s3_cbc.c revision 1.22
1/* $OpenBSD: s3_cbc.c,v 1.22 2020/06/19 21:26:40 tb Exp $ */
2/* ====================================================================
3 * Copyright (c) 2012 The OpenSSL Project.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in
14 *    the documentation and/or other materials provided with the
15 *    distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 *    software must display the following acknowledgment:
19 *    "This product includes software developed by the OpenSSL Project
20 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 *    endorse or promote products derived from this software without
24 *    prior written permission. For written permission, please contact
25 *    openssl-core@openssl.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 *    nor may "OpenSSL" appear in their names without prior written
29 *    permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 *    acknowledgment:
33 *    "This product includes software developed by the OpenSSL Project
34 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ====================================================================
49 *
50 * This product includes cryptographic software written by Eric Young
51 * (eay@cryptsoft.com).  This product includes software written by Tim
52 * Hudson (tjh@cryptsoft.com).
53 *
54 */
55
56#include "ssl_locl.h"
57
58#include <openssl/md5.h>
59#include <openssl/sha.h>
60
61/* MAX_HASH_BIT_COUNT_BYTES is the maximum number of bytes in the hash's length
62 * field. (SHA-384/512 have 128-bit length.) */
63#define MAX_HASH_BIT_COUNT_BYTES 16
64
65/* MAX_HASH_BLOCK_SIZE is the maximum hash block size that we'll support.
66 * Currently SHA-384/512 has a 128-byte block size and that's the largest
67 * supported by TLS.) */
68#define MAX_HASH_BLOCK_SIZE 128
69
70/* Some utility functions are needed:
71 *
72 * These macros return the given value with the MSB copied to all the other
73 * bits. They use the fact that arithmetic shift shifts-in the sign bit.
74 * However, this is not ensured by the C standard so you may need to replace
75 * them with something else on odd CPUs. */
76#define DUPLICATE_MSB_TO_ALL(x) ((unsigned int)((int)(x) >> (sizeof(int) * 8 - 1)))
77#define DUPLICATE_MSB_TO_ALL_8(x) ((unsigned char)(DUPLICATE_MSB_TO_ALL(x)))
78
79/* constant_time_lt returns 0xff if a<b and 0x00 otherwise. */
80static unsigned int
81constant_time_lt(unsigned int a, unsigned int b)
82{
83	a -= b;
84	return DUPLICATE_MSB_TO_ALL(a);
85}
86
87/* constant_time_ge returns 0xff if a>=b and 0x00 otherwise. */
88static unsigned int
89constant_time_ge(unsigned int a, unsigned int b)
90{
91	a -= b;
92	return DUPLICATE_MSB_TO_ALL(~a);
93}
94
95/* constant_time_eq_8 returns 0xff if a==b and 0x00 otherwise. */
96static unsigned char
97constant_time_eq_8(unsigned int a, unsigned int b)
98{
99	unsigned int c = a ^ b;
100	c--;
101	return DUPLICATE_MSB_TO_ALL_8(c);
102}
103
104/* tls1_cbc_remove_padding removes the CBC padding from the decrypted, TLS, CBC
105 * record in |rec| in constant time and returns 1 if the padding is valid and
106 * -1 otherwise. It also removes any explicit IV from the start of the record
107 * without leaking any timing about whether there was enough space after the
108 * padding was removed.
109 *
110 * block_size: the block size of the cipher used to encrypt the record.
111 * returns:
112 *   0: (in non-constant time) if the record is publicly invalid.
113 *   1: if the padding was valid
114 *  -1: otherwise. */
115int
116tls1_cbc_remove_padding(const SSL* s, SSL3_RECORD_INTERNAL *rec,
117    unsigned int block_size, unsigned int mac_size)
118{
119	unsigned int padding_length, good, to_check, i;
120	const unsigned int overhead = 1 /* padding length byte */ + mac_size;
121
122	/* Check if version requires explicit IV */
123	if (SSL_USE_EXPLICIT_IV(s)) {
124		/* These lengths are all public so we can test them in
125		 * non-constant time.
126		 */
127		if (overhead + block_size > rec->length)
128			return 0;
129		/* We can now safely skip explicit IV */
130		rec->data += block_size;
131		rec->input += block_size;
132		rec->length -= block_size;
133	} else if (overhead > rec->length)
134		return 0;
135
136	padding_length = rec->data[rec->length - 1];
137
138	good = constant_time_ge(rec->length, overhead + padding_length);
139	/* The padding consists of a length byte at the end of the record and
140	 * then that many bytes of padding, all with the same value as the
141	 * length byte. Thus, with the length byte included, there are i+1
142	 * bytes of padding.
