s3_cbc.c revision 1.13
1/* $OpenBSD: s3_cbc.c,v 1.13 2016/11/06 17:21:04 jsing Exp $ */
2/* ====================================================================
3 * Copyright (c) 2012 The OpenSSL Project.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in
14 *    the documentation and/or other materials provided with the
15 *    distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 *    software must display the following acknowledgment:
19 *    "This product includes software developed by the OpenSSL Project
20 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 *    endorse or promote products derived from this software without
24 *    prior written permission. For written permission, please contact
25 *    openssl-core@openssl.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 *    nor may "OpenSSL" appear in their names without prior written
29 *    permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 *    acknowledgment:
33 *    "This product includes software developed by the OpenSSL Project
34 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ====================================================================
49 *
50 * This product includes cryptographic software written by Eric Young
51 * (eay@cryptsoft.com).  This product includes software written by Tim
52 * Hudson (tjh@cryptsoft.com).
53 *
54 */
55
56#include "ssl_locl.h"
57
58#include <openssl/md5.h>
59#include <openssl/sha.h>
60
61/* MAX_HASH_BIT_COUNT_BYTES is the maximum number of bytes in the hash's length
62 * field. (SHA-384/512 have 128-bit length.) */
63#define MAX_HASH_BIT_COUNT_BYTES 16
64
65/* MAX_HASH_BLOCK_SIZE is the maximum hash block size that we'll support.
66 * Currently SHA-384/512 has a 128-byte block size and that's the largest
67 * supported by TLS.) */
68#define MAX_HASH_BLOCK_SIZE 128
69
70/* Some utility functions are needed:
71 *
72 * These macros return the given value with the MSB copied to all the other
73 * bits. They use the fact that arithmetic shift shifts-in the sign bit.
74 * However, this is not ensured by the C standard so you may need to replace
75 * them with something else on odd CPUs. */
76#define DUPLICATE_MSB_TO_ALL(x) ((unsigned)((int)(x) >> (sizeof(int) * 8 - 1)))
77#define DUPLICATE_MSB_TO_ALL_8(x) ((unsigned char)(DUPLICATE_MSB_TO_ALL(x)))
78
79/* constant_time_lt returns 0xff if a<b and 0x00 otherwise. */
80static unsigned
81constant_time_lt(unsigned a, unsigned b)
82{
83	a -= b;
84	return DUPLICATE_MSB_TO_ALL(a);
85}
86
87/* constant_time_ge returns 0xff if a>=b and 0x00 otherwise. */
88static unsigned
89constant_time_ge(unsigned a, unsigned b)
90{
91	a -= b;
92	return DUPLICATE_MSB_TO_ALL(~a);
93}
94
95/* constant_time_eq_8 returns 0xff if a==b and 0x00 otherwise. */
96static unsigned char
97constant_time_eq_8(unsigned a, unsigned b)
98{
99	unsigned c = a ^ b;
100	c--;
101	return DUPLICATE_MSB_TO_ALL_8(c);
102}
103
104/* tls1_cbc_remove_padding removes the CBC padding from the decrypted, TLS, CBC
105 * record in |rec| in constant time and returns 1 if the padding is valid and
106 * -1 otherwise. It also removes any explicit IV from the start of the record
107 * without leaking any timing about whether there was enough space after the
108 * padding was removed.
109 *
110 * block_size: the block size of the cipher used to encrypt the record.
111 * returns:
112 *   0: (in non-constant time) if the record is publicly invalid.
113 *   1: if the padding was valid
114 *  -1: otherwise. */
115int
116tls1_cbc_remove_padding(const SSL* s, SSL3_RECORD *rec, unsigned block_size,
117    unsigned mac_size)
118{
119	unsigned padding_length, good, to_check, i;
120	const unsigned overhead = 1 /* padding length byte */ + mac_size;
121
122	/* Check if version requires explicit IV */
123	if (SSL_USE_EXPLICIT_IV(s)) {
124		/* These lengths are all public so we can test them in
125		 * non-constant time.
