s3_cbc.c revision 1.17
1/* $OpenBSD: s3_cbc.c,v 1.17 2018/09/08 14:39:41 jsing Exp $ */
2/* ====================================================================
3 * Copyright (c) 2012 The OpenSSL Project.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in
14 *    the documentation and/or other materials provided with the
15 *    distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 *    software must display the following acknowledgment:
19 *    "This product includes software developed by the OpenSSL Project
20 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 *    endorse or promote products derived from this software without
24 *    prior written permission. For written permission, please contact
25 *    openssl-core@openssl.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 *    nor may "OpenSSL" appear in their names without prior written
29 *    permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 *    acknowledgment:
33 *    "This product includes software developed by the OpenSSL Project
34 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ====================================================================
49 *
50 * This product includes cryptographic software written by Eric Young
51 * (eay@cryptsoft.com).  This product includes software written by Tim
52 * Hudson (tjh@cryptsoft.com).
53 *
54 */
55
56#include "ssl_locl.h"
57
58#include <openssl/md5.h>
59#include <openssl/sha.h>
60
61/* MAX_HASH_BIT_COUNT_BYTES is the maximum number of bytes in the hash's length
62 * field. (SHA-384/512 have 128-bit length.) */
63#define MAX_HASH_BIT_COUNT_BYTES 16
64
65/* MAX_HASH_BLOCK_SIZE is the maximum hash block size that we'll support.
66 * Currently SHA-384/512 has a 128-byte block size and that's the largest
67 * supported by TLS.) */
68#define MAX_HASH_BLOCK_SIZE 128
69
70/* Some utility functions are needed:
71 *
72 * These macros return the given value with the MSB copied to all the other
73 * bits. They use the fact that arithmetic shift shifts-in the sign bit.
74 * However, this is not ensured by the C standard so you may need to replace
75 * them with something else on odd CPUs. */
76#define DUPLICATE_MSB_TO_ALL(x) ((unsigned)((int)(x) >> (sizeof(int) * 8 - 1)))
77#define DUPLICATE_MSB_TO_ALL_8(x) ((unsigned char)(DUPLICATE_MSB_TO_ALL(x)))
78
79/* constant_time_lt returns 0xff if a<b and 0x00 otherwise. */
80static unsigned
81constant_time_lt(unsigned a, unsigned b)
82{
83	a -= b;
84	return DUPLICATE_MSB_TO_ALL(a);
85}
86
87/* constant_time_ge returns 0xff if a>=b and 0x00 otherwise. */
88static unsigned
89constant_time_ge(unsigned a, unsigned b)
90{
91	a -= b;
92	return DUPLICATE_MSB_TO_ALL(~a);
93}
94
95/* constant_time_eq_8 returns 0xff if a==b and 0x00 otherwise. */
96static unsigned char
97constant_time_eq_8(unsigned a, unsigned b)
98{
99	unsigned c = a ^ b;
100	c--;
101	return DUPLICATE_MSB_TO_ALL_8(c);
102}
103
104/* tls1_cbc_remove_padding removes the CBC padding from the decrypted, TLS, CBC
105 * record in |rec| in constant time and returns 1 if the padding is valid and
106 * -1 otherwise. It also removes any explicit IV from the start of the record
107 * without leaking any timing about whether there was enough space after the
108 * padding was removed.
109 *
110 * block_size: the block size of the cipher used to encrypt the record.
111 * returns:
112 *   0: (in non-constant time) if the record is publicly invalid.
113 *   1: if the padding was valid
114 *  -1: otherwise. */
115int
116tls1_cbc_remove_padding(const SSL* s, SSL3_RECORD *rec, unsigned block_size,
117    unsigned mac_size)
118{
119	unsigned padding_length, good, to_check, i;
120	const unsigned overhead = 1 /* padding length byte */ + mac_size;
121
122	/* Check if version requires explicit IV */
123	if (SSL_USE_EXPLICIT_IV(s)) {
124		/* These lengths are all public so we can test them in
125		 * non-constant time.
