENOMEM;
1936		}
1937
1938		M_DUP_PKTHDR(mnew, m0);
1939		if (m0->m_pkthdr.len > MHLEN) {
1940			MCLGET(mnew, M_DONTWAIT);
1941			if (!(mnew->m_flags & M_EXT)) {
1942				m_freem(m0);
1943				m_freem(mnew);
1944				return ENOMEM;
1945			}
1946		}
1947
1948		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, caddr_t));
1949		m_freem(m0);
1950		mnew->m_len = mnew->m_pkthdr.len;
1951		m0 = mnew;
1952
1953		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1954		    BUS_DMA_NOWAIT);
1955		if (error != 0) {
1956			printf("%s: could not map mbuf (error %d)\n",
1957			    sc->sc_dev.dv_xname, error);
1958			m_freem(m0);
1959			return error;
1960		}
1961
1962		/* packet header have moved, reset our local pointer */
1963		wh = mtod(m0, struct ieee80211_frame *);
1964	}
1965
1966#if NBPFILTER > 0
1967	if (sc->sc_drvbpf != NULL) {
1968		struct mbuf mb;
1969		struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
1970
1971		tap->wt_flags = 0;
1972		tap->wt_rate = rate;
1973		tap->wt_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
1974		tap->wt_chan_flags = htole16(ic->ic_ibss_chan->ic_flags);
1975		tap->wt_antenna = sc->tx_ant;
1976
1977		M_DUP_PKTHDR(&mb, m0);
1978		mb.m_data = (caddr_t)tap;
1979		mb.m_len = sc->sc_txtap_len;
1980		mb.m_next = m0;
1981		mb.m_pkthdr.len += mb.m_len;
1982		bpf_mtap(sc->sc_drvbpf, &mb);
1983	}
1984#endif
1985
1986	data->m = m0;
1987	data->ni = ni;
1988
1989	/* remember link conditions for rate adaptation algorithm */
1990	if (ic->ic_fixed_rate == -1) {
1991		data->id.id_len = m0->m_pkthdr.len;
1992		data->id.id_rateidx = ni->ni_txrate;
1993		data->id.id_node = ni;
1994		data->id.id_rssi = ni->ni_rssi;
1995	} else
1996		data->id.id_node = NULL;
1997
1998	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1999		flags |= RT2560_TX_ACK;
2000
2001		dur = rt2560_txtime(RAL_ACK_SIZE, rt2560_ack_rate(ic, rate),
2002		    ic->ic_flags) + RAL_SIFS;
2003		*(uint16_t *)wh->i_dur = htole16(dur);
2004	}
2005
2006	rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 1,
2007	    data->map->dm_segs->ds_addr);
2008
2009	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2010	    BUS_DMASYNC_PREWRITE);
2011	bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
2012	    sc->txq.cur_encrypt * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
2013	    BUS_DMASYNC_PREWRITE);
2014
2015	DPRINTFN(10, ("sending data frame len=%u idx=%u rate=%u\n",
2016	    m0->m_pkthdr.len, sc->txq.cur_encrypt, rate));
2017
2018	/* kick encrypt */
2019	sc->txq.queued++;
2020	sc->txq.cur_encrypt = (sc->txq.cur_encrypt + 1) % RT2560_TX_RING_COUNT;
2021	RAL_WRITE(sc, RT2560_SECCSR1, RT2560_KICK_ENCRYPT);
2022
2023	return 0;
2024}
2025
2026void
2027rt2560_start(struct ifnet *ifp)
2028{
2029	struct rt2560_softc *sc = ifp->if_softc;
2030	struct ieee80211com *ic = &sc->sc_ic;
2031	struct mbuf *m0;
2032	struct ieee80211_node *ni;
2033
2034	for (;;) {
2035		IF_POLL(&ic->ic_mgtq, m0);
2036		if (m0 != NULL) {
