1/*	$OpenBSD: btree.h,v 1.7 2015/07/16 04:27:33 tedu Exp $	*/
2
3/*-
4 * Copyright (c) 1991, 1993, 1994
5 *	The Regents of the University of California.  All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Mike Olson.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *	@(#)btree.h	8.11 (Berkeley) 8/17/94
35 */
36
37/* Macros to set/clear/test flags. */
38#define	F_SET(p, f)	(p)->flags |= (f)
39#define	F_CLR(p, f)	(p)->flags &= ~(f)
40#define	F_ISSET(p, f)	((p)->flags & (f))
41
42#include <mpool.h>
43
44#define	DEFMINKEYPAGE	(2)		/* Minimum keys per page */
45#define	MINCACHE	(5)		/* Minimum cached pages */
46#define	MINPSIZE	(512)		/* Minimum page size */
47
48/*
49 * Page 0 of a btree file contains a copy of the meta-data.  This page is also
50 * used as an out-of-band page, i.e. page pointers that point to nowhere point
51 * to page 0.  Page 1 is the root of the btree.
52 */
53#define	P_INVALID	 0		/* Invalid tree page number. */
54#define	P_META		 0		/* Tree metadata page number. */
55#define	P_ROOT		 1		/* Tree root page number. */
56
57/*
58 * There are five page layouts in the btree: btree internal pages (BINTERNAL),
59 * btree leaf pages (BLEAF), recno internal pages (RINTERNAL), recno leaf pages
60 * (RLEAF) and overflow pages.  All five page types have a page header (PAGE).
61 * This implementation requires that values within structures NOT be padded.
62 * (ANSI C permits random padding.)  If your compiler pads randomly you'll have
63 * to do some work to get this package to run.
64 */
65typedef struct _page {
66	pgno_t	pgno;			/* this page's page number */
67	pgno_t	prevpg;			/* left sibling */
68	pgno_t	nextpg;			/* right sibling */
69
70#define	P_BINTERNAL	0x01		/* btree internal page */
71#define	P_BLEAF		0x02		/* leaf page */
72#define	P_OVERFLOW	0x04		/* overflow page */
73#define	P_RINTERNAL	0x08		/* recno internal page */
74#define	P_RLEAF		0x10		/* leaf page */
75#define P_TYPE		0x1f		/* type mask */
76#define	P_PRESERVE	0x20		/* never delete this chain of pages */
77	u_int32_t flags;
78
79	indx_t	lower;			/* lower bound of free space on page */
80	indx_t	upper;			/* upper bound of free space on page */
81	indx_t	linp[1];		/* indx_t-aligned VAR. LENGTH DATA */
82} PAGE;
83
84/* First and next index. */
85#define	BTDATAOFF							\
86	(sizeof(pgno_t) + sizeof(pgno_t) + sizeof(pgno_t) +		\
87	    sizeof(u_int32_t) + sizeof(indx_t) + sizeof(indx_t))
88#define	NEXTINDEX(p)	(((p)->lower - BTDATAOFF) / sizeof(indx_t))
89
90/*
91 * For pages other than overflow pages, there is an array of offsets into the
92 * rest of the page immediately following the page header.  Each offset is to
93 * an item which is unique to the type of page.  The h_lower offset is just
94 * past the last filled-in index.  The h_upper offset is the first item on the
95 * page.  Offsets are from the beginning of the page.
96 *
97 * If an item is too big to store on a single page, a flag is set and the item
98 * is a { page, size } pair such that the page is the first page of an overflow
99 * chain with size bytes of item.  Overflow pages are simply bytes without any
100 * external structure.
101 *
102 * The page number and size fields in the items are pgno_t-aligned so they can
103 * be manipulated without copying.  (This presumes that 32 bit items can be
104 * manipulated on this system.)
