1/*	$OpenBSD: sha2.c,v 1.28 2019/07/23 12:35:22 dtucker Exp $	*/
2
3/*
4 * FILE:	sha2.c
5 * AUTHOR:	Aaron D. Gifford <me@aarongifford.com>
6 *
7 * Copyright (c) 2000-2001, Aaron D. Gifford
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the copyright holder nor the names of contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * $From: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $
35 */
36
37#include <sys/types.h>
38
39#include <string.h>
40#include <sha2.h>
41
42/*
43 * UNROLLED TRANSFORM LOOP NOTE:
44 * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
45 * loop version for the hash transform rounds (defined using macros
46 * later in this file).  Either define on the command line, for example:
47 *
48 *   cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
49 *
50 * or define below:
51 *
52 *   #define SHA2_UNROLL_TRANSFORM
53 *
54 */
55#ifndef SHA2_SMALL
56#if defined(__amd64__) || defined(__i386__)
57#define SHA2_UNROLL_TRANSFORM
58#endif
59#endif
60
61/*** SHA-224/256/384/512 Machine Architecture Definitions *****************/
62/*
63 * BYTE_ORDER NOTE:
64 *
65 * Please make sure that your system defines BYTE_ORDER.  If your
66 * architecture is little-endian, make sure it also defines
67 * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
68 * equivalent.
69 *
70 * If your system does not define the above, then you can do so by
71 * hand like this:
72 *
73 *   #define LITTLE_ENDIAN 1234
74 *   #define BIG_ENDIAN    4321
75 *
76 * And for little-endian machines, add:
77 *
78 *   #define BYTE_ORDER LITTLE_ENDIAN
79 *
80 * Or for big-endian machines:
81 *
82 *   #define BYTE_ORDER BIG_ENDIAN
83 *
84 * The FreeBSD machine this was written on defines BYTE_ORDER
85 * appropriately by including <sys/types.h> (which in turn includes
86 * <machine/endian.h> where the appropriate definitions are actually
87 * made).
88 */
89#if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
90#error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
91#endif
92
93
94/*** SHA-224/256/384/512 Various Length Definitions ***********************/
95/* NOTE: Most of these are in sha2.h */
96#define SHA224_SHORT_BLOCK_LENGTH	(SHA224_BLOCK_LENGTH - 8)
97#define SHA256_SHORT_BLOCK_LENGTH	(SHA256_BLOCK_LENGTH - 8)
98#define SHA384_SHORT_BLOCK_LENGTH	(SHA384_BLOCK_LENGTH - 16)
99#define SHA512_SHORT_BLOCK_LENGTH	(SHA512_BLOCK_LENGTH - 16)
100
101/*** ENDIAN SPECIFIC COPY MACROS **************************************/
102#define BE_8_TO_32(dst, cp) do {					\
103	(dst) = (u_int32_t)(cp)[3] | ((u_int32_t)(cp)[2] << 8) |	\
104	    ((u_int32_t)(cp)[1] << 16) | ((u_int32_t)(cp)[0] << 24);	\
105} while(0)
106
107#define BE_8_TO_64(dst, cp) do {					\
108	(dst) = (u_int64_t)(cp)[7] | ((u_int64_t)(cp)[6] << 8) |	\
109	    ((u_int64_t)(cp)[5] << 16) | ((u_int64_t)(cp)[4] << 24) |	\
110	    ((u_int64_t)(cp)[3] << 32) | ((u_int64_t)(cp)[2] << 40) |	\
111	    ((u_int64_t)(cp)[1] << 48) | ((u_int64_t)(cp)[0] << 56);	\
112} while (0)
113
114#define BE_64_TO_8(cp, src) do {					\
115	(cp)[0] = (src) >> 56;						\
116        (cp)[1] = (src) >> 48;						\
117	(cp)[2] = (src) >> 40;						\
118	(cp)[3] = (src) >> 32;						\
119	(cp)[4] = (src) >> 24;						\
120	(cp)[5] = (src) >> 16;						\
121	(cp)[6] = (src) >> 8;						\
122	(cp)[7] = (src);						\
123} while (0)
124
125#define BE_32_TO_8(cp, src) do {					\
126	(cp)[0] = (src) >> 24;						\
127	(cp)[1] = (src) >> 16;						\
128	(cp)[2] = (src) >> 8;						\
129	(cp)[3] = (src);						\
130} while (0)
131
132/*
133 * Macro for incrementally adding the unsigned 64-bit integer n to the
134 * unsigned 128-bit integer (represented using a two-element array of
135 * 64-bit words):
136 */
137#define ADDINC128(w,n) do {						\
138	(w)[0] += (u_int64_t)(n);					\
139	if ((w)[0] < (n)) {						\
140		(w)[1]++;						\
141	}								\
142} while (0)
143
144/*** THE SIX LOGICAL FUNCTIONS ****************************************/
145/*
146 * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
147 *
148 *   NOTE:  The naming of R and S appears backwards here (R is a SHIFT and
149 *   S is a ROTATION) because the SHA-224/256/384/512 description document
150 *   (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
151 *   same "backwards" definition.
