bn_mul.c revision 1.26
1/* $OpenBSD: bn_mul.c,v 1.26 2023/01/20 10:00:51 jsing Exp $ */
2/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to.  The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young's, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 *    notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 *    notice, this list of conditions and the following disclaimer in the
30 *    documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 *    must display the following acknowledgement:
33 *    "This product includes cryptographic software written by
34 *     Eric Young (eay@cryptsoft.com)"
35 *    The word 'cryptographic' can be left out if the rouines from the library
36 *    being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 *    the apps directory (application code) you must include an acknowledgement:
39 *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed.  i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58
59#include <assert.h>
60#include <stdio.h>
61#include <string.h>
62
63#include <openssl/opensslconf.h>
64
65#include "bn_local.h"
66
67/* Here follows specialised variants of bn_add_words() and
68   bn_sub_words().  They have the property performing operations on
69   arrays of different sizes.  The sizes of those arrays is expressed through
70   cl, which is the common length ( basicall, min(len(a),len(b)) ), and dl,
71   which is the delta between the two lengths, calculated as len(a)-len(b).
72   All lengths are the number of BN_ULONGs...  For the operations that require
73   a result array as parameter, it must have the length cl+abs(dl).
74   These functions should probably end up in bn_asm.c as soon as there are
75   assembler counterparts for the systems that use assembler files.  */
76
77BN_ULONG
78bn_add_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int cl,
79    int dl)
80{
81	BN_ULONG c, l, t;
82
83	assert(cl >= 0);
84	c = bn_add_words(r, a, b, cl);
85
86	if (dl == 0)
87		return c;
88
89	r += cl;
90	a += cl;
91	b += cl;
92
93	if (dl < 0) {
94		int save_dl = dl;
95		while (c) {
96			l = (c + b[0]) & BN_MASK2;
97			c = (l < c);
98			r[0] = l;
99			if (++dl >= 0)
100				break;
101
102			l = (c + b[1]) & BN_MASK2;
103			c = (l < c);
104			r[1] = l;
105			if (++dl >= 0)
106				break;
107
108			l = (c + b[2]) & BN_MASK2;
109			c = (l < c);
110			r[2] = l;
111			if (++dl >= 0)
112				break;
113
114			l = (c + b[3]) & BN_MASK2;
115			c = (l < c);
116			r[3] = l;
117			if (++dl >= 0)
118				break;
119
120			save_dl = dl;
121			b += 4;
122			r += 4;
123		}
124		if (dl < 0) {
125			if (save_dl < dl) {
126				switch (dl - save_dl) {
127				case 1:
128					r[1] = b[1];
129					if (++dl >= 0)
130						break;
131				case 2:
132					r[2] = b[2];
133					if (++dl >= 0)
134						break;
135				case 3:
136					r[3] = b[3];
137					if (++dl >= 0)
138						break;
139				}
140				b += 4;
141				r += 4;
142			}
143		}
144		if (dl < 0) {
145			for (;;) {
146				r[0] = b[0];
147				if (++dl >= 0)
148					break;
149				r[1] = b[1];
150				if (++dl >= 0)
151					break;
152				r[2] = b[2];
153				if (++dl >= 0)
