1/*	$OpenBSD: armv7_machdep.c,v 1.66 2023/07/05 08:15:34 jsg Exp $ */
2/*	$NetBSD: lubbock_machdep.c,v 1.2 2003/07/15 00:25:06 lukem Exp $ */
3
4/*
5 * Copyright (c) 2002, 2003  Genetec Corporation.  All rights reserved.
6 * Written by Hiroyuki Bessho for Genetec Corporation.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. The name of Genetec Corporation may not be used to endorse or
17 *    promote products derived from this software without specific prior
18 *    written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL GENETEC CORPORATION
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 *
32 * Machine dependant functions for kernel setup for
33 * Intel DBPXA250 evaluation board (a.k.a. Lubbock).
34 * Based on iq80310_machhdep.c
35 */
36/*
37 * Copyright (c) 2001 Wasabi Systems, Inc.
38 * All rights reserved.
39 *
40 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 *    notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 *    notice, this list of conditions and the following disclaimer in the
49 *    documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 *    must display the following acknowledgement:
52 *	This product includes software developed for the NetBSD Project by
53 *	Wasabi Systems, Inc.
54 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
55 *    or promote products derived from this software without specific prior
56 *    written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
60 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
61 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
62 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
63 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
64 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
65 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
66 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
67 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
68 * POSSIBILITY OF SUCH DAMAGE.
69 */
70
71/*
72 * Copyright (c) 1997,1998 Mark Brinicombe.
73 * Copyright (c) 1997,1998 Causality Limited.
74 * All rights reserved.
75 *
76 * Redistribution and use in source and binary forms, with or without
77 * modification, are permitted provided that the following conditions
78 * are met:
79 * 1. Redistributions of source code must retain the above copyright
80 *    notice, this list of conditions and the following disclaimer.
81 * 2. Redistributions in binary form must reproduce the above copyright
82 *    notice, this list of conditions and the following disclaimer in the
83 *    documentation and/or other materials provided with the distribution.
84 * 3. All advertising materials mentioning features or use of this software
85 *    must display the following acknowledgement:
86 *	This product includes software developed by Mark Brinicombe
87 *	for the NetBSD Project.
88 * 4. The name of the company nor the name of the author may be used to
89 *    endorse or promote products derived from this software without specific
90 *    prior written permission.
91 *
92 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
93 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
94 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
95 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
96 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
97 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
98 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
99 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
100 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
101 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
102 * SUCH DAMAGE.
103 *
104 * Machine dependant functions for kernel setup for ARMv7 boards using
105 * u-boot/EFI firmware.
106 */
107
108#include <sys/param.h>
109#include <sys/systm.h>
110#include <sys/proc.h>
111#include <sys/reboot.h>
112
113#include <machine/db_machdep.h>
114#include <machine/bootconfig.h>
115#include <machine/machine_reg.h>
116#include <machine/bus.h>
117
118#include <arm/undefined.h>
119#include <arm/machdep.h>
120#include <arm/armv7/armv7var.h>
121#include <armv7/armv7/armv7_machdep.h>
122
123#include <dev/cons.h>
124#include <dev/efi/efi.h>
125#include <dev/ofw/fdt.h>
126#include <dev/ofw/openfirm.h>
127
128#include <net/if.h>
129
130#include <ddb/db_extern.h>
131
132/* Kernel text starts 2MB in from the bottom of the kernel address space. */
133#define	KERNEL_TEXT_BASE	(KERNEL_BASE + 0x00000000)
134#define	KERNEL_VM_BASE		(KERNEL_BASE + 0x04000000)
135#define KERNEL_VM_SIZE		VM_KERNEL_SPACE_SIZE
136
137/*
138 * Address to call from cpu_reset() to reset the machine.
139 * This is machine architecture dependant as it varies depending
140 * on where the ROM appears when you turn the MMU off.