152 */
153/* Shift-right (used in SHA-224, SHA-256, SHA-384, and SHA-512): */
154#define R(b,x) 		((x) >> (b))
155/* 32-bit Rotate-right (used in SHA-224 and SHA-256): */
156#define S32(b,x)	(((x) >> (b)) | ((x) << (32 - (b))))
157/* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
158#define S64(b,x)	(((x) >> (b)) | ((x) << (64 - (b))))
159
160/* Two of six logical functions used in SHA-224, SHA-256, SHA-384, and SHA-512: */
161#define Ch(x,y,z)	(((x) & (y)) ^ ((~(x)) & (z)))
162#define Maj(x,y,z)	(((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
163
164/* Four of six logical functions used in SHA-224 and SHA-256: */
165#define Sigma0_256(x)	(S32(2,  (x)) ^ S32(13, (x)) ^ S32(22, (x)))
166#define Sigma1_256(x)	(S32(6,  (x)) ^ S32(11, (x)) ^ S32(25, (x)))
167#define sigma0_256(x)	(S32(7,  (x)) ^ S32(18, (x)) ^ R(3 ,   (x)))
168#define sigma1_256(x)	(S32(17, (x)) ^ S32(19, (x)) ^ R(10,   (x)))
169
170/* Four of six logical functions used in SHA-384 and SHA-512: */
171#define Sigma0_512(x)	(S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
172#define Sigma1_512(x)	(S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
173#define sigma0_512(x)	(S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7,   (x)))
174#define sigma1_512(x)	(S64(19, (x)) ^ S64(61, (x)) ^ R( 6,   (x)))
175
176
177/*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
178/* Hash constant words K for SHA-224 and SHA-256: */
179static const u_int32_t K256[64] = {
180	0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
181	0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
182	0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
183	0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
184	0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
185	0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
186	0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
187	0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
188	0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
189	0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
190	0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
191	0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
192	0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
193	0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
194	0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
195	0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
196};
197
198/* Initial hash value H for SHA-256: */
199static const u_int32_t sha256_initial_hash_value[8] = {
200	0x6a09e667UL,
201	0xbb67ae85UL,
202	0x3c6ef372UL,
203	0xa54ff53aUL,
204	0x510e527fUL,
205	0x9b05688cUL,
206	0x1f83d9abUL,
207	0x5be0cd19UL
208};
209
210/* Hash constant words K for SHA-384 and SHA-512: */
211static const u_int64_t K512[80] = {
212	0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
213	0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
214	0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
215	0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
216	0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
217	0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
218	0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
219	0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
220	0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
221	0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
222	0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
223	0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
224	0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
225	0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
226	0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