126		 */
127		if (overhead + block_size > rec->length)
128			return 0;
129		/* We can now safely skip explicit IV */
130		rec->data += block_size;
131		rec->input += block_size;
132		rec->length -= block_size;
133	} else if (overhead > rec->length)
134		return 0;
135
136	padding_length = rec->data[rec->length - 1];
137
138	good = constant_time_ge(rec->length, overhead + padding_length);
139	/* The padding consists of a length byte at the end of the record and
140	 * then that many bytes of padding, all with the same value as the
141	 * length byte. Thus, with the length byte included, there are i+1
142	 * bytes of padding.
143	 *
144	 * We can't check just |padding_length+1| bytes because that leaks
145	 * decrypted information. Therefore we always have to check the maximum
146	 * amount of padding possible. (Again, the length of the record is
147	 * public information so we can use it.) */
148	to_check = 255; /* maximum amount of padding. */
149	if (to_check > rec->length - 1)
150		to_check = rec->length - 1;
151
152	for (i = 0; i < to_check; i++) {
153		unsigned char mask = constant_time_ge(padding_length, i);
154		unsigned char b = rec->data[rec->length - 1 - i];
155		/* The final |padding_length+1| bytes should all have the value
156		 * |padding_length|. Therefore the XOR should be zero. */
157		good &= ~(mask&(padding_length ^ b));
158	}
159
160	/* If any of the final |padding_length+1| bytes had the wrong value,
161	 * one or more of the lower eight bits of |good| will be cleared. We
162	 * AND the bottom 8 bits together and duplicate the result to all the
163	 * bits. */
164	good &= good >> 4;
165	good &= good >> 2;
166	good &= good >> 1;
167	good <<= sizeof(good)*8 - 1;
168	good = DUPLICATE_MSB_TO_ALL(good);
169
170	padding_length = good & (padding_length + 1);
171	rec->length -= padding_length;
172	rec->type |= padding_length<<8;	/* kludge: pass padding length */
173
174	return (int)((good & 1) | (~good & -1));
175}
176
177/* ssl3_cbc_copy_mac copies |md_size| bytes from the end of |rec| to |out| in
178 * constant time (independent of the concrete value of rec->length, which may
179 * vary within a 256-byte window).
180 *
181 * ssl3_cbc_remove_padding or tls1_cbc_remove_padding must be called prior to
182 * this function.
183 *
184 * On entry:
185 *   rec->orig_len >= md_size
186 *   md_size <= EVP_MAX_MD_SIZE
187 *
188 * If CBC_MAC_ROTATE_IN_PLACE is defined then the rotation is performed with
189 * variable accesses in a 64-byte-aligned buffer. Assuming that this fits into
190 * a single or pair of cache-lines, then the variable memory accesses don't
191 * actually affect the timing. CPUs with smaller cache-lines [if any] are
192 * not multi-core and are not considered vulnerable to cache-timing attacks.
193 */
194#define CBC_MAC_ROTATE_IN_PLACE
195
196void
197ssl3_cbc_copy_mac(unsigned char* out, const SSL3_RECORD *rec,
198    unsigned md_size, unsigned orig_len)
199{
200#if defined(CBC_MAC_ROTATE_IN_PLACE)
201	unsigned char rotated_mac_buf[64 + EVP_MAX_MD_SIZE];
202	unsigned char *rotated_mac;
203#else
204	unsigned char rotated_mac[EVP_MAX_MD_SIZE];
205#endif
206
207	/* mac_end is the index of |rec->data| just after the end of the MAC. */
208	unsigned mac_end = rec->length;
209	unsigned mac_start = mac_end - md_size;
210	/* scan_start contains the number of bytes that we can ignore because
211	 * the MAC's position can only vary by 255 bytes. */
212	unsigned scan_start = 0;
213	unsigned i, j;
214	unsigned div_spoiler;
215	unsigned rotate_offset;
216
217	OPENSSL_assert(orig_len >= md_size);
218	OPENSSL_assert(md_size <= EVP_MAX_MD_SIZE);
219
220#if defined(CBC_MAC_ROTATE_IN_PLACE)
221	rotated_mac = rotated_mac_buf + ((0 - (size_t)rotated_mac_buf)&63);
222#endif
223
224	/* This information is public so it's safe to branch based on it. */
225	if (orig_len > md_size + 255 + 1)
226		scan_start = orig_len - (md_size + 255 + 1);
227	/* div_spoiler contains a multiple of md_size that is used to cause the
228	 * modulo operation to be constant time. Without this, the time varies
229	 * based on the amount of padding when running on Intel chips at least.
