1/* $OpenBSD: s3_cbc.c,v 1.26 2022/11/26 16:08:55 tb Exp $ */
2/* ====================================================================
3 * Copyright (c) 2012 The OpenSSL Project.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in
14 *    the documentation and/or other materials provided with the
15 *    distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 *    software must display the following acknowledgment:
19 *    "This product includes software developed by the OpenSSL Project
20 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 *    endorse or promote products derived from this software without
24 *    prior written permission. For written permission, please contact
25 *    openssl-core@openssl.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 *    nor may "OpenSSL" appear in their names without prior written
29 *    permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 *    acknowledgment:
33 *    "This product includes software developed by the OpenSSL Project
34 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ====================================================================
49 *
50 * This product includes cryptographic software written by Eric Young
51 * (eay@cryptsoft.com).  This product includes software written by Tim
52 * Hudson (tjh@cryptsoft.com).
53 *
54 */
55
56#include <openssl/md5.h>
57#include <openssl/sha.h>
58
59#include "ssl_local.h"
60
61/* MAX_HASH_BIT_COUNT_BYTES is the maximum number of bytes in the hash's length
62 * field. (SHA-384/512 have 128-bit length.) */
63#define MAX_HASH_BIT_COUNT_BYTES 16
64
65/* MAX_HASH_BLOCK_SIZE is the maximum hash block size that we'll support.
66 * Currently SHA-384/512 has a 128-byte block size and that's the largest
67 * supported by TLS.) */
68#define MAX_HASH_BLOCK_SIZE 128
69
70/* Some utility functions are needed:
71 *
72 * These macros return the given value with the MSB copied to all the other
73 * bits. They use the fact that arithmetic shift shifts-in the sign bit.
74 * However, this is not ensured by the C standard so you may need to replace
75 * them with something else on odd CPUs. */
76#define DUPLICATE_MSB_TO_ALL(x) ((unsigned int)((int)(x) >> (sizeof(int) * 8 - 1)))
77#define DUPLICATE_MSB_TO_ALL_8(x) ((unsigned char)(DUPLICATE_MSB_TO_ALL(x)))
78
79/* constant_time_lt returns 0xff if a<b and 0x00 otherwise. */
80static unsigned int
81constant_time_lt(unsigned int a, unsigned int b)
82{
83	a -= b;
84	return DUPLICATE_MSB_TO_ALL(a);
85}
86
87/* constant_time_ge returns 0xff if a>=b and 0x00 otherwise. */
88static unsigned int
89constant_time_ge(unsigned int a, unsigned int b)
90{
91	a -= b;
92	return DUPLICATE_MSB_TO_ALL(~a);
93}
94
95/* constant_time_eq_8 returns 0xff if a==b and 0x00 otherwise. */
96static unsigned char
97constant_time_eq_8(unsigned int a, unsigned int b)
98{
99	unsigned int c = a ^ b;
100	c--;
101	return DUPLICATE_MSB_TO_ALL_8(c);
102}
103
104/* ssl3_cbc_remove_padding removes the CBC padding from the decrypted, TLS, CBC
105 * record in |rec| in constant time and returns 1 if the padding is valid and
106 * -1 otherwise. It also removes any explicit IV from the start of the record
107 * without leaking any timing about whether there was enough space after the
108 * padding was removed.
109 *
110 * block_size: the block size of the cipher used to encrypt the record.
111 * returns:
112 *   0: (in non-constant time) if the record is publicly invalid.
113 *   1: if the padding was valid
114 *  -1: otherwise. */
115int
116ssl3_cbc_remove_padding(SSL3_RECORD_INTERNAL *rec, unsigned int eiv_len,
117    unsigned int mac_size)
118{
119	unsigned int padding_length, good, to_check, i;
120	const unsigned int overhead = 1 /* padding length byte */ + mac_size;
121
122	/*
123	 * These lengths are all public so we can test them in
124	 * non-constant time.
125	 */
126	if (overhead + eiv_len > rec->length)
127		return 0;
128
129	/* We can now safely skip explicit IV, if any. */
130	rec->data += eiv_len;
131	rec->input += eiv_len;
132	rec->length -= eiv_len;
133
134	padding_length = rec->data[rec->length - 1];
135
136	good = constant_time_ge(rec->length, overhead + padding_length);
137	/* The padding consists of a length byte at the end of the record and
138	 * then that many bytes of padding, all with the same value as the
139	 * length byte. Thus, with the length byte included, there are i+1
140	 * bytes of padding.
