1/*	$OpenBSD: tgmath.h,v 1.1 2011/07/08 19:28:06 martynas Exp $	*/
2
3/*-
4 * Copyright (c) 2004 Stefan Farfeleder.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 * $FreeBSD: src/include/tgmath.h,v 1.5 2007/02/02 18:30:23 schweikh Exp $
29 */
30
31#ifndef _TGMATH_H_
32#define	_TGMATH_H_
33
34#include <complex.h>
35#include <math.h>
36
37/*
38 * This implementation of <tgmath.h> requires two implementation-dependent
39 * macros to be defined:
40 * __tg_impl_simple(x, y, z, fn, fnf, fnl, ...)
41 *	Invokes fnl() if the corresponding real type of x, y or z is long
42 *	double, fn() if it is double or any has an integer type, and fnf()
43 *	otherwise.
44 * __tg_impl_full(x, y, z, fn, fnf, fnl, cfn, cfnf, cfnl, ...)
45 *	Invokes [c]fnl() if the corresponding real type of x, y or z is long
46 *	double, [c]fn() if it is double or any has an integer type, and
47 *	[c]fnf() otherwise.  The function with the 'c' prefix is called if
48 *	any of x, y or z is a complex number.
49 * Both macros call the chosen function with all additional arguments passed
50 * to them, as given by __VA_ARGS__.
51 *
52 * Note that these macros cannot be implemented with C's ?: operator,
53 * because the return type of the whole expression would incorrectly be long
54 * double complex regardless of the argument types.
55 */
56
57#if __GNUC_PREREQ__(3, 1)
58#define	__tg_type(e, t)	__builtin_types_compatible_p(__typeof__(e), t)
59#define	__tg_type3(e1, e2, e3, t)					\
60	(__tg_type(e1, t) || __tg_type(e2, t) || __tg_type(e3, t))
61#define	__tg_type_corr(e1, e2, e3, t)					\
62	(__tg_type3(e1, e2, e3, t) || __tg_type3(e1, e2, e3, t _Complex))
63#define	__tg_integer(e1, e2, e3)					\
64	(((__typeof__(e1))1.5 == 1) || ((__typeof__(e2))1.5 == 1) ||	\
65	    ((__typeof__(e3))1.5 == 1))
66#define	__tg_is_complex(e1, e2, e3)					\
67	(__tg_type3(e1, e2, e3, float _Complex) ||			\
68	    __tg_type3(e1, e2, e3, double _Complex) ||			\
69	    __tg_type3(e1, e2, e3, long double _Complex) ||		\
70	    __tg_type3(e1, e2, e3, __typeof__(_Complex_I)))
71
72#define	__tg_impl_simple(x, y, z, fn, fnf, fnl, ...)			\
73	__builtin_choose_expr(__tg_type_corr(x, y, z, long double),	\
74	    fnl(__VA_ARGS__), __builtin_choose_expr(			\
75		__tg_type_corr(x, y, z, double) || __tg_integer(x, y, z),\
76		fn(__VA_ARGS__), fnf(__VA_ARGS__)))
77
78#define	__tg_impl_full(x, y, z, fn, fnf, fnl, cfn, cfnf, cfnl, ...)	\
79	__builtin_choose_expr(__tg_is_complex(x, y, z),			\
80	    __tg_impl_simple(x, y, z, cfn, cfnf, cfnl, __VA_ARGS__),	\
81	    __tg_impl_simple(x, y, z, fn, fnf, fnl, __VA_ARGS__))
82
83#else	/* __GNUC__ */
84#error "<tgmath.h> not implemented for this compiler"
85#endif	/* !__GNUC__ */
86
87/* Macros to save lots of repetition below */
88#define	__tg_simple(x, fn)						\
89	__tg_impl_simple(x, x, x, fn, fn##f, fn##l, x)
90#define	__tg_simple2(x, y, fn)						\
91	__tg_impl_simple(x, x, y, fn, fn##f, fn##l, x, y)
92#define	__tg_simplev(x, fn, ...)					\
93	__tg_impl_simple(x, x, x, fn, fn##f, fn##l, __VA_ARGS__)
94#define	__tg_full(x, fn)						\
95	__tg_impl_full(x, x, x, fn, fn##f, fn##l, c##fn, c##fn##f, c##fn##l, x)
96
97/* 7.22#4 -- These macros expand to real or complex functions, depending on