230	 *
231	 * The aim of right-shifting md_size is so that the compiler doesn't
232	 * figure out that it can remove div_spoiler as that would require it
233	 * to prove that md_size is always even, which I hope is beyond it. */
234	div_spoiler = md_size >> 1;
235	div_spoiler <<= (sizeof(div_spoiler) - 1) * 8;
236	rotate_offset = (div_spoiler + mac_start - scan_start) % md_size;
237
238	memset(rotated_mac, 0, md_size);
239	for (i = scan_start, j = 0; i < orig_len; i++) {
240		unsigned char mac_started = constant_time_ge(i, mac_start);
241		unsigned char mac_ended = constant_time_ge(i, mac_end);
242		unsigned char b = rec->data[i];
243		rotated_mac[j++] |= b & mac_started & ~mac_ended;
244		j &= constant_time_lt(j, md_size);
245	}
246
247	/* Now rotate the MAC */
248#if defined(CBC_MAC_ROTATE_IN_PLACE)
249	j = 0;
250	for (i = 0; i < md_size; i++) {
251		/* in case cache-line is 32 bytes, touch second line */
252		((volatile unsigned char *)rotated_mac)[rotate_offset^32];
253		out[j++] = rotated_mac[rotate_offset++];
254		rotate_offset &= constant_time_lt(rotate_offset, md_size);
255	}
256#else
257	memset(out, 0, md_size);
258	rotate_offset = md_size - rotate_offset;
259	rotate_offset &= constant_time_lt(rotate_offset, md_size);
260	for (i = 0; i < md_size; i++) {
261		for (j = 0; j < md_size; j++)
262			out[j] |= rotated_mac[i] & constant_time_eq_8(j, rotate_offset);
263		rotate_offset++;
264		rotate_offset &= constant_time_lt(rotate_offset, md_size);
265	}
266#endif
267}
268
269/* u32toLE serialises an unsigned, 32-bit number (n) as four bytes at (p) in
270 * little-endian order. The value of p is advanced by four. */
271#define u32toLE(n, p) \
272	(*((p)++)=(unsigned char)(n), \
273	 *((p)++)=(unsigned char)(n>>8), \
274	 *((p)++)=(unsigned char)(n>>16), \
275	 *((p)++)=(unsigned char)(n>>24))
276
277/* These functions serialize the state of a hash and thus perform the standard
278 * "final" operation without adding the padding and length that such a function
279 * typically does. */
280static void
281tls1_md5_final_raw(void* ctx, unsigned char *md_out)
282{
283	MD5_CTX *md5 = ctx;
284	u32toLE(md5->A, md_out);
285	u32toLE(md5->B, md_out);
286	u32toLE(md5->C, md_out);
287	u32toLE(md5->D, md_out);
288}
289
290static void
291tls1_sha1_final_raw(void* ctx, unsigned char *md_out)
292{
293	SHA_CTX *sha1 = ctx;
294	l2n(sha1->h0, md_out);
295	l2n(sha1->h1, md_out);
296	l2n(sha1->h2, md_out);
297	l2n(sha1->h3, md_out);
298	l2n(sha1->h4, md_out);
299}
300
301static void
302tls1_sha256_final_raw(void* ctx, unsigned char *md_out)
303{
304	SHA256_CTX *sha256 = ctx;
305	unsigned i;
306
307	for (i = 0; i < 8; i++) {
308		l2n(sha256->h[i], md_out);
309	}
310}
311
312static void
313tls1_sha512_final_raw(void* ctx, unsigned char *md_out)
314{
315	SHA512_CTX *sha512 = ctx;
316	unsigned i;
317
318	for (i = 0; i < 8; i++) {
319		l2n8(sha512->h[i], md_out);
320	}
321}
322
323/* Largest hash context ever used by the functions above. */
324#define LARGEST_DIGEST_CTX SHA512_CTX
325
326/* Type giving the alignment needed by the above */
327#define LARGEST_DIGEST_CTX_ALIGNMENT SHA_LONG64
328
329/* ssl3_cbc_record_digest_supported returns 1 iff |ctx| uses a hash function
330 * which ssl3_cbc_digest_record supports. */
331char
332ssl3_cbc_record_digest_supported(const EVP_MD_CTX *ctx)
333{
334	switch (EVP_MD_CTX_type(ctx)) {
335	case NID_md5:
336	case NID_sha1:
337	case NID_sha224:
338	case NID_sha256:
339	case NID_sha384:
340	case NID_sha512:
341		return 1;
342	default:
343		return 0;
344	}
345}
346
347/* ssl3_cbc_digest_record computes the MAC of a decrypted, padded TLS
348 * record.
