fpu_explode.c revision 1.7
1/*	$OpenBSD: fpu_explode.c,v 1.7 2012/12/05 23:19:59 deraadt Exp $	*/
2
3/*
4 * Copyright (c) 1992, 1993
5 *	The Regents of the University of California.  All rights reserved.
6 *
7 * This software was developed by the Computer Systems Engineering group
8 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9 * contributed to Berkeley.
10 *
11 * All advertising materials mentioning features or use of this software
12 * must display the following acknowledgement:
13 *	This product includes software developed by the University of
14 *	California, Lawrence Berkeley Laboratory.
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 *    notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 *    notice, this list of conditions and the following disclaimer in the
23 *    documentation and/or other materials provided with the distribution.
24 * 3. All advertising materials mentioning features or use of this software
25 *    must display the following acknowledgement:
26 *	This product includes software developed by the University of
27 *	California, Berkeley and its contributors.
28 * 4. Neither the name of the University nor the names of its contributors
29 *    may be used to endorse or promote products derived from this software
30 *    without specific prior written permission.
31 *
32 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42 * SUCH DAMAGE.
43 *
44 *	@(#)fpu_explode.c	8.1 (Berkeley) 6/11/93
45 *	$NetBSD: fpu_explode.c,v 1.5 2000/08/03 18:32:08 eeh Exp $
46 */
47
48#if 0
49__FBSDID("$FreeBSD: src/lib/libc/sparc64/fpu/fpu_explode.c,v 1.5 2002/05/11 21:20:04 jake Exp $");
50#endif
51
52/*
53 * FPU subroutines: `explode' the machine's `packed binary' format numbers
54 * into our internal format.
55 */
56
57#include <sys/param.h>
58
59#include <machine/frame.h>
60#include <machine/fsr.h>
61#include <machine/ieee.h>
62#include <machine/instr.h>
63
64#include "fpu_arith.h"
65#include "fpu_emu.h"
66#include "fpu_extern.h"
67#include "fpu_reg.h"
68
69/*
70 * N.B.: in all of the following, we assume the FP format is
71 *
72 *	---------------------------
73 *	| s | exponent | fraction |
74 *	---------------------------
75 *
76 * (which represents -1**s * 1.fraction * 2**exponent), so that the
77 * sign bit is way at the top (bit 31), the exponent is next, and
78 * then the remaining bits mark the fraction.  A zero exponent means
79 * zero or denormalized (0.fraction rather than 1.fraction), and the
80 * maximum possible exponent, 2bias+1, signals inf (fraction==0) or NaN.
81 *
82 * Since the sign bit is always the topmost bit---this holds even for
83 * integers---we set that outside all the *tof functions.  Each function
84 * returns the class code for the new number (but note that we use
85 * FPC_QNAN for all NaNs; fpu_explode will fix this if appropriate).
86 */
87
88/*
89 * int -> fpn.
90 */
91int
92__fpu_itof(fp, i)
93	struct fpn *fp;
94	u_int i;
95{
96
97	if (i == 0)
98		return (FPC_ZERO);
99	/*
100	 * The value FP_1 represents 2^FP_LG, so set the exponent
101	 * there and let normalization fix it up.  Convert negative
102	 * numbers to sign-and-magnitude.  Note that this relies on
103	 * fpu_norm()'s handling of `supernormals'; see fpu_subr.c.
104	 */
105	fp->fp_exp = FP_LG;
106	fp->fp_mant[0] = (int)i < 0 ? -i : i;
107	fp->fp_mant[1] = 0;
108	fp->fp_mant[2] = 0;
109	fp->fp_mant[3] = 0;
110	__fpu_norm(fp);
111	return (FPC_NUM);
112}
113
114/*
115 * uint -> fpn.
116 */
117int
118__fpu_uitof(fp, i)
119	struct fpn *fp;
120	u_int i;
121{
122
123	if (i == 0)
124		return (FPC_ZERO);
125	/*
126	 * The value FP_1 represents 2^FP_LG, so set the exponent
127	 * there and let normalization fix it up.
128	 * Note that this relies on fpu_norm()'s handling of
129	 * `supernormals'; see fpu_subr.c.
130	 */
131	fp->fp_exp = FP_LG;
132	fp->fp_mant[0] = i;
133	fp->fp_mant[1] = 0;
134	fp->fp_mant[2] = 0;
135	fp->fp_mant[3] = 0;
136	__fpu_norm(fp);
137	return (FPC_NUM);
138}
139
140/*
141 * 64-bit int -> fpn.