2037			if (sc->prioq.queued >= RT2560_PRIO_RING_COUNT) {
2038				ifp->if_flags |= IFF_OACTIVE;
2039				break;
2040			}
2041			IF_DEQUEUE(&ic->ic_mgtq, m0);
2042
2043			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
2044			m0->m_pkthdr.rcvif = NULL;
2045#if NBPFILTER > 0
2046			if (ic->ic_rawbpf != NULL)
2047				bpf_mtap(ic->ic_rawbpf, m0);
2048#endif
2049			if (rt2560_tx_mgt(sc, m0, ni) != 0)
2050				break;
2051
2052		} else {
2053			if (ic->ic_state != IEEE80211_S_RUN)
2054				break;
2055			IFQ_DEQUEUE(&ifp->if_snd, m0);
2056			if (m0 == NULL)
2057				break;
2058			if (sc->txq.queued >= RT2560_TX_RING_COUNT - 1) {
2059				IF_PREPEND(&ifp->if_snd, m0);
2060				ifp->if_flags |= IFF_OACTIVE;
2061				break;
2062			}
2063#if NBPFILTER > 0
2064			if (ifp->if_bpf != NULL)
2065				bpf_mtap(ifp->if_bpf, m0);
2066#endif
2067			m0 = ieee80211_encap(ifp, m0, &ni);
2068			if (m0 == NULL)
2069				continue;
2070#if NBPFILTER > 0
2071			if (ic->ic_rawbpf != NULL)
2072				bpf_mtap(ic->ic_rawbpf, m0);
2073#endif
2074			if (rt2560_tx_data(sc, m0, ni) != 0) {
2075				if (ni != NULL)
2076					ieee80211_release_node(ic, ni);
2077				ifp->if_oerrors++;
2078				break;
2079			}
2080		}
2081
2082		sc->sc_tx_timer = 5;
2083		ifp->if_timer = 1;
2084	}
2085}
2086
2087void
2088rt2560_watchdog(struct ifnet *ifp)
2089{
2090	struct rt2560_softc *sc = ifp->if_softc;
2091
2092	ifp->if_timer = 0;
2093
2094	if (sc->sc_tx_timer > 0) {
2095		if (--sc->sc_tx_timer == 0) {
2096			printf("%s: device timeout\n", sc->sc_dev.dv_xname);
2097			rt2560_init(ifp);
2098			ifp->if_oerrors++;
2099			return;
2100		}
2101		ifp->if_timer = 1;
2102	}
2103
2104	ieee80211_watchdog(ifp);
2105}
2106
2107int
2108rt2560_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2109{
2110	struct rt2560_softc *sc = ifp->if_softc;
2111	struct ieee80211com *ic = &sc->sc_ic;
2112	struct ifaddr *ifa;
2113	struct ifreq *ifr;
2114	int s, error = 0;
2115
2116	s = splnet();
2117
2118	switch (cmd) {
2119	case SIOCSIFADDR:
2120		ifa = (struct ifaddr *)data;
2121		ifp->if_flags |= IFF_UP;
2122#ifdef INET
2123		if (ifa->ifa_addr->sa_family == AF_INET)
2124			arp_ifinit(&ic->ic_ac, ifa);
2125#endif
2126		/* FALLTHROUGH */
2127	case SIOCSIFFLAGS:
2128		if (ifp->if_flags & IFF_UP) {
2129			if (ifp->if_flags & IFF_RUNNING)
2130				rt2560_update_promisc(sc);
2131			else
2132				rt2560_init(ifp);
2133		} else {
2134			if (ifp->if_flags & IFF_RUNNING)
2135				rt2560_stop(ifp, 1);
2136		}
2137		break;
2138
2139	case SIOCADDMULTI:
2140	case SIOCDELMULTI:
2141		ifr = (struct ifreq *)data;
2142		error = (cmd == SIOCADDMULTI) ?
2143		    ether_addmulti(ifr, &ic->ic_ac) :
2144		    ether_delmulti(ifr, &ic->ic_ac);
2145
2146		if (error == ENETRESET)
2147			error = 0;
2148		break;
2149
2150	case SIOCS80211CHANNEL:
2151		/*
2152		 * This allows for fast channel switching in monitor mode
2153		 * (used by kismet). In IBSS mode, we must explicitly reset
2154		 * the interface to generate a new beacon frame.