349 *
350 *   ctx: the EVP_MD_CTX from which we take the hash function.
351 *     ssl3_cbc_record_digest_supported must return true for this EVP_MD_CTX.
352 *   md_out: the digest output. At most EVP_MAX_MD_SIZE bytes will be written.
353 *   md_out_size: if non-NULL, the number of output bytes is written here.
354 *   header: the 13-byte, TLS record header.
355 *   data: the record data itself, less any preceeding explicit IV.
356 *   data_plus_mac_size: the secret, reported length of the data and MAC
357 *     once the padding has been removed.
358 *   data_plus_mac_plus_padding_size: the public length of the whole
359 *     record, including padding.
360 *
361 * On entry: by virtue of having been through one of the remove_padding
362 * functions, above, we know that data_plus_mac_size is large enough to contain
363 * a padding byte and MAC. (If the padding was invalid, it might contain the
364 * padding too. )
365 */
366int
367ssl3_cbc_digest_record(const EVP_MD_CTX *ctx, unsigned char* md_out,
368    size_t* md_out_size, const unsigned char header[13],
369    const unsigned char *data, size_t data_plus_mac_size,
370    size_t data_plus_mac_plus_padding_size, const unsigned char *mac_secret,
371    unsigned mac_secret_length)
372{
373	union {
374		/*
375		 * Alignment here is to allow this to be cast as SHA512_CTX
376		 * without losing alignment required by the 64-bit SHA_LONG64
377		 * integer it contains.
378		 */
379		LARGEST_DIGEST_CTX_ALIGNMENT align;
380		unsigned char c[sizeof(LARGEST_DIGEST_CTX)];
381	} md_state;
382	void (*md_final_raw)(void *ctx, unsigned char *md_out);
383	void (*md_transform)(void *ctx, const unsigned char *block);
384	unsigned md_size, md_block_size = 64;
385	unsigned header_length, variance_blocks,
386	len, max_mac_bytes, num_blocks,
387	num_starting_blocks, k, mac_end_offset, c, index_a, index_b;
388	unsigned int bits;	/* at most 18 bits */
389	unsigned char length_bytes[MAX_HASH_BIT_COUNT_BYTES];
390	/* hmac_pad is the masked HMAC key. */
391	unsigned char hmac_pad[MAX_HASH_BLOCK_SIZE];
392	unsigned char first_block[MAX_HASH_BLOCK_SIZE];
393	unsigned char mac_out[EVP_MAX_MD_SIZE];
394	unsigned i, j, md_out_size_u;
395	EVP_MD_CTX md_ctx;
396	/* mdLengthSize is the number of bytes in the length field that terminates
397	* the hash. */
398	unsigned md_length_size = 8;
399	char length_is_big_endian = 1;
400
401	/* This is a, hopefully redundant, check that allows us to forget about
402	 * many possible overflows later in this function. */
403	OPENSSL_assert(data_plus_mac_plus_padding_size < 1024*1024);
404
405	switch (EVP_MD_CTX_type(ctx)) {
406	case NID_md5:
407		MD5_Init((MD5_CTX*)md_state.c);
408		md_final_raw = tls1_md5_final_raw;
409		md_transform = (void(*)(void *ctx, const unsigned char *block)) MD5_Transform;
410		md_size = 16;
411		length_is_big_endian = 0;
412		break;
413	case NID_sha1:
414		SHA1_Init((SHA_CTX*)md_state.c);
415		md_final_raw = tls1_sha1_final_raw;
416		md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA1_Transform;
417		md_size = 20;
418		break;
419	case NID_sha224:
420		SHA224_Init((SHA256_CTX*)md_state.c);
421		md_final_raw = tls1_sha256_final_raw;
422		md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA256_Transform;
423		md_size = 224/8;
424		break;
425	case NID_sha256:
426		SHA256_Init((SHA256_CTX*)md_state.c);
427		md_final_raw = tls1_sha256_final_raw;
428		md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA256_Transform;
429		md_size = 32;
430		break;
431	case NID_sha384:
432		SHA384_Init((SHA512_CTX*)md_state.c);
433		md_final_raw = tls1_sha512_final_raw;
434		md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA512_Transform;
