rt2560.c revision 1.5
1/*	$OpenBSD: rt2560.c,v 1.5 2006/01/10 21:20:46 damien Exp $  */
2
3/*-
4 * Copyright (c) 2005, 2006
5 *	Damien Bergamini <damien.bergamini@free.fr>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20/*-
21 * Ralink Technology RT2560 chipset driver
22 * http://www.ralinktech.com/
23 */
24
25#include "bpfilter.h"
26
27#include <sys/param.h>
28#include <sys/sockio.h>
29#include <sys/sysctl.h>
30#include <sys/mbuf.h>
31#include <sys/kernel.h>
32#include <sys/socket.h>
33#include <sys/systm.h>
34#include <sys/malloc.h>
35#include <sys/timeout.h>
36#include <sys/conf.h>
37#include <sys/device.h>
38
39#include <machine/bus.h>
40#include <machine/endian.h>
41#include <machine/intr.h>
42
43#if NBPFILTER > 0
44#include <net/bpf.h>
45#endif
46#include <net/if.h>
47#include <net/if_arp.h>
48#include <net/if_dl.h>
49#include <net/if_media.h>
50#include <net/if_types.h>
51
52#include <netinet/in.h>
53#include <netinet/in_systm.h>
54#include <netinet/in_var.h>
55#include <netinet/if_ether.h>
56#include <netinet/ip.h>
57
58#include <net80211/ieee80211_var.h>
59#include <net80211/ieee80211_rssadapt.h>
60#include <net80211/ieee80211_radiotap.h>
61
62#include <dev/ic/rt2560reg.h>
63#include <dev/ic/rt2560var.h>
64
65#include <dev/pci/pcireg.h>
66#include <dev/pci/pcivar.h>
67#include <dev/pci/pcidevs.h>
68
69#ifdef RAL_DEBUG
70#define DPRINTF(x)	do { if (rt2560_debug > 0) printf x; } while (0)
71#define DPRINTFN(n, x)	do { if (rt2560_debug >= (n)) printf x; } while (0)
72int rt2560_debug = 0;
73#else
74#define DPRINTF(x)
75#define DPRINTFN(n, x)
76#endif
77
78int		rt2560_alloc_tx_ring(struct rt2560_softc *,
79		    struct rt2560_tx_ring *, int);
80void		rt2560_reset_tx_ring(struct rt2560_softc *,
81		    struct rt2560_tx_ring *);
82void		rt2560_free_tx_ring(struct rt2560_softc *,
83		    struct rt2560_tx_ring *);
84int		rt2560_alloc_rx_ring(struct rt2560_softc *,
85		    struct rt2560_rx_ring *, int);
86void		rt2560_reset_rx_ring(struct rt2560_softc *,
87		    struct rt2560_rx_ring *);
88void		rt2560_free_rx_ring(struct rt2560_softc *,
89		    struct rt2560_rx_ring *);
90struct		ieee80211_node *rt2560_node_alloc(struct ieee80211com *);
91void		rt2560_node_copy(struct ieee80211com *ic,
92		    struct ieee80211_node *, const struct ieee80211_node *);
93int		rt2560_media_change(struct ifnet *);
94void		rt2560_next_scan(void *);
95void		rt2560_iter_func(void *, struct ieee80211_node *);
96void		rt2560_rssadapt_updatestats(void *);
97int		rt2560_newstate(struct ieee80211com *, enum ieee80211_state,
98		    int);
99uint16_t	rt2560_eeprom_read(struct rt2560_softc *, uint8_t);
100void		rt2560_encryption_intr(struct rt2560_softc *);
101void		rt2560_tx_intr(struct rt2560_softc *);
102void		rt2560_prio_intr(struct rt2560_softc *);
103void		rt2560_decryption_intr(struct rt2560_softc *);
104void		rt2560_rx_intr(struct rt2560_softc *);
105void		rt2560_beacon_expire(struct rt2560_softc *);
106void		rt2560_wakeup_expire(struct rt2560_softc *);
107int		rt2560_ack_rate(struct ieee80211com *, int);
108uint16_t	rt2560_txtime(int, int, uint32_t);
109uint8_t		rt2560_plcp_signal(int);
110void		rt2560_setup_tx_desc(struct rt2560_softc *,
111		    struct rt2560_tx_desc *, uint32_t, int, int, int,
112		    bus_addr_t);
113int		rt2560_tx_bcn(struct rt2560_softc *, struct mbuf *,
114		    struct ieee80211_node *);
115int		rt2560_tx_mgt(struct rt2560_softc *, struct mbuf *,
116		    struct ieee80211_node *);
117struct		mbuf *rt2560_get_rts(struct rt2560_softc *,
118		    struct ieee80211_frame *, uint16_t);
119int		rt2560_tx_data(struct rt2560_softc *, struct mbuf *,
120		    struct ieee80211_node *);
121void		rt2560_start(struct ifnet *);
122void		rt2560_watchdog(struct ifnet *);
123int		rt2560_ioctl(struct ifnet *, u_long, caddr_t);
124void		rt2560_bbp_write(struct rt2560_softc *, uint8_t, uint8_t);
125uint8_t		rt2560_bbp_read(struct rt2560_softc *, uint8_t);
126void		rt2560_rf_write(struct rt2560_softc *, uint8_t, uint32_t);
127void		rt2560_set_chan(struct rt2560_softc *,
128		    struct ieee80211_channel *);
129void		rt2560_disable_rf_tune(struct rt2560_softc *);
130void		rt2560_enable_tsf_sync(struct rt2560_softc *);
131void		rt2560_update_plcp(struct rt2560_softc *);
132void		rt2560_update_slot(struct rt2560_softc *);
133void		rt2560_update_led(struct rt2560_softc *, int, int);
134void		rt2560_set_bssid(struct rt2560_softc *, uint8_t *);
135void		rt2560_set_macaddr(struct rt2560_softc *, uint8_t *);
136void		rt2560_get_macaddr(struct rt2560_softc *, uint8_t *);
137void		rt2560_update_promisc(struct rt2560_softc *);
138void		rt2560_set_txantenna(struct rt2560_softc *, int);
139void		rt2560_set_rxantenna(struct rt2560_softc *, int);
140const char	*rt2560_get_rf(int);
141void		rt2560_read_eeprom(struct rt2560_softc *);
142int		rt2560_bbp_init(struct rt2560_softc *);
143int		rt2560_init(struct ifnet *);
144void		rt2560_stop(struct ifnet *, int);
145
146/*
147 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
148 */
149static const struct ieee80211_rateset rt2560_rateset_11a =
150	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
151
152static const struct ieee80211_rateset rt2560_rateset_11b =
153	{ 4, { 2, 4, 11, 22 } };
154
155static const struct ieee80211_rateset rt2560_rateset_11g =
156	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
157
158/*
159 * Default values for MAC registers; values taken from the reference driver.
160 */
161static const struct {
162	uint32_t	reg;
163	uint32_t	val;
164} rt2560_def_mac[] = {
165	{ RT2560_PSCSR0,      0x00020002 },
166	{ RT2560_PSCSR1,      0x00000002 },
167	{ RT2560_PSCSR2,      0x00020002 },
168	{ RT2560_PSCSR3,      0x00000002 },
169	{ RT2560_TIMECSR,     0x00003f21 },
170	{ RT2560_CSR9,        0x00000780 },
171	{ RT2560_CSR11,       0x07041483 },
172	{ RT2560_CNT3,        0x00000000 },
173	{ RT2560_TXCSR1,      0x07614562 },
174	{ RT2560_ARSP_PLCP_0, 0x8c8d8b8a },
175	{ RT2560_ACKPCTCSR,   0x7038140a },
176	{ RT2560_ARTCSR1,     0x1d21252d },
177	{ RT2560_ARTCSR2,     0x1919191d },
178	{ RT2560_RXCSR0,      0xffffffff },
179	{ RT2560_RXCSR3,      0xb3aab3af },
180	{ RT2560_PCICSR,      0x000003b8 },
181	{ RT2560_PWRCSR0,     0x3f3b3100 },
182	{ RT2560_GPIOCSR,     0x0000ff00 },
183	{ RT2560_TESTCSR,     0x000000f0 },
184	{ RT2560_PWRCSR1,     0x000001ff },
185	{ RT2560_MACCSR0,     0x00213223 },
186	{ RT2560_MACCSR1,     0x00235518 },
187	{ RT2560_RLPWCSR,     0x00000040 },
188	{ RT2560_RALINKCSR,   0x9a009a11 },
189	{ RT2560_CSR7,        0xffffffff },
190	{ RT2560_BBPCSR1,     0x82188200 },
191	{ RT2560_TXACKCSR0,   0x00000020 },
192	{ RT2560_SECCSR3,     0x0000e78f }
193};
194
195/*
196 * Default values for BBP registers; values taken from the reference driver.
197 */
198static const struct {
199	uint8_t	reg;
200	uint8_t	val;
201} rt2560_def_bbp[] = {
202	{  3, 0x02 },
203	{  4, 0x19 },
204	{ 14, 0x1c },
205	{ 15, 0x30 },
206	{ 16, 0xac },
207	{ 17, 0x48 },
208	{ 18, 0x18 },
209	{ 19, 0xff },
210	{ 20, 0x1e },
211	{ 21, 0x08 },
212	{ 22, 0x08 },
213	{ 23, 0x08 },
214	{ 24, 0x80 },
215	{ 25, 0x50 },
216	{ 26, 0x08 },
217	{ 27, 0x23 },
218	{ 30, 0x10 },
219	{ 31, 0x2b },
220	{ 32, 0xb9 },
221	{ 34, 0x12 },
222	{ 35, 0x50 },
223	{ 39, 0xc4 },
224	{ 40, 0x02 },
225	{ 41, 0x60 },
226	{ 53, 0x10 },
227	{ 54, 0x18 },
228	{ 56, 0x08 },
229	{ 57, 0x10 },
230	{ 58, 0x08 },
231	{ 61, 0x60 },
232	{ 62, 0x10 },
233	{ 75, 0xff }
234};
235
236/*
237 * Default values for RF register R2 indexed by channel numbers; values taken
238 * from the reference driver.
239 */
240static const uint32_t rt2560_rf2522_r2[] = {
241	0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
242	0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
243};
244
245static const uint32_t rt2560_rf2523_r2[] = {
246	0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
247	0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
248};
249
250static const uint32_t rt2560_rf2524_r2[] = {
251	0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
252	0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
253};
254
255static const uint32_t rt2560_rf2525_r2[] = {
256	0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
257	0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
258};
259
260static const uint32_t rt2560_rf2525_hi_r2[] = {
261	0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
262	0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
263};
264
265static const uint32_t rt2560_rf2525e_r2[] = {
266	0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
267	0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
268};
269
270static const uint32_t rt2560_rf2526_hi_r2[] = {
271	0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
272	0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
273};
274
275static const uint32_t rt2560_rf2526_r2[] = {
276	0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
277	0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
278};
279
280/*
281 * For dual-band RF, RF registers R1 and R4 also depend on channel number;
282 * values taken from the reference driver.
283 */
284static const struct {
285	uint8_t		chan;
286	uint32_t	r1;
287	uint32_t	r2;
288	uint32_t	r4;
289} rt2560_rf5222[] = {
290	/* channels in the 2.4GHz band */
291	{   1, 0x08808, 0x0044d, 0x00282 },
292	{   2, 0x08808, 0x0044e, 0x00282 },
293	{   3, 0x08808, 0x0044f, 0x00282 },
294	{   4, 0x08808, 0x00460, 0x00282 },
295	{   5, 0x08808, 0x00461, 0x00282 },
296	{   6, 0x08808, 0x00462, 0x00282 },
297	{   7, 0x08808, 0x00463, 0x00282 },
298	{   8, 0x08808, 0x00464, 0x00282 },
299	{   9, 0x08808, 0x00465, 0x00282 },
300	{  10, 0x08808, 0x00466, 0x00282 },
301	{  11, 0x08808, 0x00467, 0x00282 },
302	{  12, 0x08808, 0x00468, 0x00282 },
303	{  13, 0x08808, 0x00469, 0x00282 },
304	{  14, 0x08808, 0x0046b, 0x00286 },
305
306	/* channels in the 5.2GHz band */
307	{  36, 0x08804, 0x06225, 0x00287 },
308	{  40, 0x08804, 0x06226, 0x00287 },
309	{  44, 0x08804, 0x06227, 0x00287 },
310	{  48, 0x08804, 0x06228, 0x00287 },
311	{  52, 0x08804, 0x06229, 0x00287 },
312	{  56, 0x08804, 0x0622a, 0x00287 },
313	{  60, 0x08804, 0x0622b, 0x00287 },
314	{  64, 0x08804, 0x0622c, 0x00287 },
315
316	{ 100, 0x08804, 0x02200, 0x00283 },
317	{ 104, 0x08804, 0x02201, 0x00283 },
318	{ 108, 0x08804, 0x02202, 0x00283 },
319	{ 112, 0x08804, 0x02203, 0x00283 },
320	{ 116, 0x08804, 0x02204, 0x00283 },
321	{ 120, 0x08804, 0x02205, 0x00283 },
322	{ 124, 0x08804, 0x02206, 0x00283 },
323	{ 128, 0x08804, 0x02207, 0x00283 },
324	{ 132, 0x08804, 0x02208, 0x00283 },
325	{ 136, 0x08804, 0x02209, 0x00283 },
326	{ 140, 0x08804, 0x0220a, 0x00283 },
327
328	{ 149, 0x08808, 0x02429, 0x00281 },
329	{ 153, 0x08808, 0x0242b, 0x00281 },
330	{ 157, 0x08808, 0x0242d, 0x00281 },
331	{ 161, 0x08808, 0x0242f, 0x00281 }
332};
333
334int
335rt2560_attach(void *xsc, int id)
336{
337	struct rt2560_softc *sc = xsc;
338	struct ieee80211com *ic = &sc->sc_ic;
339	struct ifnet *ifp = &ic->ic_if;
340	int error, i;
341
342	timeout_set(&sc->scan_ch, rt2560_next_scan, sc);
343	timeout_set(&sc->rssadapt_ch, rt2560_rssadapt_updatestats, sc);
344
345	/* retrieve RT2560 rev. no */
346	sc->asic_rev = RAL_READ(sc, RT2560_CSR0);
347
348	/* retrieve MAC address */
349	rt2560_get_macaddr(sc, ic->ic_myaddr);
350	printf(", address %s\n", ether_sprintf(ic->ic_myaddr));
351
352	/* retrieve RF rev. no and various other things from EEPROM */
353	rt2560_read_eeprom(sc);
354
355	printf("%s: MAC/BBP RT2560 (rev 0x%02x), RF %s\n", sc->sc_dev.dv_xname,
356	    sc->asic_rev, rt2560_get_rf(sc->rf_rev));
357
358	/*
359	 * Allocate Tx and Rx rings.