2155		 */
2156		error = ieee80211_ioctl(ifp, cmd, data);
2157		if (error == ENETRESET &&
2158		    ic->ic_opmode == IEEE80211_M_MONITOR) {
2159			rt2560_set_chan(sc, ic->ic_ibss_chan);
2160			error = 0;
2161		}
2162		break;
2163
2164	default:
2165		error = ieee80211_ioctl(ifp, cmd, data);
2166	}
2167
2168	if (error == ENETRESET) {
2169		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
2170		    (IFF_UP | IFF_RUNNING))
2171			rt2560_init(ifp);
2172		error = 0;
2173	}
2174
2175	splx(s);
2176
2177	return error;
2178}
2179
2180void
2181rt2560_bbp_write(struct rt2560_softc *sc, uint8_t reg, uint8_t val)
2182{
2183	uint32_t tmp;
2184	int ntries;
2185
2186	for (ntries = 0; ntries < 100; ntries++) {
2187		if (!(RAL_READ(sc, RT2560_BBPCSR) & RT2560_BBP_BUSY))
2188			break;
2189		DELAY(1);
2190	}
2191	if (ntries == 100) {
2192		printf("%s: could not write to BBP\n", sc->sc_dev.dv_xname);
2193		return;
2194	}
2195
2196	tmp = RT2560_BBP_WRITE | RT2560_BBP_BUSY | reg << 8 | val;
2197	RAL_WRITE(sc, RT2560_BBPCSR, tmp);
2198
2199	DPRINTFN(15, ("BBP R%u <- 0x%02x\n", reg, val));
2200}
2201
2202uint8_t
2203rt2560_bbp_read(struct rt2560_softc *sc, uint8_t reg)
2204{
2205	uint32_t val;
2206	int ntries;
2207
2208	val = RT2560_BBP_BUSY | reg << 8;
2209	RAL_WRITE(sc, RT2560_BBPCSR, val);
2210
2211	for (ntries = 0; ntries < 100; ntries++) {
2212		val = RAL_READ(sc, RT2560_BBPCSR);
2213		if (!(val & RT2560_BBP_BUSY))
2214			return val & 0xff;
2215		DELAY(1);
2216	}
2217
2218	printf("%s: could not read from BBP\n", sc->sc_dev.dv_xname);
2219	return 0;
2220}
2221
2222void
2223rt2560_rf_write(struct rt2560_softc *sc, uint8_t reg, uint32_t val)
2224{
2225	uint32_t tmp;
2226	int ntries;
2227
2228	for (ntries = 0; ntries < 100; ntries++) {
2229		if (!(RAL_READ(sc, RT2560_RFCSR) & RT2560_RF_BUSY))
2230			break;
2231		DELAY(1);
2232	}
2233	if (ntries == 100) {
2234		printf("%s: could not write to RF\n", sc->sc_dev.dv_xname);
2235		return;
2236	}
2237
2238	tmp = RT2560_RF_BUSY | RT2560_RF_20BIT | (val & 0xfffff) << 2 |
2239	    (reg & 0x3);
2240	RAL_WRITE(sc, RT2560_RFCSR, tmp);
2241
2242	/* remember last written value in sc */
2243	sc->rf_regs[reg] = val;
2244
2245	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff));
2246}
2247
2248void
2249rt2560_set_chan(struct rt2560_softc *sc, struct ieee80211_channel *c)
2250{
2251	struct ieee80211com *ic = &sc->sc_ic;
2252	uint8_t power, tmp;
2253	u_int i, chan;
2254
2255	chan = ieee80211_chan2ieee(ic, c);
2256	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
2257		return;
2258
2259	if (IEEE80211_IS_CHAN_2GHZ(c))
2260		power = min(sc->txpow[chan - 1], 31);
2261	else
2262		power = 31;
2263
2264	DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power));
2265
2266	switch (sc->rf_rev) {
2267	case RT2560_RF_2522:
2268		rt2560_rf_write(sc, RT2560_RF1, 0x00814);
2269		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2522_r2[chan - 1]);
2270		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x00040);
2271		break;
2272
2273	case RT2560_RF_2523:
2274		rt2560_rf_write(sc, RT2560_RF1, 0x08804);
2275		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2523_r2[chan - 1]);
2276		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x38044);