435		md_size = 384/8;
436		md_block_size = 128;
437		md_length_size = 16;
438		break;
439	case NID_sha512:
440		SHA512_Init((SHA512_CTX*)md_state.c);
441		md_final_raw = tls1_sha512_final_raw;
442		md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA512_Transform;
443		md_size = 64;
444		md_block_size = 128;
445		md_length_size = 16;
446		break;
447	default:
448		/* ssl3_cbc_record_digest_supported should have been
449		 * called first to check that the hash function is
450		 * supported. */
451		OPENSSL_assert(0);
452		if (md_out_size)
453			*md_out_size = 0;
454		return 0;
455	}
456
457	OPENSSL_assert(md_length_size <= MAX_HASH_BIT_COUNT_BYTES);
458	OPENSSL_assert(md_block_size <= MAX_HASH_BLOCK_SIZE);
459	OPENSSL_assert(md_size <= EVP_MAX_MD_SIZE);
460
461	header_length = 13;
462
463	/* variance_blocks is the number of blocks of the hash that we have to
464	 * calculate in constant time because they could be altered by the
465	 * padding value.
466	 *
467	 * TLSv1 has MACs up to 48 bytes long (SHA-384) and the padding is not
468	 * required to be minimal. Therefore we say that the final six blocks
469	 * can vary based on the padding.
470	 *
471	 * Later in the function, if the message is short and there obviously
472	 * cannot be this many blocks then variance_blocks can be reduced. */
473	variance_blocks = 6;
474	/* From now on we're dealing with the MAC, which conceptually has 13
475	 * bytes of `header' before the start of the data (TLS) */
476	len = data_plus_mac_plus_padding_size + header_length;
477	/* max_mac_bytes contains the maximum bytes of bytes in the MAC, including
478	* |header|, assuming that there's no padding. */
479	max_mac_bytes = len - md_size - 1;
480	/* num_blocks is the maximum number of hash blocks. */
481	num_blocks = (max_mac_bytes + 1 + md_length_size + md_block_size - 1) / md_block_size;
482	/* In order to calculate the MAC in constant time we have to handle
483	 * the final blocks specially because the padding value could cause the
484	 * end to appear somewhere in the final |variance_blocks| blocks and we
485	 * can't leak where. However, |num_starting_blocks| worth of data can
486	 * be hashed right away because no padding value can affect whether
487	 * they are plaintext. */
488	num_starting_blocks = 0;
489	/* k is the starting byte offset into the conceptual header||data where
490	 * we start processing. */
491	k = 0;
492	/* mac_end_offset is the index just past the end of the data to be
493	 * MACed. */
494	mac_end_offset = data_plus_mac_size + header_length - md_size;
495	/* c is the index of the 0x80 byte in the final hash block that
496	 * contains application data. */
497	c = mac_end_offset % md_block_size;
498	/* index_a is the hash block number that contains the 0x80 terminating
499	 * value. */
500	index_a = mac_end_offset / md_block_size;
501	/* index_b is the hash block number that contains the 64-bit hash
502	 * length, in bits. */
503	index_b = (mac_end_offset + md_length_size) / md_block_size;
504	/* bits is the hash-length in bits. It includes the additional hash
505	 * block for the masked HMAC key. */
506
507	if (num_blocks > variance_blocks) {
508		num_starting_blocks = num_blocks - variance_blocks;
509		k = md_block_size*num_starting_blocks;
510	}
511
512	bits = 8*mac_end_offset;
513	/* Compute the initial HMAC block. */
514	bits += 8*md_block_size;
515	memset(hmac_pad, 0, md_block_size);
516	OPENSSL_assert(mac_secret_length <= sizeof(hmac_pad));
517	memcpy(hmac_pad, mac_secret, mac_secret_length);
518	for (i = 0; i < md_block_size; i++)
519		hmac_pad[i] ^= 0x36;
520
521	md_transform(md_state.c, hmac_pad);
522
523	if (length_is_big_endian) {