141 */
142
143/* Define various stack sizes in pages */
144#define IRQ_STACK_SIZE	1
145#define ABT_STACK_SIZE	1
146#define UND_STACK_SIZE	1
147
148BootConfig bootconfig;		/* Boot config storage */
149char *boot_args = NULL;
150char *boot_file = "";
151uint8_t *bootmac = NULL;
152u_int cpu_reset_address = 0;
153
154vaddr_t physical_freestart;
155int physmem;
156
157/* Physical and virtual addresses for some global pages */
158pv_addr_t systempage;
159pv_addr_t irqstack;
160pv_addr_t undstack;
161pv_addr_t abtstack;
162extern pv_addr_t kernelstack;
163
164vaddr_t msgbufphys;
165
166extern u_int data_abort_handler_address;
167extern u_int prefetch_abort_handler_address;
168extern u_int undefined_handler_address;
169
170#define KERNEL_PT_SYS		0	/* Page table for mapping proc0 zero page */
171#define KERNEL_PT_KERNEL	1	/* Page table for mapping kernel */
172#define	KERNEL_PT_KERNEL_NUM	32
173#define KERNEL_PT_VMDATA	(KERNEL_PT_KERNEL+KERNEL_PT_KERNEL_NUM)
174				        /* Page tables for mapping kernel VM */
175#define	KERNEL_PT_VMDATA_NUM	8	/* start with 16MB of KVM */
176#define NUM_KERNEL_PTS		(KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
177
178pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
179
180extern struct user *proc0paddr;
181
182/*
183 * safepri is a safe priority for sleep to set for a spin-wait
184 * during autoconfiguration or after a panic.
185 */
186int   safepri = 0;
187
188/* Prototypes */
189
190int	bootstrap_bs_map(void *, uint64_t, bus_size_t, int,
191    bus_space_handle_t *);
192void	collect_kernel_args(const char *);
193void	process_kernel_args(void);
194void	consinit(void);
195
196bs_protos(bs_notimpl);
197
198int stdout_node;
199int stdout_speed;
200
201void (*cpuresetfn)(void);
202void (*powerdownfn)(void);
203
204/*
205 * void boot(int howto, char *bootstr)
206 *
207 * Reboots the system
208 *
209 * Deal with any syncing, unmounting, dumping and shutdown hooks,
210 * then reset the CPU.
211 */
212__dead void
213boot(int howto)
214{
215	if ((howto & RB_RESET) != 0)
216		goto doreset;
217
218	if (cold) {
219		if ((howto & RB_USERREQ) == 0)
220			howto |= RB_HALT;
221		goto haltsys;
222	}
223
224	/* Disable console buffering */
225/*	cnpollc(1);*/
226
227	/*
228	 * If RB_NOSYNC was not specified sync the discs.
229	 * Note: Unless cold is set to 1 here, syslogd will die during the
230	 * unmount.  It looks like syslogd is getting woken up only to find
231	 * that it cannot page part of the binary in as the filesystem has
232	 * been unmounted.
233	 */
234	if ((howto & RB_NOSYNC) == 0)
235		bootsync(howto);
236
237	if_downall();
238
239	uvm_shutdown();
240	splhigh();
241	cold = 1;
242
243	if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
244		dumpsys();
245
246haltsys:
247	config_suspend_all(DVACT_POWERDOWN);
248
249	/* Make sure IRQ's are disabled */
250	intr_disable();
251
252	if ((howto & RB_HALT) != 0) {
253		if ((howto & RB_POWERDOWN) != 0) {
254			printf("\nAttempting to power down...\n");
255			delay(500000);
256			if (powerdownfn)
257				(*powerdownfn)();
258		}
259
260		printf("The operating system has halted.\n");
261		printf("Please press any key to reboot.\n\n");
262		cngetc();
263	}
264
265doreset:
266	printf("rebooting...\n");
267	delay(500000);
268	if (cpuresetfn)
269		(*cpuresetfn)();
270	printf("reboot failed; spinning\n");
271	for (;;)
272		continue;
273	/* NOTREACHED */
274}
275
276static __inline
277pd_entry_t *
278read_ttb(void)
279{
280  long ttb;
281
282  __asm volatile("mrc	p15, 0, %0, c2, c0, 0" : "=r" (ttb));
283
284
285  return (pd_entry_t *)(ttb & ~((1<<14)-1));
286}
287
288#define VERBOSE_INIT_ARM
289
290/*
291 * simple memory mapping function used in early bootstrap stage
292 * before pmap is initialized.