141	 *
142	 * We can't check just |padding_length+1| bytes because that leaks
143	 * decrypted information. Therefore we always have to check the maximum
144	 * amount of padding possible. (Again, the length of the record is
145	 * public information so we can use it.) */
146	to_check = 256; /* maximum amount of padding, inc length byte. */
147	if (to_check > rec->length)
148		to_check = rec->length;
149
150	for (i = 0; i < to_check; i++) {
151		unsigned char mask = constant_time_ge(padding_length, i);
152		unsigned char b = rec->data[rec->length - 1 - i];
153		/* The final |padding_length+1| bytes should all have the value
154		 * |padding_length|. Therefore the XOR should be zero. */
155		good &= ~(mask&(padding_length ^ b));
156	}
157
158	/* If any of the final |padding_length+1| bytes had the wrong value,
159	 * one or more of the lower eight bits of |good| will be cleared. We
160	 * AND the bottom 8 bits together and duplicate the result to all the
161	 * bits. */
162	good &= good >> 4;
163	good &= good >> 2;
164	good &= good >> 1;
165	good <<= sizeof(good)*8 - 1;
166	good = DUPLICATE_MSB_TO_ALL(good);
167
168	padding_length = good & (padding_length + 1);
169	rec->length -= padding_length;
170	rec->padding_length = padding_length;
171
172	return (int)((good & 1) | (~good & -1));
173}
174
175/* ssl3_cbc_copy_mac copies |md_size| bytes from the end of |rec| to |out| in
176 * constant time (independent of the concrete value of rec->length, which may
177 * vary within a 256-byte window).
178 *
179 * ssl3_cbc_remove_padding or tls1_cbc_remove_padding must be called prior to
180 * this function.
181 *
182 * On entry:
183 *   rec->orig_len >= md_size
184 *   md_size <= EVP_MAX_MD_SIZE
185 *
186 * If CBC_MAC_ROTATE_IN_PLACE is defined then the rotation is performed with
187 * variable accesses in a 64-byte-aligned buffer. Assuming that this fits into
188 * a single or pair of cache-lines, then the variable memory accesses don't
189 * actually affect the timing. CPUs with smaller cache-lines [if any] are
190 * not multi-core and are not considered vulnerable to cache-timing attacks.
191 */
192#define CBC_MAC_ROTATE_IN_PLACE
193
194void
195ssl3_cbc_copy_mac(unsigned char* out, const SSL3_RECORD_INTERNAL *rec,
196    unsigned int md_size, unsigned int orig_len)
197{
198#if defined(CBC_MAC_ROTATE_IN_PLACE)
199	unsigned char rotated_mac_buf[64 + EVP_MAX_MD_SIZE];
200	unsigned char *rotated_mac;
201#else
202	unsigned char rotated_mac[EVP_MAX_MD_SIZE];
203#endif
204
205	/* mac_end is the index of |rec->data| just after the end of the MAC. */
206	unsigned int mac_end = rec->length;
207	unsigned int mac_start = mac_end - md_size;
208	/* scan_start contains the number of bytes that we can ignore because
209	 * the MAC's position can only vary by 255 bytes. */
210	unsigned int scan_start = 0;
211	unsigned int i, j;
212	unsigned int div_spoiler;
213	unsigned int rotate_offset;
214
215	OPENSSL_assert(orig_len >= md_size);
216	OPENSSL_assert(md_size <= EVP_MAX_MD_SIZE);
217
218#if defined(CBC_MAC_ROTATE_IN_PLACE)
219	rotated_mac = rotated_mac_buf + ((0 - (size_t)rotated_mac_buf)&63);
220#endif
221
222	/* This information is public so it's safe to branch based on it. */
223	if (orig_len > md_size + 255 + 1)
224		scan_start = orig_len - (md_size + 255 + 1);
225	/* div_spoiler contains a multiple of md_size that is used to cause the
226	 * modulo operation to be constant time. Without this, the time varies
227	 * based on the amount of padding when running on Intel chips at least.