154					break;
155				r[3] = b[3];
156				if (++dl >= 0)
157					break;
158
159				b += 4;
160				r += 4;
161			}
162		}
163	} else {
164		int save_dl = dl;
165		while (c) {
166			t = (a[0] + c) & BN_MASK2;
167			c = (t < c);
168			r[0] = t;
169			if (--dl <= 0)
170				break;
171
172			t = (a[1] + c) & BN_MASK2;
173			c = (t < c);
174			r[1] = t;
175			if (--dl <= 0)
176				break;
177
178			t = (a[2] + c) & BN_MASK2;
179			c = (t < c);
180			r[2] = t;
181			if (--dl <= 0)
182				break;
183
184			t = (a[3] + c) & BN_MASK2;
185			c = (t < c);
186			r[3] = t;
187			if (--dl <= 0)
188				break;
189
190			save_dl = dl;
191			a += 4;
192			r += 4;
193		}
194		if (dl > 0) {
195			if (save_dl > dl) {
196				switch (save_dl - dl) {
197				case 1:
198					r[1] = a[1];
199					if (--dl <= 0)
200						break;
201				case 2:
202					r[2] = a[2];
203					if (--dl <= 0)
204						break;
205				case 3:
206					r[3] = a[3];
207					if (--dl <= 0)
208						break;
209				}
210				a += 4;
211				r += 4;
212			}
213		}
214		if (dl > 0) {
215			for (;;) {
216				r[0] = a[0];
217				if (--dl <= 0)
218					break;
219				r[1] = a[1];
220				if (--dl <= 0)
221					break;
222				r[2] = a[2];
223				if (--dl <= 0)
224					break;
225				r[3] = a[3];
226				if (--dl <= 0)
227					break;
228
229				a += 4;
230				r += 4;
231			}
232		}
233	}
234	return c;
235}
236
237#if defined(OPENSSL_NO_ASM) || !defined(OPENSSL_BN_ASM_PART_WORDS)
238BN_ULONG
239bn_sub_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int cl,
240    int dl)
241{
242	BN_ULONG c, t;
243
244	assert(cl >= 0);
245	c = bn_sub_words(r, a, b, cl);
246
247	if (dl == 0)
248		return c;
249
250	r += cl;
251	a += cl;
252	b += cl;
253
254	if (dl < 0) {
255		for (;;) {
256			t = b[0];
257			r[0] = (0 - t - c) & BN_MASK2;
258			if (t != 0)
259				c = 1;
260			if (++dl >= 0)
261				break;
262
263			t = b[1];
264			r[1] = (0 - t - c) & BN_MASK2;
265			if (t != 0)
266				c = 1;
267			if (++dl >= 0)
268				break;
269
270			t = b[2];
271			r[2] = (0 - t - c) & BN_MASK2;
272			if (t != 0)
273				c = 1;
274			if (++dl >= 0)
275				break;
276
277			t = b[3];
278			r[3] = (0 - t - c) & BN_MASK2;
279			if (t != 0)
280				c = 1;
281			if (++dl >= 0)
282				break;
283
284			b += 4;
285			r += 4;
286		}
287	} else {
288		int save_dl = dl;
289		while (c) {
290			t = a[0];
291			r[0] = (t - c) & BN_MASK2;
292			if (t != 0)
293				c = 0;
294			if (--dl <= 0)
295				break;
296
297			t = a[1];
298			r[1] = (t - c) & BN_MASK2;
299			if (t != 0)
300				c = 0;
301			if (--dl <= 0)
302				break;
303
304			t = a[2];
305			r[2] = (t - c) & BN_MASK2;
306			if (t != 0)
307				c = 0;
308			if (--dl <= 0)
309				break;
310
311			t = a[3];
312			r[3] = (t - c) & BN_MASK2;
313			if (t != 0)
314				c = 0;
315			if (--dl <= 0)
316				break;
317
318			save_dl = dl;
319			a += 4;
320			r += 4;
321		}
322		if (dl > 0) {
323			if (save_dl > dl) {
324				switch (save_dl - dl) {
325				case 1:
326					r[1] = a[1];
327					if (--dl <= 0)
328						break;
329				case 2:
330					r[2] = a[2];
331					if (--dl <= 0)
332						break;
333				case 3:
334					r[3] = a[3];