143	 *
144	 * We can't check just |padding_length+1| bytes because that leaks
145	 * decrypted information. Therefore we always have to check the maximum
146	 * amount of padding possible. (Again, the length of the record is
147	 * public information so we can use it.) */
148	to_check = 256; /* maximum amount of padding, inc length byte. */
149	if (to_check > rec->length)
150		to_check = rec->length;
151
152	for (i = 0; i < to_check; i++) {
153		unsigned char mask = constant_time_ge(padding_length, i);
154		unsigned char b = rec->data[rec->length - 1 - i];
155		/* The final |padding_length+1| bytes should all have the value
156		 * |padding_length|. Therefore the XOR should be zero. */
157		good &= ~(mask&(padding_length ^ b));
158	}
159
160	/* If any of the final |padding_length+1| bytes had the wrong value,
161	 * one or more of the lower eight bits of |good| will be cleared. We
162	 * AND the bottom 8 bits together and duplicate the result to all the
163	 * bits. */
164	good &= good >> 4;
165	good &= good >> 2;
166	good &= good >> 1;
167	good <<= sizeof(good)*8 - 1;
168	good = DUPLICATE_MSB_TO_ALL(good);
169
170	padding_length = good & (padding_length + 1);
171	rec->length -= padding_length;
172	rec->padding_length = padding_length;
173
174	return (int)((good & 1) | (~good & -1));
175}
176
177/* ssl3_cbc_copy_mac copies |md_size| bytes from the end of |rec| to |out| in
178 * constant time (independent of the concrete value of rec->length, which may
179 * vary within a 256-byte window).
180 *
181 * ssl3_cbc_remove_padding or tls1_cbc_remove_padding must be called prior to
182 * this function.
183 *
184 * On entry:
185 *   rec->orig_len >= md_size
186 *   md_size <= EVP_MAX_MD_SIZE
187 *
188 * If CBC_MAC_ROTATE_IN_PLACE is defined then the rotation is performed with
189 * variable accesses in a 64-byte-aligned buffer. Assuming that this fits into
190 * a single or pair of cache-lines, then the variable memory accesses don't
191 * actually affect the timing. CPUs with smaller cache-lines [if any] are
192 * not multi-core and are not considered vulnerable to cache-timing attacks.
193 */
194#define CBC_MAC_ROTATE_IN_PLACE
195
196void
197ssl3_cbc_copy_mac(unsigned char* out, const SSL3_RECORD_INTERNAL *rec,
198    unsigned int md_size, unsigned int orig_len)
199{
200#if defined(CBC_MAC_ROTATE_IN_PLACE)
201	unsigned char rotated_mac_buf[64 + EVP_MAX_MD_SIZE];
202	unsigned char *rotated_mac;
203#else
204	unsigned char rotated_mac[EVP_MAX_MD_SIZE];
205#endif
206
207	/* mac_end is the index of |rec->data| just after the end of the MAC. */
208	unsigned int mac_end = rec->length;
209	unsigned int mac_start = mac_end - md_size;
210	/* scan_start contains the number of bytes that we can ignore because
211	 * the MAC's position can only vary by 255 bytes. */
212	unsigned int scan_start = 0;
213	unsigned int i, j;
214	unsigned int div_spoiler;
215	unsigned int rotate_offset;
216
217	OPENSSL_assert(orig_len >= md_size);
218	OPENSSL_assert(md_size <= EVP_MAX_MD_SIZE);
219
220#if defined(CBC_MAC_ROTATE_IN_PLACE)
221	rotated_mac = rotated_mac_buf + ((0 - (size_t)rotated_mac_buf)&63);
222#endif
223
224	/* This information is public so it's safe to branch based on it. */
225	if (orig_len > md_size + 255 + 1)
226		scan_start = orig_len - (md_size + 255 + 1);
227	/* div_spoiler contains a multiple of md_size that is used to cause the
228	 * modulo operation to be constant time. Without this, the time varies
229	 * based on the amount of padding when running on Intel chips at least.
