s3_cbc.c revision 1.10
1/* $OpenBSD: s3_cbc.c,v 1.10 2015/07/17 07:04:40 doug Exp $ */
2/* ====================================================================
3 * Copyright (c) 2012 The OpenSSL Project.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in
14 *    the documentation and/or other materials provided with the
15 *    distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 *    software must display the following acknowledgment:
19 *    "This product includes software developed by the OpenSSL Project
20 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 *    endorse or promote products derived from this software without
24 *    prior written permission. For written permission, please contact
25 *    openssl-core@openssl.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 *    nor may "OpenSSL" appear in their names without prior written
29 *    permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 *    acknowledgment:
33 *    "This product includes software developed by the OpenSSL Project
34 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ====================================================================
49 *
50 * This product includes cryptographic software written by Eric Young
51 * (eay@cryptsoft.com).  This product includes software written by Tim
52 * Hudson (tjh@cryptsoft.com).
53 *
54 */
55
56#include "ssl_locl.h"
57
58#include <openssl/md5.h>
59#include <openssl/sha.h>
60
61/* MAX_HASH_BIT_COUNT_BYTES is the maximum number of bytes in the hash's length
62 * field. (SHA-384/512 have 128-bit length.) */
63#define MAX_HASH_BIT_COUNT_BYTES 16
64
65/* MAX_HASH_BLOCK_SIZE is the maximum hash block size that we'll support.
66 * Currently SHA-384/512 has a 128-byte block size and that's the largest
67 * supported by TLS.) */
68#define MAX_HASH_BLOCK_SIZE 128
69
70/* Some utility functions are needed:
71 *
72 * These macros return the given value with the MSB copied to all the other
73 * bits. They use the fact that arithmetic shift shifts-in the sign bit.
74 * However, this is not ensured by the C standard so you may need to replace
75 * them with something else on odd CPUs. */
76#define DUPLICATE_MSB_TO_ALL(x) ((unsigned)((int)(x) >> (sizeof(int) * 8 - 1)))
77#define DUPLICATE_MSB_TO_ALL_8(x) ((unsigned char)(DUPLICATE_MSB_TO_ALL(x)))
78
79/* constant_time_lt returns 0xff if a<b and 0x00 otherwise. */
80static unsigned
81constant_time_lt(unsigned a, unsigned b)
82{
83	a -= b;
84	return DUPLICATE_MSB_TO_ALL(a);
85}
86
87/* constant_time_ge returns 0xff if a>=b and 0x00 otherwise. */
88static unsigned
89constant_time_ge(unsigned a, unsigned b)
90{
91	a -= b;
92	return DUPLICATE_MSB_TO_ALL(~a);
93}
94
95/* constant_time_eq_8 returns 0xff if a==b and 0x00 otherwise. */
96static unsigned char
97constant_time_eq_8(unsigned a, unsigned b)
98{
99	unsigned c = a ^ b;
100	c--;
101	return DUPLICATE_MSB_TO_ALL_8(c);
102}
103
104/* ssl3_cbc_remove_padding removes padding from the decrypted, SSLv3, CBC
105 * record in |rec| by updating |rec->length| in constant time.
106 *
107 * block_size: the block size of the cipher used to encrypt the record.
108 * returns:
109 *   0: (in non-constant time) if the record is publicly invalid.
110 *   1: if the padding was valid
111 *  -1: otherwise. */
112int
113ssl3_cbc_remove_padding(const SSL* s, SSL3_RECORD *rec, unsigned block_size,
114    unsigned mac_size)
115{
116	unsigned padding_length, good;
117	const unsigned overhead = 1 /* padding length byte */ + mac_size;
118
119	/* These lengths are all public so we can test them in non-constant
120	 * time. */
121	if (overhead > rec->length)
122		return 0;
123
124	padding_length = rec->data[rec->length - 1];
125	good = constant_time_ge(rec->length, padding_length + overhead);
126	/* SSLv3 requires that the padding is minimal. */
127	good &= constant_time_ge(block_size, padding_length + 1);
128	padding_length = good & (padding_length + 1);
129	rec->length -= padding_length;
130	rec->type |= padding_length << 8; /* kludge: pass padding length */
131	return (int)((good & 1) | (~good & -1));
132}
133
134/* tls1_cbc_remove_padding removes the CBC padding from the decrypted, TLS, CBC
135 * record in |rec| in constant time and returns 1 if the padding is valid and
136 * -1 otherwise. It also removes any explicit IV from the start of the record
137 * without leaking any timing about whether there was enough space after the
138 * padding was removed.