335					if (--dl <= 0)
336						break;
337				}
338				a += 4;
339				r += 4;
340			}
341		}
342		if (dl > 0) {
343			for (;;) {
344				r[0] = a[0];
345				if (--dl <= 0)
346					break;
347				r[1] = a[1];
348				if (--dl <= 0)
349					break;
350				r[2] = a[2];
351				if (--dl <= 0)
352					break;
353				r[3] = a[3];
354				if (--dl <= 0)
355					break;
356
357				a += 4;
358				r += 4;
359			}
360		}
361	}
362	return c;
363}
364#endif
365
366void
367bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb)
368{
369	BN_ULONG *rr;
370
371
372	if (na < nb) {
373		int itmp;
374		BN_ULONG *ltmp;
375
376		itmp = na;
377		na = nb;
378		nb = itmp;
379		ltmp = a;
380		a = b;
381		b = ltmp;
382
383	}
384	rr = &(r[na]);
385	if (nb <= 0) {
386		(void)bn_mul_words(r, a, na, 0);
387		return;
388	} else
389		rr[0] = bn_mul_words(r, a, na, b[0]);
390
391	for (;;) {
392		if (--nb <= 0)
393			return;
394		rr[1] = bn_mul_add_words(&(r[1]), a, na, b[1]);
395		if (--nb <= 0)
396			return;
397		rr[2] = bn_mul_add_words(&(r[2]), a, na, b[2]);
398		if (--nb <= 0)
399			return;
400		rr[3] = bn_mul_add_words(&(r[3]), a, na, b[3]);
401		if (--nb <= 0)
402			return;
403		rr[4] = bn_mul_add_words(&(r[4]), a, na, b[4]);
404		rr += 4;
405		r += 4;
406		b += 4;
407	}
408}
409
410void
411bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n)
412{
413	bn_mul_words(r, a, n, b[0]);
414
415	for (;;) {
416		if (--n <= 0)
417			return;
418		bn_mul_add_words(&(r[1]), a, n, b[1]);
419		if (--n <= 0)
420			return;
421		bn_mul_add_words(&(r[2]), a, n, b[2]);
422		if (--n <= 0)
423			return;
424		bn_mul_add_words(&(r[3]), a, n, b[3]);
425		if (--n <= 0)
426			return;
427		bn_mul_add_words(&(r[4]), a, n, b[4]);
428		r += 4;
429		b += 4;
430	}
431}
432
433#ifdef BN_RECURSION
434/* a and b must be the same size, which is n2.
435 * r needs to be n2 words and t needs to be n2*2
436 * l is the low words of the output.
437 * t needs to be n2*3
438 */
439void
440bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *l, int n2,
441    BN_ULONG *t)
442{
443	int i, n;
444	int c1, c2;
445	int neg, oneg, zero;
446	BN_ULONG ll, lc, *lp, *mp;
447
448	n = n2 / 2;
449
450	/* Calculate (al-ah)*(bh-bl) */
451	neg = zero = 0;
452	c1 = bn_cmp_words(&(a[0]), &(a[n]), n);
453	c2 = bn_cmp_words(&(b[n]), &(b[0]), n);
454	switch (c1 * 3 + c2) {
455	case -4:
456		bn_sub_words(&(r[0]), &(a[n]), &(a[0]), n);
457		bn_sub_words(&(r[n]), &(b[0]), &(b[n]), n);
458		break;
459	case -3:
460		zero = 1;
461		break;
462	case -2:
463		bn_sub_words(&(r[0]), &(a[n]), &(a[0]), n);
464		bn_sub_words(&(r[n]), &(b[n]), &(b[0]), n);
465		neg = 1;
466		break;
467	case -1:
468	case 0:
469	case 1:
470		zero = 1;
471		break;
472	case 2:
473		bn_sub_words(&(r[0]), &(a[0]), &(a[n]), n);
474		bn_sub_words(&(r[n]), &(b[0]), &(b[n]), n);
475		neg = 1;
476		break;
477	case 3:
478		zero = 1;
479		break;
480	case 4:
481		bn_sub_words(&(r[0]), &(a[0]), &(a[n]), n);
482		bn_sub_words(&(r[n]), &(b[n]), &(b[0]), n);
483		break;
484	}
485
486	oneg = neg;
487	/* t[10] = (a[0]-a[1])*(b[1]-b[0]) */
488	/* r[10] = (a[1]*b[1]) */
489# ifdef BN_MUL_COMBA
490	if (n == 8) {