126		 */
127		if (overhead + block_size > rec->length)
128			return 0;
129		/* We can now safely skip explicit IV */
130		rec->data += block_size;
131		rec->input += block_size;
132		rec->length -= block_size;
133	} else if (overhead > rec->length)
134		return 0;
135
136	padding_length = rec->data[rec->length - 1];
137
138	if (EVP_CIPHER_flags(s->enc_read_ctx->cipher) & EVP_CIPH_FLAG_AEAD_CIPHER) {
139		/* padding is already verified */
140		rec->length -= padding_length + 1;
141		return 1;
142	}
143
144	good = constant_time_ge(rec->length, overhead + padding_length);
145	/* The padding consists of a length byte at the end of the record and
146	 * then that many bytes of padding, all with the same value as the
147	 * length byte. Thus, with the length byte included, there are i+1
148	 * bytes of padding.
149	 *
150	 * We can't check just |padding_length+1| bytes because that leaks
151	 * decrypted information. Therefore we always have to check the maximum
152	 * amount of padding possible. (Again, the length of the record is
153	 * public information so we can use it.) */
154	to_check = 255; /* maximum amount of padding. */
155	if (to_check > rec->length - 1)
156		to_check = rec->length - 1;
157
158	for (i = 0; i < to_check; i++) {
159		unsigned char mask = constant_time_ge(padding_length, i);
160		unsigned char b = rec->data[rec->length - 1 - i];
161		/* The final |padding_length+1| bytes should all have the value
162		 * |padding_length|. Therefore the XOR should be zero. */
163		good &= ~(mask&(padding_length ^ b));
164	}
165
166	/* If any of the final |padding_length+1| bytes had the wrong value,
167	 * one or more of the lower eight bits of |good| will be cleared. We
168	 * AND the bottom 8 bits together and duplicate the result to all the
169	 * bits. */
170	good &= good >> 4;
171	good &= good >> 2;
172	good &= good >> 1;
173	good <<= sizeof(good)*8 - 1;
174	good = DUPLICATE_MSB_TO_ALL(good);
175
176	padding_length = good & (padding_length + 1);
177	rec->length -= padding_length;
178	rec->type |= padding_length<<8;	/* kludge: pass padding length */
179
180	return (int)((good & 1) | (~good & -1));
181}
182
183/* ssl3_cbc_copy_mac copies |md_size| bytes from the end of |rec| to |out| in
184 * constant time (independent of the concrete value of rec->length, which may
185 * vary within a 256-byte window).
186 *
187 * ssl3_cbc_remove_padding or tls1_cbc_remove_padding must be called prior to
188 * this function.
189 *
190 * On entry:
191 *   rec->orig_len >= md_size
192 *   md_size <= EVP_MAX_MD_SIZE
193 *
194 * If CBC_MAC_ROTATE_IN_PLACE is defined then the rotation is performed with
195 * variable accesses in a 64-byte-aligned buffer. Assuming that this fits into
196 * a single or pair of cache-lines, then the variable memory accesses don't
197 * actually affect the timing. CPUs with smaller cache-lines [if any] are
198 * not multi-core and are not considered vulnerable to cache-timing attacks.
199 */
200#define CBC_MAC_ROTATE_IN_PLACE
201
202void
203ssl3_cbc_copy_mac(unsigned char* out, const SSL3_RECORD *rec,
204    unsigned md_size, unsigned orig_len)
205{
206#if defined(CBC_MAC_ROTATE_IN_PLACE)
207	unsigned char rotated_mac_buf[64 + EVP_MAX_MD_SIZE];
208	unsigned char *rotated_mac;
209#else
210	unsigned char rotated_mac[EVP_MAX_MD_SIZE];
211#endif
212
213	/* mac_end is the index of |rec->data| just after the end of the MAC. */
214	unsigned mac_end = rec->length;
215	unsigned mac_start = mac_end - md_size;
216	/* scan_start contains the number of bytes that we can ignore because
217	 * the MAC's position can only vary by 255 bytes. */
218	unsigned scan_start = 0;
219	unsigned i, j;
220	unsigned div_spoiler;
221	unsigned rotate_offset;
222
223	OPENSSL_assert(orig_len >= md_size);
224	OPENSSL_assert(md_size <= EVP_MAX_MD_SIZE);
225
226#if defined(CBC_MAC_ROTATE_IN_PLACE)
227	rotated_mac = rotated_mac_buf + ((0 - (size_t)rotated_mac_buf)&63);
228#endif
229
230	/* This information is public so it's safe to branch based on it. */
231	if (orig_len > md_size + 255 + 1)
232		scan_start = orig_len - (md_size + 255 + 1);
233	/* div_spoiler contains a multiple of md_size that is used to cause the
234	 * modulo operation to be constant time. Without this, the time varies
235	 * based on the amount of padding when running on Intel chips at least.