227	0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
228	0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
229	0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
230	0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
231	0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
232	0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
233	0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
234	0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
235	0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
236	0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
237	0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
238	0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
239	0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
240	0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
241	0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
242	0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
243	0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
244	0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
245	0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
246	0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
247	0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
248	0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
249	0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
250	0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
251	0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
252};
253
254/* Initial hash value H for SHA-512 */
255static const u_int64_t sha512_initial_hash_value[8] = {
256	0x6a09e667f3bcc908ULL,
257	0xbb67ae8584caa73bULL,
258	0x3c6ef372fe94f82bULL,
259	0xa54ff53a5f1d36f1ULL,
260	0x510e527fade682d1ULL,
261	0x9b05688c2b3e6c1fULL,
262	0x1f83d9abfb41bd6bULL,
263	0x5be0cd19137e2179ULL
264};
265
266#if !defined(SHA2_SMALL)
267/* Initial hash value H for SHA-224: */
268static const u_int32_t sha224_initial_hash_value[8] = {
269	0xc1059ed8UL,
270	0x367cd507UL,
271	0x3070dd17UL,
272	0xf70e5939UL,
273	0xffc00b31UL,
274	0x68581511UL,
275	0x64f98fa7UL,
276	0xbefa4fa4UL
277};
278
279/* Initial hash value H for SHA-384 */
280static const u_int64_t sha384_initial_hash_value[8] = {
281	0xcbbb9d5dc1059ed8ULL,
282	0x629a292a367cd507ULL,
283	0x9159015a3070dd17ULL,
284	0x152fecd8f70e5939ULL,
285	0x67332667ffc00b31ULL,
286	0x8eb44a8768581511ULL,
287	0xdb0c2e0d64f98fa7ULL,
288	0x47b5481dbefa4fa4ULL
289};
290
291/* Initial hash value H for SHA-512-256 */
292static const u_int64_t sha512_256_initial_hash_value[8] = {
293	0x22312194fc2bf72cULL,
294	0x9f555fa3c84c64c2ULL,
295	0x2393b86b6f53b151ULL,
296	0x963877195940eabdULL,
297	0x96283ee2a88effe3ULL,
298	0xbe5e1e2553863992ULL,
299	0x2b0199fc2c85b8aaULL,
300	0x0eb72ddc81c52ca2ULL
301};
302
303/*** SHA-224: *********************************************************/
304void
305SHA224Init(SHA2_CTX *context)
306{
307	memcpy(context->state.st32, sha224_initial_hash_value,
308	    sizeof(sha224_initial_hash_value));
309	memset(context->buffer, 0, sizeof(context->buffer));
310	context->bitcount[0] = 0;
311}
312DEF_WEAK(SHA224Init);
313
314MAKE_CLONE(SHA224Transform, SHA256Transform);
315MAKE_CLONE(SHA224Update, SHA256Update);
316MAKE_CLONE(SHA224Pad, SHA256Pad);
317DEF_WEAK(SHA224Transform);
318DEF_WEAK(SHA224Update);
319DEF_WEAK(SHA224Pad);
320
321void
322SHA224Final(u_int8_t digest[SHA224_DIGEST_LENGTH], SHA2_CTX *context)
323{
324	SHA224Pad(context);
325
326#if BYTE_ORDER == LITTLE_ENDIAN
327	int	i;
328
329	/* Convert TO host byte order */
330	for (i = 0; i < 7; i++)
331		BE_32_TO_8(digest + i * 4, context->state.st32[i]);
332#else