230	 *
231	 * The aim of right-shifting md_size is so that the compiler doesn't
232	 * figure out that it can remove div_spoiler as that would require it
233	 * to prove that md_size is always even, which I hope is beyond it. */
234	div_spoiler = md_size >> 1;
235	div_spoiler <<= (sizeof(div_spoiler) - 1) * 8;
236	rotate_offset = (div_spoiler + mac_start - scan_start) % md_size;
237
238	memset(rotated_mac, 0, md_size);
239	for (i = scan_start, j = 0; i < orig_len; i++) {
240		unsigned char mac_started = constant_time_ge(i, mac_start);
241		unsigned char mac_ended = constant_time_ge(i, mac_end);
242		unsigned char b = rec->data[i];
243		rotated_mac[j++] |= b & mac_started & ~mac_ended;
244		j &= constant_time_lt(j, md_size);
245	}
246
247	/* Now rotate the MAC */
248#if defined(CBC_MAC_ROTATE_IN_PLACE)
249	j = 0;
250	for (i = 0; i < md_size; i++) {
251		/* in case cache-line is 32 bytes, touch second line */
252		((volatile unsigned char *)rotated_mac)[rotate_offset^32];
253		out[j++] = rotated_mac[rotate_offset++];
254		rotate_offset &= constant_time_lt(rotate_offset, md_size);
255	}
256#else
257	memset(out, 0, md_size);
258	rotate_offset = md_size - rotate_offset;
259	rotate_offset &= constant_time_lt(rotate_offset, md_size);
260	for (i = 0; i < md_size; i++) {
261		for (j = 0; j < md_size; j++)
262			out[j] |= rotated_mac[i] & constant_time_eq_8(j, rotate_offset);
263		rotate_offset++;
264		rotate_offset &= constant_time_lt(rotate_offset, md_size);
265	}
266#endif
267}
268
269#define l2n(l,c)	(*((c)++)=(unsigned char)(((l)>>24)&0xff), \
270			 *((c)++)=(unsigned char)(((l)>>16)&0xff), \
271			 *((c)++)=(unsigned char)(((l)>> 8)&0xff), \
272			 *((c)++)=(unsigned char)(((l)    )&0xff))
273
274#define l2n8(l,c)	(*((c)++)=(unsigned char)(((l)>>56)&0xff), \
275			 *((c)++)=(unsigned char)(((l)>>48)&0xff), \
276			 *((c)++)=(unsigned char)(((l)>>40)&0xff), \
277			 *((c)++)=(unsigned char)(((l)>>32)&0xff), \
278			 *((c)++)=(unsigned char)(((l)>>24)&0xff), \
279			 *((c)++)=(unsigned char)(((l)>>16)&0xff), \
280			 *((c)++)=(unsigned char)(((l)>> 8)&0xff), \
281			 *((c)++)=(unsigned char)(((l)    )&0xff))
282
283/* u32toLE serialises an unsigned, 32-bit number (n) as four bytes at (p) in
284 * little-endian order. The value of p is advanced by four. */
285#define u32toLE(n, p) \
286	(*((p)++)=(unsigned char)(n), \
287	 *((p)++)=(unsigned char)(n>>8), \
288	 *((p)++)=(unsigned char)(n>>16), \
289	 *((p)++)=(unsigned char)(n>>24))
290
291/* These functions serialize the state of a hash and thus perform the standard
292 * "final" operation without adding the padding and length that such a function
293 * typically does. */
294static void
295tls1_md5_final_raw(void* ctx, unsigned char *md_out)
296{
297	MD5_CTX *md5 = ctx;
298	u32toLE(md5->A, md_out);
299	u32toLE(md5->B, md_out);
300	u32toLE(md5->C, md_out);
301	u32toLE(md5->D, md_out);
302}
303
304static void
305tls1_sha1_final_raw(void* ctx, unsigned char *md_out)
306{
307	SHA_CTX *sha1 = ctx;
308	l2n(sha1->h0, md_out);
309	l2n(sha1->h1, md_out);
310	l2n(sha1->h2, md_out);
311	l2n(sha1->h3, md_out);
312	l2n(sha1->h4, md_out);
313}
314
315static void
316tls1_sha256_final_raw(void* ctx, unsigned char *md_out)
317{
318	SHA256_CTX *sha256 = ctx;
319	unsigned int i;
320
321	for (i = 0; i < 8; i++) {
322		l2n(sha256->h[i], md_out);
323	}
324}
325
326static void
327tls1_sha512_final_raw(void* ctx, unsigned char *md_out)
328{
329	SHA512_CTX *sha512 = ctx;
330	unsigned int i;
331
332	for (i = 0; i < 8; i++) {
333		l2n8(sha512->h[i], md_out);
334	}
335}
336
337/* Largest hash context ever used by the functions above. */
338#define LARGEST_DIGEST_CTX SHA512_CTX
339
340/* Type giving the alignment needed by the above */
341#define LARGEST_DIGEST_CTX_ALIGNMENT SHA_LONG64
342
343/* ssl3_cbc_record_digest_supported returns 1 iff |ctx| uses a hash function
344 * which ssl3_cbc_digest_record supports. */
345char
346ssl3_cbc_record_digest_supported(const EVP_MD_CTX *ctx)
347{
348	switch (EVP_MD_CTX_type(ctx)) {
349	case NID_md5:
350	case NID_sha1:
351	case NID_sha224:
352	case NID_sha256:
353	case NID_sha384:
354	case NID_sha512:
355		return 1;
356	default:
357		return 0;
358	}
359}
360
361/* ssl3_cbc_digest_record computes the MAC of a decrypted, padded TLS
362 * record.