360	 */
361	error = rt2560_alloc_tx_ring(sc, &sc->txq, RT2560_TX_RING_COUNT);
362	if (error != 0) {
363		printf("%s: could not allocate Tx ring\n",
364		    sc->sc_dev.dv_xname);
365		goto fail1;
366	}
367
368	error = rt2560_alloc_tx_ring(sc, &sc->atimq, RT2560_ATIM_RING_COUNT);
369	if (error != 0) {
370		printf("%s: could not allocate ATIM ring\n",
371		    sc->sc_dev.dv_xname);
372		goto fail2;
373	}
374
375	error = rt2560_alloc_tx_ring(sc, &sc->prioq, RT2560_PRIO_RING_COUNT);
376	if (error != 0) {
377		printf("%s: could not allocate Prio ring\n",
378		    sc->sc_dev.dv_xname);
379		goto fail3;
380	}
381
382	error = rt2560_alloc_tx_ring(sc, &sc->bcnq, RT2560_BEACON_RING_COUNT);
383	if (error != 0) {
384		printf("%s: could not allocate Beacon ring\n",
385		    sc->sc_dev.dv_xname);
386		goto fail4;
387	}
388
389	error = rt2560_alloc_rx_ring(sc, &sc->rxq, RT2560_RX_RING_COUNT);
390	if (error != 0) {
391		printf("%s: could not allocate Rx ring\n",
392		    sc->sc_dev.dv_xname);
393		goto fail5;
394	}
395
396	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
397	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
398	ic->ic_state = IEEE80211_S_INIT;
399
400	/* set device capabilities */
401	ic->ic_caps = IEEE80211_C_MONITOR | IEEE80211_C_IBSS |
402	    IEEE80211_C_HOSTAP | IEEE80211_C_SHPREAMBLE | IEEE80211_C_PMGT |
403	    IEEE80211_C_TXPMGT | IEEE80211_C_WEP;
404
405	if (sc->rf_rev == RT2560_RF_5222) {
406		/* set supported .11a rates */
407		ic->ic_sup_rates[IEEE80211_MODE_11A] = rt2560_rateset_11a;
408
409		/* set supported .11a channels */
410		for (i = 36; i <= 64; i += 4) {
411			ic->ic_channels[i].ic_freq =
412			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
413			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
414		}
415		for (i = 100; i <= 140; i += 4) {
416			ic->ic_channels[i].ic_freq =
417			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
418			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
419		}
420		for (i = 149; i <= 161; i += 4) {
421			ic->ic_channels[i].ic_freq =
422			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
423			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
424		}
425	}
426
427	/* set supported .11b and .11g rates */
428	ic->ic_sup_rates[IEEE80211_MODE_11B] = rt2560_rateset_11b;
429	ic->ic_sup_rates[IEEE80211_MODE_11G] = rt2560_rateset_11g;
430
431	/* set supported .11b and .11g channels (1 through 14) */
432	for (i = 1; i <= 14; i++) {
433		ic->ic_channels[i].ic_freq =
434		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
435		ic->ic_channels[i].ic_flags =
436		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
437		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
438	}
439
440	ifp->if_softc = sc;
441	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
442	ifp->if_init = rt2560_init;
443	ifp->if_ioctl = rt2560_ioctl;
444	ifp->if_start = rt2560_start;
445	ifp->if_watchdog = rt2560_watchdog;
446	IFQ_SET_READY(&ifp->if_snd);
447	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
448
449	if_attach(ifp);
450	ieee80211_ifattach(ifp);
451	ic->ic_node_alloc = rt2560_node_alloc;
452	ic->ic_node_copy = rt2560_node_copy;
453
454	/* override state transition machine */
455	sc->sc_newstate = ic->ic_newstate;
456	ic->ic_newstate = rt2560_newstate;
457	ieee80211_media_init(ifp, rt2560_media_change, ieee80211_media_status);
458
459#if NBPFILTER > 0
460	bpfattach(&sc->sc_drvbpf, ifp, DLT_IEEE802_11_RADIO,
461	    sizeof (struct ieee80211_frame) + 64);
462
463	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
464	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
465	sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2560_RX_RADIOTAP_PRESENT);
466
467	sc->sc_txtap_len = sizeof sc->sc_txtapu;
468	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
469	sc->sc_txtap.wt_ihdr.it_present = htole32(RT2560_TX_RADIOTAP_PRESENT);
470#endif
471
472	return 0;
473
474fail5:	rt2560_free_tx_ring(sc, &sc->bcnq);
475fail4:	rt2560_free_tx_ring(sc, &sc->prioq);
476fail3:	rt2560_free_tx_ring(sc, &sc->atimq);
477fail2:	rt2560_free_tx_ring(sc, &sc->txq);
478fail1:	return ENXIO;
479}
480
481int
482rt2560_detach(void *xsc)
483{
484	struct rt2560_softc *sc = xsc;
485	struct ifnet *ifp = &sc->sc_ic.ic_if;
486
487	timeout_del(&sc->scan_ch);
488	timeout_del(&sc->rssadapt_ch);
489
490	ieee80211_ifdetach(ifp);
491	if_detach(ifp);
492
493	rt2560_free_tx_ring(sc, &sc->txq);
494	rt2560_free_tx_ring(sc, &sc->atimq);
495	rt2560_free_tx_ring(sc, &sc->prioq);
496	rt2560_free_tx_ring(sc, &sc->bcnq);
497	rt2560_free_rx_ring(sc, &sc->rxq);
498
499	return 0;
500}
501
502int
503rt2560_alloc_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring,
504    int count)
505{
506	int i, nsegs, error;
507
508	ring->count = count;
509	ring->queued = 0;
510	ring->cur = ring->next = 0;
511	ring->cur_encrypt = ring->next_encrypt = 0;
512
513	error = bus_dmamap_create(sc->sc_dmat, count * RT2560_TX_DESC_SIZE, 1,
514	    count * RT2560_TX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
515	if (error != 0) {
516		printf("%s: could not create desc DMA map\n",
517		    sc->sc_dev.dv_xname);
518		goto fail;
519	}
520
521	error = bus_dmamem_alloc(sc->sc_dmat, count * RT2560_TX_DESC_SIZE,
522	    PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
523	if (error != 0) {
524		printf("%s: could not allocate DMA memory\n",
525		    sc->sc_dev.dv_xname);
526		goto fail;
527	}
528
529	error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
530	    count * RT2560_TX_DESC_SIZE, (caddr_t *)&ring->desc,
531	    BUS_DMA_NOWAIT);
532	if (error != 0) {
533		printf("%s: could not map desc DMA memory\n",
534		    sc->sc_dev.dv_xname);
535		goto fail;
536	}
537
538	error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
539	    count * RT2560_TX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
540	if (error != 0) {
541		printf("%s: could not load desc DMA map\n",
542		    sc->sc_dev.dv_xname);
543		goto fail;
544	}
545
546	memset(ring->desc, 0, count * RT2560_TX_DESC_SIZE);
547	ring->physaddr = ring->map->dm_segs->ds_addr;
548
549	ring->data = malloc(count * sizeof (struct rt2560_tx_data), M_DEVBUF,
550	    M_NOWAIT);
551	if (ring->data == NULL) {
552		printf("%s: could not allocate soft data\n",
553		    sc->sc_dev.dv_xname);
554		error = ENOMEM;
555		goto fail;
556	}
557
558	memset(ring->data, 0, count * sizeof (struct rt2560_tx_data));
559	for (i = 0; i < count; i++) {
560		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
561		    RT2560_MAX_SCATTER, MCLBYTES, 0, BUS_DMA_NOWAIT,
562		    &ring->data[i].map);
563		if (error != 0) {
564			printf("%s: could not create DMA map\n",
565			    sc->sc_dev.dv_xname);
566			goto fail;
567		}
568	}
569
570	return 0;
571
572fail:	rt2560_free_tx_ring(sc, ring);
573	return error;
574}
575
576void
577rt2560_reset_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring)
578{
579	struct ieee80211com *ic = &sc->sc_ic;
580	struct rt2560_tx_desc *desc;
581	struct rt2560_tx_data *data;
582	int i;
583
584	for (i = 0; i < ring->count; i++) {
585		desc = &ring->desc[i];
586		data = &ring->data[i];
587
588		if (data->m != NULL) {
589			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
590			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
591			bus_dmamap_unload(sc->sc_dmat, data->map);
592			m_freem(data->m);
593			data->m = NULL;
594		}
595
596		if (data->ni != NULL) {
597			ieee80211_release_node(ic, data->ni);
598			data->ni = NULL;
599		}
600
601		desc->flags = 0;
602	}
603
604	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
605	    BUS_DMASYNC_PREWRITE);
606
607	ring->queued = 0;
608	ring->cur = ring->next = 0;
609	ring->cur_encrypt = ring->next_encrypt = 0;
610}
611
612void
613rt2560_free_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring)
614{
615	struct ieee80211com *ic = &sc->sc_ic;
616	struct rt2560_tx_data *data;
617	int i;
618
619	if (ring->desc != NULL) {
620		bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
621		    ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
622		bus_dmamap_unload(sc->sc_dmat, ring->map);
623		bus_dmamem_unmap(sc->sc_dmat, (caddr_t)ring->desc,
624		    ring->count * RT2560_TX_DESC_SIZE);
625		bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
626	}
627
628	if (ring->data != NULL) {
629		for (i = 0; i < ring->count; i++) {
630			data = &ring->data[i];
631
632			if (data->m != NULL) {
633				bus_dmamap_sync(sc->sc_dmat, data->map, 0,
634				    data->map->dm_mapsize,
635				    BUS_DMASYNC_POSTWRITE);
636				bus_dmamap_unload(sc->sc_dmat, data->map);
637				m_freem(data->m);
638			}
639
640			if (data->ni != NULL)
641				ieee80211_release_node(ic, data->ni);
642
643			if (data->map != NULL)
644				bus_dmamap_destroy(sc->sc_dmat, data->map);
645		}
646		free(ring->data, M_DEVBUF);
647	}
648}
649
650int
651rt2560_alloc_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring,
652    int count)
653{
654	struct rt2560_rx_desc *desc;
655	struct rt2560_rx_data *data;
656	int i, nsegs, error;
657
658	ring->count = count;
659	ring->cur = ring->next = 0;
660	ring->cur_decrypt = 0;
661
662	error = bus_dmamap_create(sc->sc_dmat, count * RT2560_RX_DESC_SIZE, 1,
663	    count * RT2560_RX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
664	if (error != 0) {
665		printf("%s: could not create desc DMA map\n",
666		    sc->sc_dev.dv_xname);
667		goto fail;
668	}
669
670	error = bus_dmamem_alloc(sc->sc_dmat, count * RT2560_RX_DESC_SIZE,
671	    PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
672	if (error != 0) {
673		printf("%s: could not allocate DMA memory\n",
674		    sc->sc_dev.dv_xname);
675		goto fail;
676	}
677
678	error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
679	    count * RT2560_RX_DESC_SIZE, (caddr_t *)&ring->desc,
680	    BUS_DMA_NOWAIT);
681	if (error != 0) {
682		printf("%s: could not map desc DMA memory\n",
683		    sc->sc_dev.dv_xname);
684		goto fail;
685	}
686
687	error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
688	    count * RT2560_RX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
689	if (error != 0) {
690		printf("%s: could not load desc DMA map\n",
691		    sc->sc_dev.dv_xname);
692		goto fail;
693	}
694
695	memset(ring->desc, 0, count * RT2560_RX_DESC_SIZE);
696	ring->physaddr = ring->map->dm_segs->ds_addr;
697
698	ring->data = malloc(count * sizeof (struct rt2560_rx_data), M_DEVBUF,
699	    M_NOWAIT);
700	if (ring->data == NULL) {
701		printf("%s: could not allocate soft data\n",
702		    sc->sc_dev.dv_xname);
703		error = ENOMEM;
704		goto fail;
705	}
706
707	/*
708	 * Pre-allocate Rx buffers and populate Rx ring.