236	 *
237	 * The aim of right-shifting md_size is so that the compiler doesn't
238	 * figure out that it can remove div_spoiler as that would require it
239	 * to prove that md_size is always even, which I hope is beyond it. */
240	div_spoiler = md_size >> 1;
241	div_spoiler <<= (sizeof(div_spoiler) - 1) * 8;
242	rotate_offset = (div_spoiler + mac_start - scan_start) % md_size;
243
244	memset(rotated_mac, 0, md_size);
245	for (i = scan_start, j = 0; i < orig_len; i++) {
246		unsigned char mac_started = constant_time_ge(i, mac_start);
247		unsigned char mac_ended = constant_time_ge(i, mac_end);
248		unsigned char b = rec->data[i];
249		rotated_mac[j++] |= b & mac_started & ~mac_ended;
250		j &= constant_time_lt(j, md_size);
251	}
252
253	/* Now rotate the MAC */
254#if defined(CBC_MAC_ROTATE_IN_PLACE)
255	j = 0;
256	for (i = 0; i < md_size; i++) {
257		/* in case cache-line is 32 bytes, touch second line */
258		((volatile unsigned char *)rotated_mac)[rotate_offset^32];
259		out[j++] = rotated_mac[rotate_offset++];
260		rotate_offset &= constant_time_lt(rotate_offset, md_size);
261	}
262#else
263	memset(out, 0, md_size);
264	rotate_offset = md_size - rotate_offset;
265	rotate_offset &= constant_time_lt(rotate_offset, md_size);
266	for (i = 0; i < md_size; i++) {
267		for (j = 0; j < md_size; j++)
268			out[j] |= rotated_mac[i] & constant_time_eq_8(j, rotate_offset);
269		rotate_offset++;
270		rotate_offset &= constant_time_lt(rotate_offset, md_size);
271	}
272#endif
273}
274
275/* u32toLE serialises an unsigned, 32-bit number (n) as four bytes at (p) in
276 * little-endian order. The value of p is advanced by four. */
277#define u32toLE(n, p) \
278	(*((p)++)=(unsigned char)(n), \
279	 *((p)++)=(unsigned char)(n>>8), \
280	 *((p)++)=(unsigned char)(n>>16), \
281	 *((p)++)=(unsigned char)(n>>24))
282
283/* These functions serialize the state of a hash and thus perform the standard
284 * "final" operation without adding the padding and length that such a function
285 * typically does. */
286static void
287tls1_md5_final_raw(void* ctx, unsigned char *md_out)
288{
289	MD5_CTX *md5 = ctx;
290	u32toLE(md5->A, md_out);
291	u32toLE(md5->B, md_out);
292	u32toLE(md5->C, md_out);
293	u32toLE(md5->D, md_out);
294}
295
296static void
297tls1_sha1_final_raw(void* ctx, unsigned char *md_out)
298{
299	SHA_CTX *sha1 = ctx;
300	l2n(sha1->h0, md_out);
301	l2n(sha1->h1, md_out);
302	l2n(sha1->h2, md_out);
303	l2n(sha1->h3, md_out);
304	l2n(sha1->h4, md_out);
305}
306#define LARGEST_DIGEST_CTX SHA_CTX
307
308static void
309tls1_sha256_final_raw(void* ctx, unsigned char *md_out)
310{
311	SHA256_CTX *sha256 = ctx;
312	unsigned i;
313
314	for (i = 0; i < 8; i++) {
315		l2n(sha256->h[i], md_out);
316	}
317}
318#undef  LARGEST_DIGEST_CTX
319#define LARGEST_DIGEST_CTX SHA256_CTX
320
321static void
322tls1_sha512_final_raw(void* ctx, unsigned char *md_out)
323{
324	SHA512_CTX *sha512 = ctx;
325	unsigned i;
326
327	for (i = 0; i < 8; i++) {
328		l2n8(sha512->h[i], md_out);
329	}
330}
331#undef  LARGEST_DIGEST_CTX
332#define LARGEST_DIGEST_CTX SHA512_CTX
333
334/* ssl3_cbc_record_digest_supported returns 1 iff |ctx| uses a hash function
335 * which ssl3_cbc_digest_record supports. */
336char
337ssl3_cbc_record_digest_supported(const EVP_MD_CTX *ctx)
338{
339	switch (EVP_MD_CTX_type(ctx)) {
340	case NID_md5:
341	case NID_sha1:
342	case NID_sha224:
343	case NID_sha256:
344	case NID_sha384:
345	case NID_sha512:
346		return 1;
347	default:
348		return 0;
349	}
350}
351
352/* ssl3_cbc_digest_record computes the MAC of a decrypted, padded TLS
353 * record.