333	memcpy(digest, context->state.st32, SHA224_DIGEST_LENGTH);
334#endif
335	explicit_bzero(context, sizeof(*context));
336}
337DEF_WEAK(SHA224Final);
338#endif /* !defined(SHA2_SMALL) */
339
340/*** SHA-256: *********************************************************/
341void
342SHA256Init(SHA2_CTX *context)
343{
344	memcpy(context->state.st32, sha256_initial_hash_value,
345	    sizeof(sha256_initial_hash_value));
346	memset(context->buffer, 0, sizeof(context->buffer));
347	context->bitcount[0] = 0;
348}
349DEF_WEAK(SHA256Init);
350
351#ifdef SHA2_UNROLL_TRANSFORM
352
353/* Unrolled SHA-256 round macros: */
354
355#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) do {				    \
356	BE_8_TO_32(W256[j], data);					    \
357	data += 4;							    \
358	T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] + W256[j]; \
359	(d) += T1;							    \
360	(h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c));		    \
361	j++;								    \
362} while(0)
363
364#define ROUND256(a,b,c,d,e,f,g,h) do {					    \
365	s0 = W256[(j+1)&0x0f];						    \
366	s0 = sigma0_256(s0);						    \
367	s1 = W256[(j+14)&0x0f];						    \
368	s1 = sigma1_256(s1);						    \
369	T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] +	    \
370	     (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);		    \
371	(d) += T1;							    \
372	(h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c));		    \
373	j++;								    \
374} while(0)
375
376void
377SHA256Transform(u_int32_t state[8], const u_int8_t data[SHA256_BLOCK_LENGTH])
378{
379	u_int32_t	a, b, c, d, e, f, g, h, s0, s1;
380	u_int32_t	T1, W256[16];
381	int		j;
382
383	/* Initialize registers with the prev. intermediate value */
384	a = state[0];
385	b = state[1];
386	c = state[2];
387	d = state[3];
388	e = state[4];
389	f = state[5];
390	g = state[6];
391	h = state[7];
392
393	j = 0;
394	do {
395		/* Rounds 0 to 15 (unrolled): */
396		ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
397		ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
398		ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
399		ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
400		ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
401		ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
402		ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
403		ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
404	} while (j < 16);
405
406	/* Now for the remaining rounds up to 63: */
407	do {
408		ROUND256(a,b,c,d,e,f,g,h);
409		ROUND256(h,a,b,c,d,e,f,g);
410		ROUND256(g,h,a,b,c,d,e,f);
411		ROUND256(f,g,h,a,b,c,d,e);
412		ROUND256(e,f,g,h,a,b,c,d);
413		ROUND256(d,e,f,g,h,a,b,c);
414		ROUND256(c,d,e,f,g,h,a,b);
415		ROUND256(b,c,d,e,f,g,h,a);
416	} while (j < 64);
417
418	/* Compute the current intermediate hash value */
419	state[0] += a;
420	state[1] += b;
421	state[2] += c;
422	state[3] += d;
423	state[4] += e;
424	state[5] += f;
425	state[6] += g;
426	state[7] += h;
427
428	/* Clean up */
429	a = b = c = d = e = f = g = h = T1 = 0;
430}
431
432#else /* SHA2_UNROLL_TRANSFORM */
433
434void
435SHA256Transform(u_int32_t state[8], const u_int8_t data[SHA256_BLOCK_LENGTH])
436{
437	u_int32_t	a, b, c, d, e, f, g, h, s0, s1;
438	u_int32_t	T1, T2, W256[16];
439	int		j;
440
441	/* Initialize registers with the prev. intermediate value */
442	a = state[0];
443	b = state[1];
444	c = state[2];
445	d = state[3];
446	e = state[4];
447	f = state[5];
448	g = state[6];
449	h = state[7];
450
451	j = 0;
452	do {
453		BE_8_TO_32(W256[j], data);
454		data += 4;
455		/* Apply the SHA-256 compression function to update a..h */
456		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