491		bn_mul_comba8(&(t[0]), &(r[0]), &(r[n]));
492		bn_mul_comba8(r, &(a[n]), &(b[n]));
493	} else
494# endif
495	{
496		bn_mul_recursive(&(t[0]), &(r[0]), &(r[n]), n, 0, 0, &(t[n2]));
497		bn_mul_recursive(r, &(a[n]), &(b[n]), n, 0, 0, &(t[n2]));
498	}
499
500	/* s0 == low(al*bl)
501	 * s1 == low(ah*bh)+low((al-ah)*(bh-bl))+low(al*bl)+high(al*bl)
502	 * We know s0 and s1 so the only unknown is high(al*bl)
503	 * high(al*bl) == s1 - low(ah*bh+s0+(al-ah)*(bh-bl))
504	 * high(al*bl) == s1 - (r[0]+l[0]+t[0])
505	 */
506	if (l != NULL) {
507		lp = &(t[n2 + n]);
508		c1 = (int)(bn_add_words(lp, &(r[0]), &(l[0]), n));
509	} else {
510		c1 = 0;
511		lp = &(r[0]);
512	}
513
514	if (neg)
515		neg = (int)(bn_sub_words(&(t[n2]), lp, &(t[0]), n));
516	else {
517		bn_add_words(&(t[n2]), lp, &(t[0]), n);
518		neg = 0;
519	}
520
521	if (l != NULL) {
522		bn_sub_words(&(t[n2 + n]), &(l[n]), &(t[n2]), n);
523	} else {
524		lp = &(t[n2 + n]);
525		mp = &(t[n2]);
526		for (i = 0; i < n; i++)
527			lp[i] = ((~mp[i]) + 1) & BN_MASK2;
528	}
529
530	/* s[0] = low(al*bl)
531	 * t[3] = high(al*bl)
532	 * t[10] = (a[0]-a[1])*(b[1]-b[0]) neg is the sign
533	 * r[10] = (a[1]*b[1])
534	 */
535	/* R[10] = al*bl
536	 * R[21] = al*bl + ah*bh + (a[0]-a[1])*(b[1]-b[0])
537	 * R[32] = ah*bh
538	 */
539	/* R[1]=t[3]+l[0]+r[0](+-)t[0] (have carry/borrow)
540	 * R[2]=r[0]+t[3]+r[1](+-)t[1] (have carry/borrow)
541	 * R[3]=r[1]+(carry/borrow)
542	 */
543	if (l != NULL) {
544		lp = &(t[n2]);
545		c1 = (int)(bn_add_words(lp, &(t[n2 + n]), &(l[0]), n));
546	} else {
547		lp = &(t[n2 + n]);
548		c1 = 0;
549	}
550	c1 += (int)(bn_add_words(&(t[n2]), lp, &(r[0]), n));
551	if (oneg)
552		c1 -= (int)(bn_sub_words(&(t[n2]), &(t[n2]), &(t[0]), n));
553	else
554		c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), &(t[0]), n));
555
556	c2 = (int)(bn_add_words(&(r[0]), &(r[0]), &(t[n2 + n]), n));
557	c2 += (int)(bn_add_words(&(r[0]), &(r[0]), &(r[n]), n));
558	if (oneg)
559		c2 -= (int)(bn_sub_words(&(r[0]), &(r[0]), &(t[n]), n));
560	else
561		c2 += (int)(bn_add_words(&(r[0]), &(r[0]), &(t[n]), n));
562
563	if (c1 != 0) /* Add starting at r[0], could be +ve or -ve */
564	{
565		i = 0;
566		if (c1 > 0) {
567			lc = c1;
568			do {
569				ll = (r[i] + lc) & BN_MASK2;
570				r[i++] = ll;
571				lc = (lc > ll);
572			} while (lc);
573		} else {
574			lc = -c1;
575			do {
576				ll = r[i];
577				r[i++] = (ll - lc) & BN_MASK2;
578				lc = (lc > ll);
579			} while (lc);
580		}
581	}
582	if (c2 != 0) /* Add starting at r[1] */
583	{
584		i = n;
585		if (c2 > 0) {
586			lc = c2;
587			do {
588				ll = (r[i] + lc) & BN_MASK2;
589				r[i++] = ll;
590				lc = (lc > ll);
591			} while (lc);
592		} else {
593			lc = -c2;
594			do {
595				ll = r[i];
596				r[i++] = (ll - lc) & BN_MASK2;
597				lc = (lc > ll);
598			} while (lc);
599		}
600	}
601}
602
603/* Karatsuba recursive multiplication algorithm
604 * (cf. Knuth, The Art of Computer Programming, Vol. 2) */
605
606/* r is 2*n2 words in size,
607 * a and b are both n2 words in size.
608 * n2 must be a power of 2.
609 * We multiply and return the result.