524		memset(length_bytes, 0, md_length_size - 4);
525		length_bytes[md_length_size - 4] = (unsigned char)(bits >> 24);
526		length_bytes[md_length_size - 3] = (unsigned char)(bits >> 16);
527		length_bytes[md_length_size - 2] = (unsigned char)(bits >> 8);
528		length_bytes[md_length_size - 1] = (unsigned char)bits;
529	} else {
530		memset(length_bytes, 0, md_length_size);
531		length_bytes[md_length_size - 5] = (unsigned char)(bits >> 24);
532		length_bytes[md_length_size - 6] = (unsigned char)(bits >> 16);
533		length_bytes[md_length_size - 7] = (unsigned char)(bits >> 8);
534		length_bytes[md_length_size - 8] = (unsigned char)bits;
535	}
536
537	if (k > 0) {
538		/* k is a multiple of md_block_size. */
539		memcpy(first_block, header, 13);
540		memcpy(first_block + 13, data, md_block_size - 13);
541		md_transform(md_state.c, first_block);
542		for (i = 1; i < k/md_block_size; i++)
543			md_transform(md_state.c, data + md_block_size*i - 13);
544	}
545
546	memset(mac_out, 0, sizeof(mac_out));
547
548	/* We now process the final hash blocks. For each block, we construct
549	 * it in constant time. If the |i==index_a| then we'll include the 0x80
550	 * bytes and zero pad etc. For each block we selectively copy it, in
551	 * constant time, to |mac_out|. */
552	for (i = num_starting_blocks; i <= num_starting_blocks + variance_blocks; i++) {
553		unsigned char block[MAX_HASH_BLOCK_SIZE];
554		unsigned char is_block_a = constant_time_eq_8(i, index_a);
555		unsigned char is_block_b = constant_time_eq_8(i, index_b);
556		for (j = 0; j < md_block_size; j++) {
557			unsigned char b = 0, is_past_c, is_past_cp1;
558			if (k < header_length)
559				b = header[k];
560			else if (k < data_plus_mac_plus_padding_size + header_length)
561				b = data[k - header_length];
562			k++;
563
564			is_past_c = is_block_a & constant_time_ge(j, c);
565			is_past_cp1 = is_block_a & constant_time_ge(j, c + 1);
566			/* If this is the block containing the end of the
567			 * application data, and we are at the offset for the
568			 * 0x80 value, then overwrite b with 0x80. */
569			b = (b&~is_past_c) | (0x80&is_past_c);
570			/* If this is the block containing the end of the
571			 * application data and we're past the 0x80 value then
572			 * just write zero. */
573			b = b&~is_past_cp1;
574			/* If this is index_b (the final block), but not
575			 * index_a (the end of the data), then the 64-bit
576			 * length didn't fit into index_a and we're having to
577			 * add an extra block of zeros. */
578			b &= ~is_block_b | is_block_a;
579
580			/* The final bytes of one of the blocks contains the
581			 * length. */
582			if (j >= md_block_size - md_length_size) {
583				/* If this is index_b, write a length byte. */
584				b = (b&~is_block_b) | (is_block_b&length_bytes[j - (md_block_size - md_length_size)]);
585			}
586			block[j] = b;
587		}
588
589		md_transform(md_state.c, block);
590		md_final_raw(md_state.c, block);
591		/* If this is index_b, copy the hash value to |mac_out|. */
592		for (j = 0; j < md_size; j++)
593			mac_out[j] |= block[j]&is_block_b;
594	}
595
596	EVP_MD_CTX_init(&md_ctx);
597	if (!EVP_DigestInit_ex(&md_ctx, ctx->digest, NULL /* engine */)) {
598		EVP_MD_CTX_cleanup(&md_ctx);
599		return 0;
600	}
601
602	/* Complete the HMAC in the standard manner. */
603	for (i = 0; i < md_block_size; i++)
604		hmac_pad[i] ^= 0x6a;
605
606	EVP_DigestUpdate(&md_ctx, hmac_pad, md_block_size);
607	EVP_DigestUpdate(&md_ctx, mac_out, md_size);
608
609	EVP_DigestFinal(&md_ctx, md_out, &md_out_size_u);
610	if (md_out_size)
611		*md_out_size = md_out_size_u;
612	EVP_MD_CTX_cleanup(&md_ctx);
613
614	return 1;
615}
616