139 *
140 * block_size: the block size of the cipher used to encrypt the record.
141 * returns:
142 *   0: (in non-constant time) if the record is publicly invalid.
143 *   1: if the padding was valid
144 *  -1: otherwise. */
145int
146tls1_cbc_remove_padding(const SSL* s, SSL3_RECORD *rec, unsigned block_size,
147    unsigned mac_size)
148{
149	unsigned padding_length, good, to_check, i;
150	const unsigned overhead = 1 /* padding length byte */ + mac_size;
151
152	/* Check if version requires explicit IV */
153	if (SSL_USE_EXPLICIT_IV(s)) {
154		/* These lengths are all public so we can test them in
155		 * non-constant time.
156		 */
157		if (overhead + block_size > rec->length)
158			return 0;
159		/* We can now safely skip explicit IV */
160		rec->data += block_size;
161		rec->input += block_size;
162		rec->length -= block_size;
163	} else if (overhead > rec->length)
164		return 0;
165
166	padding_length = rec->data[rec->length - 1];
167
168	if (EVP_CIPHER_flags(s->enc_read_ctx->cipher) & EVP_CIPH_FLAG_AEAD_CIPHER) {
169		/* padding is already verified */
170		rec->length -= padding_length + 1;
171		return 1;
172	}
173
174	good = constant_time_ge(rec->length, overhead + padding_length);
175	/* The padding consists of a length byte at the end of the record and
176	 * then that many bytes of padding, all with the same value as the
177	 * length byte. Thus, with the length byte included, there are i+1
178	 * bytes of padding.
179	 *
180	 * We can't check just |padding_length+1| bytes because that leaks
181	 * decrypted information. Therefore we always have to check the maximum
182	 * amount of padding possible. (Again, the length of the record is
183	 * public information so we can use it.) */
184	to_check = 255; /* maximum amount of padding. */
185	if (to_check > rec->length - 1)
186		to_check = rec->length - 1;
187
188	for (i = 0; i < to_check; i++) {
189		unsigned char mask = constant_time_ge(padding_length, i);
190		unsigned char b = rec->data[rec->length - 1 - i];
191		/* The final |padding_length+1| bytes should all have the value
192		 * |padding_length|. Therefore the XOR should be zero. */
193		good &= ~(mask&(padding_length ^ b));
194	}
195
196	/* If any of the final |padding_length+1| bytes had the wrong value,
197	 * one or more of the lower eight bits of |good| will be cleared. We
198	 * AND the bottom 8 bits together and duplicate the result to all the
199	 * bits. */
200	good &= good >> 4;
201	good &= good >> 2;
202	good &= good >> 1;
203	good <<= sizeof(good)*8 - 1;
204	good = DUPLICATE_MSB_TO_ALL(good);
205
206	padding_length = good & (padding_length + 1);
207	rec->length -= padding_length;
208	rec->type |= padding_length<<8;	/* kludge: pass padding length */
209
210	return (int)((good & 1) | (~good & -1));
211}
212
213/* ssl3_cbc_copy_mac copies |md_size| bytes from the end of |rec| to |out| in
214 * constant time (independent of the concrete value of rec->length, which may
215 * vary within a 256-byte window).
216 *
217 * ssl3_cbc_remove_padding or tls1_cbc_remove_padding must be called prior to
218 * this function.
219 *
220 * On entry:
221 *   rec->orig_len >= md_size
222 *   md_size <= EVP_MAX_MD_SIZE
223 *
224 * If CBC_MAC_ROTATE_IN_PLACE is defined then the rotation is performed with
225 * variable accesses in a 64-byte-aligned buffer. Assuming that this fits into
226 * a single or pair of cache-lines, then the variable memory accesses don't
227 * actually affect the timing. CPUs with smaller cache-lines [if any] are
228 * not multi-core and are not considered vulnerable to cache-timing attacks.