293 * ignores cacheability and does map the sections with nocache.
294 */
295static vaddr_t section_free = 0xfd000000; /* XXX - huh */
296
297int
298bootstrap_bs_map(void *t, uint64_t bpa, bus_size_t size,
299    int flags, bus_space_handle_t *bshp)
300{
301	u_long startpa, pa, endpa;
302	vaddr_t va;
303	pd_entry_t *pagedir = read_ttb();
304	/* This assumes PA==VA for page directory */
305
306	va = section_free;
307
308	startpa = bpa & ~L1_S_OFFSET;
309	endpa = (bpa + size) & ~L1_S_OFFSET;
310	if ((bpa + size) & L1_S_OFFSET)
311		endpa += L1_S_SIZE;
312
313	*bshp = (bus_space_handle_t)(va + (bpa - startpa));
314
315	for (pa = startpa; pa < endpa; pa += L1_S_SIZE, va += L1_S_SIZE)
316		pmap_map_section((vaddr_t)pagedir, va, pa,
317		    PROT_READ | PROT_WRITE, PTE_NOCACHE);
318
319	cpu_tlb_flushD();
320
321	section_free = va;
322
323	return 0;
324}
325
326static void
327copy_io_area_map(pd_entry_t *new_pd)
328{
329	pd_entry_t *cur_pd = read_ttb();
330	vaddr_t va;
331
332	for (va = MACHINE_IO_AREA_VBASE;
333	     (cur_pd[va>>L1_S_SHIFT] & L1_TYPE_MASK) == L1_TYPE_S;
334	     va += L1_S_SIZE) {
335
336		new_pd[va>>L1_S_SHIFT] = cur_pd[va>>L1_S_SHIFT];
337		if (va == (ARM_VECTORS_HIGH & ~(0x00400000 - 1)))
338			break; /* STUPID */
339
340	}
341}
342
343uint64_t mmap_start;
344uint32_t mmap_size;
345uint32_t mmap_desc_size;
346uint32_t mmap_desc_ver;
347
348EFI_MEMORY_DESCRIPTOR *mmap;
349
350/*
351 * u_int initarm(...)
352 *
353 * Initial entry point on startup. This gets called before main() is
354 * entered.
355 * It should be responsible for setting up everything that must be
356 * in place when main is called.
357 * This includes
358 *   Taking a copy of the FDT.
359 *   Initialising the physical console so characters can be printed.
360 *   Setting up page tables for the kernel.
361 */
362u_int
363initarm(void *arg0, void *arg1, void *arg2, paddr_t loadaddr)
364{
365	int loop, loop1;
366	u_int l1pagetable;
367	pv_addr_t kernel_l1pt;
368	pv_addr_t fdt, map;
369	struct fdt_reg reg;
370	paddr_t memstart, memend;
371	void *config;
372	size_t size;
373	void *node;
374	extern uint32_t esym; /* &_end if no symbols are loaded */
375
376	/* early bus_space_map support */
377	struct bus_space tmp_bs_tag;
378	int	(*map_func_save)(void *, uint64_t, bus_size_t, int,
379	    bus_space_handle_t *);
380
381	if (arg0)
382		esym = (uint32_t)arg0;
383
384	/*
385	 * Heads up ... Setup the CPU / MMU / TLB functions
386	 */
387	if (set_cpufuncs())
388		panic("cpu not recognized!");
389
390	/*
391	 * Temporarily replace bus_space_map() functions so that
392	 * console devices can get mapped.
393	 */
394	tmp_bs_tag = armv7_bs_tag;
395	map_func_save = armv7_bs_tag.bs_map;
396	armv7_bs_tag.bs_map = bootstrap_bs_map;
397	tmp_bs_tag.bs_map = bootstrap_bs_map;
398
399	/*
400	 * Now, map the FDT area.
401	 *
402	 * As we don't know the size of a possible FDT, map the size of a
403	 * typical bootstrap bs map.  The FDT might not be aligned, so this
404	 * might take up to two L1_S_SIZEd mappings.
405	 *
406	 * XXX: There's (currently) no way to unmap a bootstrap mapping, so
407	 * we might lose a bit of the bootstrap address space.