228	 *
229	 * The aim of right-shifting md_size is so that the compiler doesn't
230	 * figure out that it can remove div_spoiler as that would require it
231	 * to prove that md_size is always even, which I hope is beyond it. */
232	div_spoiler = md_size >> 1;
233	div_spoiler <<= (sizeof(div_spoiler) - 1) * 8;
234	rotate_offset = (div_spoiler + mac_start - scan_start) % md_size;
235
236	memset(rotated_mac, 0, md_size);
237	for (i = scan_start, j = 0; i < orig_len; i++) {
238		unsigned char mac_started = constant_time_ge(i, mac_start);
239		unsigned char mac_ended = constant_time_ge(i, mac_end);
240		unsigned char b = rec->data[i];
241		rotated_mac[j++] |= b & mac_started & ~mac_ended;
242		j &= constant_time_lt(j, md_size);
243	}
244
245	/* Now rotate the MAC */
246#if defined(CBC_MAC_ROTATE_IN_PLACE)
247	j = 0;
248	for (i = 0; i < md_size; i++) {
249		/* in case cache-line is 32 bytes, touch second line */
250		((volatile unsigned char *)rotated_mac)[rotate_offset^32];
251		out[j++] = rotated_mac[rotate_offset++];
252		rotate_offset &= constant_time_lt(rotate_offset, md_size);
253	}
254#else
255	memset(out, 0, md_size);
256	rotate_offset = md_size - rotate_offset;
257	rotate_offset &= constant_time_lt(rotate_offset, md_size);
258	for (i = 0; i < md_size; i++) {
259		for (j = 0; j < md_size; j++)
260			out[j] |= rotated_mac[i] & constant_time_eq_8(j, rotate_offset);
261		rotate_offset++;
262		rotate_offset &= constant_time_lt(rotate_offset, md_size);
263	}
264#endif
265}
266
267#define l2n(l,c)	(*((c)++)=(unsigned char)(((l)>>24)&0xff), \
268			 *((c)++)=(unsigned char)(((l)>>16)&0xff), \
269			 *((c)++)=(unsigned char)(((l)>> 8)&0xff), \
270			 *((c)++)=(unsigned char)(((l)    )&0xff))
271
272#define l2n8(l,c)	(*((c)++)=(unsigned char)(((l)>>56)&0xff), \
273			 *((c)++)=(unsigned char)(((l)>>48)&0xff), \
274			 *((c)++)=(unsigned char)(((l)>>40)&0xff), \
275			 *((c)++)=(unsigned char)(((l)>>32)&0xff), \
276			 *((c)++)=(unsigned char)(((l)>>24)&0xff), \
277			 *((c)++)=(unsigned char)(((l)>>16)&0xff), \
278			 *((c)++)=(unsigned char)(((l)>> 8)&0xff), \
279			 *((c)++)=(unsigned char)(((l)    )&0xff))
280
281/* u32toLE serialises an unsigned, 32-bit number (n) as four bytes at (p) in
282 * little-endian order. The value of p is advanced by four. */
283#define u32toLE(n, p) \
284	(*((p)++)=(unsigned char)(n), \
285	 *((p)++)=(unsigned char)(n>>8), \
286	 *((p)++)=(unsigned char)(n>>16), \
287	 *((p)++)=(unsigned char)(n>>24))
288
289/* These functions serialize the state of a hash and thus perform the standard
290 * "final" operation without adding the padding and length that such a function
291 * typically does. */
292static void
293tls1_md5_final_raw(void* ctx, unsigned char *md_out)
294{
295	MD5_CTX *md5 = ctx;
296	u32toLE(md5->A, md_out);
297	u32toLE(md5->B, md_out);
298	u32toLE(md5->C, md_out);
299	u32toLE(md5->D, md_out);
300}
301
302static void
303tls1_sha1_final_raw(void* ctx, unsigned char *md_out)
304{
305	SHA_CTX *sha1 = ctx;
306	l2n(sha1->h0, md_out);
307	l2n(sha1->h1, md_out);
308	l2n(sha1->h2, md_out);
309	l2n(sha1->h3, md_out);
310	l2n(sha1->h4, md_out);
311}
312
313static void
314tls1_sha256_final_raw(void* ctx, unsigned char *md_out)
315{
316	SHA256_CTX *sha256 = ctx;
317	unsigned int i;
318
319	for (i = 0; i < 8; i++) {
320		l2n(sha256->h[i], md_out);
321	}
322}
323
324static void
325tls1_sha512_final_raw(void* ctx, unsigned char *md_out)
326{
327	SHA512_CTX *sha512 = ctx;
328	unsigned int i;
329
330	for (i = 0; i < 8; i++) {
331		l2n8(sha512->h[i], md_out);
332	}
333}
334
335/* Largest hash context ever used by the functions above. */
336#define LARGEST_DIGEST_CTX SHA512_CTX
337
338/* Type giving the alignment needed by the above */
339#define LARGEST_DIGEST_CTX_ALIGNMENT SHA_LONG64
340
341/* ssl3_cbc_record_digest_supported returns 1 iff |ctx| uses a hash function
342 * which ssl3_cbc_digest_record supports. */
343char
344ssl3_cbc_record_digest_supported(const EVP_MD_CTX *ctx)
345{
346	switch (EVP_MD_CTX_type(ctx)) {
347	case NID_md5:
348	case NID_sha1:
349	case NID_sha224:
350	case NID_sha256:
351	case NID_sha384:
352	case NID_sha512:
353		return 1;
354	default:
355		return 0;
356	}
357}
358
359/* ssl3_cbc_digest_record computes the MAC of a decrypted, padded TLS
360 * record.