354 *
355 *   ctx: the EVP_MD_CTX from which we take the hash function.
356 *     ssl3_cbc_record_digest_supported must return true for this EVP_MD_CTX.
357 *   md_out: the digest output. At most EVP_MAX_MD_SIZE bytes will be written.
358 *   md_out_size: if non-NULL, the number of output bytes is written here.
359 *   header: the 13-byte, TLS record header.
360 *   data: the record data itself, less any preceeding explicit IV.
361 *   data_plus_mac_size: the secret, reported length of the data and MAC
362 *     once the padding has been removed.
363 *   data_plus_mac_plus_padding_size: the public length of the whole
364 *     record, including padding.
365 *
366 * On entry: by virtue of having been through one of the remove_padding
367 * functions, above, we know that data_plus_mac_size is large enough to contain
368 * a padding byte and MAC. (If the padding was invalid, it might contain the
369 * padding too. ) */
370int
371ssl3_cbc_digest_record(const EVP_MD_CTX *ctx, unsigned char* md_out,
372    size_t* md_out_size, const unsigned char header[13],
373    const unsigned char *data, size_t data_plus_mac_size,
374    size_t data_plus_mac_plus_padding_size, const unsigned char *mac_secret,
375    unsigned mac_secret_length)
376{
377	union {	double align;
378		unsigned char c[sizeof(LARGEST_DIGEST_CTX)];
379	} md_state;
380	void (*md_final_raw)(void *ctx, unsigned char *md_out);
381	void (*md_transform)(void *ctx, const unsigned char *block);
382	unsigned md_size, md_block_size = 64;
383	unsigned header_length, variance_blocks,
384	len, max_mac_bytes, num_blocks,
385	num_starting_blocks, k, mac_end_offset, c, index_a, index_b;
386	unsigned int bits;	/* at most 18 bits */
387	unsigned char length_bytes[MAX_HASH_BIT_COUNT_BYTES];
388	/* hmac_pad is the masked HMAC key. */
389	unsigned char hmac_pad[MAX_HASH_BLOCK_SIZE];
390	unsigned char first_block[MAX_HASH_BLOCK_SIZE];
391	unsigned char mac_out[EVP_MAX_MD_SIZE];
392	unsigned i, j, md_out_size_u;
393	EVP_MD_CTX md_ctx;
394	/* mdLengthSize is the number of bytes in the length field that terminates
395	* the hash. */
396	unsigned md_length_size = 8;
397	char length_is_big_endian = 1;
398
399	/* This is a, hopefully redundant, check that allows us to forget about
400	 * many possible overflows later in this function. */
401	OPENSSL_assert(data_plus_mac_plus_padding_size < 1024*1024);
402
403	switch (EVP_MD_CTX_type(ctx)) {
404	case NID_md5:
405		MD5_Init((MD5_CTX*)md_state.c);
406		md_final_raw = tls1_md5_final_raw;
407		md_transform = (void(*)(void *ctx, const unsigned char *block)) MD5_Transform;
408		md_size = 16;
409		length_is_big_endian = 0;
410		break;
411	case NID_sha1:
412		SHA1_Init((SHA_CTX*)md_state.c);
413		md_final_raw = tls1_sha1_final_raw;
414		md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA1_Transform;
415		md_size = 20;
416		break;
417	case NID_sha224:
418		SHA224_Init((SHA256_CTX*)md_state.c);
419		md_final_raw = tls1_sha256_final_raw;
420		md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA256_Transform;
421		md_size = 224/8;
422		break;
423	case NID_sha256:
424		SHA256_Init((SHA256_CTX*)md_state.c);
425		md_final_raw = tls1_sha256_final_raw;
426		md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA256_Transform;
427		md_size = 32;
428		break;
429	case NID_sha384:
430		SHA384_Init((SHA512_CTX*)md_state.c);
431		md_final_raw = tls1_sha512_final_raw;
432		md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA512_Transform;
433		md_size = 384/8;
434		md_block_size = 128;
435		md_length_size = 16;
436		break;
437	case NID_sha512:
438		SHA512_Init((SHA512_CTX*)md_state.c);
439		md_final_raw = tls1_sha512_final_raw;
440		md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA512_Transform;
441		md_size = 64;
442		md_block_size = 128;
443		md_length_size = 16;
444		break;
445	default:
446		/* ssl3_cbc_record_digest_supported should have been
447		 * called first to check that the hash function is
448		 * supported. */
449		OPENSSL_assert(0);
450		if (md_out_size)
451			*md_out_size = 0;
452		return 0;
453	}
454
455	OPENSSL_assert(md_length_size <= MAX_HASH_BIT_COUNT_BYTES);
456	OPENSSL_assert(md_block_size <= MAX_HASH_BLOCK_SIZE);
457	OPENSSL_assert(md_size <= EVP_MAX_MD_SIZE);
458
459	header_length = 13;
460
461	/* variance_blocks is the number of blocks of the hash that we have to
462	 * calculate in constant time because they could be altered by the
463	 * padding value.
464	 *
465	 * TLSv1 has MACs up to 48 bytes long (SHA-384) and the padding is not
466	 * required to be minimal. Therefore we say that the final six blocks
467	 * can vary based on the padding.
468	 *
469	 * Later in the function, if the message is short and there obviously
470	 * cannot be this many blocks then variance_blocks can be reduced. */
471	variance_blocks = 6;
472	/* From now on we're dealing with the MAC, which conceptually has 13
473	 * bytes of `header' before the start of the data (TLS) */
474	len = data_plus_mac_plus_padding_size + header_length;
475	/* max_mac_bytes contains the maximum bytes of bytes in the MAC, including
476	* |header|, assuming that there's no padding. */
477	max_mac_bytes = len - md_size - 1;
478	/* num_blocks is the maximum number of hash blocks. */
479	num_blocks = (max_mac_bytes + 1 + md_length_size + md_block_size - 1) / md_block_size;
480	/* In order to calculate the MAC in constant time we have to handle
481	 * the final blocks specially because the padding value could cause the
482	 * end to appear somewhere in the final |variance_blocks| blocks and we
483	 * can't leak where. However, |num_starting_blocks| worth of data can
484	 * be hashed right away because no padding value can affect whether
485	 * they are plaintext. */
486	num_starting_blocks = 0;
487	/* k is the starting byte offset into the conceptual header||data where
488	 * we start processing. */
489	k = 0;
490	/* mac_end_offset is the index just past the end of the data to be
491	 * MACed. */
492	mac_end_offset = data_plus_mac_size + header_length - md_size;
493	/* c is the index of the 0x80 byte in the final hash block that
494	 * contains application data. */
495	c = mac_end_offset % md_block_size;
496	/* index_a is the hash block number that contains the 0x80 terminating
497	 * value. */
498	index_a = mac_end_offset / md_block_size;
499	/* index_b is the hash block number that contains the 64-bit hash
500	 * length, in bits. */
501	index_b = (mac_end_offset + md_length_size) / md_block_size;
502	/* bits is the hash-length in bits. It includes the additional hash
503	 * block for the masked HMAC key. */
504
505	if (num_blocks > variance_blocks) {
506		num_starting_blocks = num_blocks - variance_blocks;
507		k = md_block_size*num_starting_blocks;
508	}
509
510	bits = 8*mac_end_offset;
511	/* Compute the initial HMAC block. */
512	bits += 8*md_block_size;
513	memset(hmac_pad, 0, md_block_size);
514	OPENSSL_assert(mac_secret_length <= sizeof(hmac_pad));
515	memcpy(hmac_pad, mac_secret, mac_secret_length);
516	for (i = 0; i < md_block_size; i++)
517		hmac_pad[i] ^= 0x36;
518
519	md_transform(md_state.c, hmac_pad);
520
521	if (length_is_big_endian) {
522		memset(length_bytes, 0, md_length_size - 4);