363 *
364 *   ctx: the EVP_MD_CTX from which we take the hash function.
365 *     ssl3_cbc_record_digest_supported must return true for this EVP_MD_CTX.
366 *   md_out: the digest output. At most EVP_MAX_MD_SIZE bytes will be written.
367 *   md_out_size: if non-NULL, the number of output bytes is written here.
368 *   header: the 13-byte, TLS record header.
369 *   data: the record data itself, less any preceeding explicit IV.
370 *   data_plus_mac_size: the secret, reported length of the data and MAC
371 *     once the padding has been removed.
372 *   data_plus_mac_plus_padding_size: the public length of the whole
373 *     record, including padding.
374 *
375 * On entry: by virtue of having been through one of the remove_padding
376 * functions, above, we know that data_plus_mac_size is large enough to contain
377 * a padding byte and MAC. (If the padding was invalid, it might contain the
378 * padding too. )
379 */
380int
381ssl3_cbc_digest_record(const EVP_MD_CTX *ctx, unsigned char* md_out,
382    size_t* md_out_size, const unsigned char header[13],
383    const unsigned char *data, size_t data_plus_mac_size,
384    size_t data_plus_mac_plus_padding_size, const unsigned char *mac_secret,
385    unsigned int mac_secret_length)
386{
387	union {
388		/*
389		 * Alignment here is to allow this to be cast as SHA512_CTX
390		 * without losing alignment required by the 64-bit SHA_LONG64
391		 * integer it contains.
392		 */
393		LARGEST_DIGEST_CTX_ALIGNMENT align;
394		unsigned char c[sizeof(LARGEST_DIGEST_CTX)];
395	} md_state;
396	void (*md_final_raw)(void *ctx, unsigned char *md_out);
397	void (*md_transform)(void *ctx, const unsigned char *block);
398	unsigned int md_size, md_block_size = 64;
399	unsigned int header_length, variance_blocks,
400	len, max_mac_bytes, num_blocks,
401	num_starting_blocks, k, mac_end_offset, c, index_a, index_b;
402	unsigned int bits;	/* at most 18 bits */
403	unsigned char length_bytes[MAX_HASH_BIT_COUNT_BYTES];
404	/* hmac_pad is the masked HMAC key. */
405	unsigned char hmac_pad[MAX_HASH_BLOCK_SIZE];
406	unsigned char first_block[MAX_HASH_BLOCK_SIZE];
407	unsigned char mac_out[EVP_MAX_MD_SIZE];
408	unsigned int i, j, md_out_size_u;
409	EVP_MD_CTX md_ctx;
410	/* mdLengthSize is the number of bytes in the length field that terminates
411	* the hash. */
412	unsigned int md_length_size = 8;
413	char length_is_big_endian = 1;
414
415	/* This is a, hopefully redundant, check that allows us to forget about
416	 * many possible overflows later in this function. */
417	OPENSSL_assert(data_plus_mac_plus_padding_size < 1024*1024);
418
419	switch (EVP_MD_CTX_type(ctx)) {
420	case NID_md5:
421		MD5_Init((MD5_CTX*)md_state.c);
422		md_final_raw = tls1_md5_final_raw;
423		md_transform = (void(*)(void *ctx, const unsigned char *block)) MD5_Transform;
424		md_size = 16;
425		length_is_big_endian = 0;
426		break;
427	case NID_sha1:
428		SHA1_Init((SHA_CTX*)md_state.c);
429		md_final_raw = tls1_sha1_final_raw;
430		md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA1_Transform;
431		md_size = 20;
432		break;
433	case NID_sha224:
434		SHA224_Init((SHA256_CTX*)md_state.c);
435		md_final_raw = tls1_sha256_final_raw;
436		md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA256_Transform;
437		md_size = 224/8;
438		break;
439	case NID_sha256:
440		SHA256_Init((SHA256_CTX*)md_state.c);
441		md_final_raw = tls1_sha256_final_raw;
442		md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA256_Transform;
443		md_size = 32;
444		break;
445	case NID_sha384:
446		SHA384_Init((SHA512_CTX*)md_state.c);
447		md_final_raw = tls1_sha512_final_raw;
448		md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA512_Transform;