408	 */
409	bootstrap_bs_map(NULL, (bus_addr_t)arg2, L1_S_SIZE, 0,
410	    (bus_space_handle_t *)&config);
411
412	if (!fdt_init(config) || fdt_get_size(config) == 0)
413		panic("initarm: no FDT");
414
415	node = fdt_find_node("/chosen");
416	if (node != NULL) {
417		char *prop;
418		int len;
419		static uint8_t lladdr[6];
420
421		len = fdt_node_property(node, "bootargs", &prop);
422		if (len > 0)
423			collect_kernel_args(prop);
424
425		len = fdt_node_property(node, "openbsd,boothowto", &prop);
426		if (len == sizeof(boothowto))
427			boothowto = bemtoh32((uint32_t *)prop);
428
429		len = fdt_node_property(node, "openbsd,bootduid", &prop);
430		if (len == sizeof(bootduid))
431			memcpy(bootduid, prop, sizeof(bootduid));
432
433		len = fdt_node_property(node, "openbsd,bootmac", &prop);
434		if (len == sizeof(lladdr)) {
435			memcpy(lladdr, prop, sizeof(lladdr));
436			bootmac = lladdr;
437		}
438
439		len = fdt_node_property(node, "openbsd,uefi-mmap-start", &prop);
440		if (len == sizeof(mmap_start))
441			mmap_start = bemtoh64((uint64_t *)prop);
442		len = fdt_node_property(node, "openbsd,uefi-mmap-size", &prop);
443		if (len == sizeof(mmap_size))
444			mmap_size = bemtoh32((uint32_t *)prop);
445		len = fdt_node_property(node, "openbsd,uefi-mmap-desc-size", &prop);
446		if (len == sizeof(mmap_desc_size))
447			mmap_desc_size = bemtoh32((uint32_t *)prop);
448		len = fdt_node_property(node, "openbsd,uefi-mmap-desc-ver", &prop);
449		if (len == sizeof(mmap_desc_ver))
450			mmap_desc_ver = bemtoh32((uint32_t *)prop);
451
452		len = fdt_node_property(node, "openbsd,dma-constraint", &prop);
453		if (len == sizeof(uint64_t[2])) {
454			dma_constraint.ucr_low = bemtoh64((uint64_t *)prop);
455			dma_constraint.ucr_high = bemtoh64((uint64_t *)prop + 1);
456		}
457	}
458
459	process_kernel_args();
460
461	if (mmap_start != 0)
462		bootstrap_bs_map(NULL, mmap_start, mmap_size, 0,
463		    (bus_space_handle_t *)&mmap);
464
465	platform_init();
466
467	/* setup a serial console for very early boot */
468	consinit();
469
470	/* Talk to the user */
471	printf("\nOpenBSD/armv7 booting ...\n");
472
473	printf("arg0 %p arg1 %p arg2 %p\n", arg0, arg1, arg2);
474
475#ifdef RAMDISK_HOOKS
476	boothowto |= RB_DFLTROOT;
477#endif /* RAMDISK_HOOKS */
478
479	physical_freestart = (((unsigned long)esym - KERNEL_TEXT_BASE + 0xfff) & ~0xfff) + loadaddr;
480
481	/* The bootloader has loaded us ubto a 32MB block. */
482	memstart = loadaddr;
483	memend = memstart + 32 * 1024 * 1024;
484
485	/*
486	 * Okay, the kernel starts 2MB in from the bottom of physical
487	 * memory.  We are going to allocate our bootstrap pages downwards
488	 * from there.
489	 *
490	 * We need to allocate some fixed page tables to get the kernel
491	 * going.  We allocate one page directory and a number of page
492	 * tables and store the physical addresses in the kernel_pt_table
493	 * array.
494	 *
495	 * The kernel page directory must be on a 16K boundary.  The page
496	 * tables must be on 4K boundaries.  What we do is allocate the
497	 * page directory on the first 16K boundary that we encounter, and
498	 * the page tables on 4K boundaries otherwise.  Since we allocate
499	 * at least 3 L2 page tables, we are guaranteed to encounter at
500	 * least one 16K aligned region.