457		T2 = Sigma0_256(a) + Maj(a, b, c);
458		h = g;
459		g = f;
460		f = e;
461		e = d + T1;
462		d = c;
463		c = b;
464		b = a;
465		a = T1 + T2;
466
467		j++;
468	} while (j < 16);
469
470	do {
471		/* Part of the message block expansion: */
472		s0 = W256[(j+1)&0x0f];
473		s0 = sigma0_256(s0);
474		s1 = W256[(j+14)&0x0f];
475		s1 = sigma1_256(s1);
476
477		/* Apply the SHA-256 compression function to update a..h */
478		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
479		     (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
480		T2 = Sigma0_256(a) + Maj(a, b, c);
481		h = g;
482		g = f;
483		f = e;
484		e = d + T1;
485		d = c;
486		c = b;
487		b = a;
488		a = T1 + T2;
489
490		j++;
491	} while (j < 64);
492
493	/* Compute the current intermediate hash value */
494	state[0] += a;
495	state[1] += b;
496	state[2] += c;
497	state[3] += d;
498	state[4] += e;
499	state[5] += f;
500	state[6] += g;
501	state[7] += h;
502
503	/* Clean up */
504	a = b = c = d = e = f = g = h = T1 = T2 = 0;
505}
506
507#endif /* SHA2_UNROLL_TRANSFORM */
508DEF_WEAK(SHA256Transform);
509
510void
511SHA256Update(SHA2_CTX *context, const u_int8_t *data, size_t len)
512{
513	u_int64_t	freespace, usedspace;
514
515	/* Calling with no data is valid (we do nothing) */
516	if (len == 0)
517		return;
518
519	usedspace = (context->bitcount[0] >> 3) % SHA256_BLOCK_LENGTH;
520	if (usedspace > 0) {
521		/* Calculate how much free space is available in the buffer */
522		freespace = SHA256_BLOCK_LENGTH - usedspace;
523
524		if (len >= freespace) {
525			/* Fill the buffer completely and process it */
526			memcpy(&context->buffer[usedspace], data, freespace);
527			context->bitcount[0] += freespace << 3;
528			len -= freespace;
529			data += freespace;
530			SHA256Transform(context->state.st32, context->buffer);
531		} else {
532			/* The buffer is not yet full */
533			memcpy(&context->buffer[usedspace], data, len);
534			context->bitcount[0] += (u_int64_t)len << 3;
535			/* Clean up: */
536			usedspace = freespace = 0;
537			return;
538		}
539	}
540	while (len >= SHA256_BLOCK_LENGTH) {
541		/* Process as many complete blocks as we can */
542		SHA256Transform(context->state.st32, data);
543		context->bitcount[0] += SHA256_BLOCK_LENGTH << 3;
544		len -= SHA256_BLOCK_LENGTH;
545		data += SHA256_BLOCK_LENGTH;
546	}
547	if (len > 0) {
548		/* There's left-overs, so save 'em */
549		memcpy(context->buffer, data, len);
550		context->bitcount[0] += len << 3;
551	}
552	/* Clean up: */
553	usedspace = freespace = 0;
554}
555DEF_WEAK(SHA256Update);
556
557void
558SHA256Pad(SHA2_CTX *context)
559{
560	unsigned int	usedspace;
561
562	usedspace = (context->bitcount[0] >> 3) % SHA256_BLOCK_LENGTH;
563	if (usedspace > 0) {
564		/* Begin padding with a 1 bit: */
565		context->buffer[usedspace++] = 0x80;
566
567		if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
568			/* Set-up for the last transform: */
569			memset(&context->buffer[usedspace], 0,
570			    SHA256_SHORT_BLOCK_LENGTH - usedspace);
571		} else {
572			if (usedspace < SHA256_BLOCK_LENGTH) {
573				memset(&context->buffer[usedspace], 0,
574				    SHA256_BLOCK_LENGTH - usedspace);
575			}
576			/* Do second-to-last transform: */
577			SHA256Transform(context->state.st32, context->buffer);
578
579			/* Prepare for last transform: */
580			memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH);
581		}
582	} else {
583		/* Set-up for the last transform: */
584		memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH);
585
586		/* Begin padding with a 1 bit: */
587		*context->buffer = 0x80;
588	}
589	/* Store the length of input data (in bits) in big endian format: */