229 */
230#define CBC_MAC_ROTATE_IN_PLACE
231
232void
233ssl3_cbc_copy_mac(unsigned char* out, const SSL3_RECORD *rec,
234    unsigned md_size, unsigned orig_len)
235{
236#if defined(CBC_MAC_ROTATE_IN_PLACE)
237	unsigned char rotated_mac_buf[64 + EVP_MAX_MD_SIZE];
238	unsigned char *rotated_mac;
239#else
240	unsigned char rotated_mac[EVP_MAX_MD_SIZE];
241#endif
242
243	/* mac_end is the index of |rec->data| just after the end of the MAC. */
244	unsigned mac_end = rec->length;
245	unsigned mac_start = mac_end - md_size;
246	/* scan_start contains the number of bytes that we can ignore because
247	 * the MAC's position can only vary by 255 bytes. */
248	unsigned scan_start = 0;
249	unsigned i, j;
250	unsigned div_spoiler;
251	unsigned rotate_offset;
252
253	OPENSSL_assert(orig_len >= md_size);
254	OPENSSL_assert(md_size <= EVP_MAX_MD_SIZE);
255
256#if defined(CBC_MAC_ROTATE_IN_PLACE)
257	rotated_mac = rotated_mac_buf + ((0 - (size_t)rotated_mac_buf)&63);
258#endif
259
260	/* This information is public so it's safe to branch based on it. */
261	if (orig_len > md_size + 255 + 1)
262		scan_start = orig_len - (md_size + 255 + 1);
263	/* div_spoiler contains a multiple of md_size that is used to cause the
264	 * modulo operation to be constant time. Without this, the time varies
265	 * based on the amount of padding when running on Intel chips at least.
266	 *
267	 * The aim of right-shifting md_size is so that the compiler doesn't
268	 * figure out that it can remove div_spoiler as that would require it
269	 * to prove that md_size is always even, which I hope is beyond it. */
270	div_spoiler = md_size >> 1;
271	div_spoiler <<= (sizeof(div_spoiler) - 1) * 8;
272	rotate_offset = (div_spoiler + mac_start - scan_start) % md_size;
273
274	memset(rotated_mac, 0, md_size);
275	for (i = scan_start, j = 0; i < orig_len; i++) {
276		unsigned char mac_started = constant_time_ge(i, mac_start);
277		unsigned char mac_ended = constant_time_ge(i, mac_end);
278		unsigned char b = rec->data[i];
279		rotated_mac[j++] |= b & mac_started & ~mac_ended;
280		j &= constant_time_lt(j, md_size);
281	}
282
283	/* Now rotate the MAC */
284#if defined(CBC_MAC_ROTATE_IN_PLACE)
285	j = 0;
286	for (i = 0; i < md_size; i++) {
287		/* in case cache-line is 32 bytes, touch second line */
288		((volatile unsigned char *)rotated_mac)[rotate_offset^32];
289		out[j++] = rotated_mac[rotate_offset++];
290		rotate_offset &= constant_time_lt(rotate_offset, md_size);
291	}
292#else
293	memset(out, 0, md_size);
294	rotate_offset = md_size - rotate_offset;
295	rotate_offset &= constant_time_lt(rotate_offset, md_size);
296	for (i = 0; i < md_size; i++) {
297		for (j = 0; j < md_size; j++)
298			out[j] |= rotated_mac[i] & constant_time_eq_8(j, rotate_offset);
299		rotate_offset++;
300		rotate_offset &= constant_time_lt(rotate_offset, md_size);