501	 */
502
503#ifdef VERBOSE_INIT_ARM
504	printf("Allocating page tables\n");
505#endif
506
507	/* Define a macro to simplify memory allocation */
508#define	valloc_pages(var, np)				\
509	alloc_pages((var).pv_pa, (np));			\
510	(var).pv_va = KERNEL_BASE + (var).pv_pa - loadaddr;
511
512#define alloc_pages(var, np)				\
513	(var) = physical_freestart;			\
514	physical_freestart += ((np) * PAGE_SIZE);	\
515	if (physical_freestart > memend)		\
516		panic("initarm: out of memory");	\
517	memset((char *)(var), 0, ((np) * PAGE_SIZE));
518
519	loop1 = 0;
520	kernel_l1pt.pv_pa = 0;
521	for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
522		/* Are we 16KB aligned for an L1 ? */
523		if (((physical_freestart) & (L1_TABLE_SIZE - 1)) == 0
524		    && kernel_l1pt.pv_pa == 0) {
525			valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
526		} else {
527			valloc_pages(kernel_pt_table[loop1],
528			    L2_TABLE_SIZE / PAGE_SIZE);
529			++loop1;
530		}
531	}
532
533	/* This should never be able to happen but better confirm that. */
534	if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
535		panic("initarm: Failed to align the kernel page directory");
536
537	/*
538	 * Allocate a page for the system page mapped to V0x00000000
539	 * This page will just contain the system vectors and can be
540	 * shared by all processes.
541	 */
542	vector_page = ARM_VECTORS_HIGH;
543	alloc_pages(systempage.pv_pa, 1);
544	systempage.pv_va = vector_page;
545
546	/* Allocate stacks for all modes */
547	valloc_pages(irqstack, IRQ_STACK_SIZE);
548	valloc_pages(abtstack, ABT_STACK_SIZE);
549	valloc_pages(undstack, UND_STACK_SIZE);
550	valloc_pages(kernelstack, UPAGES);
551
552	/* Allocate enough pages for cleaning the Mini-Data cache. */
553
554#ifdef VERBOSE_INIT_ARM
555	printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
556	    irqstack.pv_va);
557	printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
558	    abtstack.pv_va);
559	printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
560	    undstack.pv_va);
561	printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
562	    kernelstack.pv_va);
563#endif
564
565	/* Relocate the FDT to safe memory. */
566	size = fdt_get_size(config);
567	valloc_pages(fdt, round_page(size) / PAGE_SIZE);
568	memcpy((void *)fdt.pv_pa, config, size);
569
570	/* Relocate the EFI memory map too. */
571	if (mmap_start != 0) {
572		valloc_pages(map, round_page(mmap_size) / PAGE_SIZE);
573		memcpy((void *)map.pv_pa, mmap, mmap_size);
574	}
575
576	/*
577	 * XXX Defer this to later so that we can reclaim the memory
578	 */
579	alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
580
581	/*
582	 * Ok we have allocated physical pages for the primary kernel
583	 * page tables
584	 */
585
586#ifdef VERBOSE_INIT_ARM
587	printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
588#endif
589
590	/*
591	 * Now we start construction of the L1 page table
592	 * We start by mapping the L2 page tables into the L1.