361 *
362 *   ctx: the EVP_MD_CTX from which we take the hash function.
363 *     ssl3_cbc_record_digest_supported must return true for this EVP_MD_CTX.
364 *   md_out: the digest output. At most EVP_MAX_MD_SIZE bytes will be written.
365 *   md_out_size: if non-NULL, the number of output bytes is written here.
366 *   header: the 13-byte, TLS record header.
367 *   data: the record data itself, less any preceeding explicit IV.
368 *   data_plus_mac_size: the secret, reported length of the data and MAC
369 *     once the padding has been removed.
370 *   data_plus_mac_plus_padding_size: the public length of the whole
371 *     record, including padding.
372 *
373 * On entry: by virtue of having been through one of the remove_padding
374 * functions, above, we know that data_plus_mac_size is large enough to contain
375 * a padding byte and MAC. (If the padding was invalid, it might contain the
376 * padding too. )
377 */
378int
379ssl3_cbc_digest_record(const EVP_MD_CTX *ctx, unsigned char* md_out,
380    size_t* md_out_size, const unsigned char header[13],
381    const unsigned char *data, size_t data_plus_mac_size,
382    size_t data_plus_mac_plus_padding_size, const unsigned char *mac_secret,
383    unsigned int mac_secret_length)
384{
385	union {
386		/*
387		 * Alignment here is to allow this to be cast as SHA512_CTX
388		 * without losing alignment required by the 64-bit SHA_LONG64
389		 * integer it contains.
390		 */
391		LARGEST_DIGEST_CTX_ALIGNMENT align;
392		unsigned char c[sizeof(LARGEST_DIGEST_CTX)];
393	} md_state;
394	void (*md_final_raw)(void *ctx, unsigned char *md_out);
395	void (*md_transform)(void *ctx, const unsigned char *block);
396	unsigned int md_size, md_block_size = 64;
397	unsigned int header_length, variance_blocks,
398	len, max_mac_bytes, num_blocks,
399	num_starting_blocks, k, mac_end_offset, c, index_a, index_b;
400	unsigned int bits;	/* at most 18 bits */
401	unsigned char length_bytes[MAX_HASH_BIT_COUNT_BYTES];
402	/* hmac_pad is the masked HMAC key. */
403	unsigned char hmac_pad[MAX_HASH_BLOCK_SIZE];
404	unsigned char first_block[MAX_HASH_BLOCK_SIZE];
405	unsigned char mac_out[EVP_MAX_MD_SIZE];
406	unsigned int i, j, md_out_size_u;
407	EVP_MD_CTX *md_ctx;
408	/* mdLengthSize is the number of bytes in the length field that terminates
409	* the hash. */
410	unsigned int md_length_size = 8;
411	char length_is_big_endian = 1;
412
413	/* This is a, hopefully redundant, check that allows us to forget about
414	 * many possible overflows later in this function. */
415	OPENSSL_assert(data_plus_mac_plus_padding_size < 1024*1024);
416
417	switch (EVP_MD_CTX_type(ctx)) {
418	case NID_md5:
419		MD5_Init((MD5_CTX*)md_state.c);
420		md_final_raw = tls1_md5_final_raw;
421		md_transform = (void(*)(void *ctx, const unsigned char *block)) MD5_Transform;
422		md_size = 16;
423		length_is_big_endian = 0;
424		break;
425	case NID_sha1:
426		SHA1_Init((SHA_CTX*)md_state.c);
427		md_final_raw = tls1_sha1_final_raw;
428		md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA1_Transform;
429		md_size = 20;
430		break;
431	case NID_sha224:
432		SHA224_Init((SHA256_CTX*)md_state.c);
433		md_final_raw = tls1_sha256_final_raw;
434		md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA256_Transform;
435		md_size = 224/8;
436		break;
437	case NID_sha256:
438		SHA256_Init((SHA256_CTX*)md_state.c);
439		md_final_raw = tls1_sha256_final_raw;
440		md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA256_Transform;
441		md_size = 32;
442		break;
443	case NID_sha384:
444		SHA384_Init((SHA512_CTX*)md_state.c);
445		md_final_raw = tls1_sha512_final_raw;
446		md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA512_Transform;