523		length_bytes[md_length_size - 4] = (unsigned char)(bits >> 24);
524		length_bytes[md_length_size - 3] = (unsigned char)(bits >> 16);
525		length_bytes[md_length_size - 2] = (unsigned char)(bits >> 8);
526		length_bytes[md_length_size - 1] = (unsigned char)bits;
527	} else {
528		memset(length_bytes, 0, md_length_size);
529		length_bytes[md_length_size - 5] = (unsigned char)(bits >> 24);
530		length_bytes[md_length_size - 6] = (unsigned char)(bits >> 16);
531		length_bytes[md_length_size - 7] = (unsigned char)(bits >> 8);
532		length_bytes[md_length_size - 8] = (unsigned char)bits;
533	}
534
535	if (k > 0) {
536		/* k is a multiple of md_block_size. */
537		memcpy(first_block, header, 13);
538		memcpy(first_block + 13, data, md_block_size - 13);
539		md_transform(md_state.c, first_block);
540		for (i = 1; i < k/md_block_size; i++)
541			md_transform(md_state.c, data + md_block_size*i - 13);
542	}
543
544	memset(mac_out, 0, sizeof(mac_out));
545
546	/* We now process the final hash blocks. For each block, we construct
547	 * it in constant time. If the |i==index_a| then we'll include the 0x80
548	 * bytes and zero pad etc. For each block we selectively copy it, in
549	 * constant time, to |mac_out|. */
550	for (i = num_starting_blocks; i <= num_starting_blocks + variance_blocks; i++) {
551		unsigned char block[MAX_HASH_BLOCK_SIZE];
552		unsigned char is_block_a = constant_time_eq_8(i, index_a);
553		unsigned char is_block_b = constant_time_eq_8(i, index_b);
554		for (j = 0; j < md_block_size; j++) {
555			unsigned char b = 0, is_past_c, is_past_cp1;
556			if (k < header_length)
557				b = header[k];
558			else if (k < data_plus_mac_plus_padding_size + header_length)
559				b = data[k - header_length];
560			k++;
561
562			is_past_c = is_block_a & constant_time_ge(j, c);
563			is_past_cp1 = is_block_a & constant_time_ge(j, c + 1);
564			/* If this is the block containing the end of the
565			 * application data, and we are at the offset for the
566			 * 0x80 value, then overwrite b with 0x80. */
567			b = (b&~is_past_c) | (0x80&is_past_c);
568			/* If this is the block containing the end of the
569			 * application data and we're past the 0x80 value then
570			 * just write zero. */
571			b = b&~is_past_cp1;
572			/* If this is index_b (the final block), but not
573			 * index_a (the end of the data), then the 64-bit
574			 * length didn't fit into index_a and we're having to
575			 * add an extra block of zeros. */
576			b &= ~is_block_b | is_block_a;
577
578			/* The final bytes of one of the blocks contains the
579			 * length. */
580			if (j >= md_block_size - md_length_size) {
581				/* If this is index_b, write a length byte. */
582				b = (b&~is_block_b) | (is_block_b&length_bytes[j - (md_block_size - md_length_size)]);
583			}
584			block[j] = b;
585		}
586
587		md_transform(md_state.c, block);
588		md_final_raw(md_state.c, block);
589		/* If this is index_b, copy the hash value to |mac_out|. */
590		for (j = 0; j < md_size; j++)
591			mac_out[j] |= block[j]&is_block_b;
592	}
593
594	EVP_MD_CTX_init(&md_ctx);
595	if (!EVP_DigestInit_ex(&md_ctx, ctx->digest, NULL /* engine */)) {
596		EVP_MD_CTX_cleanup(&md_ctx);
597		return 0;
598	}
599
600	/* Complete the HMAC in the standard manner. */
601	for (i = 0; i < md_block_size; i++)
602		hmac_pad[i] ^= 0x6a;
603
604	EVP_DigestUpdate(&md_ctx, hmac_pad, md_block_size);
605	EVP_DigestUpdate(&md_ctx, mac_out, md_size);
606
607	EVP_DigestFinal(&md_ctx, md_out, &md_out_size_u);
608	if (md_out_size)
609		*md_out_size = md_out_size_u;
610	EVP_MD_CTX_cleanup(&md_ctx);
611
612	return 1;
613}
614