105 */
106#define	LALIGN(n)	(((n) + sizeof(pgno_t) - 1) & ~(sizeof(pgno_t) - 1))
107#define	NOVFLSIZE	(sizeof(pgno_t) + sizeof(u_int32_t))
108
109/*
110 * For the btree internal pages, the item is a key.  BINTERNALs are {key, pgno}
111 * pairs, such that the key compares less than or equal to all of the records
112 * on that page.  For a tree without duplicate keys, an internal page with two
113 * consecutive keys, a and b, will have all records greater than or equal to a
114 * and less than b stored on the page associated with a.  Duplicate keys are
115 * somewhat special and can cause duplicate internal and leaf page records and
116 * some minor modifications of the above rule.
117 */
118typedef struct _binternal {
119	u_int32_t ksize;		/* key size */
120	pgno_t	pgno;			/* page number stored on */
121#define	P_BIGDATA	0x01		/* overflow data */
122#define	P_BIGKEY	0x02		/* overflow key */
123	u_char	flags;
124	char	bytes[1];		/* data */
125} BINTERNAL;
126
127/* Get the page's BINTERNAL structure at index indx. */
128#define	GETBINTERNAL(pg, indx)						\
129	((BINTERNAL *)((char *)(pg) + (pg)->linp[indx]))
130
131/* Get the number of bytes in the entry. */
132#define NBINTERNAL(len)							\
133	LALIGN(sizeof(u_int32_t) + sizeof(pgno_t) + sizeof(u_char) + (len))
134
135/* Copy a BINTERNAL entry to the page. */
136#define	WR_BINTERNAL(p, size, pgno, flags) {				\
137	*(u_int32_t *)p = size;						\
138	p += sizeof(u_int32_t);						\
139	*(pgno_t *)p = pgno;						\
140	p += sizeof(pgno_t);						\
141	*(u_char *)p = flags;						\
142	p += sizeof(u_char);						\
143}
144
145/*
146 * For the recno internal pages, the item is a page number with the number of
147 * keys found on that page and below.
148 */
149typedef struct _rinternal {
150	recno_t	nrecs;			/* number of records */
151	pgno_t	pgno;			/* page number stored below */
152} RINTERNAL;
153
154/* Get the page's RINTERNAL structure at index indx. */
155#define	GETRINTERNAL(pg, indx)						\
156	((RINTERNAL *)((char *)(pg) + (pg)->linp[indx]))
157
158/* Get the number of bytes in the entry. */
159#define NRINTERNAL							\
160	LALIGN(sizeof(recno_t) + sizeof(pgno_t))
161
162/* Copy a RINTERAL entry to the page. */
163#define	WR_RINTERNAL(p, nrecs, pgno) {					\
164	*(recno_t *)p = nrecs;						\
165	p += sizeof(recno_t);						\
166	*(pgno_t *)p = pgno;						\
167}
168
169/* For the btree leaf pages, the item is a key and data pair. */
170typedef struct _bleaf {
171	u_int32_t	ksize;		/* size of key */
172	u_int32_t	dsize;		/* size of data */
173	u_char	flags;			/* P_BIGDATA, P_BIGKEY */
174	char	bytes[1];		/* data */
175} BLEAF;
176
177/* Get the page's BLEAF structure at index indx. */
178#define	GETBLEAF(pg, indx)						\
179	((BLEAF *)((char *)(pg) + (pg)->linp[indx]))
180
181/* Get the number of bytes in the entry. */
182#define NBLEAF(p)	NBLEAFDBT((p)->ksize, (p)->dsize)
183
184/* Get the number of bytes in the user's key/data pair. */
185#define NBLEAFDBT(ksize, dsize)						\
186	LALIGN(sizeof(u_int32_t) + sizeof(u_int32_t) + sizeof(u_char) +	\
187	    (ksize) + (dsize))
188
189/* Copy a BLEAF entry to the page. */
190#define	WR_BLEAF(p, key, data, flags) {					\
191	*(u_int32_t *)p = key->size;					\
192	p += sizeof(u_int32_t);						\
193	*(u_int32_t *)p = data->size;					\
194	p += sizeof(u_int32_t);						\
195	*(u_char *)p = flags;						\
196	p += sizeof(u_char);						\
197	memmove(p, key->data, key->size);				\
198	p += key->size;							\
199	memmove(p, data->data, data->size);				\
200}
201
202/* For the recno leaf pages, the item is a data entry. */
203typedef struct _rleaf {