709	 */
710	memset(ring->data, 0, count * sizeof (struct rt2560_rx_data));
711	for (i = 0; i < count; i++) {
712		desc = &sc->rxq.desc[i];
713		data = &sc->rxq.data[i];
714
715		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
716		    0, BUS_DMA_NOWAIT, &data->map);
717		if (error != 0) {
718			printf("%s: could not create DMA map\n",
719			    sc->sc_dev.dv_xname);
720			goto fail;
721		}
722
723		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
724		if (data->m == NULL) {
725			printf("%s: could not allocate rx mbuf\n",
726			    sc->sc_dev.dv_xname);
727			error = ENOMEM;
728			goto fail;
729		}
730
731		MCLGET(data->m, M_DONTWAIT);
732		if (!(data->m->m_flags & M_EXT)) {
733			printf("%s: could not allocate rx mbuf cluster\n",
734			    sc->sc_dev.dv_xname);
735			error = ENOMEM;
736			goto fail;
737		}
738
739		error = bus_dmamap_load(sc->sc_dmat, data->map,
740		    mtod(data->m, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
741		if (error != 0) {
742			printf("%s: could not load rx buf DMA map",
743			    sc->sc_dev.dv_xname);
744			goto fail;
745		}
746
747		desc->flags = htole32(RT2560_RX_BUSY);
748		desc->physaddr = htole32(data->map->dm_segs->ds_addr);
749	}
750
751	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
752	    BUS_DMASYNC_PREWRITE);
753
754	return 0;
755
756fail:	rt2560_free_rx_ring(sc, ring);
757	return error;
758}
759
760void
761rt2560_reset_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring)
762{
763	int i;
764
765	for (i = 0; i < ring->count; i++) {
766		ring->desc[i].flags = htole32(RT2560_RX_BUSY);
767		ring->data[i].drop = 0;
768	}
769
770	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
771	    BUS_DMASYNC_PREWRITE);
772
773	ring->cur = ring->next = 0;
774	ring->cur_decrypt = 0;
775}
776
777void
778rt2560_free_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring)
779{
780	struct rt2560_rx_data *data;
781	int i;
782
783	if (ring->desc != NULL) {
784		bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
785		    ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
786		bus_dmamap_unload(sc->sc_dmat, ring->map);
787		bus_dmamem_unmap(sc->sc_dmat, (caddr_t)ring->desc,
788		    ring->count * RT2560_RX_DESC_SIZE);
789		bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
790	}
791
792	if (ring->data != NULL) {
793		for (i = 0; i < ring->count; i++) {
794			data = &ring->data[i];
795
796			if (data->m != NULL) {
797				bus_dmamap_sync(sc->sc_dmat, data->map, 0,
798				    data->map->dm_mapsize,
799				    BUS_DMASYNC_POSTREAD);
800				bus_dmamap_unload(sc->sc_dmat, data->map);
801				m_freem(data->m);
802			}
803
804			if (data->map != NULL)
805				bus_dmamap_destroy(sc->sc_dmat, data->map);
806		}
807		free(ring->data, M_DEVBUF);
808	}
809}
810
811struct ieee80211_node *
812rt2560_node_alloc(struct ieee80211com *ic)
813{
814	struct rt2560_node *rn;
815
816	rn = malloc(sizeof (struct rt2560_node), M_DEVBUF, M_NOWAIT);
817	if (rn == NULL)
818		return NULL;
819
820	memset(rn, 0, sizeof (struct rt2560_node));
821
822	return &rn->ni;
823}
824
825void
826rt2560_node_copy(struct ieee80211com *ic, struct ieee80211_node *dst,
827    const struct ieee80211_node *src)
828{
829	*(struct rt2560_node *)dst = *(const struct rt2560_node *)src;
830}
831
832int
833rt2560_media_change(struct ifnet *ifp)
834{
835	int error;
836
837	error = ieee80211_media_change(ifp);
838	if (error != ENETRESET)
839		return error;
840
841	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
842		rt2560_init(ifp);
843
844	return 0;
845}
846
847/*
848 * This function is called periodically (every 200ms) during scanning to
849 * switch from one channel to another.
850 */
851void
852rt2560_next_scan(void *arg)
853{
854	struct rt2560_softc *sc = arg;
855	struct ieee80211com *ic = &sc->sc_ic;
856	struct ifnet *ifp = &ic->ic_if;
857
858	if (ic->ic_state == IEEE80211_S_SCAN)
859		ieee80211_next_scan(ifp);
860}
861
862/*
863 * This function is called for each neighbor node.
864 */
865void
866rt2560_iter_func(void *arg, struct ieee80211_node *ni)
867{
868	struct rt2560_node *rn = (struct rt2560_node *)ni;
869
870	ieee80211_rssadapt_updatestats(&rn->rssadapt);
871}
872
873/*
874 * This function is called periodically (every 100ms) in RUN state to update
875 * the rate adaptation statistics.
876 */
877void
878rt2560_rssadapt_updatestats(void *arg)
879{
880	struct rt2560_softc *sc = arg;
881	struct ieee80211com *ic = &sc->sc_ic;
882
883	ieee80211_iterate_nodes(ic, rt2560_iter_func, arg);
884
885	timeout_add(&sc->rssadapt_ch, hz / 10);
886}
887
888int
889rt2560_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
890{
891	struct rt2560_softc *sc = ic->ic_if.if_softc;
892	enum ieee80211_state ostate;
893	struct mbuf *m;
894	int error = 0;
895
896	ostate = ic->ic_state;
897	timeout_del(&sc->scan_ch);
898
899	switch (nstate) {
900	case IEEE80211_S_INIT:
901		timeout_del(&sc->rssadapt_ch);
902
903		if (ostate == IEEE80211_S_RUN) {
904			/* abort TSF synchronization */
905			RAL_WRITE(sc, RT2560_CSR14, 0);
906
907			/* turn association led off */
908			rt2560_update_led(sc, 0, 0);
909		}
910		break;
911
912	case IEEE80211_S_SCAN:
913		rt2560_set_chan(sc, ic->ic_bss->ni_chan);
914		timeout_add(&sc->scan_ch, hz / 5);
915		break;
916
917	case IEEE80211_S_AUTH:
918		rt2560_set_chan(sc, ic->ic_bss->ni_chan);
919		break;
920
921	case IEEE80211_S_ASSOC:
922		rt2560_set_chan(sc, ic->ic_bss->ni_chan);
923		break;
924
925	case IEEE80211_S_RUN:
926		rt2560_set_chan(sc, ic->ic_bss->ni_chan);
927
928		/* update basic rate set */
929		if (ic->ic_curmode == IEEE80211_MODE_11B) {
930			/* 11b basic rates: 1, 2Mbps */
931			RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x3);
932		} else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) {
933			/* 11a basic rates: 6, 12, 24Mbps */
934			RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x150);
935		} else {
936			/* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
937			RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x15f);
938		}
939
940		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
941			rt2560_set_bssid(sc, ic->ic_bss->ni_bssid);
942			rt2560_update_slot(sc);
943		}
944
945		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
946		    ic->ic_opmode == IEEE80211_M_IBSS) {
947			m = ieee80211_beacon_alloc(ic, ic->ic_bss);
948			if (m == NULL) {
949				printf("%s: could not allocate beacon\n",
950				    sc->sc_dev.dv_xname);
951				error = ENOBUFS;
952				break;
953			}
954
955			error = rt2560_tx_bcn(sc, m, ic->ic_bss);
956			if (error != 0)
957				break;
958		}
959
960		/* turn assocation led on */
961		rt2560_update_led(sc, 1, 0);
962
963		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
964			timeout_add(&sc->rssadapt_ch, hz / 10);
965			rt2560_enable_tsf_sync(sc);
966		}
967		break;
968	}
969
970	return (error != 0) ? error : sc->sc_newstate(ic, nstate, arg);
971}
972
973/*
974 * Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or
975 * 93C66).
976 */
977uint16_t
978rt2560_eeprom_read(struct rt2560_softc *sc, uint8_t addr)
979{
980	uint32_t tmp;
981	uint16_t val;
982	int n;
983
984	/* clock C once before the first command */
985	RT2560_EEPROM_CTL(sc, 0);
986
987	RT2560_EEPROM_CTL(sc, RT2560_S);
988	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
989	RT2560_EEPROM_CTL(sc, RT2560_S);
990
991	/* write start bit (1) */
992	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D);
993	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C);
994
995	/* write READ opcode (10) */
996	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D);
997	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C);
998	RT2560_EEPROM_CTL(sc, RT2560_S);
999	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
1000
1001	/* write address (A5-A0 or A7-A0) */
1002	n = (RAL_READ(sc, RT2560_CSR21) & RT2560_93C46) ? 5 : 7;
1003	for (; n >= 0; n--) {
1004		RT2560_EEPROM_CTL(sc, RT2560_S |
1005		    (((addr >> n) & 1) << RT2560_SHIFT_D));
1006		RT2560_EEPROM_CTL(sc, RT2560_S |
1007		    (((addr >> n) & 1) << RT2560_SHIFT_D) | RT2560_C);
1008	}
1009
1010	RT2560_EEPROM_CTL(sc, RT2560_S);
1011
1012	/* read data Q15-Q0 */
1013	val = 0;
1014	for (n = 15; n >= 0; n--) {
1015		RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
1016		tmp = RAL_READ(sc, RT2560_CSR21);
1017		val |= ((tmp & RT2560_Q) >> RT2560_SHIFT_Q) << n;
1018		RT2560_EEPROM_CTL(sc, RT2560_S);
1019	}
1020
1021	RT2560_EEPROM_CTL(sc, 0);
1022
1023	/* clear Chip Select and clock C */
1024	RT2560_EEPROM_CTL(sc, RT2560_S);
1025	RT2560_EEPROM_CTL(sc, 0);
1026	RT2560_EEPROM_CTL(sc, RT2560_C);
1027
1028	return val;
1029}
1030
1031/*
1032 * Some frames were processed by the hardware cipher engine and are ready for
1033 * transmission.