610 * t must be 2*n2 words in size
611 * We calculate
612 * a[0]*b[0]
613 * a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0])
614 * a[1]*b[1]
615 */
616/* dnX may not be positive, but n2/2+dnX has to be */
617void
618bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, int dna,
619    int dnb, BN_ULONG *t)
620{
621	int n = n2 / 2, c1, c2;
622	int tna = n + dna, tnb = n + dnb;
623	unsigned int neg, zero;
624	BN_ULONG ln, lo, *p;
625
626# ifdef BN_MUL_COMBA
627#  if 0
628	if (n2 == 4) {
629		bn_mul_comba4(r, a, b);
630		return;
631	}
632#  endif
633	/* Only call bn_mul_comba 8 if n2 == 8 and the
634	 * two arrays are complete [steve]
635	 */
636	if (n2 == 8 && dna == 0 && dnb == 0) {
637		bn_mul_comba8(r, a, b);
638		return;
639	}
640# endif /* BN_MUL_COMBA */
641	/* Else do normal multiply */
642	if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL) {
643		bn_mul_normal(r, a, n2 + dna, b, n2 + dnb);
644		if ((dna + dnb) < 0)
645			memset(&r[2*n2 + dna + dnb], 0,
646			    sizeof(BN_ULONG) * -(dna + dnb));
647		return;
648	}
649	/* r=(a[0]-a[1])*(b[1]-b[0]) */
650	c1 = bn_cmp_part_words(a, &(a[n]), tna, n - tna);
651	c2 = bn_cmp_part_words(&(b[n]), b,tnb, tnb - n);
652	zero = neg = 0;
653	switch (c1 * 3 + c2) {
654	case -4:
655		bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */
656		bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */
657		break;
658	case -3:
659		zero = 1;
660		break;
661	case -2:
662		bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */
663		bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); /* + */
664		neg = 1;
665		break;
666	case -1:
667	case 0:
668	case 1:
669		zero = 1;
670		break;
671	case 2:
672		bn_sub_part_words(t, a, &(a[n]), tna, n - tna); /* + */
673		bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */
674		neg = 1;
675		break;
676	case 3:
677		zero = 1;
678		break;
679	case 4:
680		bn_sub_part_words(t, a, &(a[n]), tna, n - tna);
681		bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n);
682		break;
683	}
684
685# ifdef BN_MUL_COMBA
686	if (n == 4 && dna == 0 && dnb == 0) /* XXX: bn_mul_comba4 could take
687					       extra args to do this well */
688	{
689		if (!zero)
690			bn_mul_comba4(&(t[n2]), t, &(t[n]));
691		else
692			memset(&(t[n2]), 0, 8 * sizeof(BN_ULONG));
693
694		bn_mul_comba4(r, a, b);
695		bn_mul_comba4(&(r[n2]), &(a[n]), &(b[n]));
696	} else if (n == 8 && dna == 0 && dnb == 0) /* XXX: bn_mul_comba8 could
697						    take extra args to do this
698						    well */
699	{
700		if (!zero)
701			bn_mul_comba8(&(t[n2]), t, &(t[n]));
702		else
703			memset(&(t[n2]), 0, 16 * sizeof(BN_ULONG));
704
705		bn_mul_comba8(r, a, b);
706		bn_mul_comba8(&(r[n2]), &(a[n]), &(b[n]));
707	} else
708# endif /* BN_MUL_COMBA */
709	{
710		p = &(t[n2 * 2]);
711		if (!zero)
712			bn_mul_recursive(&(t[n2]), t, &(t[n]), n, 0, 0, p);
713		else
714			memset(&(t[n2]), 0, n2 * sizeof(BN_ULONG));
715		bn_mul_recursive(r, a, b, n, 0, 0, p);
716		bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]), n, dna, dnb, p);
717	}
718
719	/* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
720	 * r[10] holds (a[0]*b[0])
721	 * r[32] holds (b[1]*b[1])
722	 */
723
724	c1 = (int)(bn_add_words(t, r, &(r[n2]), n2));
725