2277		rt2560_rf_write(sc, RT2560_RF4,
2278		    (chan == 14) ? 0x00280 : 0x00286);
2279		break;
2280
2281	case RT2560_RF_2524:
2282		rt2560_rf_write(sc, RT2560_RF1, 0x0c808);
2283		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2524_r2[chan - 1]);
2284		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x00040);
2285		rt2560_rf_write(sc, RT2560_RF4,
2286		    (chan == 14) ? 0x00280 : 0x00286);
2287		break;
2288
2289	case RT2560_RF_2525:
2290		rt2560_rf_write(sc, RT2560_RF1, 0x08808);
2291		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2525_hi_r2[chan - 1]);
2292		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
2293		rt2560_rf_write(sc, RT2560_RF4,
2294		    (chan == 14) ? 0x00280 : 0x00286);
2295
2296		rt2560_rf_write(sc, RT2560_RF1, 0x08808);
2297		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2525_r2[chan - 1]);
2298		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
2299		rt2560_rf_write(sc, RT2560_RF4,
2300		    (chan == 14) ? 0x00280 : 0x00286);
2301		break;
2302
2303	case RT2560_RF_2525E:
2304		rt2560_rf_write(sc, RT2560_RF1, 0x08808);
2305		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2525e_r2[chan - 1]);
2306		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
2307		rt2560_rf_write(sc, RT2560_RF4,
2308		    (chan == 14) ? 0x00286 : 0x00282);
2309		break;
2310
2311	case RT2560_RF_2526:
2312		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2526_hi_r2[chan - 1]);
2313		rt2560_rf_write(sc, RT2560_RF4,
2314		   (chan & 1) ? 0x00386 : 0x00381);
2315		rt2560_rf_write(sc, RT2560_RF1, 0x08804);
2316
2317		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2526_r2[chan - 1]);
2318		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
2319		rt2560_rf_write(sc, RT2560_RF4,
2320		    (chan & 1) ? 0x00386 : 0x00381);
2321		break;
2322
2323	/* dual-band RF */
2324	case RT2560_RF_5222:
2325		for (i = 0; rt2560_rf5222[i].chan != chan; i++);
2326
2327		rt2560_rf_write(sc, RT2560_RF1, rt2560_rf5222[i].r1);
2328		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf5222[i].r2);
2329		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x00040);
2330		rt2560_rf_write(sc, RT2560_RF4, rt2560_rf5222[i].r4);
2331		break;
2332	}
2333
2334	if (ic->ic_opmode != IEEE80211_M_MONITOR &&
2335	    ic->ic_state != IEEE80211_S_SCAN) {
2336		/* set Japan filter bit for channel 14 */
2337		tmp = rt2560_bbp_read(sc, 70);
2338
2339		tmp &= ~RT2560_JAPAN_FILTER;
2340		if (chan == 14)
2341			tmp |= RT2560_JAPAN_FILTER;
2342
2343		rt2560_bbp_write(sc, 70, tmp);
2344
2345		DELAY(1000); /* RF needs a 1ms delay here */
2346		rt2560_disable_rf_tune(sc);
2347
2348		/* clear CRC errors */
2349		RAL_READ(sc, RT2560_CNT0);
2350	}
2351}
2352
2353/*
2354 * Disable RF auto-tuning.
2355 */
2356void
2357rt2560_disable_rf_tune(struct rt2560_softc *sc)
2358{
2359	uint32_t tmp;
2360
2361	if (sc->rf_rev != RT2560_RF_2523) {
2362		tmp = sc->rf_regs[RT2560_RF1] & ~RT2560_RF1_AUTOTUNE;
2363		rt2560_rf_write(sc, RT2560_RF1, tmp);
2364	}
2365
2366	tmp = sc->rf_regs[RT2560_RF3] & ~RT2560_RF3_AUTOTUNE;
2367	rt2560_rf_write(sc, RT2560_RF3, tmp);
2368
2369	DPRINTFN(2, ("disabling RF autotune\n"));
2370}
2371
2372/*
2373 * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
2374 * synchronization.