1034 */
1035void
1036rt2560_encryption_intr(struct rt2560_softc *sc)
1037{
1038	struct rt2560_tx_desc *desc;
1039	int hw;
1040
1041	/* retrieve last descriptor index processed by cipher engine */
1042	hw = (RAL_READ(sc, RT2560_SECCSR1) - sc->txq.physaddr) /
1043	    RT2560_TX_DESC_SIZE;
1044
1045	for (; sc->txq.next_encrypt != hw;) {
1046		desc = &sc->txq.desc[sc->txq.next_encrypt];
1047
1048		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
1049		    sc->txq.next_encrypt * RT2560_TX_DESC_SIZE,
1050		    RT2560_TX_DESC_SIZE, BUS_DMASYNC_POSTREAD);
1051
1052		if (letoh32(desc->flags) &
1053		    (RT2560_TX_BUSY | RT2560_TX_CIPHER_BUSY))
1054			break;
1055
1056		/* for TKIP, swap eiv field to fix a bug in ASIC */
1057		if ((letoh32(desc->flags) & RT2560_TX_CIPHER_MASK) ==
1058		    RT2560_TX_CIPHER_TKIP)
1059			desc->eiv = swap32(desc->eiv);
1060
1061		/* mark the frame ready for transmission */
1062		desc->flags |= htole32(RT2560_TX_BUSY | RT2560_TX_VALID);
1063
1064		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
1065		    sc->txq.next_encrypt * RT2560_TX_DESC_SIZE,
1066		    RT2560_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
1067
1068		DPRINTFN(15, ("encryption done idx=%u\n",
1069		    sc->txq.next_encrypt));
1070
1071		sc->txq.next_encrypt =
1072		    (sc->txq.next_encrypt + 1) % RT2560_TX_RING_COUNT;
1073	}
1074
1075	/* kick Tx */
1076	RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_TX);
1077}
1078
1079void
1080rt2560_tx_intr(struct rt2560_softc *sc)
1081{
1082	struct ieee80211com *ic = &sc->sc_ic;
1083	struct ifnet *ifp = &ic->ic_if;
1084	struct rt2560_tx_desc *desc;
1085	struct rt2560_tx_data *data;
1086	struct rt2560_node *rn;
1087
1088	for (;;) {
1089		desc = &sc->txq.desc[sc->txq.next];
1090		data = &sc->txq.data[sc->txq.next];
1091
1092		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
1093		    sc->txq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1094		    BUS_DMASYNC_POSTREAD);
1095
1096		if ((letoh32(desc->flags) & RT2560_TX_BUSY) ||
1097		    (letoh32(desc->flags) & RT2560_TX_CIPHER_BUSY) ||
1098		    !(letoh32(desc->flags) & RT2560_TX_VALID))
1099			break;
1100
1101		rn = (struct rt2560_node *)data->ni;
1102
1103		switch (letoh32(desc->flags) & RT2560_TX_RESULT_MASK) {
1104		case RT2560_TX_SUCCESS:
1105			DPRINTFN(10, ("data frame sent successfully\n"));
1106			if (data->id.id_node != NULL) {
1107				ieee80211_rssadapt_raise_rate(ic,
1108				    &rn->rssadapt, &data->id);
1109			}
1110			ifp->if_opackets++;
1111			break;
1112
1113		case RT2560_TX_SUCCESS_RETRY:
1114			DPRINTFN(9, ("data frame sent after %u retries\n",
1115			    (letoh32(desc->flags) >> 5) & 0x7));
1116			ifp->if_opackets++;
1117			break;
1118
1119		case RT2560_TX_FAIL_RETRY:
1120			DPRINTFN(9, ("sending data frame failed (too much "
1121			    "retries)\n"));
1122			if (data->id.id_node != NULL) {
1123				ieee80211_rssadapt_lower_rate(ic, data->ni,
1124				    &rn->rssadapt, &data->id);
1125			}
1126			ifp->if_oerrors++;
1127			break;
1128
1129		case RT2560_TX_FAIL_INVALID:
1130		case RT2560_TX_FAIL_OTHER:
1131		default:
1132			printf("%s: sending data frame failed 0x%08x\n",
1133			    sc->sc_dev.dv_xname, letoh32(desc->flags));
1134			ifp->if_oerrors++;
1135		}
1136
1137		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1138		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1139		bus_dmamap_unload(sc->sc_dmat, data->map);
1140		m_freem(data->m);
1141		data->m = NULL;
1142		ieee80211_release_node(ic, data->ni);
1143		data->ni = NULL;
1144
1145		/* descriptor is no longer valid */
1146		desc->flags &= ~htole32(RT2560_TX_VALID);
1147
1148		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
1149		    sc->txq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1150		    BUS_DMASYNC_PREWRITE);
1151
1152		DPRINTFN(15, ("tx done idx=%u\n", sc->txq.next));
1153
1154		sc->txq.queued--;
1155		sc->txq.next = (sc->txq.next + 1) % RT2560_TX_RING_COUNT;
1156	}
1157
1158	sc->sc_tx_timer = 0;
1159	ifp->if_flags &= ~IFF_OACTIVE;
1160	rt2560_start(ifp);
1161}
1162
1163void
1164rt2560_prio_intr(struct rt2560_softc *sc)
1165{
1166	struct ieee80211com *ic = &sc->sc_ic;
1167	struct ifnet *ifp = &ic->ic_if;
1168	struct rt2560_tx_desc *desc;
1169	struct rt2560_tx_data *data;
1170
1171	for (;;) {
1172		desc = &sc->prioq.desc[sc->prioq.next];
1173		data = &sc->prioq.data[sc->prioq.next];
1174
1175		bus_dmamap_sync(sc->sc_dmat, sc->prioq.map,
1176		    sc->prioq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1177		    BUS_DMASYNC_POSTREAD);
1178
1179		if ((letoh32(desc->flags) & RT2560_TX_BUSY) ||
1180		    !(letoh32(desc->flags) & RT2560_TX_VALID))
1181			break;
1182
1183		switch (letoh32(desc->flags) & RT2560_TX_RESULT_MASK) {
1184		case RT2560_TX_SUCCESS:
1185			DPRINTFN(10, ("mgt frame sent successfully\n"));
1186			break;
1187
1188		case RT2560_TX_SUCCESS_RETRY:
1189			DPRINTFN(9, ("mgt frame sent after %u retries\n",
1190			    (letoh32(desc->flags) >> 5) & 0x7));
1191			break;
1192
1193		case RT2560_TX_FAIL_RETRY:
1194			DPRINTFN(9, ("sending mgt frame failed (too much "
1195			    "retries)\n"));
1196			break;
1197
1198		case RT2560_TX_FAIL_INVALID:
1199		case RT2560_TX_FAIL_OTHER:
1200		default:
1201			printf("%s: sending mgt frame failed 0x%08x\n",
1202			    sc->sc_dev.dv_xname, letoh32(desc->flags));
1203		}
1204
1205		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1206		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1207		bus_dmamap_unload(sc->sc_dmat, data->map);
1208		m_freem(data->m);
1209		data->m = NULL;
1210		ieee80211_release_node(ic, data->ni);
1211		data->ni = NULL;
1212
1213		/* descriptor is no longer valid */
1214		desc->flags &= ~htole32(RT2560_TX_VALID);
1215
1216		bus_dmamap_sync(sc->sc_dmat, sc->prioq.map,
1217		    sc->prioq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1218		    BUS_DMASYNC_PREWRITE);
1219
1220		DPRINTFN(15, ("prio done idx=%u\n", sc->prioq.next));
1221
1222		sc->prioq.queued--;
1223		sc->prioq.next = (sc->prioq.next + 1) % RT2560_PRIO_RING_COUNT;
1224	}
1225
1226	sc->sc_tx_timer = 0;
1227	ifp->if_flags &= ~IFF_OACTIVE;
1228	rt2560_start(ifp);
1229}
1230
1231/*
1232 * Some frames were processed by the hardware cipher engine and are ready for
1233 * transmission to the IEEE802.11 layer.
1234 */
1235void
1236rt2560_decryption_intr(struct rt2560_softc *sc)
1237{
1238	struct ieee80211com *ic = &sc->sc_ic;
1239	struct ifnet *ifp = &ic->ic_if;
1240	struct rt2560_rx_desc *desc;
1241	struct rt2560_rx_data *data;
1242	struct rt2560_node *rn;
1243	struct ieee80211_frame *wh;
1244	struct ieee80211_node *ni;
1245	struct mbuf *mnew, *m;
1246	int hw, error;
1247
1248	/* retrieve last decriptor index processed by cipher engine */
1249	hw = (RAL_READ(sc, RT2560_SECCSR0) - sc->rxq.physaddr) /
1250	    RT2560_RX_DESC_SIZE;
1251
1252	for (; sc->rxq.cur_decrypt != hw;) {
1253		desc = &sc->rxq.desc[sc->rxq.cur_decrypt];
1254		data = &sc->rxq.data[sc->rxq.cur_decrypt];
1255
1256		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1257		    sc->rxq.cur_decrypt * RT2560_TX_DESC_SIZE,
1258		    RT2560_TX_DESC_SIZE, BUS_DMASYNC_POSTREAD);
1259
1260		if (letoh32(desc->flags) &
1261		    (RT2560_RX_BUSY | RT2560_RX_CIPHER_BUSY))
1262			break;
1263
1264		if (data->drop) {
1265			ifp->if_ierrors++;
1266			goto skip;
1267		}
1268
1269		if ((letoh32(desc->flags) & RT2560_RX_CIPHER_MASK) != 0 &&
1270		    (letoh32(desc->flags) & RT2560_RX_ICV_ERROR)) {
1271			ifp->if_ierrors++;
1272			goto skip;
1273		}
1274
1275		/*
1276		 * Try to allocate a new mbuf for this ring element and load it
1277		 * before processing the current mbuf.  If the ring element
1278		 * cannot be loaded, drop the received packet and reuse the old
1279		 * mbuf.  In the unlikely case that the old mbuf can't be
1280		 * reloaded either, explicitly panic.
1281		 */
1282		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1283		if (mnew == NULL) {
1284			ifp->if_ierrors++;
1285			goto skip;
1286		}
1287
1288		MCLGET(mnew, M_DONTWAIT);
1289		if (!(mnew->m_flags & M_EXT)) {
1290			m_freem(mnew);
1291			ifp->if_ierrors++;
1292			goto skip;
1293		}
1294
1295		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1296		    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1297		bus_dmamap_unload(sc->sc_dmat, data->map);
1298
1299		error = bus_dmamap_load(sc->sc_dmat, data->map,
1300		    mtod(mnew, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
1301		if (error != 0) {
1302			m_freem(mnew);
1303
1304			/* try to reload the old mbuf */
1305			error = bus_dmamap_load(sc->sc_dmat, data->map,
1306			    mtod(data->m, void *), MCLBYTES, NULL,
1307			    BUS_DMA_NOWAIT);
1308			if (error != 0) {
1309				/* very unlikely that it will fail... */
1310				panic("%s: could not load old rx mbuf",
1311				    sc->sc_dev.dv_xname);
1312			}
1313			ifp->if_ierrors++;
1314			goto skip;
1315		}
1316
1317		/*
1318		 * New mbuf successfully loaded, update Rx ring and continue
1319		 * processing.
1320		 */
1321		m = data->m;
1322		data->m = mnew;
1323		desc->physaddr = htole32(data->map->dm_segs->ds_addr);
1324
1325		/* finalize mbuf */
1326		m->m_pkthdr.rcvif = ifp;
1327		m->m_pkthdr.len = m->m_len =
1328		    (letoh32(desc->flags) >> 16) & 0xfff;
1329
1330#if NBPFILTER > 0
1331		if (sc->sc_drvbpf != NULL) {
1332			struct mbuf mb;
1333			struct rt2560_rx_radiotap_header *tap = &sc->sc_rxtap;
1334			uint32_t tsf_lo, tsf_hi;
1335
1336			/* get timestamp (low and high 32 bits) */
1337			tsf_lo = RAL_READ(sc, RT2560_CSR16);
1338			tsf_hi = RAL_READ(sc, RT2560_CSR17);
1339
1340			tap->wr_tsf =
1341			    htole64(((uint64_t)tsf_hi << 32) | tsf_lo);
1342			tap->wr_flags = 0;
1343			tap->wr_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
1344			tap->wr_chan_flags =
1345			    htole16(ic->ic_ibss_chan->ic_flags);
1346			tap->wr_antenna = sc->rx_ant;
1347			tap->wr_antsignal = desc->rssi;
1348
1349			M_DUP_PKTHDR(&mb, m);
1350			mb.m_data = (caddr_t)tap;
1351			mb.m_len = sc->sc_txtap_len;
1352			mb.m_next = m;
1353			mb.m_pkthdr.len += mb.m_len;
1354			bpf_mtap(sc->sc_drvbpf, &mb);
1355		}
1356#endif
1357
1358		wh = mtod(m, struct ieee80211_frame *);
1359		ni = ieee80211_find_rxnode(ic, wh);
1360
1361		/* send the frame to the 802.11 layer */
1362		ieee80211_input(ifp, m, ni, desc->rssi, 0);
1363
1364		/* give rssi to the rate adatation algorithm */
1365		rn = (struct rt2560_node *)ni;
1366		ieee80211_rssadapt_input(ic, ni, &rn->rssadapt, desc->rssi);
1367
1368		/* node is no longer needed */
1369		ieee80211_release_node(ic, ni);
1370
1371skip:		desc->flags = htole32(RT2560_RX_BUSY);
1372
1373		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1374		    sc->rxq.cur_decrypt * RT2560_TX_DESC_SIZE,
1375		    RT2560_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
1376
1377		DPRINTFN(15, ("decryption done idx=%u\n", sc->rxq.cur_decrypt));
1378
1379		sc->rxq.cur_decrypt =
1380		    (sc->rxq.cur_decrypt + 1) % RT2560_RX_RING_COUNT;
1381	}
1382
1383	/*
1384	 * In HostAP mode, ieee80211_input() will enqueue packets in if_snd
1385	 * without calling if_start().
1386	 */
1387	if (!IFQ_IS_EMPTY(&ifp->if_snd) && !(ifp->if_flags & IFF_OACTIVE))
1388		rt2560_start(ifp);
1389}
1390
1391/*
1392 * Some frames were received. Pass them to the hardware cipher engine before
1393 * sending them to the 802.11 layer.
1394 */
1395void
1396rt2560_rx_intr(struct rt2560_softc *sc)
1397{
1398	struct rt2560_rx_desc *desc;
1399	struct rt2560_rx_data *data;
1400
1401	for (;;) {
1402		desc = &sc->rxq.desc[sc->rxq.cur];
1403		data = &sc->rxq.data[sc->rxq.cur];
1404
1405		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1406		    sc->rxq.cur * RT2560_RX_DESC_SIZE, RT2560_RX_DESC_SIZE,
1407		    BUS_DMASYNC_POSTREAD);
1408
1409		if (letoh32(desc->flags) &
1410		    (RT2560_RX_BUSY | RT2560_RX_CIPHER_BUSY))
1411			break;
1412
1413		data->drop = 0;
1414
1415		if (letoh32(desc->flags) &
1416		    (RT2560_RX_PHY_ERROR | RT2560_RX_CRC_ERROR)) {
1417			/*
1418			 * This should not happen since we did not request
1419			 * to receive those frames when we filled RXCSR0.