726	if (neg) /* if t[32] is negative */
727	{
728		c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2));
729	} else {
730		/* Might have a carry */
731		c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), t, n2));
732	}
733
734	/* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
735	 * r[10] holds (a[0]*b[0])
736	 * r[32] holds (b[1]*b[1])
737	 * c1 holds the carry bits
738	 */
739	c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2));
740	if (c1) {
741		p = &(r[n + n2]);
742		lo= *p;
743		ln = (lo + c1) & BN_MASK2;
744		*p = ln;
745
746		/* The overflow will stop before we over write
747		 * words we should not overwrite */
748		if (ln < (BN_ULONG)c1) {
749			do {
750				p++;
751				lo= *p;
752				ln = (lo + 1) & BN_MASK2;
753				*p = ln;
754			} while (ln == 0);
755		}
756	}
757}
758
759/* n+tn is the word length
760 * t needs to be n*4 is size, as does r */
761/* tnX may not be negative but less than n */
762void
763bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n, int tna,
764    int tnb, BN_ULONG *t)
765{
766	int i, j, n2 = n * 2;
767	int c1, c2, neg;
768	BN_ULONG ln, lo, *p;
769
770	if (n < 8) {
771		bn_mul_normal(r, a, n + tna, b, n + tnb);
772		return;
773	}
774
775	/* r=(a[0]-a[1])*(b[1]-b[0]) */
776	c1 = bn_cmp_part_words(a, &(a[n]), tna, n - tna);
777	c2 = bn_cmp_part_words(&(b[n]), b, tnb, tnb - n);
778	neg = 0;
779	switch (c1 * 3 + c2) {
780	case -4:
781		bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */
782		bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */
783		break;
784	case -3:
785		/* break; */
786	case -2:
787		bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */
788		bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); /* + */
789		neg = 1;
790		break;
791	case -1:
792	case 0:
793	case 1:
794		/* break; */
795	case 2:
796		bn_sub_part_words(t, a, &(a[n]), tna, n - tna); /* + */
797		bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */
798		neg = 1;
799		break;
800	case 3:
801		/* break; */
802	case 4:
803		bn_sub_part_words(t, a, &(a[n]), tna, n - tna);
804		bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n);
805		break;
806	}
807		/* The zero case isn't yet implemented here. The speedup
808		   would probably be negligible. */
809# if 0
810	if (n == 4) {
811		bn_mul_comba4(&(t[n2]), t, &(t[n]));
812		bn_mul_comba4(r, a, b);
813		bn_mul_normal(&(r[n2]), &(a[n]), tn, &(b[n]), tn);
814		memset(&(r[n2 + tn * 2]), 0, sizeof(BN_ULONG) * (n2 - tn * 2));
815	} else
816# endif
817		if (n == 8) {
818		bn_mul_comba8(&(t[n2]), t, &(t[n]));
819		bn_mul_comba8(r, a, b);
820		bn_mul_normal(&(r[n2]), &(a[n]), tna, &(b[n]), tnb);
821		memset(&(r[n2 + tna + tnb]), 0,
822		    sizeof(BN_ULONG) * (n2 - tna - tnb));
823	} else {
824		p = &(t[n2*2]);
825		bn_mul_recursive(&(t[n2]), t, &(t[n]), n, 0, 0, p);
826		bn_mul_recursive(r, a, b, n, 0, 0, p);
827		i = n / 2;
828		/* If there is only a bottom half to the number,
829		 * just do it */
830		if (tna > tnb)
831			j = tna - i;
832		else
833			j = tnb - i;
834		if (j == 0) {
835			bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]),
836			    i, tna - i, tnb - i, p);
837			memset(&(r[n2 + i * 2]), 0,
838			    sizeof(BN_ULONG) * (n2 - i * 2));
839		}
840		else if (j > 0) /* eg, n == 16, i == 8 and tn == 11 */
