1/*	$OpenBSD: e_sqrtl.c,v 1.3 2016/09/12 19:47:02 guenther Exp $	*/
2/*-
3 * Copyright (c) 2007 Steven G. Kargl
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice unmodified, this list of conditions, and the following
11 *    disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 */
27
28#include <sys/types.h>
29#include <machine/ieee.h>	/* for struct ieee_ext */
30#include <fenv.h>
31#include <float.h>
32#include <math.h>
33
34#ifdef EXT_IMPLICIT_NBIT
35#define	LDBL_NBIT	0
36#else /* EXT_IMPLICIT_NBIT */
37#define	LDBL_NBIT	0x80000000
38#endif /* EXT_IMPLICIT_NBIT */
39
40/* Return (x + ulp) for normal positive x. Assumes no overflow. */
41static inline long double
42inc(long double x)
43{
44	struct ieee_ext *p = (struct ieee_ext *)&x;
45
46#ifdef EXT_FRACHMBITS
47	uint64_t frach;
48
49	frach = ((uint64_t)p->ext_frach << EXT_FRACHMBITS) | p->ext_frachm;
50	frach++;
51	p->ext_frach = frach >> EXT_FRACHMBITS;
52	p->ext_frachm = frach & 0x00000000ffffffff;
53#else /* EXT_FRACHMBITS */
54	uint32_t frach;
55
56	p->ext_frach++;
57	frach = p->ext_frach;
58#endif /* EXT_FRACHMBITS */
59
60	if (frach == 0) {
61
62#ifdef EXT_FRACLMBITS
63		uint64_t fracl;
64
65		fracl = ((uint64_t)p->ext_fraclm << EXT_FRACLBITS) |
66			p->ext_fracl;
67		fracl++;
68		p->ext_fraclm = fracl >> EXT_FRACLBITS;
69		p->ext_fracl = fracl & 0x00000000ffffffff;
70#else /* EXT_FRACLMBITS */
71		uint32_t fracl;
72
73		p->ext_fracl++;
74		fracl = p->ext_fracl;
75#endif /* EXT_FRACLMBITS */
76
77		if (fracl == 0) {
78			p->ext_exp++;
79			p->ext_frach |= LDBL_NBIT;
80		}
81	}
82
83	return x;
84}
85
86/* Return (x - ulp) for normal positive x. Assumes no underflow. */
87static inline long double
88dec(long double x)
89{
90	struct ieee_ext *p = (struct ieee_ext *)&x;
91
92#ifdef EXT_FRACLMBITS
93	uint64_t fracl;
94
95	fracl = ((uint64_t)p->ext_fraclm << EXT_FRACLBITS) | p->ext_fracl;
96	fracl--;
97	p->ext_fraclm = fracl >> EXT_FRACLBITS;
98	p->ext_fracl = fracl & 0x00000000ffffffff;
99#else /* EXT_FRACLMBITS */
100	uint32_t fracl;
101
102	p->ext_fracl--;
103	fracl = p->ext_fracl;
104#endif /* EXT_FRACLMBITS */
105
106	if (fracl == 0) {
107
108#ifdef EXT_FRACHMBITS
109		uint64_t frach;
110
111		frach = ((uint64_t)p->ext_frach << EXT_FRACHMBITS) |
112			p->ext_frachm;
113		frach--;
114		p->ext_frach = frach >> EXT_FRACHMBITS;
115		p->ext_frachm = frach & 0x00000000ffffffff;
116#else /* EXT_FRACHMBITS */
117		uint32_t frach;
118
119		p->ext_frach--;
120		frach = p->ext_frach;
121#endif /* EXT_FRACHMBITS */
122
123		if (frach == LDBL_NBIT) {
124			p->ext_exp--;
125			p->ext_frach |= LDBL_NBIT;
126		}
127	}
128
129	return x;
130}
131
132/*
133 * This is slow, but simple and portable. You should use hardware sqrt
134 * if possible.