590	BE_64_TO_8(&context->buffer[SHA256_SHORT_BLOCK_LENGTH],
591	    context->bitcount[0]);
592
593	/* Final transform: */
594	SHA256Transform(context->state.st32, context->buffer);
595
596	/* Clean up: */
597	usedspace = 0;
598}
599DEF_WEAK(SHA256Pad);
600
601void
602SHA256Final(u_int8_t digest[SHA256_DIGEST_LENGTH], SHA2_CTX *context)
603{
604	SHA256Pad(context);
605
606#if BYTE_ORDER == LITTLE_ENDIAN
607	int	i;
608
609	/* Convert TO host byte order */
610	for (i = 0; i < 8; i++)
611		BE_32_TO_8(digest + i * 4, context->state.st32[i]);
612#else
613	memcpy(digest, context->state.st32, SHA256_DIGEST_LENGTH);
614#endif
615	explicit_bzero(context, sizeof(*context));
616}
617DEF_WEAK(SHA256Final);
618
619
620/*** SHA-512: *********************************************************/
621void
622SHA512Init(SHA2_CTX *context)
623{
624	memcpy(context->state.st64, sha512_initial_hash_value,
625	    sizeof(sha512_initial_hash_value));
626	memset(context->buffer, 0, sizeof(context->buffer));
627	context->bitcount[0] = context->bitcount[1] =  0;
628}
629DEF_WEAK(SHA512Init);
630
631#ifdef SHA2_UNROLL_TRANSFORM
632
633/* Unrolled SHA-512 round macros: */
634
635#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) do {				    \
636	BE_8_TO_64(W512[j], data);					    \
637	data += 8;							    \
638	T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] + W512[j]; \
639	(d) += T1;							    \
640	(h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c));		    \
641	j++;								    \
642} while(0)
643
644
645#define ROUND512(a,b,c,d,e,f,g,h) do {					    \
646	s0 = W512[(j+1)&0x0f];						    \
647	s0 = sigma0_512(s0);						    \
648	s1 = W512[(j+14)&0x0f];						    \
649	s1 = sigma1_512(s1);						    \
650	T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] +	    \
651             (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);		    \
652	(d) += T1;							    \
653	(h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c));		    \
654	j++;								    \
655} while(0)
656
657void
658SHA512Transform(u_int64_t state[8], const u_int8_t data[SHA512_BLOCK_LENGTH])
659{
660	u_int64_t	a, b, c, d, e, f, g, h, s0, s1;
661	u_int64_t	T1, W512[16];
662	int		j;
663
664	/* Initialize registers with the prev. intermediate value */
665	a = state[0];
666	b = state[1];
667	c = state[2];
668	d = state[3];
669	e = state[4];
670	f = state[5];
671	g = state[6];
672	h = state[7];
673
674	j = 0;
675	do {
676		/* Rounds 0 to 15 (unrolled): */
677		ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
678		ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
679		ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
680		ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
681		ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
682		ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
683		ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
684		ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
685	} while (j < 16);
686
687	/* Now for the remaining rounds up to 79: */
688	do {
689		ROUND512(a,b,c,d,e,f,g,h);
690		ROUND512(h,a,b,c,d,e,f,g);
691		ROUND512(g,h,a,b,c,d,e,f);
692		ROUND512(f,g,h,a,b,c,d,e);
693		ROUND512(e,f,g,h,a,b,c,d);
694		ROUND512(d,e,f,g,h,a,b,c);
695		ROUND512(c,d,e,f,g,h,a,b);
696		ROUND512(b,c,d,e,f,g,h,a);
697	} while (j < 80);
698
699	/* Compute the current intermediate hash value */
700	state[0] += a;
701	state[1] += b;
702	state[2] += c;
703	state[3] += d;
704	state[4] += e;
705	state[5] += f;
706	state[6] += g;
707	state[7] += h;
708
709	/* Clean up */
710	a = b = c = d = e = f = g = h = T1 = 0;
711}
712
713#else /* SHA2_UNROLL_TRANSFORM */
714