593	 * This means that we can replace L1 mappings later on if necessary
594	 */
595	l1pagetable = kernel_l1pt.pv_pa;
596
597	/* Map the L2 pages tables in the L1 page table */
598	pmap_link_l2pt(l1pagetable, vector_page & ~(0x00400000 - 1),
599	    &kernel_pt_table[KERNEL_PT_SYS]);
600
601	for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
602		pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
603		    &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
604
605	for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
606		pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
607		    &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
608
609	/* update the top of the kernel VM */
610	pmap_curmaxkvaddr =
611	    KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
612
613#ifdef VERBOSE_INIT_ARM
614	printf("Mapping kernel\n");
615#endif
616
617	/* Now we fill in the L2 pagetable for the kernel static code/data */
618	{
619		extern char __text_start[], _etext[];
620		extern char __rodata_start[], _erodata[];
621		size_t textsize = (u_int32_t) (_etext - __text_start);
622		size_t rodatasize = (u_int32_t) (_erodata - __rodata_start);
623		size_t totalsize = esym - (u_int32_t)__text_start;
624		u_int logical;
625
626		textsize = (textsize + PGOFSET) & ~PGOFSET;
627		rodatasize = (rodatasize + PGOFSET) & ~PGOFSET;
628		totalsize = (totalsize + PGOFSET) & ~PGOFSET;
629
630		logical = 0x00300000;	/* offset of kernel in RAM */
631
632		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
633		    loadaddr + logical, textsize,
634		    PROT_READ | PROT_EXEC, PTE_CACHE);
635		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
636		    loadaddr + logical, rodatasize,
637		    PROT_READ, PTE_CACHE);
638		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
639		    loadaddr + logical, totalsize - (textsize + rodatasize),
640		    PROT_READ | PROT_WRITE, PTE_CACHE);
641	}
642
643#ifdef VERBOSE_INIT_ARM
644	printf("Constructing L2 page tables\n");
645#endif
646
647	/* Map the stack pages */
648	pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
649	    IRQ_STACK_SIZE * PAGE_SIZE, PROT_READ | PROT_WRITE, PTE_CACHE);
650	pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
651	    ABT_STACK_SIZE * PAGE_SIZE, PROT_READ | PROT_WRITE, PTE_CACHE);
652	pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
653	    UND_STACK_SIZE * PAGE_SIZE, PROT_READ | PROT_WRITE, PTE_CACHE);
654	pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
655	    UPAGES * PAGE_SIZE, PROT_READ | PROT_WRITE, PTE_CACHE);
656
657	pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
658	    L1_TABLE_SIZE, PROT_READ | PROT_WRITE, PTE_PAGETABLE);
659
660	for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
661		pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
662		    kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
663		    PROT_READ | PROT_WRITE, PTE_PAGETABLE);
664	}
665
666	/* Map the Mini-Data cache clean area. */
667
668	/* Map the vector page. */
669	pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
670	    PROT_READ | PROT_WRITE, PTE_CACHE);
671
672	/* Map the FDT. */
673	pmap_map_chunk(l1pagetable, fdt.pv_va, fdt.pv_pa,
674	    round_page(fdt_get_size((void *)fdt.pv_pa)),
675	    PROT_READ | PROT_WRITE, PTE_CACHE);
676
677	/* Map the EFI memory map. */
678	if (mmap_start != 0) {
679		pmap_map_chunk(l1pagetable, map.pv_va, map.pv_pa,
680		    round_page(mmap_size),
681		    PROT_READ | PROT_WRITE, PTE_CACHE);
682		mmap = (void *)map.pv_va;
683	}
684
685	/*
686	 * map integrated peripherals at same address in l1pagetable
687	 * so that we can continue to use console.
688	 */
689	copy_io_area_map((pd_entry_t *)l1pagetable);
690
691	/*
692	 * Now we have the real page tables in place so we can switch to them.
693	 * Once this is done we will be running with the REAL kernel page
694	 * tables.
695	 */
696	setttb(kernel_l1pt.pv_pa);
697	cpu_tlb_flushID();
698
699	/*
700	 * Moved from cpu_startup() as data_abort_handler() references
701	 * this during uvm init
702	 */
703	proc0paddr = (struct user *)kernelstack.pv_va;
704	proc0.p_addr = proc0paddr;
705
706	arm32_vector_init(vector_page, ARM_VEC_ALL);
707
708	/*
709	 * Pages were allocated during the secondary bootstrap for the
710	 * stacks for different CPU modes.
711	 * We must now set the r13 registers in the different CPU modes to
712	 * point to these stacks.
713	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
714	 * of the stack memory.
715	 */
716
717	set_stackptr(PSR_IRQ32_MODE,
718	    irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
719	set_stackptr(PSR_ABT32_MODE,
720	    abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
721	set_stackptr(PSR_UND32_MODE,
722	    undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
723
724	/*
725	 * Well we should set a data abort handler.
726	 * Once things get going this will change as we will need a proper
727	 * handler.
728	 * Until then we will use a handler that just panics but tells us
729	 * why.
730	 * Initialisation of the vectors will just panic on a data abort.
731	 * This just fills in a slightly better one.