2375 */
2376void
2377rt2560_enable_tsf_sync(struct rt2560_softc *sc)
2378{
2379	struct ieee80211com *ic = &sc->sc_ic;
2380	uint16_t logcwmin, preload;
2381	uint32_t tmp;
2382
2383	/* first, disable TSF synchronization */
2384	RAL_WRITE(sc, RT2560_CSR14, 0);
2385
2386	tmp = 16 * ic->ic_bss->ni_intval;
2387	RAL_WRITE(sc, RT2560_CSR12, tmp);
2388
2389	RAL_WRITE(sc, RT2560_CSR13, 0);
2390
2391	logcwmin = 5;
2392	preload = (ic->ic_opmode == IEEE80211_M_STA) ? 384 : 1024;
2393	tmp = logcwmin << 16 | preload;
2394	RAL_WRITE(sc, RT2560_BCNOCSR, tmp);
2395
2396	/* finally, enable TSF synchronization */
2397	tmp = RT2560_ENABLE_TSF | RT2560_ENABLE_TBCN;
2398	if (ic->ic_opmode == IEEE80211_M_STA)
2399		tmp |= RT2560_ENABLE_TSF_SYNC(1);
2400	else
2401		tmp |= RT2560_ENABLE_TSF_SYNC(2) |
2402		       RT2560_ENABLE_BEACON_GENERATOR;
2403	RAL_WRITE(sc, RT2560_CSR14, tmp);
2404
2405	DPRINTF(("enabling TSF synchronization\n"));
2406}
2407
2408void
2409rt2560_update_plcp(struct rt2560_softc *sc)
2410{
2411	struct ieee80211com *ic = &sc->sc_ic;
2412
2413	/* no short preamble for 1Mbps */
2414	RAL_WRITE(sc, RT2560_PLCP1MCSR, 0x00700400);
2415
2416	if (!(ic->ic_flags & IEEE80211_F_SHPREAMBLE)) {
2417		/* values taken from the reference driver */
2418		RAL_WRITE(sc, RT2560_PLCP2MCSR,   0x00380401);
2419		RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x00150402);
2420		RAL_WRITE(sc, RT2560_PLCP11MCSR,  0x000b8403);
2421	} else {
2422		/* same values as above or'ed 0x8 */
2423		RAL_WRITE(sc, RT2560_PLCP2MCSR,   0x00380409);
2424		RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x0015040a);
2425		RAL_WRITE(sc, RT2560_PLCP11MCSR,  0x000b840b);
2426	}
2427
2428	DPRINTF(("updating PLCP for %s preamble\n",
2429	    (ic->ic_flags & IEEE80211_F_SHPREAMBLE) ? "short" : "long"));
2430}
2431
2432/*
2433 * IEEE 802.11a uses short slot time. Refer to IEEE Std 802.11-1999 pp. 85 to
2434 * know how these values are computed.
2435 */
2436void
2437rt2560_update_slot(struct rt2560_softc *sc)
2438{
2439	struct ieee80211com *ic = &sc->sc_ic;
2440	uint8_t slottime;
2441	uint16_t sifs, pifs, difs, eifs;
2442	uint32_t tmp;
2443
2444	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
2445
2446	/* define the MAC slot boundaries */
2447	sifs = RAL_SIFS - RT2560_RXTX_TURNAROUND;
2448	pifs = sifs + slottime;
2449	difs = sifs + 2 * slottime;
2450	eifs = (ic->ic_curmode == IEEE80211_MODE_11B) ? 364 : 60;
2451
2452	tmp = RAL_READ(sc, RT2560_CSR11);
2453	tmp = (tmp & ~0x1f00) | slottime << 8;
2454	RAL_WRITE(sc, RT2560_CSR11, tmp);
2455
2456	tmp = pifs << 16 | sifs;
2457	RAL_WRITE(sc, RT2560_CSR18, tmp);
2458
2459	tmp = eifs << 16 | difs;
2460	RAL_WRITE(sc, RT2560_CSR19, tmp);
2461
2462	DPRINTF(("setting slottime to %uus\n", slottime));
2463}
2464
2465void
2466rt2560_set_basicrates(struct rt2560_softc *sc)
2467{
2468	struct ieee80211com *ic = &sc->sc_ic;
2469
2470	/* update basic rate set */
2471	if (ic->ic_curmode == IEEE80211_MODE_11B) {
2472		/* 11b basic rates: 1, 2Mbps */
2473		RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x3);
2474	} else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) {
2475		/* 11a basic rates: 6, 12, 24Mbps */
2476		RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x150);
2477	} else {
2478		/* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