142 */
143int
144__fpu_xtof(fp, i)
145	struct fpn *fp;
146	u_int64_t i;
147{
148
149	if (i == 0)
150		return (FPC_ZERO);
151	/*
152	 * The value FP_1 represents 2^FP_LG, so set the exponent
153	 * there and let normalization fix it up.  Convert negative
154	 * numbers to sign-and-magnitude.  Note that this relies on
155	 * fpu_norm()'s handling of `supernormals'; see fpu_subr.c.
156	 */
157	fp->fp_exp = FP_LG2;
158	i = ((int64_t)i < 0) ? -i : i;
159	fp->fp_mant[0] = (i >> 32) & 0xffffffff;
160	fp->fp_mant[1] = (i >> 0)  & 0xffffffff;
161	fp->fp_mant[2] = 0;
162	fp->fp_mant[3] = 0;
163	__fpu_norm(fp);
164	return (FPC_NUM);
165}
166
167/*
168 * 64-bit uint -> fpn.
169 */
170int
171__fpu_uxtof(fp, i)
172	struct fpn *fp;
173	u_int64_t i;
174{
175
176	if (i == 0)
177		return (FPC_ZERO);
178	/*
179	 * The value FP_1 represents 2^FP_LG, so set the exponent
180	 * there and let normalization fix it up.
181	 * Note that this relies on fpu_norm()'s handling of
182	 * `supernormals'; see fpu_subr.c.
183	 */
184	fp->fp_exp = FP_LG2;
185	fp->fp_mant[0] = (i >> 32) & 0xffffffff;
186	fp->fp_mant[1] = (i >> 0)  & 0xffffffff;
187	fp->fp_mant[2] = 0;
188	fp->fp_mant[3] = 0;
189	__fpu_norm(fp);
190	return (FPC_NUM);
191}
192
193#define	mask(nbits) ((1L << (nbits)) - 1)
194
195/*
196 * All external floating formats convert to internal in the same manner,
197 * as defined here.  Note that only normals get an implied 1.0 inserted.
198 */
199#define	FP_TOF(exp, expbias, allfrac, f0, f1, f2, f3) \
200	if (exp == 0) { \
201		if (allfrac == 0) \
202			return (FPC_ZERO); \
203		fp->fp_exp = 1 - expbias; \
204		fp->fp_mant[0] = f0; \
205		fp->fp_mant[1] = f1; \
206		fp->fp_mant[2] = f2; \
207		fp->fp_mant[3] = f3; \
208		__fpu_norm(fp); \
209		return (FPC_NUM); \
210	} \
211	if (exp == (2 * expbias + 1)) { \
212		if (allfrac == 0) \
213			return (FPC_INF); \
214		fp->fp_mant[0] = f0; \
215		fp->fp_mant[1] = f1; \
216		fp->fp_mant[2] = f2; \
217		fp->fp_mant[3] = f3; \
218		return (FPC_QNAN); \
219	} \
220	fp->fp_exp = exp - expbias; \
221	fp->fp_mant[0] = FP_1 | f0; \
222	fp->fp_mant[1] = f1; \
223	fp->fp_mant[2] = f2; \
224	fp->fp_mant[3] = f3; \
225	return (FPC_NUM)
226
227/*
228 * 32-bit single precision -> fpn.
229 * We assume a single occupies at most (64-FP_LG) bits in the internal
230 * format: i.e., needs at most fp_mant[0] and fp_mant[1].
231 */
232int
233__fpu_stof(fp, i)
234	struct fpn *fp;
235	u_int i;
236{
237	int exp;
238	u_int frac, f0, f1;
239#define SNG_SHIFT (SNG_FRACBITS - FP_LG)
240
241	exp = (i >> (32 - 1 - SNG_EXPBITS)) & mask(SNG_EXPBITS);
242	frac = i & mask(SNG_FRACBITS);
243	f0 = frac >> SNG_SHIFT;
244	f1 = frac << (32 - SNG_SHIFT);
245	FP_TOF(exp, SNG_EXP_BIAS, frac, f0, f1, 0, 0);
246}
247
248/*
249 * 64-bit double -> fpn.
250 * We assume this uses at most (96-FP_LG) bits.