301	}
302#endif
303}
304
305/* u32toLE serialises an unsigned, 32-bit number (n) as four bytes at (p) in
306 * little-endian order. The value of p is advanced by four. */
307#define u32toLE(n, p) \
308	(*((p)++)=(unsigned char)(n), \
309	 *((p)++)=(unsigned char)(n>>8), \
310	 *((p)++)=(unsigned char)(n>>16), \
311	 *((p)++)=(unsigned char)(n>>24))
312
313/* These functions serialize the state of a hash and thus perform the standard
314 * "final" operation without adding the padding and length that such a function
315 * typically does. */
316static void
317tls1_md5_final_raw(void* ctx, unsigned char *md_out)
318{
319	MD5_CTX *md5 = ctx;
320	u32toLE(md5->A, md_out);
321	u32toLE(md5->B, md_out);
322	u32toLE(md5->C, md_out);
323	u32toLE(md5->D, md_out);
324}
325
326static void
327tls1_sha1_final_raw(void* ctx, unsigned char *md_out)
328{
329	SHA_CTX *sha1 = ctx;
330	l2n(sha1->h0, md_out);
331	l2n(sha1->h1, md_out);
332	l2n(sha1->h2, md_out);
333	l2n(sha1->h3, md_out);
334	l2n(sha1->h4, md_out);
335}
336#define LARGEST_DIGEST_CTX SHA_CTX
337
338static void
339tls1_sha256_final_raw(void* ctx, unsigned char *md_out)
340{
341	SHA256_CTX *sha256 = ctx;
342	unsigned i;
343
344	for (i = 0; i < 8; i++) {
345		l2n(sha256->h[i], md_out);
346	}
347}
348#undef  LARGEST_DIGEST_CTX
349#define LARGEST_DIGEST_CTX SHA256_CTX
350
351static void
352tls1_sha512_final_raw(void* ctx, unsigned char *md_out)
353{
354	SHA512_CTX *sha512 = ctx;
355	unsigned i;
356
357	for (i = 0; i < 8; i++) {
358		l2n8(sha512->h[i], md_out);
359	}
360}
361#undef  LARGEST_DIGEST_CTX
362#define LARGEST_DIGEST_CTX SHA512_CTX
363
364/* ssl3_cbc_record_digest_supported returns 1 iff |ctx| uses a hash function
365 * which ssl3_cbc_digest_record supports. */
366char
367ssl3_cbc_record_digest_supported(const EVP_MD_CTX *ctx)
368{
369	switch (EVP_MD_CTX_type(ctx)) {
370	case NID_md5:
371	case NID_sha1:
372	case NID_sha224:
373	case NID_sha256:
374	case NID_sha384:
375	case NID_sha512:
376		return 1;
377	default:
378		return 0;
379	}
380}
381
382/* ssl3_cbc_digest_record computes the MAC of a decrypted, padded SSLv3/TLS
383 * record.
384 *
385 *   ctx: the EVP_MD_CTX from which we take the hash function.
386 *     ssl3_cbc_record_digest_supported must return true for this EVP_MD_CTX.
387 *   md_out: the digest output. At most EVP_MAX_MD_SIZE bytes will be written.
388 *   md_out_size: if non-NULL, the number of output bytes is written here.
389 *   header: the 13-byte, TLS record header.
390 *   data: the record data itself, less any preceeding explicit IV.
391 *   data_plus_mac_size: the secret, reported length of the data and MAC
392 *     once the padding has been removed.
393 *   data_plus_mac_plus_padding_size: the public length of the whole
394 *     record, including padding.
395 *   is_sslv3: non-zero if we are to use SSLv3. Otherwise, TLS.