135 */
136
137long double
138sqrtl(long double x)
139{
140	union {
141		long double e;
142		struct ieee_ext bits;
143	} u;
144	int k, r;
145	long double lo, xn;
146
147	u.e = x;
148
149	/* If x = NaN, then sqrt(x) = NaN. */
150	/* If x = Inf, then sqrt(x) = Inf. */
151	/* If x = -Inf, then sqrt(x) = NaN. */
152	if (u.bits.ext_exp == LDBL_MAX_EXP * 2 - 1)
153		return (x * x + x);
154
155	/* If x = +-0, then sqrt(x) = +-0. */
156	if ((u.bits.ext_frach
157#ifdef EXT_FRACHMBITS
158		| u.bits.ext_frachm
159#endif /* EXT_FRACHMBITS */
160#ifdef EXT_FRACLMBITS
161		| u.bits.ext_fraclm
162#endif /* EXT_FRACLMBITS */
163		| u.bits.ext_fracl | u.bits.ext_exp) == 0)
164		return (x);
165
166	/* If x < 0, then raise invalid and return NaN */
167	if (u.bits.ext_sign)
168		return ((x - x) / (x - x));
169
170	if (u.bits.ext_exp == 0) {
171		/* Adjust subnormal numbers. */
172		u.e *= 0x1.0p514;
173		k = -514;
174	} else {
175		k = 0;
176	}
177	/*
178	 * u.e is a normal number, so break it into u.e = e*2^n where
179	 * u.e = (2*e)*2^2k for odd n and u.e = (4*e)*2^2k for even n.
180	 */
181	if ((u.bits.ext_exp - 0x3ffe) & 1) {	/* n is odd.     */
182		k += u.bits.ext_exp - 0x3fff;	/* 2k = n - 1.   */
183		u.bits.ext_exp = 0x3fff;	/* u.e in [1,2). */
184	} else {
185		k += u.bits.ext_exp - 0x4000;	/* 2k = n - 2.   */
186		u.bits.ext_exp = 0x4000;	/* u.e in [2,4). */
187	}
188
189	/*
190	 * Newton's iteration.
191	 * Split u.e into a high and low part to achieve additional precision.
192	 */
193	xn = sqrt(u.e);			/* 53-bit estimate of sqrtl(x). */
194#if LDBL_MANT_DIG > 100
195	xn = (xn + (u.e / xn)) * 0.5;	/* 106-bit estimate. */
196#endif
197	lo = u.e;
198	u.bits.ext_fracl = 0;		/* Zero out lower bits. */
199#ifdef EXT_FRACLMBITS
200	u.bits.ext_fraclm = 0;
201#endif /* EXT_FRACLMBITS */
202	lo = (lo - u.e) / xn;		/* Low bits divided by xn. */
203	xn = xn + (u.e / xn);		/* High portion of estimate. */
204	u.e = xn + lo;			/* Combine everything. */
205	u.bits.ext_exp += (k >> 1) - 1;
206
207	feclearexcept(FE_INEXACT);
208	r = fegetround();
209	fesetround(FE_TOWARDZERO);	/* Set to round-toward-zero. */
210	xn = x / u.e;			/* Chopped quotient (inexact?). */
211
212	if (!fetestexcept(FE_INEXACT)) { /* Quotient is exact. */
213		if (xn == u.e) {
214			fesetround(r);
215			return (u.e);
216		}
217		/* Round correctly for inputs like x = y**2 - ulp. */
218		xn = dec(xn);		/* xn = xn - ulp. */
219	}
220
221	if (r == FE_TONEAREST) {
222		xn = inc(xn);		/* xn = xn + ulp. */
223	} else if (r == FE_UPWARD) {
224		u.e = inc(u.e);		/* u.e = u.e + ulp. */
225		xn = inc(xn);		/* xn  = xn + ulp. */
226	}
227	u.e = u.e + xn;			/* Chopped sum. */
228	fesetround(r);			/* Restore env and raise inexact */
229	u.bits.ext_exp--;
230	return (u.e);
231}
232DEF_STD(sqrtl);
233