449		md_size = 384/8;
450		md_block_size = 128;
451		md_length_size = 16;
452		break;
453	case NID_sha512:
454		SHA512_Init((SHA512_CTX*)md_state.c);
455		md_final_raw = tls1_sha512_final_raw;
456		md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA512_Transform;
457		md_size = 64;
458		md_block_size = 128;
459		md_length_size = 16;
460		break;
461	default:
462		/* ssl3_cbc_record_digest_supported should have been
463		 * called first to check that the hash function is
464		 * supported. */
465		OPENSSL_assert(0);
466		if (md_out_size)
467			*md_out_size = 0;
468		return 0;
469	}
470
471	OPENSSL_assert(md_length_size <= MAX_HASH_BIT_COUNT_BYTES);
472	OPENSSL_assert(md_block_size <= MAX_HASH_BLOCK_SIZE);
473	OPENSSL_assert(md_size <= EVP_MAX_MD_SIZE);
474
475	header_length = 13;
476
477	/* variance_blocks is the number of blocks of the hash that we have to
478	 * calculate in constant time because they could be altered by the
479	 * padding value.
480	 *
481	 * TLSv1 has MACs up to 48 bytes long (SHA-384) and the padding is not
482	 * required to be minimal. Therefore we say that the final six blocks
483	 * can vary based on the padding.
484	 *
485	 * Later in the function, if the message is short and there obviously
486	 * cannot be this many blocks then variance_blocks can be reduced. */
487	variance_blocks = 6;
488	/* From now on we're dealing with the MAC, which conceptually has 13
489	 * bytes of `header' before the start of the data (TLS) */
490	len = data_plus_mac_plus_padding_size + header_length;
491	/* max_mac_bytes contains the maximum bytes of bytes in the MAC, including
492	* |header|, assuming that there's no padding. */
493	max_mac_bytes = len - md_size - 1;
494	/* num_blocks is the maximum number of hash blocks. */
495	num_blocks = (max_mac_bytes + 1 + md_length_size + md_block_size - 1) / md_block_size;
496	/* In order to calculate the MAC in constant time we have to handle
497	 * the final blocks specially because the padding value could cause the
498	 * end to appear somewhere in the final |variance_blocks| blocks and we
499	 * can't leak where. However, |num_starting_blocks| worth of data can
500	 * be hashed right away because no padding value can affect whether
501	 * they are plaintext. */
502	num_starting_blocks = 0;
503	/* k is the starting byte offset into the conceptual header||data where
504	 * we start processing. */
505	k = 0;
506	/* mac_end_offset is the index just past the end of the data to be
507	 * MACed. */
508	mac_end_offset = data_plus_mac_size + header_length - md_size;
509	/* c is the index of the 0x80 byte in the final hash block that
510	 * contains application data. */
511	c = mac_end_offset % md_block_size;
512	/* index_a is the hash block number that contains the 0x80 terminating
513	 * value. */
514	index_a = mac_end_offset / md_block_size;
515	/* index_b is the hash block number that contains the 64-bit hash
516	 * length, in bits. */
517	index_b = (mac_end_offset + md_length_size) / md_block_size;
518	/* bits is the hash-length in bits. It includes the additional hash
519	 * block for the masked HMAC key. */
520
521	if (num_blocks > variance_blocks) {
522		num_starting_blocks = num_blocks - variance_blocks;
523		k = md_block_size*num_starting_blocks;
524	}
525
526	bits = 8*mac_end_offset;
527	/* Compute the initial HMAC block. */
528	bits += 8*md_block_size;
529	memset(hmac_pad, 0, md_block_size);
530	OPENSSL_assert(mac_secret_length <= sizeof(hmac_pad));
531	memcpy(hmac_pad, mac_secret, mac_secret_length);
532	for (i = 0; i < md_block_size; i++)
533		hmac_pad[i] ^= 0x36;
534
535	md_transform(md_state.c, hmac_pad);
536