447		md_size = 384/8;
448		md_block_size = 128;
449		md_length_size = 16;
450		break;
451	case NID_sha512:
452		SHA512_Init((SHA512_CTX*)md_state.c);
453		md_final_raw = tls1_sha512_final_raw;
454		md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA512_Transform;
455		md_size = 64;
456		md_block_size = 128;
457		md_length_size = 16;
458		break;
459	default:
460		/* ssl3_cbc_record_digest_supported should have been
461		 * called first to check that the hash function is
462		 * supported. */
463		OPENSSL_assert(0);
464		if (md_out_size)
465			*md_out_size = 0;
466		return 0;
467	}
468
469	OPENSSL_assert(md_length_size <= MAX_HASH_BIT_COUNT_BYTES);
470	OPENSSL_assert(md_block_size <= MAX_HASH_BLOCK_SIZE);
471	OPENSSL_assert(md_size <= EVP_MAX_MD_SIZE);
472
473	header_length = 13;
474
475	/* variance_blocks is the number of blocks of the hash that we have to
476	 * calculate in constant time because they could be altered by the
477	 * padding value.
478	 *
479	 * TLSv1 has MACs up to 48 bytes long (SHA-384) and the padding is not
480	 * required to be minimal. Therefore we say that the final six blocks
481	 * can vary based on the padding.
482	 *
483	 * Later in the function, if the message is short and there obviously
484	 * cannot be this many blocks then variance_blocks can be reduced. */
485	variance_blocks = 6;
486	/* From now on we're dealing with the MAC, which conceptually has 13
487	 * bytes of `header' before the start of the data (TLS) */
488	len = data_plus_mac_plus_padding_size + header_length;
489	/* max_mac_bytes contains the maximum bytes of bytes in the MAC, including
490	* |header|, assuming that there's no padding. */
491	max_mac_bytes = len - md_size - 1;
492	/* num_blocks is the maximum number of hash blocks. */
493	num_blocks = (max_mac_bytes + 1 + md_length_size + md_block_size - 1) / md_block_size;
494	/* In order to calculate the MAC in constant time we have to handle
495	 * the final blocks specially because the padding value could cause the
496	 * end to appear somewhere in the final |variance_blocks| blocks and we
497	 * can't leak where. However, |num_starting_blocks| worth of data can
498	 * be hashed right away because no padding value can affect whether
499	 * they are plaintext. */
500	num_starting_blocks = 0;
501	/* k is the starting byte offset into the conceptual header||data where
502	 * we start processing. */
503	k = 0;
504	/* mac_end_offset is the index just past the end of the data to be
505	 * MACed. */
506	mac_end_offset = data_plus_mac_size + header_length - md_size;
507	/* c is the index of the 0x80 byte in the final hash block that
508	 * contains application data. */
509	c = mac_end_offset % md_block_size;
510	/* index_a is the hash block number that contains the 0x80 terminating
511	 * value. */
512	index_a = mac_end_offset / md_block_size;
513	/* index_b is the hash block number that contains the 64-bit hash
514	 * length, in bits. */
515	index_b = (mac_end_offset + md_length_size) / md_block_size;
516	/* bits is the hash-length in bits. It includes the additional hash
517	 * block for the masked HMAC key. */
518
519	if (num_blocks > variance_blocks) {
520		num_starting_blocks = num_blocks - variance_blocks;
521		k = md_block_size*num_starting_blocks;
522	}
523
524	bits = 8*mac_end_offset;
525	/* Compute the initial HMAC block. */
526	bits += 8*md_block_size;
527	memset(hmac_pad, 0, md_block_size);
528	OPENSSL_assert(mac_secret_length <= sizeof(hmac_pad));
529	memcpy(hmac_pad, mac_secret, mac_secret_length);
530	for (i = 0; i < md_block_size; i++)
531		hmac_pad[i] ^= 0x36;
532
533	md_transform(md_state.c, hmac_pad);
534
535	if (length_is_big_endian) {