732	 */
733
734	data_abort_handler_address = (u_int)data_abort_handler;
735	prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
736	undefined_handler_address = (u_int)undefinedinstruction_bounce;
737
738	/* Now we can reinit the FDT, using the virtual address. */
739	fdt_init((void *)fdt.pv_va);
740
741	/* Initialise the undefined instruction handlers */
742#ifdef VERBOSE_INIT_ARM
743	printf("undefined ");
744#endif
745	undefined_init();
746
747	/* Load memory into UVM. */
748#ifdef VERBOSE_INIT_ARM
749	printf("page ");
750#endif
751	uvm_setpagesize();        /* initialize PAGE_SIZE-dependent variables */
752
753	/* Make what's left of the initial 32MB block available to UVM. */
754	uvm_page_physload(atop(physical_freestart), atop(memend),
755	    atop(physical_freestart), atop(memend), 0);
756	physmem = atop(memend - memstart);
757
758	/* Make all other physical memory available to UVM. */
759	if (mmap && mmap_desc_ver == EFI_MEMORY_DESCRIPTOR_VERSION) {
760		EFI_MEMORY_DESCRIPTOR *desc = mmap;
761		int i;
762
763		/*
764		 * Load all memory marked as EfiConventionalMemory.
765		 * Don't bother with blocks smaller than 64KB.  The
766		 * initial 64MB memory block should be marked as
767		 * EfiLoaderData so it won't be added again here.
768		 */
769		for (i = 0; i < mmap_size / mmap_desc_size; i++) {
770			printf("type 0x%x pa 0x%llx va 0x%llx pages 0x%llx attr 0x%llx\n",
771			    desc->Type, desc->PhysicalStart,
772			    desc->VirtualStart, desc->NumberOfPages,
773			    desc->Attribute);
774			if (desc->Type == EfiConventionalMemory &&
775			    desc->NumberOfPages >= 16) {
776				uvm_page_physload(atop(desc->PhysicalStart),
777				    atop(desc->PhysicalStart) +
778				    desc->NumberOfPages,
779				    atop(desc->PhysicalStart),
780				    atop(desc->PhysicalStart) +
781				    desc->NumberOfPages, 0);
782				physmem += desc->NumberOfPages;
783			}
784			desc = NextMemoryDescriptor(desc, mmap_desc_size);
785		}
786	} else {
787		paddr_t start, end;
788		int i;
789
790		node = fdt_find_node("/memory");
791		if (node == NULL)
792			panic("%s: no memory specified", __func__);
793
794		for (i = 0; i < VM_PHYSSEG_MAX; i++) {
795			if (fdt_get_reg(node, i, &reg))
796				break;
797			if (reg.size == 0)
798				continue;
799
800			start = reg.addr;
801			end = MIN(reg.addr + reg.size, (paddr_t)-PAGE_SIZE);
802
803			/*
804			 * The initial 32MB block is not excluded, so we need
805			 * to make sure we don't add it here.
806			 */
807			if (start < memend && end > memstart) {
808				if (start < memstart) {
809					uvm_page_physload(atop(start),
810					    atop(memstart), atop(start),
811					    atop(memstart), 0);
812					physmem += atop(memstart - start);
813				}
814				if (end > memend) {
815					uvm_page_physload(atop(memend),
816					    atop(end), atop(memend),
817					    atop(end), 0);
818					physmem += atop(end - memend);
819				}
820			} else {
821				uvm_page_physload(atop(start), atop(end),
822				    atop(start), atop(end), 0);
823				physmem += atop(end - start);
824			}
825		}
826	}
827
828	/* Boot strap pmap telling it where the kernel page table is */
829#ifdef VERBOSE_INIT_ARM
830	printf("pmap ");
831#endif
832	pmap_bootstrap((pd_entry_t *)kernel_l1pt.pv_va, KERNEL_VM_BASE,
833	    KERNEL_VM_BASE + KERNEL_VM_SIZE);
834
835	vector_page_setprot(PROT_READ | PROT_EXEC);
836
837	/*
838	 * Restore proper bus_space operation, now that pmap is initialized.