1420			 */
1421			DPRINTFN(5, ("PHY or CRC error flags 0x%08x\n",
1422			    letoh32(desc->flags)));
1423			data->drop = 1;
1424		}
1425
1426		if (((letoh32(desc->flags) >> 16) & 0xfff) > MCLBYTES) {
1427			DPRINTFN(5, ("bad length\n"));
1428			data->drop = 1;
1429		}
1430
1431		/* mark the frame for decryption */
1432		desc->flags |= htole32(RT2560_RX_CIPHER_BUSY);
1433
1434		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1435		    sc->rxq.cur * RT2560_RX_DESC_SIZE, RT2560_RX_DESC_SIZE,
1436		    BUS_DMASYNC_PREWRITE);
1437
1438		DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur));
1439
1440		sc->rxq.cur = (sc->rxq.cur + 1) % RT2560_RX_RING_COUNT;
1441	}
1442
1443	/* kick decrypt */
1444	RAL_WRITE(sc, RT2560_SECCSR0, RT2560_KICK_DECRYPT);
1445}
1446
1447/*
1448 * This function is called periodically in IBSS mode when a new beacon must be
1449 * sent out.
1450 */
1451void
1452rt2560_beacon_expire(struct rt2560_softc *sc)
1453{
1454	struct ieee80211com *ic = &sc->sc_ic;
1455	struct rt2560_tx_data *data;
1456
1457	if (ic->ic_opmode != IEEE80211_M_IBSS &&
1458	    ic->ic_opmode != IEEE80211_M_HOSTAP)
1459		return;
1460
1461	data = &sc->bcnq.data[sc->bcnq.next];
1462
1463#if NBPFILTER > 0
1464	if (ic->ic_rawbpf != NULL)
1465		bpf_mtap(ic->ic_rawbpf, data->m);
1466#endif
1467
1468	DPRINTFN(15, ("beacon expired\n"));
1469}
1470
1471void
1472rt2560_wakeup_expire(struct rt2560_softc *sc)
1473{
1474	DPRINTFN(15, ("wakeup expired\n"));
1475}
1476
1477int
1478rt2560_intr(void *arg)
1479{
1480	struct rt2560_softc *sc = arg;
1481	uint32_t r;
1482
1483	/* disable interrupts */
1484	RAL_WRITE(sc, RT2560_CSR8, 0xffffffff);
1485
1486	r = RAL_READ(sc, RT2560_CSR7);
1487	RAL_WRITE(sc, RT2560_CSR7, r);
1488
1489	if (r & RT2560_BEACON_EXPIRE)
1490		rt2560_beacon_expire(sc);
1491
1492	if (r & RT2560_WAKEUP_EXPIRE)
1493		rt2560_wakeup_expire(sc);
1494
1495	if (r & RT2560_ENCRYPTION_DONE)
1496		rt2560_encryption_intr(sc);
1497
1498	if (r & RT2560_TX_DONE)
1499		rt2560_tx_intr(sc);
1500
1501	if (r & RT2560_PRIO_DONE)
1502		rt2560_prio_intr(sc);
1503
1504	if (r & RT2560_DECRYPTION_DONE)
1505		rt2560_decryption_intr(sc);
1506
1507	if (r & RT2560_RX_DONE)
1508		rt2560_rx_intr(sc);
1509
1510	/* re-enable interrupts */
1511	RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK);
1512
1513	return 1;
1514}
1515
1516/* quickly determine if a given rate is CCK or OFDM */
1517#define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1518
1519#define RAL_ACK_SIZE	14	/* 10 + 4(FCS) */
1520#define RAL_CTS_SIZE	14	/* 10 + 4(FCS) */
1521
1522#define RAL_SIFS		10	/* us */
1523
1524#define RT2560_RXTX_TURNAROUND	10	/* us */
1525
1526/*
1527 * Return the expected ack rate for a frame transmitted at rate `rate'.
1528 * XXX: this should depend on the destination node basic rate set.
1529 */
1530int
1531rt2560_ack_rate(struct ieee80211com *ic, int rate)
1532{
1533	switch (rate) {
1534	/* CCK rates */
1535	case 2:
1536		return 2;
1537	case 4:
1538	case 11:
1539	case 22:
1540		return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
1541
1542	/* OFDM rates */
1543	case 12:
1544	case 18:
1545		return 12;
1546	case 24:
1547	case 36:
1548		return 24;
1549	case 48:
1550	case 72:
1551	case 96:
1552	case 108:
1553		return 48;
1554	}
1555
1556	/* default to 1Mbps */
1557	return 2;
1558}
1559
1560/*
1561 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1562 * The function automatically determines the operating mode depending on the
1563 * given rate. `flags' indicates whether short preamble is in use or not.
1564 */
1565uint16_t
1566rt2560_txtime(int len, int rate, uint32_t flags)
1567{
1568	uint16_t txtime;
1569
1570	if (RAL_RATE_IS_OFDM(rate)) {
1571		/* IEEE Std 802.11a-1999, pp. 37 */
1572		txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1573		txtime = 16 + 4 + 4 * txtime + 6;
1574	} else {
1575		/* IEEE Std 802.11b-1999, pp. 28 */
1576		txtime = (16 * len + rate - 1) / rate;
1577		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1578			txtime +=  72 + 24;
1579		else
1580			txtime += 144 + 48;
1581	}
1582	return txtime;
1583}
1584
1585uint8_t
1586rt2560_plcp_signal(int rate)
1587{
1588	switch (rate) {
1589	/* CCK rates (returned values are device-dependent) */
1590	case 2:		return 0x0;
1591	case 4:		return 0x1;
1592	case 11:	return 0x2;
1593	case 22:	return 0x3;
1594
1595	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1596	case 12:	return 0xb;
1597	case 18:	return 0xf;
1598	case 24:	return 0xa;
1599	case 36:	return 0xe;
1600	case 48:	return 0x9;
1601	case 72:	return 0xd;
1602	case 96:	return 0x8;
1603	case 108:	return 0xc;
1604
1605	/* unsupported rates (should not get there) */
1606	default:	return 0xff;
1607	}
1608}
1609
1610void
1611rt2560_setup_tx_desc(struct rt2560_softc *sc, struct rt2560_tx_desc *desc,
1612    uint32_t flags, int len, int rate, int encrypt, bus_addr_t physaddr)
1613{
1614	struct ieee80211com *ic = &sc->sc_ic;
1615	uint16_t plcp_length;
1616	int remainder;
1617
1618	desc->flags = htole32(flags);
1619	desc->flags |= htole32(len << 16);
1620	desc->flags |= encrypt ? htole32(RT2560_TX_CIPHER_BUSY) :
1621	    htole32(RT2560_TX_BUSY | RT2560_TX_VALID);
1622
1623	desc->physaddr = htole32(physaddr);
1624	desc->wme = htole16(
1625	    RT2560_AIFSN(2) |
1626	    RT2560_LOGCWMIN(3) |
1627	    RT2560_LOGCWMAX(8));
1628
1629	/* setup PLCP fields */
1630	desc->plcp_signal  = rt2560_plcp_signal(rate);
1631	desc->plcp_service = 4;
1632
1633	len += IEEE80211_CRC_LEN;
1634	if (RAL_RATE_IS_OFDM(rate)) {
1635		desc->flags |= htole32(RT2560_TX_OFDM);
1636
1637		plcp_length = len & 0xfff;
1638		desc->plcp_length_hi = plcp_length >> 6;
1639		desc->plcp_length_lo = plcp_length & 0x3f;
1640	} else {
1641		plcp_length = (16 * len + rate - 1) / rate;
1642		if (rate == 22) {
1643			remainder = (16 * len) % 22;
1644			if (remainder != 0 && remainder < 7)
1645				desc->plcp_service |= RT2560_PLCP_LENGEXT;
1646		}
1647		desc->plcp_length_hi = plcp_length >> 8;
1648		desc->plcp_length_lo = plcp_length & 0xff;
1649
1650		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1651			desc->plcp_signal |= 0x08;
1652	}
1653}
1654
1655int
1656rt2560_tx_bcn(struct rt2560_softc *sc, struct mbuf *m0,
1657    struct ieee80211_node *ni)
1658{
1659	struct rt2560_tx_desc *desc;
1660	struct rt2560_tx_data *data;
1661	int rate, error;
1662
1663	desc = &sc->bcnq.desc[sc->bcnq.cur];
1664	data = &sc->bcnq.data[sc->bcnq.cur];
1665
1666	rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1667
1668	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1669	    BUS_DMA_NOWAIT);
1670	if (error != 0) {
1671		printf("%s: could not map mbuf (error %d)\n",
1672		    sc->sc_dev.dv_xname, error);
1673		m_freem(m0);
1674		return error;
1675	}
1676
1677	data->m = m0;
1678	data->ni = ni;
1679
1680	rt2560_setup_tx_desc(sc, desc, RT2560_TX_IFS_NEWBACKOFF |
1681	    RT2560_TX_TIMESTAMP, m0->m_pkthdr.len, rate, 0,
1682	    data->map->dm_segs->ds_addr);
1683
1684	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1685	    BUS_DMASYNC_PREWRITE);
1686	bus_dmamap_sync(sc->sc_dmat, sc->bcnq.map,
1687	    sc->bcnq.cur * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1688	    BUS_DMASYNC_PREWRITE);
1689
1690	return 0;
1691}
1692
1693int
1694rt2560_tx_mgt(struct rt2560_softc *sc, struct mbuf *m0,
1695    struct ieee80211_node *ni)
1696{
1697	struct ieee80211com *ic = &sc->sc_ic;
1698	struct rt2560_tx_desc *desc;
1699	struct rt2560_tx_data *data;
1700	struct ieee80211_frame *wh;
1701	uint16_t dur;
1702	uint32_t flags = 0;
1703	int rate, error;
1704
1705	desc = &sc->prioq.desc[sc->prioq.cur];
1706	data = &sc->prioq.data[sc->prioq.cur];
1707
1708	rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1709
1710	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1711	    BUS_DMA_NOWAIT);
1712	if (error != 0) {
1713		printf("%s: could not map mbuf (error %d)\n",
1714		    sc->sc_dev.dv_xname, error);
1715		m_freem(m0);
1716		return error;
1717	}
1718
1719#if NBPFILTER > 0
1720	if (sc->sc_drvbpf != NULL) {
1721		struct mbuf mb;
1722		struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
1723
1724		tap->wt_flags = 0;
1725		tap->wt_rate = rate;
1726		tap->wt_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
1727		tap->wt_chan_flags = htole16(ic->ic_ibss_chan->ic_flags);
1728		tap->wt_antenna = sc->tx_ant;
1729
1730		M_DUP_PKTHDR(&mb, m0);
1731		mb.m_data = (caddr_t)tap;
1732		mb.m_len = sc->sc_txtap_len;
1733		mb.m_next = m0;
1734		mb.m_pkthdr.len += mb.m_len;
1735		bpf_mtap(sc->sc_drvbpf, &mb);
1736	}
1737#endif
1738
1739	data->m = m0;
1740	data->ni = ni;
1741
1742	wh = mtod(m0, struct ieee80211_frame *);
1743
1744	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1745		flags |= RT2560_TX_ACK;
1746
1747		dur = rt2560_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) +
1748		    RAL_SIFS;
1749		*(uint16_t *)wh->i_dur = htole16(dur);
1750
1751		/* tell hardware to add timestamp for probe responses */
1752		if ((wh->i_fc[0] &
1753		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1754		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1755			flags |= RT2560_TX_TIMESTAMP;
1756	}
1757
1758	rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 0,
1759	    data->map->dm_segs->ds_addr);
1760
1761	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1762	    BUS_DMASYNC_PREWRITE);
1763	bus_dmamap_sync(sc->sc_dmat, sc->prioq.map,
1764	    sc->prioq.cur * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1765	    BUS_DMASYNC_PREWRITE);
1766
1767	DPRINTFN(10, ("sending mgt frame len=%u idx=%u rate=%u\n",
1768	    m0->m_pkthdr.len, sc->prioq.cur, rate));
1769
1770	/* kick prio */
1771	sc->prioq.queued++;
1772	sc->prioq.cur = (sc->prioq.cur + 1) % RT2560_PRIO_RING_COUNT;
1773	RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_PRIO);
1774
1775	return 0;
1776}
1777
1778/*
1779 * Build a RTS control frame.