536		memset(length_bytes, 0, md_length_size - 4);
537		length_bytes[md_length_size - 4] = (unsigned char)(bits >> 24);
538		length_bytes[md_length_size - 3] = (unsigned char)(bits >> 16);
539		length_bytes[md_length_size - 2] = (unsigned char)(bits >> 8);
540		length_bytes[md_length_size - 1] = (unsigned char)bits;
541	} else {
542		memset(length_bytes, 0, md_length_size);
543		length_bytes[md_length_size - 5] = (unsigned char)(bits >> 24);
544		length_bytes[md_length_size - 6] = (unsigned char)(bits >> 16);
545		length_bytes[md_length_size - 7] = (unsigned char)(bits >> 8);
546		length_bytes[md_length_size - 8] = (unsigned char)bits;
547	}
548
549	if (k > 0) {
550		/* k is a multiple of md_block_size. */
551		memcpy(first_block, header, 13);
552		memcpy(first_block + 13, data, md_block_size - 13);
553		md_transform(md_state.c, first_block);
554		for (i = 1; i < k/md_block_size; i++)
555			md_transform(md_state.c, data + md_block_size*i - 13);
556	}
557
558	memset(mac_out, 0, sizeof(mac_out));
559
560	/* We now process the final hash blocks. For each block, we construct
561	 * it in constant time. If the |i==index_a| then we'll include the 0x80
562	 * bytes and zero pad etc. For each block we selectively copy it, in
563	 * constant time, to |mac_out|. */
564	for (i = num_starting_blocks; i <= num_starting_blocks + variance_blocks; i++) {
565		unsigned char block[MAX_HASH_BLOCK_SIZE];
566		unsigned char is_block_a = constant_time_eq_8(i, index_a);
567		unsigned char is_block_b = constant_time_eq_8(i, index_b);
568		for (j = 0; j < md_block_size; j++) {
569			unsigned char b = 0, is_past_c, is_past_cp1;
570			if (k < header_length)
571				b = header[k];
572			else if (k < data_plus_mac_plus_padding_size + header_length)
573				b = data[k - header_length];
574			k++;
575
576			is_past_c = is_block_a & constant_time_ge(j, c);
577			is_past_cp1 = is_block_a & constant_time_ge(j, c + 1);
578			/* If this is the block containing the end of the
579			 * application data, and we are at the offset for the
580			 * 0x80 value, then overwrite b with 0x80. */
581			b = (b&~is_past_c) | (0x80&is_past_c);
582			/* If this is the block containing the end of the
583			 * application data and we're past the 0x80 value then
584			 * just write zero. */
585			b = b&~is_past_cp1;
586			/* If this is index_b (the final block), but not
587			 * index_a (the end of the data), then the 64-bit
588			 * length didn't fit into index_a and we're having to
589			 * add an extra block of zeros. */
590			b &= ~is_block_b | is_block_a;
591
592			/* The final bytes of one of the blocks contains the
593			 * length. */
594			if (j >= md_block_size - md_length_size) {
595				/* If this is index_b, write a length byte. */
596				b = (b&~is_block_b) | (is_block_b&length_bytes[j - (md_block_size - md_length_size)]);
597			}
598			block[j] = b;
599		}
600
601		md_transform(md_state.c, block);
602		md_final_raw(md_state.c, block);
603		/* If this is index_b, copy the hash value to |mac_out|. */
604		for (j = 0; j < md_size; j++)
605			mac_out[j] |= block[j]&is_block_b;
606	}
607
608	if ((md_ctx = EVP_MD_CTX_new()) == NULL)
609		return 0;
610	if (!EVP_DigestInit_ex(md_ctx, EVP_MD_CTX_md(ctx), NULL /* engine */)) {
611		EVP_MD_CTX_free(md_ctx);
612		return 0;
613	}
614
615	/* Complete the HMAC in the standard manner. */
616	for (i = 0; i < md_block_size; i++)
617		hmac_pad[i] ^= 0x6a;
618
619	EVP_DigestUpdate(md_ctx, hmac_pad, md_block_size);
620	EVP_DigestUpdate(md_ctx, mac_out, md_size);
621
622	EVP_DigestFinal(md_ctx, md_out, &md_out_size_u);
623	if (md_out_size)
624		*md_out_size = md_out_size_u;
625	EVP_MD_CTX_free(md_ctx);
626
627	return 1;
628}
629