715void
716SHA512Transform(u_int64_t state[8], const u_int8_t data[SHA512_BLOCK_LENGTH])
717{
718	u_int64_t	a, b, c, d, e, f, g, h, s0, s1;
719	u_int64_t	T1, T2, W512[16];
720	int		j;
721
722	/* Initialize registers with the prev. intermediate value */
723	a = state[0];
724	b = state[1];
725	c = state[2];
726	d = state[3];
727	e = state[4];
728	f = state[5];
729	g = state[6];
730	h = state[7];
731
732	j = 0;
733	do {
734		BE_8_TO_64(W512[j], data);
735		data += 8;
736		/* Apply the SHA-512 compression function to update a..h */
737		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
738		T2 = Sigma0_512(a) + Maj(a, b, c);
739		h = g;
740		g = f;
741		f = e;
742		e = d + T1;
743		d = c;
744		c = b;
745		b = a;
746		a = T1 + T2;
747
748		j++;
749	} while (j < 16);
750
751	do {
752		/* Part of the message block expansion: */
753		s0 = W512[(j+1)&0x0f];
754		s0 = sigma0_512(s0);
755		s1 = W512[(j+14)&0x0f];
756		s1 =  sigma1_512(s1);
757
758		/* Apply the SHA-512 compression function to update a..h */
759		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
760		     (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
761		T2 = Sigma0_512(a) + Maj(a, b, c);
762		h = g;
763		g = f;
764		f = e;
765		e = d + T1;
766		d = c;
767		c = b;
768		b = a;
769		a = T1 + T2;
770
771		j++;
772	} while (j < 80);
773
774	/* Compute the current intermediate hash value */
775	state[0] += a;
776	state[1] += b;
777	state[2] += c;
778	state[3] += d;
779	state[4] += e;
780	state[5] += f;
781	state[6] += g;
782	state[7] += h;
783
784	/* Clean up */
785	a = b = c = d = e = f = g = h = T1 = T2 = 0;
786}
787
788#endif /* SHA2_UNROLL_TRANSFORM */
789DEF_WEAK(SHA512Transform);
790
791void
792SHA512Update(SHA2_CTX *context, const u_int8_t *data, size_t len)
793{
794	size_t	freespace, usedspace;
795
796	/* Calling with no data is valid (we do nothing) */
797	if (len == 0)
798		return;
799
800	usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
801	if (usedspace > 0) {
802		/* Calculate how much free space is available in the buffer */
803		freespace = SHA512_BLOCK_LENGTH - usedspace;
804
805		if (len >= freespace) {
806			/* Fill the buffer completely and process it */
807			memcpy(&context->buffer[usedspace], data, freespace);
808			ADDINC128(context->bitcount, freespace << 3);
809			len -= freespace;
810			data += freespace;
811			SHA512Transform(context->state.st64, context->buffer);
812		} else {
813			/* The buffer is not yet full */
814			memcpy(&context->buffer[usedspace], data, len);
815			ADDINC128(context->bitcount, len << 3);
816			/* Clean up: */
817			usedspace = freespace = 0;
818			return;
819		}
820	}
821	while (len >= SHA512_BLOCK_LENGTH) {
822		/* Process as many complete blocks as we can */
823		SHA512Transform(context->state.st64, data);
824		ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
825		len -= SHA512_BLOCK_LENGTH;
826		data += SHA512_BLOCK_LENGTH;
827	}
828	if (len > 0) {
829		/* There's left-overs, so save 'em */
830		memcpy(context->buffer, data, len);
831		ADDINC128(context->bitcount, len << 3);
832	}
833	/* Clean up: */
834	usedspace = freespace = 0;
835}
836DEF_WEAK(SHA512Update);
837
838void
839SHA512Pad(SHA2_CTX *context)
840{
841	unsigned int	usedspace;
842
843	usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
844	if (usedspace > 0) {
845		/* Begin padding with a 1 bit: */
846		context->buffer[usedspace++] = 0x80;
847
848		if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) {
849			/* Set-up for the last transform: */
850			memset(&context->buffer[usedspace], 0, SHA512_SHORT_BLOCK_LENGTH - usedspace);
851		} else {
852			if (usedspace < SHA512_BLOCK_LENGTH) {