1780 */
1781struct mbuf *
1782rt2560_get_rts(struct rt2560_softc *sc, struct ieee80211_frame *wh,
1783    uint16_t dur)
1784{
1785	struct ieee80211_frame_rts *rts;
1786	struct mbuf *m;
1787
1788	MGETHDR(m, M_DONTWAIT, MT_DATA);
1789	if (m == NULL) {
1790		sc->sc_ic.ic_stats.is_tx_nombuf++;
1791		printf("%s: could not allocate RTS frame\n",
1792		    sc->sc_dev.dv_xname);
1793		return NULL;
1794	}
1795
1796	rts = mtod(m, struct ieee80211_frame_rts *);
1797
1798	rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL |
1799	    IEEE80211_FC0_SUBTYPE_RTS;
1800	rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1801	*(uint16_t *)rts->i_dur = htole16(dur);
1802	IEEE80211_ADDR_COPY(rts->i_ra, wh->i_addr1);
1803	IEEE80211_ADDR_COPY(rts->i_ta, wh->i_addr2);
1804
1805	m->m_pkthdr.len = m->m_len = sizeof (struct ieee80211_frame_rts);
1806
1807	return m;
1808}
1809
1810int
1811rt2560_tx_data(struct rt2560_softc *sc, struct mbuf *m0,
1812    struct ieee80211_node *ni)
1813{
1814	struct ieee80211com *ic = &sc->sc_ic;
1815	struct ifnet *ifp = &ic->ic_if;
1816	struct rt2560_tx_desc *desc;
1817	struct rt2560_tx_data *data;
1818	struct rt2560_node *rn;
1819	struct ieee80211_rateset *rs;
1820	struct ieee80211_frame *wh;
1821	struct mbuf *mnew;
1822	uint16_t dur;
1823	uint32_t flags = 0;
1824	int rate, error;
1825
1826	wh = mtod(m0, struct ieee80211_frame *);
1827
1828	/* XXX this should be reworked! */
1829	if (ic->ic_fixed_rate != -1) {
1830		if (ic->ic_curmode != IEEE80211_MODE_AUTO)
1831			rs = &ic->ic_sup_rates[ic->ic_curmode];
1832		else
1833			rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
1834
1835		rate = rs->rs_rates[ic->ic_fixed_rate];
1836	} else {
1837		rs = &ni->ni_rates;
1838		rn = (struct rt2560_node *)ni;
1839		ni->ni_txrate = ieee80211_rssadapt_choose(&rn->rssadapt, rs,
1840		    wh, m0->m_pkthdr.len, -1, NULL, 0);
1841		rate = rs->rs_rates[ni->ni_txrate];
1842	}
1843	rate &= IEEE80211_RATE_VAL;
1844
1845	/* assert tx rate is non-null so we don't end up dividing by zero */
1846	KASSERT(rate != 0);
1847
1848	if (ic->ic_flags & IEEE80211_F_WEPON) {
1849		m0 = ieee80211_wep_crypt(ifp, m0, 1);
1850		if (m0 == NULL)
1851			return ENOBUFS;
1852
1853		/* packet header may have moved, reset our local pointer */
1854		wh = mtod(m0, struct ieee80211_frame *);
1855	}
1856
1857	/*
1858	 * IEEE Std 802.11-1999, pp 82: "A STA shall use an RTS/CTS exchange
1859	 * for directed frames only when the length of the MPDU is greater
1860	 * than the length threshold indicated by [...]" ic_rtsthreshold.
1861	 */
1862	if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1863	    m0->m_pkthdr.len > ic->ic_rtsthreshold) {
1864		struct mbuf *m;
1865		uint16_t dur;
1866		int rtsrate, ackrate;
1867
1868		rtsrate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1869		ackrate = rt2560_ack_rate(ic, rate);
1870
1871		dur = rt2560_txtime(m0->m_pkthdr.len + 4, rate, ic->ic_flags) +
1872		      rt2560_txtime(RAL_CTS_SIZE, rtsrate, ic->ic_flags) +
1873		      rt2560_txtime(RAL_ACK_SIZE, ackrate, ic->ic_flags) +
1874		      3 * RAL_SIFS;
1875
1876		m = rt2560_get_rts(sc, wh, dur);
1877
1878		desc = &sc->txq.desc[sc->txq.cur_encrypt];
1879		data = &sc->txq.data[sc->txq.cur_encrypt];
1880
1881		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1882		    BUS_DMA_NOWAIT);
1883		if (error != 0) {
1884			printf("%s: could not map mbuf (error %d)\n",
1885			    sc->sc_dev.dv_xname, error);
1886			m_freem(m);
1887			m_freem(m0);
1888			return error;
1889		}
1890
1891		/* avoid multiple free() of the same node for each fragment */
1892		ieee80211_ref_node(ni);
1893
1894		data->m = m;
1895		data->ni = ni;
1896
1897		/* RTS frames are not taken into account for rssadapt */
1898		data->id.id_node = NULL;
1899
1900		rt2560_setup_tx_desc(sc, desc, RT2560_TX_ACK |
1901		    RT2560_TX_MORE_FRAG, m->m_pkthdr.len, rtsrate, 1,
1902		    data->map->dm_segs->ds_addr);
1903
1904		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1905		    data->map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1906		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
1907		    sc->txq.cur_encrypt * RT2560_TX_DESC_SIZE,
1908		    RT2560_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
1909
1910		sc->txq.queued++;
1911		sc->txq.cur_encrypt =
1912		    (sc->txq.cur_encrypt + 1) % RT2560_TX_RING_COUNT;
1913
1914		/*
1915		 * IEEE Std 802.11-1999: when an RTS/CTS exchange is used, the
1916		 * asynchronous data frame shall be transmitted after the CTS
1917		 * frame and a SIFS period.
1918		 */
1919		flags |= RT2560_TX_LONG_RETRY | RT2560_TX_IFS_SIFS;
1920	}
1921
1922	data = &sc->txq.data[sc->txq.cur_encrypt];
1923	desc = &sc->txq.desc[sc->txq.cur_encrypt];
1924
1925	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1926	    BUS_DMA_NOWAIT);
1927	if (error != 0 && error != EFBIG) {
1928		printf("%s: could not map mbuf (error %d)\n",
1929		    sc->sc_dev.dv_xname, error);
1930		m_freem(m0);
1931		return error;
1932	}
1933	if (error != 0) {
1934		/* too many fragments, linearize */
1935
1936		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1937		if (mnew == NULL) {
1938			m_freem(m0);
1939			return ENOMEM;
1940		}
1941
1942		M_DUP_PKTHDR(mnew, m0);
1943		if (m0->m_pkthdr.len > MHLEN) {
1944			MCLGET(mnew, M_DONTWAIT);
1945			if (!(mnew->m_flags & M_EXT)) {
1946				m_freem(m0);
1947				m_freem(mnew);
1948				return ENOMEM;
1949			}
1950		}
1951
1952		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, caddr_t));
1953		m_freem(m0);
1954		mnew->m_len = mnew->m_pkthdr.len;
1955		m0 = mnew;
1956
1957		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1958		    BUS_DMA_NOWAIT);
1959		if (error != 0) {
1960			printf("%s: could not map mbuf (error %d)\n",
1961			    sc->sc_dev.dv_xname, error);
1962			m_freem(m0);
1963			return error;
1964		}
1965
1966		/* packet header have moved, reset our local pointer */
1967		wh = mtod(m0, struct ieee80211_frame *);
1968	}
1969
1970#if NBPFILTER > 0
1971	if (sc->sc_drvbpf != NULL) {
1972		struct mbuf mb;
1973		struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
1974
1975		tap->wt_flags = 0;
1976		tap->wt_rate = rate;
1977		tap->wt_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
1978		tap->wt_chan_flags = htole16(ic->ic_ibss_chan->ic_flags);
1979		tap->wt_antenna = sc->tx_ant;
1980
1981		M_DUP_PKTHDR(&mb, m0);
1982		mb.m_data = (caddr_t)tap;
1983		mb.m_len = sc->sc_txtap_len;
1984		mb.m_next = m0;
1985		mb.m_pkthdr.len += mb.m_len;
1986		bpf_mtap(sc->sc_drvbpf, &mb);
1987	}
1988#endif
1989
1990	data->m = m0;
1991	data->ni = ni;
1992
1993	/* remember link conditions for rate adaptation algorithm */
1994	if (ic->ic_fixed_rate == -1) {
1995		data->id.id_len = m0->m_pkthdr.len;
1996		data->id.id_rateidx = ni->ni_txrate;
1997		data->id.id_node = ni;
1998		data->id.id_rssi = ni->ni_rssi;
1999	} else
2000		data->id.id_node = NULL;
2001
2002	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2003		flags |= RT2560_TX_ACK;
2004
2005		dur = rt2560_txtime(RAL_ACK_SIZE, rt2560_ack_rate(ic, rate),
2006		    ic->ic_flags) + RAL_SIFS;
2007		*(uint16_t *)wh->i_dur = htole16(dur);
2008	}
2009
2010	rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 1,
2011	    data->map->dm_segs->ds_addr);
2012
2013	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2014	    BUS_DMASYNC_PREWRITE);
2015	bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
2016	    sc->txq.cur_encrypt * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
2017	    BUS_DMASYNC_PREWRITE);
2018
2019	DPRINTFN(10, ("sending data frame len=%u idx=%u rate=%u\n",
2020	    m0->m_pkthdr.len, sc->txq.cur_encrypt, rate));
2021
2022	/* kick encrypt */
2023	sc->txq.queued++;
2024	sc->txq.cur_encrypt = (sc->txq.cur_encrypt + 1) % RT2560_TX_RING_COUNT;
2025	RAL_WRITE(sc, RT2560_SECCSR1, RT2560_KICK_ENCRYPT);
2026
2027	return 0;
2028}
2029
2030void
2031rt2560_start(struct ifnet *ifp)
2032{
2033	struct rt2560_softc *sc = ifp->if_softc;
2034	struct ieee80211com *ic = &sc->sc_ic;
2035	struct mbuf *m0;
2036	struct ieee80211_node *ni;
2037
2038	for (;;) {
2039		IF_POLL(&ic->ic_mgtq, m0);
2040		if (m0 != NULL) {
2041			if (sc->prioq.queued >= RT2560_PRIO_RING_COUNT) {
2042				ifp->if_flags |= IFF_OACTIVE;
2043				break;
2044			}
2045			IF_DEQUEUE(&ic->ic_mgtq, m0);
2046
2047			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
2048			m0->m_pkthdr.rcvif = NULL;
2049#if NBPFILTER > 0
2050			if (ic->ic_rawbpf != NULL)
2051				bpf_mtap(ic->ic_rawbpf, m0);
2052#endif
2053			if (rt2560_tx_mgt(sc, m0, ni) != 0)
2054				break;
2055
2056		} else {
2057			if (ic->ic_state != IEEE80211_S_RUN)
2058				break;
2059			IFQ_DEQUEUE(&ifp->if_snd, m0);
2060			if (m0 == NULL)
2061				break;
2062			if (sc->txq.queued >= RT2560_TX_RING_COUNT - 1) {
2063				IF_PREPEND(&ifp->if_snd, m0);
2064				ifp->if_flags |= IFF_OACTIVE;
2065				break;
2066			}
2067#if NBPFILTER > 0
2068			if (ifp->if_bpf != NULL)
2069				bpf_mtap(ifp->if_bpf, m0);
2070#endif
2071			m0 = ieee80211_encap(ifp, m0, &ni);
2072			if (m0 == NULL)
2073				continue;
2074#if NBPFILTER > 0
2075			if (ic->ic_rawbpf != NULL)
2076				bpf_mtap(ic->ic_rawbpf, m0);
2077#endif
2078			if (rt2560_tx_data(sc, m0, ni) != 0) {
2079				if (ni != NULL)
2080					ieee80211_release_node(ic, ni);
2081				ifp->if_oerrors++;
2082				break;
2083			}
2084		}
2085
2086		sc->sc_tx_timer = 5;
2087		ifp->if_timer = 1;
2088	}
2089}
2090
2091void
2092rt2560_watchdog(struct ifnet *ifp)
2093{
2094	struct rt2560_softc *sc = ifp->if_softc;
2095
2096	ifp->if_timer = 0;
2097
2098	if (sc->sc_tx_timer > 0) {
2099		if (--sc->sc_tx_timer == 0) {
2100			printf("%s: device timeout\n", sc->sc_dev.dv_xname);
2101			rt2560_init(ifp);
2102			ifp->if_oerrors++;
2103			return;
2104		}
2105		ifp->if_timer = 1;
2106	}
2107
2108	ieee80211_watchdog(ifp);
2109}
2110
2111int
2112rt2560_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2113{
2114	struct rt2560_softc *sc = ifp->if_softc;
2115	struct ieee80211com *ic = &sc->sc_ic;
2116	struct ifaddr *ifa;
2117	struct ifreq *ifr;
2118	int s, error = 0;
2119
2120	s = splnet();
2121
2122	switch (cmd) {
2123	case SIOCSIFADDR:
2124		ifa = (struct ifaddr *)data;
2125		ifp->if_flags |= IFF_UP;
2126#ifdef INET
2127		if (ifa->ifa_addr->sa_family == AF_INET)
2128			arp_ifinit(&ic->ic_ac, ifa);
2129#endif
2130		/* FALLTHROUGH */
2131	case SIOCSIFFLAGS:
2132		if (ifp->if_flags & IFF_UP) {
2133			if (ifp->if_flags & IFF_RUNNING)
2134				rt2560_update_promisc(sc);
2135			else
2136				rt2560_init(ifp);
2137		} else {
2138			if (ifp->if_flags & IFF_RUNNING)
2139				rt2560_stop(ifp, 1);
2140		}
2141		break;
2142
2143	case SIOCADDMULTI:
2144	case SIOCDELMULTI:
2145		ifr = (struct ifreq *)data;
2146		error = (cmd == SIOCADDMULTI) ?
2147		    ether_addmulti(ifr, &ic->ic_ac) :
2148		    ether_delmulti(ifr, &ic->ic_ac);
2149
2150		if (error == ENETRESET)
2151			error = 0;
2152		break;
2153
2154	case SIOCS80211CHANNEL:
2155		/*
2156		 * This allows for fast channel switching in monitor mode
2157		 * (used by kismet). In IBSS mode, we must explicitly reset
2158		 * the interface to generate a new beacon frame.