204	u_int32_t	dsize;		/* size of data */
205	u_char	flags;			/* P_BIGDATA */
206	char	bytes[1];
207} RLEAF;
208
209/* Get the page's RLEAF structure at index indx. */
210#define	GETRLEAF(pg, indx)						\
211	((RLEAF *)((char *)(pg) + (pg)->linp[indx]))
212
213/* Get the number of bytes in the entry. */
214#define NRLEAF(p)	NRLEAFDBT((p)->dsize)
215
216/* Get the number of bytes from the user's data. */
217#define	NRLEAFDBT(dsize)						\
218	LALIGN(sizeof(u_int32_t) + sizeof(u_char) + (dsize))
219
220/* Copy a RLEAF entry to the page. */
221#define	WR_RLEAF(p, data, flags) {					\
222	*(u_int32_t *)p = data->size;					\
223	p += sizeof(u_int32_t);						\
224	*(u_char *)p = flags;						\
225	p += sizeof(u_char);						\
226	memmove(p, data->data, data->size);				\
227}
228
229/*
230 * A record in the tree is either a pointer to a page and an index in the page
231 * or a page number and an index.  These structures are used as a cursor, stack
232 * entry and search returns as well as to pass records to other routines.
233 *
234 * One comment about searches.  Internal page searches must find the largest
235 * record less than key in the tree so that descents work.  Leaf page searches
236 * must find the smallest record greater than key so that the returned index
237 * is the record's correct position for insertion.
238 */
239typedef struct _epgno {
240	pgno_t	pgno;			/* the page number */
241	indx_t	index;			/* the index on the page */
242} EPGNO;
243
244typedef struct _epg {
245	PAGE	*page;			/* the (pinned) page */
246	indx_t	 index;			/* the index on the page */
247} EPG;
248
249/*
250 * About cursors.  The cursor (and the page that contained the key/data pair
251 * that it referenced) can be deleted, which makes things a bit tricky.  If
252 * there are no duplicates of the cursor key in the tree (i.e. B_NODUPS is set
253 * or there simply aren't any duplicates of the key) we copy the key that it
254 * referenced when it's deleted, and reacquire a new cursor key if the cursor
255 * is used again.  If there are duplicates keys, we move to the next/previous
256 * key, and set a flag so that we know what happened.  NOTE: if duplicate (to
257 * the cursor) keys are added to the tree during this process, it is undefined
258 * if they will be returned or not in a cursor scan.
259 *
260 * The flags determine the possible states of the cursor:
261 *
262 * CURS_INIT	The cursor references *something*.
263 * CURS_ACQUIRE	The cursor was deleted, and a key has been saved so that
264 *		we can reacquire the right position in the tree.
265 * CURS_AFTER, CURS_BEFORE
266 *		The cursor was deleted, and now references a key/data pair
267 *		that has not yet been returned, either before or after the
268 *		deleted key/data pair.
269 * XXX
270 * This structure is broken out so that we can eventually offer multiple
271 * cursors as part of the DB interface.
272 */
273typedef struct _cursor {
274	EPGNO	 pg;			/* B: Saved tree reference. */
275	DBT	 key;			/* B: Saved key, or key.data == NULL. */
276	recno_t	 rcursor;		/* R: recno cursor (1-based) */
277
278#define	CURS_ACQUIRE	0x01		/*  B: Cursor needs to be reacquired. */
279#define	CURS_AFTER	0x02		/*  B: Unreturned cursor after key. */
280#define	CURS_BEFORE	0x04		/*  B: Unreturned cursor before key. */
281#define	CURS_INIT	0x08		/* RB: Cursor initialized. */
282	u_int8_t flags;
283} CURSOR;
284
285/*
286 * The metadata of the tree.  The nrecs field is used only by the RECNO code.
287 * This is because the btree doesn't really need it and it requires that every
288 * put or delete call modify the metadata.