251 */
252int
253__fpu_dtof(fp, i, j)
254	struct fpn *fp;
255	u_int i, j;
256{
257	int exp;
258	u_int frac, f0, f1, f2;
259#define DBL_SHIFT (DBL_FRACBITS - 32 - FP_LG)
260
261	exp = (i >> (32 - 1 - DBL_EXPBITS)) & mask(DBL_EXPBITS);
262	frac = i & mask(DBL_FRACBITS - 32);
263	f0 = frac >> DBL_SHIFT;
264	f1 = (frac << (32 - DBL_SHIFT)) | (j >> DBL_SHIFT);
265	f2 = j << (32 - DBL_SHIFT);
266	frac |= j;
267	FP_TOF(exp, DBL_EXP_BIAS, frac, f0, f1, f2, 0);
268}
269
270/*
271 * 128-bit extended -> fpn.
272 */
273int
274__fpu_qtof(fp, i, j, k, l)
275	struct fpn *fp;
276	u_int i, j, k, l;
277{
278	int exp;
279	u_int frac, f0, f1, f2, f3;
280#define EXT_SHIFT (-(EXT_FRACBITS - 3 * 32 - FP_LG))	/* left shift! */
281
282	/*
283	 * Note that ext and fpn `line up', hence no shifting needed.
284	 */
285	exp = (i >> (32 - 1 - EXT_EXPBITS)) & mask(EXT_EXPBITS);
286	frac = i & mask(EXT_FRACBITS - 3 * 32);
287	f0 = (frac << EXT_SHIFT) | (j >> (32 - EXT_SHIFT));
288	f1 = (j << EXT_SHIFT) | (k >> (32 - EXT_SHIFT));
289	f2 = (k << EXT_SHIFT) | (l >> (32 - EXT_SHIFT));
290	f3 = l << EXT_SHIFT;
291	frac |= j | k | l;
292	FP_TOF(exp, EXT_EXP_BIAS, frac, f0, f1, f2, f3);
293}
294
295/*
296 * Explode the contents of a / regpair / regquad.
297 * If the input is a signalling NaN, an NV (invalid) exception
298 * will be set.  (Note that nothing but NV can occur until ALU
299 * operations are performed.)
300 */
301void
302__fpu_explode(fe, fp, type, reg)
303	struct fpemu *fe;
304	struct fpn *fp;
305	int type, reg;
306{
307	u_int32_t s = 0/* XXX gcc */, *sp;
308	u_int64_t l[2];
309
310	if (type == FTYPE_LNG || type == FTYPE_DBL || type == FTYPE_EXT) {
311		l[0] = __fpu_getreg64(reg & ~1);
312		sp = (u_int32_t *)l;
313		fp->fp_sign = sp[0] >> 31;
314		fp->fp_sticky = 0;
315		switch (type) {
316			case FTYPE_LNG:
317				s = __fpu_xtof(fp, l[0]);
318				break;
319			case FTYPE_DBL:
320				s = __fpu_dtof(fp, sp[0], sp[1]);
321				break;
322			case FTYPE_EXT:
323				l[1] = __fpu_getreg64((reg & ~1) + 2);
324				s = __fpu_qtof(fp, sp[0], sp[1], sp[2], sp[3]);
325				break;
326			default:
327#ifdef DIAGNOSTIC
328				__utrap_panic("fpu_explode");
329#endif
330				break;
331		}
332	} else {
333#ifdef DIAGNOSTIC
334		if (type != FTYPE_SNG)
335			__utrap_panic("fpu_explode");
336#endif
337		s = __fpu_getreg32(reg);
338		fp->fp_sign = s >> 31;
339		fp->fp_sticky = 0;
340		s = __fpu_stof(fp, s);
341	}
342
343	if (s == FPC_QNAN && (fp->fp_mant[0] & FP_QUIETBIT) == 0) {
344		/*
345		 * Input is a signalling NaN.  All operations that return
346		 * an input NaN operand put it through a ``NaN conversion'',
347		 * which basically just means ``turn on the quiet bit''.
348		 * We do this here so that all NaNs internally look quiet
349		 * (we can tell signalling ones by their class).
350		 */
351		fp->fp_mant[0] |= FP_QUIETBIT;
352		fe->fe_cx = FSR_NV;	/* assert invalid operand */
353		s = FPC_SNAN;
354	}
355	fp->fp_class = s;
356	DPRINTF(FPE_REG, ("fpu_explode: %%%c%d => ", (type == FTYPE_LNG) ? 'x' :
357		((type == FTYPE_INT) ? 'i' :
358			((type == FTYPE_SNG) ? 's' :
359				((type == FTYPE_DBL) ? 'd' :
360					((type == FTYPE_EXT) ? 'q' : '?')))),
361		reg));
362	DUMPFPN(FPE_REG, fp);
363	DPRINTF(FPE_REG, ("\n"));
364}
365