839	 */
840	armv7_bs_tag.bs_map = map_func_save;
841
842#ifdef DDB
843	db_machine_init();
844
845	/* Firmware doesn't load symbols. */
846	ddb_init();
847
848	if (boothowto & RB_KDB)
849		db_enter();
850#endif
851
852	cpu_setup();
853
854	/* We return the new stack pointer address */
855	return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
856}
857
858char	bootargs[256];
859
860void
861collect_kernel_args(const char *args)
862{
863	/* Make a local copy of the bootargs */
864	strlcpy(bootargs, args, sizeof(bootargs));
865}
866
867void
868process_kernel_args(void)
869{
870	char *cp = bootargs;
871
872	if (*cp == 0)
873		return;
874
875	boot_file = bootargs;
876
877	/* Skip the kernel image filename */
878	while (*cp != ' ' && *cp != 0)
879		cp++;
880
881	if (*cp != 0)
882		*cp++ = 0;
883
884	while (*cp == ' ')
885		cp++;
886
887	boot_args = cp;
888
889	printf("bootfile: %s\n", boot_file);
890	printf("bootargs: %s\n", boot_args);
891
892	/* Setup pointer to boot flags */
893	while (*cp != '-')
894		if (*cp++ == '\0')
895			return;
896
897	while (*cp != 0) {
898		switch(*cp) {
899		case 'a':
900			boothowto |= RB_ASKNAME;
901			break;
902		case 'c':
903			boothowto |= RB_CONFIG;
904			break;
905		case 'd':
906			boothowto |= RB_KDB;
907			break;
908		case 's':
909			boothowto |= RB_SINGLE;
910			break;
911		default:
912			printf("unknown option `%c'\n", *cp);
913			break;
914		}
915		cp++;
916	}
917}
918
919static int
920atoi(const char *s)
921{
922	int n, neg;
923
924	n = 0;
925	neg = 0;
926
927	while (*s == '-') {
928		s++;
929		neg = !neg;
930	}
931
932	while (*s != '\0') {
933		if (*s < '0' || *s > '9')
934			break;
935
936		n = (10 * n) + (*s - '0');
937		s++;
938	}
939
940	return (neg ? -n : n);
941}
942
943void *
944fdt_find_cons(const char *name)
945{
946	char *alias = "serial0";
947	char buf[128];
948	char *stdout = NULL;
949	char *p;
950	void *node;
951
952	/* First check if "stdout-path" is set. */
953	node = fdt_find_node("/chosen");
954	if (node) {
955		if (fdt_node_property(node, "stdout-path", &stdout) > 0) {
956			if (strchr(stdout, ':') != NULL) {
957				strlcpy(buf, stdout, sizeof(buf));
958				if ((p = strchr(buf, ':')) != NULL) {
959					*p++ = '\0';
960					stdout_speed = atoi(p);
961				}
962				stdout = buf;
963			}
964			if (stdout[0] != '/') {
965				/* It's an alias. */
966				alias = stdout;
967				stdout = NULL;
968			}
969		}
970	}
971
972	/* Perform alias lookup if necessary. */
973	if (stdout == NULL) {
974		node = fdt_find_node("/aliases");
975		if (node)
976			fdt_node_property(node, alias, &stdout);
977	}
978
979	/* Lookup the physical address of the interface. */
980	if (stdout) {
981		node = fdt_find_node(stdout);
982		if (node && fdt_is_compatible(node, name)) {
983			stdout_node = OF_finddevice(stdout);
984			return (node);
985		}
986	}
987
988	return (NULL);
989}
990
991void
992consinit(void)
993{
994	static int consinit_called = 0;
995
996	if (consinit_called != 0)
997		return;
998
999	consinit_called = 1;
1000
1001	platform_init_cons();
1002}
1003
1004void
1005board_startup(void)
1006{
1007        if (boothowto & RB_CONFIG) {
1008#ifdef BOOT_CONFIG
1009		user_config();
1010#else
1011		printf("kernel does not support -c; continuing..\n");
1012#endif
1013	}
1014}
1015
1016unsigned int
1017cpu_rnd_messybits(void)
1018{
1019	struct timespec ts;
1020
1021	nanotime(&ts);
1022	return (ts.tv_nsec ^ (ts.tv_sec << 20));
1023}
1024