841		{
842			bn_mul_part_recursive(&(r[n2]), &(a[n]), &(b[n]),
843			    i, tna - i, tnb - i, p);
844			memset(&(r[n2 + tna + tnb]), 0,
845			    sizeof(BN_ULONG) * (n2 - tna - tnb));
846		}
847		else /* (j < 0) eg, n == 16, i == 8 and tn == 5 */
848		{
849			memset(&(r[n2]), 0, sizeof(BN_ULONG) * n2);
850			if (tna < BN_MUL_RECURSIVE_SIZE_NORMAL &&
851			    tnb < BN_MUL_RECURSIVE_SIZE_NORMAL) {
852				bn_mul_normal(&(r[n2]), &(a[n]), tna,
853				    &(b[n]), tnb);
854			} else {
855				for (;;) {
856					i /= 2;
857					/* these simplified conditions work
858					 * exclusively because difference
859					 * between tna and tnb is 1 or 0 */
860					if (i < tna || i < tnb) {
861						bn_mul_part_recursive(&(r[n2]),
862						    &(a[n]), &(b[n]), i,
863						    tna - i, tnb - i, p);
864						break;
865					} else if (i == tna || i == tnb) {
866						bn_mul_recursive(&(r[n2]),
867						    &(a[n]), &(b[n]), i,
868						    tna - i, tnb - i, p);
869						break;
870					}
871				}
872			}
873		}
874	}
875
876	/* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
877	 * r[10] holds (a[0]*b[0])
878	 * r[32] holds (b[1]*b[1])
879	 */
880
881	c1 = (int)(bn_add_words(t, r,&(r[n2]), n2));
882
883	if (neg) /* if t[32] is negative */
884	{
885		c1 -= (int)(bn_sub_words(&(t[n2]), t,&(t[n2]), n2));
886	} else {
887		/* Might have a carry */
888		c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), t, n2));
889	}
890
891	/* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
892	 * r[10] holds (a[0]*b[0])
893	 * r[32] holds (b[1]*b[1])
894	 * c1 holds the carry bits
895	 */
896	c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2));
897	if (c1) {
898		p = &(r[n + n2]);
899		lo= *p;
900		ln = (lo + c1)&BN_MASK2;
901		*p = ln;
902
903		/* The overflow will stop before we over write
904		 * words we should not overwrite */
905		if (ln < (BN_ULONG)c1) {
906			do {
907				p++;
908				lo= *p;
909				ln = (lo + 1) & BN_MASK2;
910				*p = ln;
911			} while (ln == 0);
912		}
913	}
914}
915
916/* a and b must be the same size, which is n2.
917 * r needs to be n2 words and t needs to be n2*2
918 */
919void
920bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, BN_ULONG *t)
921{
922	int n = n2 / 2;
923
924
925	bn_mul_recursive(r, a, b, n, 0, 0, &(t[0]));
926	if (n >= BN_MUL_LOW_RECURSIVE_SIZE_NORMAL) {
927		bn_mul_low_recursive(&(t[0]), &(a[0]), &(b[n]), n, &(t[n2]));
928		bn_add_words(&(r[n]), &(r[n]), &(t[0]), n);
929		bn_mul_low_recursive(&(t[0]), &(a[n]), &(b[0]), n, &(t[n2]));
930		bn_add_words(&(r[n]), &(r[n]), &(t[0]), n);
931	} else {
932		bn_mul_low_normal(&(t[0]), &(a[0]), &(b[n]), n);
933		bn_mul_low_normal(&(t[n]), &(a[n]), &(b[0]), n);
934		bn_add_words(&(r[n]), &(r[n]), &(t[0]), n);
935		bn_add_words(&(r[n]), &(r[n]), &(t[n]), n);
936	}
937}
938#endif /* BN_RECURSION */
939
940int
941BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
942{
943	int ret = 0;
944	int top, al, bl;
945	BIGNUM *rr;
946#if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
947	int i;
948#endif
949#ifdef BN_RECURSION
950	BIGNUM *t = NULL;
951	int j = 0, k;
952#endif
953
954
955
956	al = a->top;
957	bl = b->top;
958
959	if ((al == 0) || (bl == 0)) {
960		BN_zero(r);