2479		RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x15f);
2480	}
2481}
2482
2483void
2484rt2560_update_led(struct rt2560_softc *sc, int led1, int led2)
2485{
2486	uint32_t tmp;
2487
2488	/* set ON period to 70ms and OFF period to 30ms */
2489	tmp = led1 << 16 | led2 << 17 | 70 << 8 | 30;
2490	RAL_WRITE(sc, RT2560_LEDCSR, tmp);
2491}
2492
2493void
2494rt2560_set_bssid(struct rt2560_softc *sc, uint8_t *bssid)
2495{
2496	uint32_t tmp;
2497
2498	tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
2499	RAL_WRITE(sc, RT2560_CSR5, tmp);
2500
2501	tmp = bssid[4] | bssid[5] << 8;
2502	RAL_WRITE(sc, RT2560_CSR6, tmp);
2503
2504	DPRINTF(("setting BSSID to %s\n", ether_sprintf(bssid)));
2505}
2506
2507void
2508rt2560_set_macaddr(struct rt2560_softc *sc, uint8_t *addr)
2509{
2510	uint32_t tmp;
2511
2512	tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
2513	RAL_WRITE(sc, RT2560_CSR3, tmp);
2514
2515	tmp = addr[4] | addr[5] << 8;
2516	RAL_WRITE(sc, RT2560_CSR4, tmp);
2517
2518	DPRINTF(("setting MAC address to %s\n", ether_sprintf(addr)));
2519}
2520
2521void
2522rt2560_get_macaddr(struct rt2560_softc *sc, uint8_t *addr)
2523{
2524	uint32_t tmp;
2525
2526	tmp = RAL_READ(sc, RT2560_CSR3);
2527	addr[0] = tmp & 0xff;
2528	addr[1] = (tmp >>  8) & 0xff;
2529	addr[2] = (tmp >> 16) & 0xff;
2530	addr[3] = (tmp >> 24);
2531
2532	tmp = RAL_READ(sc, RT2560_CSR4);
2533	addr[4] = tmp & 0xff;
2534	addr[5] = (tmp >> 8) & 0xff;
2535}
2536
2537void
2538rt2560_update_promisc(struct rt2560_softc *sc)
2539{
2540	struct ifnet *ifp = &sc->sc_ic.ic_if;
2541	uint32_t tmp;
2542
2543	tmp = RAL_READ(sc, RT2560_RXCSR0);
2544
2545	tmp &= ~RT2560_DROP_NOT_TO_ME;
2546	if (!(ifp->if_flags & IFF_PROMISC))
2547		tmp |= RT2560_DROP_NOT_TO_ME;
2548
2549	RAL_WRITE(sc, RT2560_RXCSR0, tmp);
2550
2551	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
2552	    "entering" : "leaving"));
2553}
2554
2555void
2556rt2560_set_txantenna(struct rt2560_softc *sc, int antenna)
2557{
2558	uint32_t tmp;
2559	uint8_t tx;
2560
2561	tx = rt2560_bbp_read(sc, RT2560_BBP_TX) & ~RT2560_BBP_ANTMASK;
2562	if (antenna == 1)
2563		tx |= RT2560_BBP_ANTA;
2564	else if (antenna == 2)
2565		tx |= RT2560_BBP_ANTB;
2566	else
2567		tx |= RT2560_BBP_DIVERSITY;
2568
2569	/* need to force I/Q flip for RF 2525e, 2526 and 5222 */
2570	if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526 ||
2571	    sc->rf_rev == RT2560_RF_5222)
2572		tx |= RT2560_BBP_FLIPIQ;
2573
2574	rt2560_bbp_write(sc, RT2560_BBP_TX, tx);
2575
2576	/* update values for CCK and OFDM in BBPCSR1 */
2577	tmp = RAL_READ(sc, RT2560_BBPCSR1) & ~0x00070007;
2578	tmp |= (tx & 0x7) << 16 | (tx & 0x7);
2579	RAL_WRITE(sc, RT2560_BBPCSR1, tmp);
2580}
2581
2582void
2583rt2560_set_rxantenna(struct rt2560_softc *sc, int antenna)
2584{
2585	uint8_t rx;
2586
2587	rx = rt2560_bbp_read(sc, RT2560_BBP_RX) & ~RT2560_BBP_ANTMASK;
2588	if (antenna == 1)
2589		rx |= RT2560_BBP_ANTA;
2590	else if (antenna == 2)
2591		rx |= RT2560_BBP_ANTB;
2592	else
2593		rx |= RT2560_BBP_DIVERSITY;
2594
2595	/* need to force no I/Q flip for RF 2525e and 2526 */
2596	if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526)
2597		rx &= ~RT2560_BBP_FLIPIQ;
2598
2599	rt2560_bbp_write(sc, RT2560_BBP_RX, rx);
2600}
2601
2602const char *
2603rt2560_get_rf(int rev)