289 */
290typedef struct _btmeta {
291	u_int32_t	magic;		/* magic number */
292	u_int32_t	version;	/* version */
293	u_int32_t	psize;		/* page size */
294	u_int32_t	free;		/* page number of first free page */
295	u_int32_t	nrecs;		/* R: number of records */
296
297#define	SAVEMETA	(B_NODUPS | R_RECNO)
298	u_int32_t	flags;		/* bt_flags & SAVEMETA */
299} BTMETA;
300
301/* The in-memory btree/recno data structure. */
302typedef struct _btree {
303	MPOOL	 *bt_mp;		/* memory pool cookie */
304
305	DB	 *bt_dbp;		/* pointer to enclosing DB */
306
307	EPG	  bt_cur;		/* current (pinned) page */
308	PAGE	 *bt_pinned;		/* page pinned across calls */
309
310	CURSOR	  bt_cursor;		/* cursor */
311
312#define	BT_PUSH(t, p, i) {						\
313	t->bt_sp->pgno = p; 						\
314	t->bt_sp->index = i; 						\
315	++t->bt_sp;							\
316}
317#define	BT_POP(t)	(t->bt_sp == t->bt_stack ? NULL : --t->bt_sp)
318#define	BT_CLR(t)	(t->bt_sp = t->bt_stack)
319	EPGNO	  bt_stack[50];		/* stack of parent pages */
320	EPGNO	 *bt_sp;		/* current stack pointer */
321
322	DBT	  bt_rkey;		/* returned key */
323	DBT	  bt_rdata;		/* returned data */
324
325	int	  bt_fd;		/* tree file descriptor */
326
327	pgno_t	  bt_free;		/* next free page */
328	u_int32_t bt_psize;		/* page size */
329	indx_t	  bt_ovflsize;		/* cut-off for key/data overflow */
330	int	  bt_lorder;		/* byte order */
331					/* sorted order */
332	enum { NOT, BACK, FORWARD } bt_order;
333	EPGNO	  bt_last;		/* last insert */
334
335					/* B: key comparison function */
336	int	(*bt_cmp)(const DBT *, const DBT *);
337					/* B: prefix comparison function */
338	size_t	(*bt_pfx)(const DBT *, const DBT *);
339					/* R: recno input function */
340	int	(*bt_irec)(struct _btree *, recno_t);
341
342	FILE	 *bt_rfp;		/* R: record FILE pointer */
343	int	  bt_rfd;		/* R: record file descriptor */
344
345	caddr_t	  bt_cmap;		/* R: current point in mapped space */
346	caddr_t	  bt_smap;		/* R: start of mapped space */
347	caddr_t   bt_emap;		/* R: end of mapped space */
348	size_t	  bt_msize;		/* R: size of mapped region. */
349
350	recno_t	  bt_nrecs;		/* R: number of records */
351	size_t	  bt_reclen;		/* R: fixed record length */
352	u_char	  bt_bval;		/* R: delimiting byte/pad character */
353
354/*
355 * NB:
356 * B_NODUPS and R_RECNO are stored on disk, and may not be changed.
357 */
358#define	B_INMEM		0x00001		/* in-memory tree */
359#define	B_METADIRTY	0x00002		/* need to write metadata */
360#define	B_MODIFIED	0x00004		/* tree modified */
361#define	B_NEEDSWAP	0x00008		/* if byte order requires swapping */
362#define	B_RDONLY	0x00010		/* read-only tree */
363
364#define	B_NODUPS	0x00020		/* no duplicate keys permitted */
365#define	R_RECNO		0x00080		/* record oriented tree */
366
367#define	R_CLOSEFP	0x00040		/* opened a file pointer */
368#define	R_EOF		0x00100		/* end of input file reached. */
369#define	R_FIXLEN	0x00200		/* fixed length records */
370#define	R_INMEM		0x00800		/* in-memory file */
371#define	R_MODIFIED	0x01000		/* modified file */
372#define	R_RDONLY	0x02000		/* read-only file */
373
374#define	B_DB_LOCK	0x04000		/* DB_LOCK specified. */
375#define	B_DB_SHMEM	0x08000		/* DB_SHMEM specified. */
376#define	B_DB_TXN	0x10000		/* DB_TXN specified. */
377	u_int32_t flags;
378} BTREE;
379
380#include "extern.h"
381