853				memset(&context->buffer[usedspace], 0, SHA512_BLOCK_LENGTH - usedspace);
854			}
855			/* Do second-to-last transform: */
856			SHA512Transform(context->state.st64, context->buffer);
857
858			/* And set-up for the last transform: */
859			memset(context->buffer, 0, SHA512_BLOCK_LENGTH - 2);
860		}
861	} else {
862		/* Prepare for final transform: */
863		memset(context->buffer, 0, SHA512_SHORT_BLOCK_LENGTH);
864
865		/* Begin padding with a 1 bit: */
866		*context->buffer = 0x80;
867	}
868	/* Store the length of input data (in bits) in big endian format: */
869	BE_64_TO_8(&context->buffer[SHA512_SHORT_BLOCK_LENGTH],
870	    context->bitcount[1]);
871	BE_64_TO_8(&context->buffer[SHA512_SHORT_BLOCK_LENGTH + 8],
872	    context->bitcount[0]);
873
874	/* Final transform: */
875	SHA512Transform(context->state.st64, context->buffer);
876
877	/* Clean up: */
878	usedspace = 0;
879}
880DEF_WEAK(SHA512Pad);
881
882void
883SHA512Final(u_int8_t digest[SHA512_DIGEST_LENGTH], SHA2_CTX *context)
884{
885	SHA512Pad(context);
886
887#if BYTE_ORDER == LITTLE_ENDIAN
888	int	i;
889
890	/* Convert TO host byte order */
891	for (i = 0; i < 8; i++)
892		BE_64_TO_8(digest + i * 8, context->state.st64[i]);
893#else
894	memcpy(digest, context->state.st64, SHA512_DIGEST_LENGTH);
895#endif
896	explicit_bzero(context, sizeof(*context));
897}
898DEF_WEAK(SHA512Final);
899
900#if !defined(SHA2_SMALL)
901
902/*** SHA-384: *********************************************************/
903void
904SHA384Init(SHA2_CTX *context)
905{
906	memcpy(context->state.st64, sha384_initial_hash_value,
907	    sizeof(sha384_initial_hash_value));
908	memset(context->buffer, 0, sizeof(context->buffer));
909	context->bitcount[0] = context->bitcount[1] = 0;
910}
911DEF_WEAK(SHA384Init);
912
913MAKE_CLONE(SHA384Transform, SHA512Transform);
914MAKE_CLONE(SHA384Update, SHA512Update);
915MAKE_CLONE(SHA384Pad, SHA512Pad);
916DEF_WEAK(SHA384Transform);
917DEF_WEAK(SHA384Update);
918DEF_WEAK(SHA384Pad);
919
920void
921SHA384Final(u_int8_t digest[SHA384_DIGEST_LENGTH], SHA2_CTX *context)
922{
923	SHA384Pad(context);
924
925#if BYTE_ORDER == LITTLE_ENDIAN
926	int	i;
927
928	/* Convert TO host byte order */
929	for (i = 0; i < 6; i++)
930		BE_64_TO_8(digest + i * 8, context->state.st64[i]);
931#else
932	memcpy(digest, context->state.st64, SHA384_DIGEST_LENGTH);
933#endif
934	/* Zero out state data */
935	explicit_bzero(context, sizeof(*context));
936}
937DEF_WEAK(SHA384Final);
938
939/*** SHA-512/256: *********************************************************/
940void
941SHA512_256Init(SHA2_CTX *context)
942{
943	memcpy(context->state.st64, sha512_256_initial_hash_value,
944	    sizeof(sha512_256_initial_hash_value));
945	memset(context->buffer, 0, sizeof(context->buffer));
946	context->bitcount[0] = context->bitcount[1] = 0;
947}
948DEF_WEAK(SHA512_256Init);
949
950MAKE_CLONE(SHA512_256Transform, SHA512Transform);
951MAKE_CLONE(SHA512_256Update, SHA512Update);
952MAKE_CLONE(SHA512_256Pad, SHA512Pad);
953DEF_WEAK(SHA512_256Transform);
954DEF_WEAK(SHA512_256Update);
955DEF_WEAK(SHA512_256Pad);
956
957void
958SHA512_256Final(u_int8_t digest[SHA512_256_DIGEST_LENGTH], SHA2_CTX *context)
959{
960	SHA512_256Pad(context);
961
962#if BYTE_ORDER == LITTLE_ENDIAN
963	int	i;
964
965	/* Convert TO host byte order */
966	for (i = 0; i < 4; i++)
967		BE_64_TO_8(digest + i * 8, context->state.st64[i]);
968#else
969	memcpy(digest, context->state.st64, SHA512_256_DIGEST_LENGTH);
970#endif
971	/* Zero out state data */
972	explicit_bzero(context, sizeof(*context));
973}
974DEF_WEAK(SHA512_256Final);
975#endif /* !defined(SHA2_SMALL) */
976