396 *
397 * On entry: by virtue of having been through one of the remove_padding
398 * functions, above, we know that data_plus_mac_size is large enough to contain
399 * a padding byte and MAC. (If the padding was invalid, it might contain the
400 * padding too. ) */
401int
402ssl3_cbc_digest_record(const EVP_MD_CTX *ctx, unsigned char* md_out,
403    size_t* md_out_size, const unsigned char header[13],
404    const unsigned char *data, size_t data_plus_mac_size,
405    size_t data_plus_mac_plus_padding_size, const unsigned char *mac_secret,
406    unsigned mac_secret_length, char is_sslv3)
407{
408	union {	double align;
409		unsigned char c[sizeof(LARGEST_DIGEST_CTX)];
410	} md_state;
411	void (*md_final_raw)(void *ctx, unsigned char *md_out);
412	void (*md_transform)(void *ctx, const unsigned char *block);
413	unsigned md_size, md_block_size = 64;
414	unsigned sslv3_pad_length = 40, header_length, variance_blocks,
415	len, max_mac_bytes, num_blocks,
416	num_starting_blocks, k, mac_end_offset, c, index_a, index_b;
417	unsigned int bits;	/* at most 18 bits */
418	unsigned char length_bytes[MAX_HASH_BIT_COUNT_BYTES];
419	/* hmac_pad is the masked HMAC key. */
420	unsigned char hmac_pad[MAX_HASH_BLOCK_SIZE];
421	unsigned char first_block[MAX_HASH_BLOCK_SIZE];
422	unsigned char mac_out[EVP_MAX_MD_SIZE];
423	unsigned i, j, md_out_size_u;
424	EVP_MD_CTX md_ctx;
425	/* mdLengthSize is the number of bytes in the length field that terminates
426	* the hash. */
427	unsigned md_length_size = 8;
428	char length_is_big_endian = 1;
429
430	/* This is a, hopefully redundant, check that allows us to forget about
431	 * many possible overflows later in this function. */
432	OPENSSL_assert(data_plus_mac_plus_padding_size < 1024*1024);
433
434	switch (EVP_MD_CTX_type(ctx)) {
435	case NID_md5:
436		MD5_Init((MD5_CTX*)md_state.c);
437		md_final_raw = tls1_md5_final_raw;
438		md_transform = (void(*)(void *ctx, const unsigned char *block)) MD5_Transform;
439		md_size = 16;
440		sslv3_pad_length = 48;
441		length_is_big_endian = 0;
442		break;
443	case NID_sha1:
444		SHA1_Init((SHA_CTX*)md_state.c);
445		md_final_raw = tls1_sha1_final_raw;
446		md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA1_Transform;
447		md_size = 20;
448		break;
449	case NID_sha224:
450		SHA224_Init((SHA256_CTX*)md_state.c);
451		md_final_raw = tls1_sha256_final_raw;
452		md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA256_Transform;
453		md_size = 224/8;
454		break;
455	case NID_sha256:
456		SHA256_Init((SHA256_CTX*)md_state.c);
457		md_final_raw = tls1_sha256_final_raw;
458		md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA256_Transform;
459		md_size = 32;
460		break;
461	case NID_sha384:
462		SHA384_Init((SHA512_CTX*)md_state.c);
463		md_final_raw = tls1_sha512_final_raw;
464		md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA512_Transform;
465		md_size = 384/8;
466		md_block_size = 128;
467		md_length_size = 16;
468		break;
469	case NID_sha512:
470		SHA512_Init((SHA512_CTX*)md_state.c);
471		md_final_raw = tls1_sha512_final_raw;
472		md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA512_Transform;
473		md_size = 64;
474		md_block_size = 128;
475		md_length_size = 16;
476		break;
477	default:
478		/* ssl3_cbc_record_digest_supported should have been
479		 * called first to check that the hash function is
480		 * supported. */
481		OPENSSL_assert(0);
482		if (md_out_size)
483			*md_out_size = 0;
484		return 0;
485	}
486
487	OPENSSL_assert(md_length_size <= MAX_HASH_BIT_COUNT_BYTES);
488	OPENSSL_assert(md_block_size <= MAX_HASH_BLOCK_SIZE);
489	OPENSSL_assert(md_size <= EVP_MAX_MD_SIZE);
490
491	header_length = 13;
492	if (is_sslv3) {
493		header_length = mac_secret_length + sslv3_pad_length +
494		    8 /* sequence number */ +
495		    1 /* record type */ +
496		    2 /* record length */;
497	}
498
499	/* variance_blocks is the number of blocks of the hash that we have to
500	 * calculate in constant time because they could be altered by the
501	 * padding value.
502	 *
503	 * In SSLv3, the padding must be minimal so the end of the plaintext
504	 * varies by, at most, 15+20 = 35 bytes. (We conservatively assume that
505	 * the MAC size varies from 0..20 bytes.) In case the 9 bytes of hash
506	 * termination (0x80 + 64-bit length) don't fit in the final block, we
507	 * say that the final two blocks can vary based on the padding.
508	 *
509	 * TLSv1 has MACs up to 48 bytes long (SHA-384) and the padding is not
510	 * required to be minimal. Therefore we say that the final six blocks
511	 * can vary based on the padding.