537	if (length_is_big_endian) {
538		memset(length_bytes, 0, md_length_size - 4);
539		length_bytes[md_length_size - 4] = (unsigned char)(bits >> 24);
540		length_bytes[md_length_size - 3] = (unsigned char)(bits >> 16);
541		length_bytes[md_length_size - 2] = (unsigned char)(bits >> 8);
542		length_bytes[md_length_size - 1] = (unsigned char)bits;
543	} else {
544		memset(length_bytes, 0, md_length_size);
545		length_bytes[md_length_size - 5] = (unsigned char)(bits >> 24);
546		length_bytes[md_length_size - 6] = (unsigned char)(bits >> 16);
547		length_bytes[md_length_size - 7] = (unsigned char)(bits >> 8);
548		length_bytes[md_length_size - 8] = (unsigned char)bits;
549	}
550
551	if (k > 0) {
552		/* k is a multiple of md_block_size. */
553		memcpy(first_block, header, 13);
554		memcpy(first_block + 13, data, md_block_size - 13);
555		md_transform(md_state.c, first_block);
556		for (i = 1; i < k/md_block_size; i++)
557			md_transform(md_state.c, data + md_block_size*i - 13);
558	}
559
560	memset(mac_out, 0, sizeof(mac_out));
561
562	/* We now process the final hash blocks. For each block, we construct
563	 * it in constant time. If the |i==index_a| then we'll include the 0x80
564	 * bytes and zero pad etc. For each block we selectively copy it, in
565	 * constant time, to |mac_out|. */
566	for (i = num_starting_blocks; i <= num_starting_blocks + variance_blocks; i++) {
567		unsigned char block[MAX_HASH_BLOCK_SIZE];
568		unsigned char is_block_a = constant_time_eq_8(i, index_a);
569		unsigned char is_block_b = constant_time_eq_8(i, index_b);
570		for (j = 0; j < md_block_size; j++) {
571			unsigned char b = 0, is_past_c, is_past_cp1;
572			if (k < header_length)
573				b = header[k];
574			else if (k < data_plus_mac_plus_padding_size + header_length)
575				b = data[k - header_length];
576			k++;
577
578			is_past_c = is_block_a & constant_time_ge(j, c);
579			is_past_cp1 = is_block_a & constant_time_ge(j, c + 1);
580			/* If this is the block containing the end of the
581			 * application data, and we are at the offset for the
582			 * 0x80 value, then overwrite b with 0x80. */
583			b = (b&~is_past_c) | (0x80&is_past_c);
584			/* If this is the block containing the end of the
585			 * application data and we're past the 0x80 value then
586			 * just write zero. */
587			b = b&~is_past_cp1;
588			/* If this is index_b (the final block), but not
589			 * index_a (the end of the data), then the 64-bit
590			 * length didn't fit into index_a and we're having to
591			 * add an extra block of zeros. */
592			b &= ~is_block_b | is_block_a;
593
594			/* The final bytes of one of the blocks contains the
595			 * length. */
596			if (j >= md_block_size - md_length_size) {
597				/* If this is index_b, write a length byte. */
598				b = (b&~is_block_b) | (is_block_b&length_bytes[j - (md_block_size - md_length_size)]);
599			}
600			block[j] = b;
601		}
602
603		md_transform(md_state.c, block);
604		md_final_raw(md_state.c, block);
605		/* If this is index_b, copy the hash value to |mac_out|. */
606		for (j = 0; j < md_size; j++)
607			mac_out[j] |= block[j]&is_block_b;
608	}
609
610	EVP_MD_CTX_init(&md_ctx);
611	if (!EVP_DigestInit_ex(&md_ctx, ctx->digest, NULL /* engine */)) {
612		EVP_MD_CTX_cleanup(&md_ctx);
613		return 0;
614	}
615
616	/* Complete the HMAC in the standard manner. */
617	for (i = 0; i < md_block_size; i++)
618		hmac_pad[i] ^= 0x6a;
619
620	EVP_DigestUpdate(&md_ctx, hmac_pad, md_block_size);
621	EVP_DigestUpdate(&md_ctx, mac_out, md_size);
622
623	EVP_DigestFinal(&md_ctx, md_out, &md_out_size_u);
624	if (md_out_size)
625		*md_out_size = md_out_size_u;
626	EVP_MD_CTX_cleanup(&md_ctx);
627
628	return 1;
629}
630