2159		 */
2160		error = ieee80211_ioctl(ifp, cmd, data);
2161		if (error == ENETRESET &&
2162		    ic->ic_opmode == IEEE80211_M_MONITOR) {
2163			rt2560_set_chan(sc, ic->ic_ibss_chan);
2164			error = 0;
2165		}
2166		break;
2167
2168	default:
2169		error = ieee80211_ioctl(ifp, cmd, data);
2170	}
2171
2172	if (error == ENETRESET) {
2173		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
2174		    (IFF_UP | IFF_RUNNING))
2175			rt2560_init(ifp);
2176		error = 0;
2177	}
2178
2179	splx(s);
2180
2181	return error;
2182}
2183
2184void
2185rt2560_bbp_write(struct rt2560_softc *sc, uint8_t reg, uint8_t val)
2186{
2187	uint32_t tmp;
2188	int ntries;
2189
2190	for (ntries = 0; ntries < 100; ntries++) {
2191		if (!(RAL_READ(sc, RT2560_BBPCSR) & RT2560_BBP_BUSY))
2192			break;
2193		DELAY(1);
2194	}
2195	if (ntries == 100) {
2196		printf("%s: could not write to BBP\n", sc->sc_dev.dv_xname);
2197		return;
2198	}
2199
2200	tmp = RT2560_BBP_WRITE | RT2560_BBP_BUSY | reg << 8 | val;
2201	RAL_WRITE(sc, RT2560_BBPCSR, tmp);
2202
2203	DPRINTFN(15, ("BBP R%u <- 0x%02x\n", reg, val));
2204}
2205
2206uint8_t
2207rt2560_bbp_read(struct rt2560_softc *sc, uint8_t reg)
2208{
2209	uint32_t val;
2210	int ntries;
2211
2212	val = RT2560_BBP_BUSY | reg << 8;
2213	RAL_WRITE(sc, RT2560_BBPCSR, val);
2214
2215	for (ntries = 0; ntries < 100; ntries++) {
2216		val = RAL_READ(sc, RT2560_BBPCSR);
2217		if (!(val & RT2560_BBP_BUSY))
2218			return val & 0xff;
2219		DELAY(1);
2220	}
2221
2222	printf("%s: could not read from BBP\n", sc->sc_dev.dv_xname);
2223	return 0;
2224}
2225
2226void
2227rt2560_rf_write(struct rt2560_softc *sc, uint8_t reg, uint32_t val)
2228{
2229	uint32_t tmp;
2230	int ntries;
2231
2232	for (ntries = 0; ntries < 100; ntries++) {
2233		if (!(RAL_READ(sc, RT2560_RFCSR) & RT2560_RF_BUSY))
2234			break;
2235		DELAY(1);
2236	}
2237	if (ntries == 100) {
2238		printf("%s: could not write to RF\n", sc->sc_dev.dv_xname);
2239		return;
2240	}
2241
2242	tmp = RT2560_RF_BUSY | RT2560_RF_20BIT | (val & 0xfffff) << 2 |
2243	    (reg & 0x3);
2244	RAL_WRITE(sc, RT2560_RFCSR, tmp);
2245
2246	/* remember last written value in sc */
2247	sc->rf_regs[reg] = val;
2248
2249	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff));
2250}
2251
2252void
2253rt2560_set_chan(struct rt2560_softc *sc, struct ieee80211_channel *c)
2254{
2255#define N(a)	(sizeof (a) / sizeof ((a)[0]))
2256	struct ieee80211com *ic = &sc->sc_ic;
2257	uint8_t power, tmp;
2258	u_int i, chan;
2259
2260	chan = ieee80211_chan2ieee(ic, c);
2261	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
2262		return;
2263
2264	if (IEEE80211_IS_CHAN_2GHZ(c))
2265		power = min(sc->txpow[chan - 1], 31);
2266	else
2267		power = 31;
2268
2269	DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power));
2270
2271	switch (sc->rf_rev) {
2272	case RT2560_RF_2522:
2273		rt2560_rf_write(sc, RT2560_RF1, 0x00814);
2274		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2522_r2[chan - 1]);
2275		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x00040);
2276		break;
2277
2278	case RT2560_RF_2523:
2279		rt2560_rf_write(sc, RT2560_RF1, 0x08804);
2280		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2523_r2[chan - 1]);
2281		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x38044);
2282		rt2560_rf_write(sc, RT2560_RF4,
2283		    (chan == 14) ? 0x00280 : 0x00286);
2284		break;
2285
2286	case RT2560_RF_2524:
2287		rt2560_rf_write(sc, RT2560_RF1, 0x0c808);
2288		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2524_r2[chan - 1]);
2289		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x00040);
2290		rt2560_rf_write(sc, RT2560_RF4,
2291		    (chan == 14) ? 0x00280 : 0x00286);
2292		break;
2293
2294	case RT2560_RF_2525:
2295		rt2560_rf_write(sc, RT2560_RF1, 0x08808);
2296		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2525_hi_r2[chan - 1]);
2297		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
2298		rt2560_rf_write(sc, RT2560_RF4,
2299		    (chan == 14) ? 0x00280 : 0x00286);
2300
2301		rt2560_rf_write(sc, RT2560_RF1, 0x08808);
2302		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2525_r2[chan - 1]);
2303		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
2304		rt2560_rf_write(sc, RT2560_RF4,
2305		    (chan == 14) ? 0x00280 : 0x00286);
2306		break;
2307
2308	case RT2560_RF_2525E:
2309		rt2560_rf_write(sc, RT2560_RF1, 0x08808);
2310		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2525e_r2[chan - 1]);
2311		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
2312		rt2560_rf_write(sc, RT2560_RF4,
2313		    (chan == 14) ? 0x00286 : 0x00282);
2314		break;
2315
2316	case RT2560_RF_2526:
2317		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2526_hi_r2[chan - 1]);
2318		rt2560_rf_write(sc, RT2560_RF4,
2319		   (chan & 1) ? 0x00386 : 0x00381);
2320		rt2560_rf_write(sc, RT2560_RF1, 0x08804);
2321
2322		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2526_r2[chan - 1]);
2323		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
2324		rt2560_rf_write(sc, RT2560_RF4,
2325		    (chan & 1) ? 0x00386 : 0x00381);
2326		break;
2327
2328	/* dual-band RF */
2329	case RT2560_RF_5222:
2330		for (i = 0; i < N(rt2560_rf5222); i++)
2331			if (rt2560_rf5222[i].chan == chan)
2332				break;
2333
2334		if (i < N(rt2560_rf5222)) {
2335			rt2560_rf_write(sc, RT2560_RF1, rt2560_rf5222[i].r1);
2336			rt2560_rf_write(sc, RT2560_RF2, rt2560_rf5222[i].r2);
2337			rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x00040);
2338			rt2560_rf_write(sc, RT2560_RF4, rt2560_rf5222[i].r4);
2339		}
2340		break;
2341	}
2342
2343	if (ic->ic_opmode != IEEE80211_M_MONITOR &&
2344	    ic->ic_state != IEEE80211_S_SCAN) {
2345		/* set Japan filter bit for channel 14 */
2346		tmp = rt2560_bbp_read(sc, 70);
2347
2348		tmp &= ~RT2560_JAPAN_FILTER;
2349		if (chan == 14)
2350			tmp |= RT2560_JAPAN_FILTER;
2351
2352		rt2560_bbp_write(sc, 70, tmp);
2353
2354		DELAY(1000); /* RF needs a 1ms delay here */
2355		rt2560_disable_rf_tune(sc);
2356
2357		/* clear CRC errors */
2358		RAL_READ(sc, RT2560_CNT0);
2359	}
2360#undef N
2361}
2362
2363/*
2364 * Disable RF auto-tuning.
2365 */
2366void
2367rt2560_disable_rf_tune(struct rt2560_softc *sc)
2368{
2369	uint32_t tmp;
2370
2371	if (sc->rf_rev != RT2560_RF_2523) {
2372		tmp = sc->rf_regs[RT2560_RF1] & ~RT2560_RF1_AUTOTUNE;
2373		rt2560_rf_write(sc, RT2560_RF1, tmp);
2374	}
2375
2376	tmp = sc->rf_regs[RT2560_RF3] & ~RT2560_RF3_AUTOTUNE;
2377	rt2560_rf_write(sc, RT2560_RF3, tmp);
2378
2379	DPRINTFN(2, ("disabling RF autotune\n"));
2380}
2381
2382/*
2383 * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
2384 * synchronization.
2385 */
2386void
2387rt2560_enable_tsf_sync(struct rt2560_softc *sc)
2388{
2389	struct ieee80211com *ic = &sc->sc_ic;
2390	uint16_t logcwmin, preload;
2391	uint32_t tmp;
2392
2393	/* first, disable TSF synchronization */
2394	RAL_WRITE(sc, RT2560_CSR14, 0);
2395
2396	tmp = 16 * ic->ic_bss->ni_intval;
2397	RAL_WRITE(sc, RT2560_CSR12, tmp);
2398
2399	RAL_WRITE(sc, RT2560_CSR13, 0);
2400
2401	logcwmin = 5;
2402	preload = (ic->ic_opmode == IEEE80211_M_STA) ? 384 : 1024;
2403	tmp = logcwmin << 16 | preload;
2404	RAL_WRITE(sc, RT2560_BCNOCSR, tmp);
2405
2406	/* finally, enable TSF synchronization */
2407	tmp = RT2560_ENABLE_TSF | RT2560_ENABLE_TBCN;
2408	if (ic->ic_opmode == IEEE80211_M_STA)
2409		tmp |= RT2560_ENABLE_TSF_SYNC(1);
2410	else
2411		tmp |= RT2560_ENABLE_TSF_SYNC(2) |
2412		       RT2560_ENABLE_BEACON_GENERATOR;
2413	RAL_WRITE(sc, RT2560_CSR14, tmp);
2414
2415	DPRINTF(("enabling TSF synchronization\n"));
2416}
2417
2418void
2419rt2560_update_plcp(struct rt2560_softc *sc)
2420{
2421	struct ieee80211com *ic = &sc->sc_ic;
2422
2423	/* no short preamble for 1Mbps */
2424	RAL_WRITE(sc, RT2560_PLCP1MCSR, 0x00700400);
2425
2426	if (!(ic->ic_flags & IEEE80211_F_SHPREAMBLE)) {
2427		/* values taken from the reference driver */
2428		RAL_WRITE(sc, RT2560_PLCP2MCSR,   0x00380401);
2429		RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x00150402);
2430		RAL_WRITE(sc, RT2560_PLCP11MCSR,  0x000b8403);
2431	} else {
2432		/* same values as above or'ed 0x8 */
2433		RAL_WRITE(sc, RT2560_PLCP2MCSR,   0x00380409);
2434		RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x0015040a);
2435		RAL_WRITE(sc, RT2560_PLCP11MCSR,  0x000b840b);
2436	}
2437
2438	DPRINTF(("updating PLCP for %s preamble\n",
2439	    (ic->ic_flags & IEEE80211_F_SHPREAMBLE) ? "short" : "long"));
2440}
2441
2442/*
2443 * IEEE 802.11a uses short slot time. Refer to IEEE Std 802.11-1999 pp. 85 to
2444 * know how these values are computed.