512	 *
513	 * Later in the function, if the message is short and there obviously
514	 * cannot be this many blocks then variance_blocks can be reduced. */
515	variance_blocks = is_sslv3 ? 2 : 6;
516	/* From now on we're dealing with the MAC, which conceptually has 13
517	 * bytes of `header' before the start of the data (TLS) or 71/75 bytes
518	 * (SSLv3) */
519	len = data_plus_mac_plus_padding_size + header_length;
520	/* max_mac_bytes contains the maximum bytes of bytes in the MAC, including
521	* |header|, assuming that there's no padding. */
522	max_mac_bytes = len - md_size - 1;
523	/* num_blocks is the maximum number of hash blocks. */
524	num_blocks = (max_mac_bytes + 1 + md_length_size + md_block_size - 1) / md_block_size;
525	/* In order to calculate the MAC in constant time we have to handle
526	 * the final blocks specially because the padding value could cause the
527	 * end to appear somewhere in the final |variance_blocks| blocks and we
528	 * can't leak where. However, |num_starting_blocks| worth of data can
529	 * be hashed right away because no padding value can affect whether
530	 * they are plaintext. */
531	num_starting_blocks = 0;
532	/* k is the starting byte offset into the conceptual header||data where
533	 * we start processing. */
534	k = 0;
535	/* mac_end_offset is the index just past the end of the data to be
536	 * MACed. */
537	mac_end_offset = data_plus_mac_size + header_length - md_size;
538	/* c is the index of the 0x80 byte in the final hash block that
539	 * contains application data. */
540	c = mac_end_offset % md_block_size;
541	/* index_a is the hash block number that contains the 0x80 terminating
542	 * value. */
543	index_a = mac_end_offset / md_block_size;
544	/* index_b is the hash block number that contains the 64-bit hash
545	 * length, in bits. */
546	index_b = (mac_end_offset + md_length_size) / md_block_size;
547	/* bits is the hash-length in bits. It includes the additional hash
548	 * block for the masked HMAC key, or whole of |header| in the case of
549	 * SSLv3. */
550
551	/* For SSLv3, if we're going to have any starting blocks then we need
552	 * at least two because the header is larger than a single block. */
553	if (num_blocks > variance_blocks + (is_sslv3 ? 1 : 0)) {
554		num_starting_blocks = num_blocks - variance_blocks;
555		k = md_block_size*num_starting_blocks;
556	}
557
558	bits = 8*mac_end_offset;
559	if (!is_sslv3) {
560		/* Compute the initial HMAC block. For SSLv3, the padding and
561		 * secret bytes are included in |header| because they take more
562		 * than a single block. */
563		bits += 8*md_block_size;
564		memset(hmac_pad, 0, md_block_size);
565		OPENSSL_assert(mac_secret_length <= sizeof(hmac_pad));
566		memcpy(hmac_pad, mac_secret, mac_secret_length);
567		for (i = 0; i < md_block_size; i++)
568			hmac_pad[i] ^= 0x36;
569
570		md_transform(md_state.c, hmac_pad);
571	}
572
573	if (length_is_big_endian) {
574		memset(length_bytes, 0, md_length_size - 4);
575		length_bytes[md_length_size - 4] = (unsigned char)(bits >> 24);
576		length_bytes[md_length_size - 3] = (unsigned char)(bits >> 16);
577		length_bytes[md_length_size - 2] = (unsigned char)(bits >> 8);
578		length_bytes[md_length_size - 1] = (unsigned char)bits;
579	} else {
580		memset(length_bytes, 0, md_length_size);
581		length_bytes[md_length_size - 5] = (unsigned char)(bits >> 24);
582		length_bytes[md_length_size - 6] = (unsigned char)(bits >> 16);
583		length_bytes[md_length_size - 7] = (unsigned char)(bits >> 8);
584		length_bytes[md_length_size - 8] = (unsigned char)bits;
585	}
586
587	if (k > 0) {
588		if (is_sslv3) {
589			/* The SSLv3 header is larger than a single block.