98 * the type of their arguments. */
99#define	acos(x)		__tg_full(x, acos)
100#define	asin(x)		__tg_full(x, asin)
101#define	atan(x)		__tg_full(x, atan)
102#define	acosh(x)	__tg_full(x, acosh)
103#define	asinh(x)	__tg_full(x, asinh)
104#define	atanh(x)	__tg_full(x, atanh)
105#define	cos(x)		__tg_full(x, cos)
106#define	sin(x)		__tg_full(x, sin)
107#define	tan(x)		__tg_full(x, tan)
108#define	cosh(x)		__tg_full(x, cosh)
109#define	sinh(x)		__tg_full(x, sinh)
110#define	tanh(x)		__tg_full(x, tanh)
111#define	exp(x)		__tg_full(x, exp)
112#define	log(x)		__tg_full(x, log)
113#define	pow(x, y)	__tg_impl_full(x, x, y, pow, powf, powl,	\
114			    cpow, cpowf, cpowl, x, y)
115#define	sqrt(x)		__tg_full(x, sqrt)
116
117/* "The corresponding type-generic macro for fabs and cabs is fabs." */
118#define	fabs(x)		__tg_impl_full(x, x, x, fabs, fabsf, fabsl,	\
119    			    cabs, cabsf, cabsl, x)
120
121/* 7.22#5 -- These macros are only defined for arguments with real type. */
122#define	atan2(x, y)	__tg_simple2(x, y, atan2)
123#define	cbrt(x)		__tg_simple(x, cbrt)
124#define	ceil(x)		__tg_simple(x, ceil)
125#define	copysign(x, y)	__tg_simple2(x, y, copysign)
126#define	erf(x)		__tg_simple(x, erf)
127#define	erfc(x)		__tg_simple(x, erfc)
128#define	exp2(x)		__tg_simple(x, exp2)
129#define	expm1(x)	__tg_simple(x, expm1)
130#define	fdim(x, y)	__tg_simple2(x, y, fdim)
131#define	floor(x)	__tg_simple(x, floor)
132#define	fma(x, y, z)	__tg_impl_simple(x, y, z, fma, fmaf, fmal, x, y, z)
133#define	fmax(x, y)	__tg_simple2(x, y, fmax)
134#define	fmin(x, y)	__tg_simple2(x, y, fmin)
135#define	fmod(x, y)	__tg_simple2(x, y, fmod)
136#define	frexp(x, y)	__tg_simplev(x, frexp, x, y)
137#define	hypot(x, y)	__tg_simple2(x, y, hypot)
138#define	ilogb(x)	__tg_simple(x, ilogb)
139#define	ldexp(x, y)	__tg_simplev(x, ldexp, x, y)
140#define	lgamma(x)	__tg_simple(x, lgamma)
141#define	llrint(x)	__tg_simple(x, llrint)
142#define	llround(x)	__tg_simple(x, llround)
143#define	log10(x)	__tg_simple(x, log10)
144#define	log1p(x)	__tg_simple(x, log1p)
145#define	log2(x)		__tg_simple(x, log2)
146#define	logb(x)		__tg_simple(x, logb)
147#define	lrint(x)	__tg_simple(x, lrint)
148#define	lround(x)	__tg_simple(x, lround)
149#define	nearbyint(x)	__tg_simple(x, nearbyint)
150#define	nextafter(x, y)	__tg_simple2(x, y, nextafter)
151#define	nexttoward(x, y) __tg_simplev(x, nexttoward, x, y)
152#define	remainder(x, y)	__tg_simple2(x, y, remainder)
153#define	remquo(x, y, z)	__tg_impl_simple(x, x, y, remquo, remquof,	\
154			    remquol, x, y, z)
155#define	rint(x)		__tg_simple(x, rint)
156#define	round(x)	__tg_simple(x, round)
157#define	scalbn(x, y)	__tg_simplev(x, scalbn, x, y)
158#define	scalbln(x, y)	__tg_simplev(x, scalbln, x, y)
159#define	tgamma(x)	__tg_simple(x, tgamma)
160#define	trunc(x)	__tg_simple(x, trunc)
161
162/* 7.22#6 -- These macros always expand to complex functions. */
163#define	carg(x)		__tg_simple(x, carg)
164#define	cimag(x)	__tg_simple(x, cimag)
165#define	conj(x)		__tg_simple(x, conj)
166#define	cproj(x)	__tg_simple(x, cproj)
167#define	creal(x)	__tg_simple(x, creal)
168
169#endif /* !_TGMATH_H_ */
170