961		return (1);
962	}
963	top = al + bl;
964
965	BN_CTX_start(ctx);
966	if ((r == a) || (r == b)) {
967		if ((rr = BN_CTX_get(ctx)) == NULL)
968			goto err;
969	} else
970		rr = r;
971	rr->neg = a->neg ^ b->neg;
972
973#if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
974	i = al - bl;
975#endif
976#ifdef BN_MUL_COMBA
977	if (i == 0) {
978# if 0
979		if (al == 4) {
980			if (!bn_wexpand(rr, 8))
981				goto err;
982			rr->top = 8;
983			bn_mul_comba4(rr->d, a->d, b->d);
984			goto end;
985		}
986# endif
987		if (al == 8) {
988			if (!bn_wexpand(rr, 16))
989				goto err;
990			rr->top = 16;
991			bn_mul_comba8(rr->d, a->d, b->d);
992			goto end;
993		}
994	}
995#endif /* BN_MUL_COMBA */
996#ifdef BN_RECURSION
997	if ((al >= BN_MULL_SIZE_NORMAL) && (bl >= BN_MULL_SIZE_NORMAL)) {
998		if (i >= -1 && i <= 1) {
999			/* Find out the power of two lower or equal
1000			   to the longest of the two numbers */
1001			if (i >= 0) {
1002				j = BN_num_bits_word((BN_ULONG)al);
1003			}
1004			if (i == -1) {
1005				j = BN_num_bits_word((BN_ULONG)bl);
1006			}
1007			j = 1 << (j - 1);
1008			assert(j <= al || j <= bl);
1009			k = j + j;
1010			if ((t = BN_CTX_get(ctx)) == NULL)
1011				goto err;
1012			if (al > j || bl > j) {
1013				if (!bn_wexpand(t, k * 4))
1014					goto err;
1015				if (!bn_wexpand(rr, k * 4))
1016					goto err;
1017				bn_mul_part_recursive(rr->d, a->d, b->d,
1018				    j, al - j, bl - j, t->d);
1019			}
1020			else	/* al <= j || bl <= j */
1021			{
1022				if (!bn_wexpand(t, k * 2))
1023					goto err;
1024				if (!bn_wexpand(rr, k * 2))
1025					goto err;
1026				bn_mul_recursive(rr->d, a->d, b->d,
1027				    j, al - j, bl - j, t->d);
1028			}
1029			rr->top = top;
1030			goto end;
1031		}
1032#if 0
1033		if (i == 1 && !BN_get_flags(b, BN_FLG_STATIC_DATA)) {
1034			BIGNUM *tmp_bn = (BIGNUM *)b;
1035			if (!bn_wexpand(tmp_bn, al))
1036				goto err;
1037			tmp_bn->d[bl] = 0;
1038			bl++;
1039			i--;
1040		} else if (i == -1 && !BN_get_flags(a, BN_FLG_STATIC_DATA)) {
1041			BIGNUM *tmp_bn = (BIGNUM *)a;
1042			if (!bn_wexpand(tmp_bn, bl))
1043				goto err;
1044			tmp_bn->d[al] = 0;
1045			al++;
1046			i++;
1047		}
1048		if (i == 0) {
1049			/* symmetric and > 4 */
1050			/* 16 or larger */
1051			j = BN_num_bits_word((BN_ULONG)al);
1052			j = 1 << (j - 1);
1053			k = j + j;
1054			if ((t = BN_CTX_get(ctx)) == NULL)
1055				goto err;
1056			if (al == j) /* exact multiple */
1057			{
1058				if (!bn_wexpand(t, k * 2))
1059					goto err;
1060				if (!bn_wexpand(rr, k * 2))
1061					goto err;
1062				bn_mul_recursive(rr->d, a->d, b->d, al, t->d);
1063			} else {
1064				if (!bn_wexpand(t, k * 4))
1065					goto err;
1066				if (!bn_wexpand(rr, k * 4))
1067					goto err;
1068				bn_mul_part_recursive(rr->d, a->d, b->d,
1069				    al - j, j, t->d);
1070			}
1071			rr->top = top;
1072			goto end;
1073		}
1074#endif
1075	}
1076#endif /* BN_RECURSION */
1077	if (!bn_wexpand(rr, top))
1078		goto err;
1079	rr->top = top;
1080	bn_mul_normal(rr->d, a->d, al, b->d, bl);
1081
1082#if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
1083end:
1084#endif
1085	bn_correct_top(rr);
1086	if (r != rr)
1087		BN_copy(r, rr);
1088	ret = 1;
1089err:
1090	BN_CTX_end(ctx);
1091	return (ret);
1092}
1093