590			 * overhang is the number of bytes beyond a single
591			 * block that the header consumes: either 7 bytes
592			 * (SHA1) or 11 bytes (MD5). */
593			unsigned overhang = header_length - md_block_size;
594			md_transform(md_state.c, header);
595			memcpy(first_block, header + md_block_size, overhang);
596			memcpy(first_block + overhang, data, md_block_size - overhang);
597			md_transform(md_state.c, first_block);
598			for (i = 1; i < k/md_block_size - 1; i++)
599				md_transform(md_state.c, data + md_block_size*i - overhang);
600		} else {
601			/* k is a multiple of md_block_size. */
602			memcpy(first_block, header, 13);
603			memcpy(first_block + 13, data, md_block_size - 13);
604			md_transform(md_state.c, first_block);
605			for (i = 1; i < k/md_block_size; i++)
606				md_transform(md_state.c, data + md_block_size*i - 13);
607		}
608	}
609
610	memset(mac_out, 0, sizeof(mac_out));
611
612	/* We now process the final hash blocks. For each block, we construct
613	 * it in constant time. If the |i==index_a| then we'll include the 0x80
614	 * bytes and zero pad etc. For each block we selectively copy it, in
615	 * constant time, to |mac_out|. */
616	for (i = num_starting_blocks; i <= num_starting_blocks + variance_blocks; i++) {
617		unsigned char block[MAX_HASH_BLOCK_SIZE];
618		unsigned char is_block_a = constant_time_eq_8(i, index_a);
619		unsigned char is_block_b = constant_time_eq_8(i, index_b);
620		for (j = 0; j < md_block_size; j++) {
621			unsigned char b = 0, is_past_c, is_past_cp1;
622			if (k < header_length)
623				b = header[k];
624			else if (k < data_plus_mac_plus_padding_size + header_length)
625				b = data[k - header_length];
626			k++;
627
628			is_past_c = is_block_a & constant_time_ge(j, c);
629			is_past_cp1 = is_block_a & constant_time_ge(j, c + 1);
630			/* If this is the block containing the end of the
631			 * application data, and we are at the offset for the
632			 * 0x80 value, then overwrite b with 0x80. */
633			b = (b&~is_past_c) | (0x80&is_past_c);
634			/* If this the the block containing the end of the
635			 * application data and we're past the 0x80 value then
636			 * just write zero. */
637			b = b&~is_past_cp1;
638			/* If this is index_b (the final block), but not
639			 * index_a (the end of the data), then the 64-bit
640			 * length didn't fit into index_a and we're having to
641			 * add an extra block of zeros. */
642			b &= ~is_block_b | is_block_a;
643
644			/* The final bytes of one of the blocks contains the
645			 * length. */
646			if (j >= md_block_size - md_length_size) {
647				/* If this is index_b, write a length byte. */
648				b = (b&~is_block_b) | (is_block_b&length_bytes[j - (md_block_size - md_length_size)]);
649			}
650			block[j] = b;
651		}
652
653		md_transform(md_state.c, block);
654		md_final_raw(md_state.c, block);
655		/* If this is index_b, copy the hash value to |mac_out|. */
656		for (j = 0; j < md_size; j++)
657			mac_out[j] |= block[j]&is_block_b;
658	}
659
660	EVP_MD_CTX_init(&md_ctx);
661	if (!EVP_DigestInit_ex(&md_ctx, ctx->digest, NULL /* engine */)) {
662		EVP_MD_CTX_cleanup(&md_ctx);
663		return 0;
664	}
665	if (is_sslv3) {
666		/* We repurpose |hmac_pad| to contain the SSLv3 pad2 block. */
667		memset(hmac_pad, 0x5c, sslv3_pad_length);
668
669		EVP_DigestUpdate(&md_ctx, mac_secret, mac_secret_length);
670		EVP_DigestUpdate(&md_ctx, hmac_pad, sslv3_pad_length);
671		EVP_DigestUpdate(&md_ctx, mac_out, md_size);
672	} else {
673		/* Complete the HMAC in the standard manner. */
674		for (i = 0; i < md_block_size; i++)
675			hmac_pad[i] ^= 0x6a;
676
677		EVP_DigestUpdate(&md_ctx, hmac_pad, md_block_size);
678		EVP_DigestUpdate(&md_ctx, mac_out, md_size);
679	}
680	EVP_DigestFinal(&md_ctx, md_out, &md_out_size_u);
681	if (md_out_size)
682		*md_out_size = md_out_size_u;
683	EVP_MD_CTX_cleanup(&md_ctx);
684
685	return 1;
686}
687