2604{
2605	switch (rev) {
2606	case RT2560_RF_2522:	return "RT2522";
2607	case RT2560_RF_2523:	return "RT2523";
2608	case RT2560_RF_2524:	return "RT2524";
2609	case RT2560_RF_2525:	return "RT2525";
2610	case RT2560_RF_2525E:	return "RT2525e";
2611	case RT2560_RF_2526:	return "RT2526";
2612	case RT2560_RF_5222:	return "RT5222";
2613	default:		return "unknown";
2614	}
2615}
2616
2617void
2618rt2560_read_eeprom(struct rt2560_softc *sc)
2619{
2620	uint16_t val;
2621	int i;
2622
2623	val = rt2560_eeprom_read(sc, RT2560_EEPROM_CONFIG0);
2624	sc->rf_rev =   (val >> 11) & 0x1f;
2625	sc->hw_radio = (val >> 10) & 0x1;
2626	sc->led_mode = (val >> 6)  & 0x7;
2627	sc->rx_ant =   (val >> 4)  & 0x3;
2628	sc->tx_ant =   (val >> 2)  & 0x3;
2629	sc->nb_ant =   val & 0x3;
2630
2631	/* read default values for BBP registers */
2632	for (i = 0; i < 16; i++) {
2633		val = rt2560_eeprom_read(sc, RT2560_EEPROM_BBP_BASE + i);
2634		sc->bbp_prom[i].reg = val >> 8;
2635		sc->bbp_prom[i].val = val & 0xff;
2636	}
2637
2638	/* read Tx power for all b/g channels */
2639	for (i = 0; i < 14 / 2; i++) {
2640		val = rt2560_eeprom_read(sc, RT2560_EEPROM_TXPOWER + i);
2641		sc->txpow[i * 2] = val >> 8;
2642		sc->txpow[i * 2 + 1] = val & 0xff;
2643	}
2644}
2645
2646int
2647rt2560_bbp_init(struct rt2560_softc *sc)
2648{
2649#define N(a)	(sizeof (a) / sizeof ((a)[0]))
2650	int i, ntries;
2651
2652	/* wait for BBP to be ready */
2653	for (ntries = 0; ntries < 100; ntries++) {
2654		if (rt2560_bbp_read(sc, RT2560_BBP_VERSION) != 0)
2655			break;
2656		DELAY(1);
2657	}
2658	if (ntries == 100) {
2659		printf("%s: timeout waiting for BBP\n", sc->sc_dev.dv_xname);
2660		return EIO;
2661	}
2662
2663	/* initialize BBP registers to default values */
2664	for (i = 0; i < N(rt2560_def_bbp); i++) {
2665		rt2560_bbp_write(sc, rt2560_def_bbp[i].reg,
2666		    rt2560_def_bbp[i].val);
2667	}
2668#if 0
2669	/* initialize BBP registers to values stored in EEPROM */
2670	for (i = 0; i < 16; i++) {
2671		if (sc->bbp_prom[i].reg == 0xff)
2672			continue;
2673		rt2560_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2674	}
2675#endif
2676
2677	return 0;
2678#undef N
2679}
2680
2681int
2682rt2560_init(struct ifnet *ifp)
2683{
2684#define N(a)	(sizeof (a) / sizeof ((a)[0]))
2685	struct rt2560_softc *sc = ifp->if_softc;
2686	struct ieee80211com *ic = &sc->sc_ic;
2687	uint32_t tmp;
2688	int i;
2689
2690	/* for CardBus, power on the socket */
2691	if (!(sc->sc_flags & RT2560_ENABLED)) {
2692		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
2693			printf("%s: could not enable device\n");
2694			return EIO;
2695		}
2696		sc->sc_flags |= RT2560_ENABLED;
2697	}
2698
2699	rt2560_stop(ifp, 0);
2700
2701	/* setup tx rings */
2702	tmp = RT2560_PRIO_RING_COUNT << 24 |
2703	      RT2560_ATIM_RING_COUNT << 16 |
2704	      RT2560_TX_RING_COUNT   <<  8 |
2705	      RT2560_TX_DESC_SIZE;
2706
2707	/* rings _must_ be initialized in this _exact_ order! */
2708	RAL_WRITE(sc, RT2560_TXCSR2, tmp);
2709	RAL_WRITE(sc, RT2560_TXCSR3, sc->txq.physaddr);
2710	RAL_WRITE(sc, RT2560_TXCSR5, sc->prioq.physaddr);
2711	RAL_WRITE(sc, RT2560_TXCSR4, sc->atimq.physaddr);
2712	RAL_WRITE(sc, RT2560_TXCSR6, sc->bcnq.physaddr);
2713
2714	/* setup rx ring */
2715	tmp = RT2560_RX_RING_COUNT << 8 | RT2560_RX_DESC_SIZE;
2716