2445 */
2446void
2447rt2560_update_slot(struct rt2560_softc *sc)
2448{
2449	struct ieee80211com *ic = &sc->sc_ic;
2450	uint8_t slottime;
2451	uint16_t sifs, pifs, difs, eifs;
2452	uint32_t tmp;
2453
2454	slottime = (ic->ic_curmode == IEEE80211_MODE_11A) ? 9 : 20;
2455
2456	/* define the MAC slot boundaries */
2457	sifs = RAL_SIFS - RT2560_RXTX_TURNAROUND;
2458	pifs = sifs + slottime;
2459	difs = sifs + 2 * slottime;
2460	eifs = (ic->ic_curmode == IEEE80211_MODE_11B) ? 364 : 60;
2461
2462	tmp = RAL_READ(sc, RT2560_CSR11);
2463	tmp = (tmp & ~0x1f00) | slottime << 8;
2464	RAL_WRITE(sc, RT2560_CSR11, tmp);
2465
2466	tmp = pifs << 16 | sifs;
2467	RAL_WRITE(sc, RT2560_CSR18, tmp);
2468
2469	tmp = eifs << 16 | difs;
2470	RAL_WRITE(sc, RT2560_CSR19, tmp);
2471
2472	DPRINTF(("setting slottime to %uus\n", slottime));
2473}
2474
2475void
2476rt2560_update_led(struct rt2560_softc *sc, int led1, int led2)
2477{
2478	uint32_t tmp;
2479
2480	/* set ON period to 70ms and OFF period to 30ms */
2481	tmp = led1 << 16 | led2 << 17 | 70 << 8 | 30;
2482	RAL_WRITE(sc, RT2560_LEDCSR, tmp);
2483}
2484
2485void
2486rt2560_set_bssid(struct rt2560_softc *sc, uint8_t *bssid)
2487{
2488	uint32_t tmp;
2489
2490	tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
2491	RAL_WRITE(sc, RT2560_CSR5, tmp);
2492
2493	tmp = bssid[4] | bssid[5] << 8;
2494	RAL_WRITE(sc, RT2560_CSR6, tmp);
2495
2496	DPRINTF(("setting BSSID to %s\n", ether_sprintf(bssid)));
2497}
2498
2499void
2500rt2560_set_macaddr(struct rt2560_softc *sc, uint8_t *addr)
2501{
2502	uint32_t tmp;
2503
2504	tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
2505	RAL_WRITE(sc, RT2560_CSR3, tmp);
2506
2507	tmp = addr[4] | addr[5] << 8;
2508	RAL_WRITE(sc, RT2560_CSR4, tmp);
2509
2510	DPRINTF(("setting MAC address to %s\n", ether_sprintf(addr)));
2511}
2512
2513void
2514rt2560_get_macaddr(struct rt2560_softc *sc, uint8_t *addr)
2515{
2516	uint32_t tmp;
2517
2518	tmp = RAL_READ(sc, RT2560_CSR3);
2519	addr[0] = tmp & 0xff;
2520	addr[1] = (tmp >>  8) & 0xff;
2521	addr[2] = (tmp >> 16) & 0xff;
2522	addr[3] = (tmp >> 24);
2523
2524	tmp = RAL_READ(sc, RT2560_CSR4);
2525	addr[4] = tmp & 0xff;
2526	addr[5] = (tmp >> 8) & 0xff;
2527}
2528
2529void
2530rt2560_update_promisc(struct rt2560_softc *sc)
2531{
2532	struct ifnet *ifp = &sc->sc_ic.ic_if;
2533	uint32_t tmp;
2534
2535	tmp = RAL_READ(sc, RT2560_RXCSR0);
2536
2537	tmp &= ~RT2560_DROP_NOT_TO_ME;
2538	if (!(ifp->if_flags & IFF_PROMISC))
2539		tmp |= RT2560_DROP_NOT_TO_ME;
2540
2541	RAL_WRITE(sc, RT2560_RXCSR0, tmp);
2542
2543	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
2544	    "entering" : "leaving"));
2545}
2546
2547void
2548rt2560_set_txantenna(struct rt2560_softc *sc, int antenna)
2549{
2550	uint32_t tmp;
2551	uint8_t tx;
2552
2553	tx = rt2560_bbp_read(sc, RT2560_BBP_TX) & ~RT2560_BBP_ANTMASK;
2554	if (antenna == 1)
2555		tx |= RT2560_BBP_ANTA;
2556	else if (antenna == 2)
2557		tx |= RT2560_BBP_ANTB;
2558	else
2559		tx |= RT2560_BBP_DIVERSITY;
2560
2561	/* need to force I/Q flip for RF 2525e, 2526 and 5222 */
2562	if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526 ||
2563	    sc->rf_rev == RT2560_RF_5222)
2564		tx |= RT2560_BBP_FLIPIQ;
2565
2566	rt2560_bbp_write(sc, RT2560_BBP_TX, tx);
2567
2568	/* update values for CCK and OFDM in BBPCSR1 */
2569	tmp = RAL_READ(sc, RT2560_BBPCSR1) & ~0x00070007;
2570	tmp |= (tx & 0x7) << 16 | (tx & 0x7);
2571	RAL_WRITE(sc, RT2560_BBPCSR1, tmp);
2572}
2573
2574void
2575rt2560_set_rxantenna(struct rt2560_softc *sc, int antenna)
2576{
2577	uint8_t rx;
2578
2579	rx = rt2560_bbp_read(sc, RT2560_BBP_RX) & ~RT2560_BBP_ANTMASK;
2580	if (antenna == 1)
2581		rx |= RT2560_BBP_ANTA;
2582	else if (antenna == 2)
2583		rx |= RT2560_BBP_ANTB;
2584	else
2585		rx |= RT2560_BBP_DIVERSITY;
2586
2587	/* need to force no I/Q flip for RF 2525e and 2526 */
2588	if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526)
2589		rx &= ~RT2560_BBP_FLIPIQ;
2590
2591	rt2560_bbp_write(sc, RT2560_BBP_RX, rx);
2592}
2593
2594const char *
2595rt2560_get_rf(int rev)
2596{
2597	switch (rev) {
2598	case RT2560_RF_2522:	return "RT2522";
2599	case RT2560_RF_2523:	return "RT2523";
2600	case RT2560_RF_2524:	return "RT2524";
2601	case RT2560_RF_2525:	return "RT2525";
2602	case RT2560_RF_2525E:	return "RT2525e";
2603	case RT2560_RF_2526:	return "RT2526";
2604	case RT2560_RF_5222:	return "RT5222";
2605	default:		return "unknown";
2606	}
2607}
2608
2609void
2610rt2560_read_eeprom(struct rt2560_softc *sc)
2611{
2612	uint16_t val;
2613	int i;
2614
2615	val = rt2560_eeprom_read(sc, RT2560_EEPROM_CONFIG0);
2616	sc->rf_rev =   (val >> 11) & 0x1f;
2617	sc->hw_radio = (val >> 10) & 0x1;
2618	sc->led_mode = (val >> 6)  & 0x7;
2619	sc->rx_ant =   (val >> 4)  & 0x3;
2620	sc->tx_ant =   (val >> 2)  & 0x3;
2621	sc->nb_ant =   val & 0x3;
2622
2623	/* read default values for BBP registers */
2624	for (i = 0; i < 16; i++) {
2625		val = rt2560_eeprom_read(sc, RT2560_EEPROM_BBP_BASE + i);
2626		sc->bbp_prom[i].reg = val >> 8;
2627		sc->bbp_prom[i].val = val & 0xff;
2628	}
2629
2630	/* read Tx power for all b/g channels */
2631	for (i = 0; i < 14 / 2; i++) {
2632		val = rt2560_eeprom_read(sc, RT2560_EEPROM_TXPOWER + i);
2633		sc->txpow[i * 2] = val >> 8;
2634		sc->txpow[i * 2 + 1] = val & 0xff;
2635	}
2636}
2637
2638int
2639rt2560_bbp_init(struct rt2560_softc *sc)
2640{
2641#define N(a)	(sizeof (a) / sizeof ((a)[0]))
2642	int i, ntries;
2643
2644	/* wait for BBP to be ready */
2645	for (ntries = 0; ntries < 100; ntries++) {
2646		if (rt2560_bbp_read(sc, RT2560_BBP_VERSION) != 0)
2647			break;
2648		DELAY(1);
2649	}
2650	if (ntries == 100) {
2651		printf("%s: timeout waiting for BBP\n", sc->sc_dev.dv_xname);
2652		return EIO;
2653	}
2654
2655	/* initialize BBP registers to default values */
2656	for (i = 0; i < N(rt2560_def_bbp); i++) {
2657		rt2560_bbp_write(sc, rt2560_def_bbp[i].reg,
2658		    rt2560_def_bbp[i].val);
2659	}
2660#if 0
2661	/* initialize BBP registers to values stored in EEPROM */
2662	for (i = 0; i < 16; i++) {
2663		if (sc->bbp_prom[i].reg == 0xff)
2664			continue;
2665		rt2560_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2666	}
2667#endif
2668
2669	return 0;
2670#undef N
2671}
2672
2673int
2674rt2560_init(struct ifnet *ifp)
2675{
2676#define N(a)	(sizeof (a) / sizeof ((a)[0]))
2677	struct rt2560_softc *sc = ifp->if_softc;
2678	struct ieee80211com *ic = &sc->sc_ic;
2679	uint32_t tmp;
2680	int i;
2681
2682	/* for CardBus, power on the socket */
2683	if (!(sc->sc_flags & RT2560_ENABLED)) {
2684		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
2685			printf("%s: could not enable device\n");
2686			return EIO;
2687		}
2688		sc->sc_flags |= RT2560_ENABLED;
2689	}
2690
2691	rt2560_stop(ifp, 0);
2692
2693	/* setup tx rings */
2694	tmp = RT2560_PRIO_RING_COUNT << 24 |
2695	      RT2560_ATIM_RING_COUNT << 16 |
2696	      RT2560_TX_RING_COUNT   <<  8 |
2697	      RT2560_TX_DESC_SIZE;
2698
2699	/* rings _must_ be initialized in this _exact_ order! */
2700	RAL_WRITE(sc, RT2560_TXCSR2, tmp);
2701	RAL_WRITE(sc, RT2560_TXCSR3, sc->txq.physaddr);
2702	RAL_WRITE(sc, RT2560_TXCSR5, sc->prioq.physaddr);
2703	RAL_WRITE(sc, RT2560_TXCSR4, sc->atimq.physaddr);
2704	RAL_WRITE(sc, RT2560_TXCSR6, sc->bcnq.physaddr);
2705
2706	/* setup rx ring */
2707	tmp = RT2560_RX_RING_COUNT << 8 | RT2560_RX_DESC_SIZE;
2708
2709	RAL_WRITE(sc, RT2560_RXCSR1, tmp);
2710	RAL_WRITE(sc, RT2560_RXCSR2, sc->rxq.physaddr);
2711
2712	/* initialize MAC registers to default values */
2713	for (i = 0; i < N(rt2560_def_mac); i++)
2714		RAL_WRITE(sc, rt2560_def_mac[i].reg, rt2560_def_mac[i].val);
2715
2716	IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
2717	rt2560_set_macaddr(sc, ic->ic_myaddr);
2718
2719	/* set basic rate set (will be updated later) */
2720	RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x153);
2721
2722	rt2560_set_txantenna(sc, 1);
2723	rt2560_set_rxantenna(sc, 1);
2724	rt2560_update_slot(sc);
2725	rt2560_update_plcp(sc);
2726	rt2560_update_led(sc, 0, 0);
2727
2728	RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC);
2729	RAL_WRITE(sc, RT2560_CSR1, RT2560_HOST_READY);
2730
2731	if (rt2560_bbp_init(sc) != 0) {
2732		rt2560_stop(ifp, 1);
2733		return EIO;
2734	}
2735
2736	/* set default BSS channel */
2737	ic->ic_bss->ni_chan = ic->ic_ibss_chan;
2738	rt2560_set_chan(sc, ic->ic_bss->ni_chan);
2739
2740	/* kick Rx */
2741	tmp = RT2560_DROP_PHY_ERROR | RT2560_DROP_CRC_ERROR;
2742	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2743		tmp |= RT2560_DROP_CTL | RT2560_DROP_VERSION_ERROR;
2744		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2745			tmp |= RT2560_DROP_TODS;
2746		if (!(ifp->if_flags & IFF_PROMISC))
2747			tmp |= RT2560_DROP_NOT_TO_ME;
2748	}
2749	RAL_WRITE(sc, RT2560_RXCSR0, tmp);
2750
2751	/* clear old FCS and Rx FIFO errors */
2752	RAL_READ(sc, RT2560_CNT0);
2753	RAL_READ(sc, RT2560_CNT4);
2754
2755	/* clear any pending interrupts */
2756	RAL_WRITE(sc, RT2560_CSR7, 0xffffffff);
2757
2758	/* enable interrupts */
2759	RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK);
2760
2761	ifp->if_flags &= ~IFF_OACTIVE;
2762	ifp->if_flags |= IFF_RUNNING;
2763
2764	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2765		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2766	else
2767		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2768
2769	return 0;
2770#undef N
2771}
2772
2773void
2774rt2560_stop(struct ifnet *ifp, int disable)
2775{
2776	struct rt2560_softc *sc = ifp->if_softc;
2777	struct ieee80211com *ic = &sc->sc_ic;
2778
2779	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2780
2781	sc->sc_tx_timer = 0;
2782	ifp->if_timer = 0;
2783	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2784
2785	/* abort Tx */
2786	RAL_WRITE(sc, RT2560_TXCSR0, RT2560_ABORT_TX);
2787
2788	/* disable Rx */
2789	RAL_WRITE(sc, RT2560_RXCSR0, RT2560_DISABLE_RX);
2790
2791	/* reset ASIC (and thus, BBP) */
2792	RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC);
2793	RAL_WRITE(sc, RT2560_CSR1, 0);
2794
2795	/* disable interrupts */
2796	RAL_WRITE(sc, RT2560_CSR8, 0xffffffff);
2797
2798	/* reset Tx and Rx rings */
2799	rt2560_reset_tx_ring(sc, &sc->txq);
2800	rt2560_reset_tx_ring(sc, &sc->atimq);
2801	rt2560_reset_tx_ring(sc, &sc->prioq);
2802	rt2560_reset_tx_ring(sc, &sc->bcnq);
2803	rt2560_reset_rx_ring(sc, &sc->rxq);
2804
2805	/* for CardBus, power down the socket */
2806	if (disable && sc->sc_disable != NULL) {
2807		if (sc->sc_flags & RT2560_ENABLED) {
2808			(*sc->sc_disable)(sc);
2809			sc->sc_flags &= ~RT2560_ENABLED;
2810		}
2811	}
2812}
2813
2814struct cfdriver ral_cd = {
2815	0, "ral", DV_IFNET
2816};
2817