2717	RAL_WRITE(sc, RT2560_RXCSR1, tmp);
2718	RAL_WRITE(sc, RT2560_RXCSR2, sc->rxq.physaddr);
2719
2720	/* initialize MAC registers to default values */
2721	for (i = 0; i < N(rt2560_def_mac); i++)
2722		RAL_WRITE(sc, rt2560_def_mac[i].reg, rt2560_def_mac[i].val);
2723
2724	IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
2725	rt2560_set_macaddr(sc, ic->ic_myaddr);
2726
2727	/* set basic rate set (will be updated later) */
2728	RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x153);
2729
2730	rt2560_set_txantenna(sc, 1);
2731	rt2560_set_rxantenna(sc, 1);
2732	rt2560_update_slot(sc);
2733	rt2560_update_plcp(sc);
2734	rt2560_update_led(sc, 0, 0);
2735
2736	RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC);
2737	RAL_WRITE(sc, RT2560_CSR1, RT2560_HOST_READY);
2738
2739	if (rt2560_bbp_init(sc) != 0) {
2740		rt2560_stop(ifp, 1);
2741		return EIO;
2742	}
2743
2744	/* set default BSS channel */
2745	ic->ic_bss->ni_chan = ic->ic_ibss_chan;
2746	rt2560_set_chan(sc, ic->ic_bss->ni_chan);
2747
2748	/* kick Rx */
2749	tmp = RT2560_DROP_PHY_ERROR | RT2560_DROP_CRC_ERROR;
2750	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2751		tmp |= RT2560_DROP_CTL | RT2560_DROP_VERSION_ERROR;
2752		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2753			tmp |= RT2560_DROP_TODS;
2754		if (!(ifp->if_flags & IFF_PROMISC))
2755			tmp |= RT2560_DROP_NOT_TO_ME;
2756	}
2757	RAL_WRITE(sc, RT2560_RXCSR0, tmp);
2758
2759	/* clear old FCS and Rx FIFO errors */
2760	RAL_READ(sc, RT2560_CNT0);
2761	RAL_READ(sc, RT2560_CNT4);
2762
2763	/* clear any pending interrupts */
2764	RAL_WRITE(sc, RT2560_CSR7, 0xffffffff);
2765
2766	/* enable interrupts */
2767	RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK);
2768
2769	ifp->if_flags &= ~IFF_OACTIVE;
2770	ifp->if_flags |= IFF_RUNNING;
2771
2772	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2773		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2774	else
2775		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2776
2777	return 0;
2778#undef N
2779}
2780
2781void
2782rt2560_stop(struct ifnet *ifp, int disable)
2783{
2784	struct rt2560_softc *sc = ifp->if_softc;
2785	struct ieee80211com *ic = &sc->sc_ic;
2786
2787	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2788
2789	sc->sc_tx_timer = 0;
2790	ifp->if_timer = 0;
2791	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2792
2793	/* abort Tx */
2794	RAL_WRITE(sc, RT2560_TXCSR0, RT2560_ABORT_TX);
2795
2796	/* disable Rx */
2797	RAL_WRITE(sc, RT2560_RXCSR0, RT2560_DISABLE_RX);
2798
2799	/* reset ASIC (and thus, BBP) */
2800	RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC);
2801	RAL_WRITE(sc, RT2560_CSR1, 0);
2802
2803	/* disable interrupts */
2804	RAL_WRITE(sc, RT2560_CSR8, 0xffffffff);
2805
2806	/* reset Tx and Rx rings */
2807	rt2560_reset_tx_ring(sc, &sc->txq);
2808	rt2560_reset_tx_ring(sc, &sc->atimq);
2809	rt2560_reset_tx_ring(sc, &sc->prioq);
2810	rt2560_reset_tx_ring(sc, &sc->bcnq);
2811	rt2560_reset_rx_ring(sc, &sc->rxq);
2812
2813	/* for CardBus, power down the socket */
2814	if (disable && sc->sc_disable != NULL) {
2815		if (sc->sc_flags & RT2560_ENABLED) {
2816			(*sc->sc_disable)(sc);
2817			sc->sc_flags &= ~RT2560_ENABLED;
2818		}
2819	}
2820}
2821
2822struct cfdriver ral_cd = {
2823	0, "ral", DV_IFNET
2824};
2825