unroll.c revision 1.1.1.2
1/* Try to unroll loops, and split induction variables.
2   Copyright (C) 1992, 1993, 1994, 1995, 1997, 1998, 1999, 2000, 2001, 2002
3   Free Software Foundation, Inc.
4   Contributed by James E. Wilson, Cygnus Support/UC Berkeley.
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
10Software Foundation; either version 2, or (at your option) any later
11version.
12
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16for more details.
17
18You should have received a copy of the GNU General Public License
19along with GCC; see the file COPYING.  If not, write to the Free
20Software Foundation, 59 Temple Place - Suite 330, Boston, MA
2102111-1307, USA.  */
22
23/* Try to unroll a loop, and split induction variables.
24
25   Loops for which the number of iterations can be calculated exactly are
26   handled specially.  If the number of iterations times the insn_count is
27   less than MAX_UNROLLED_INSNS, then the loop is unrolled completely.
28   Otherwise, we try to unroll the loop a number of times modulo the number
29   of iterations, so that only one exit test will be needed.  It is unrolled
30   a number of times approximately equal to MAX_UNROLLED_INSNS divided by
31   the insn count.
32
33   Otherwise, if the number of iterations can be calculated exactly at
34   run time, and the loop is always entered at the top, then we try to
35   precondition the loop.  That is, at run time, calculate how many times
36   the loop will execute, and then execute the loop body a few times so
37   that the remaining iterations will be some multiple of 4 (or 2 if the
38   loop is large).  Then fall through to a loop unrolled 4 (or 2) times,
39   with only one exit test needed at the end of the loop.
40
41   Otherwise, if the number of iterations can not be calculated exactly,
42   not even at run time, then we still unroll the loop a number of times
43   approximately equal to MAX_UNROLLED_INSNS divided by the insn count,
44   but there must be an exit test after each copy of the loop body.
45
46   For each induction variable, which is dead outside the loop (replaceable)
47   or for which we can easily calculate the final value, if we can easily
48   calculate its value at each place where it is set as a function of the
49   current loop unroll count and the variable's value at loop entry, then
50   the induction variable is split into `N' different variables, one for
51   each copy of the loop body.  One variable is live across the backward
52   branch, and the others are all calculated as a function of this variable.
53   This helps eliminate data dependencies, and leads to further opportunities
54   for cse.  */
55
56/* Possible improvements follow:  */
57
58/* ??? Add an extra pass somewhere to determine whether unrolling will
59   give any benefit.  E.g. after generating all unrolled insns, compute the
60   cost of all insns and compare against cost of insns in rolled loop.
61
62   - On traditional architectures, unrolling a non-constant bound loop
63     is a win if there is a giv whose only use is in memory addresses, the
64     memory addresses can be split, and hence giv increments can be
65     eliminated.
66   - It is also a win if the loop is executed many times, and preconditioning
67     can be performed for the loop.
68   Add code to check for these and similar cases.  */
69
70/* ??? Improve control of which loops get unrolled.  Could use profiling
71   info to only unroll the most commonly executed loops.  Perhaps have
72   a user specifyable option to control the amount of code expansion,
73   or the percent of loops to consider for unrolling.  Etc.  */
74
75/* ??? Look at the register copies inside the loop to see if they form a
76   simple permutation.  If so, iterate the permutation until it gets back to
77   the start state.  This is how many times we should unroll the loop, for
78   best results, because then all register copies can be eliminated.
79   For example, the lisp nreverse function should be unrolled 3 times
80   while (this)
81     {
82       next = this->cdr;
83       this->cdr = prev;
84       prev = this;
85       this = next;
86     }
87
88   ??? The number of times to unroll the loop may also be based on data
89   references in the loop.  For example, if we have a loop that references
90   x[i-1], x[i], and x[i+1], we should unroll it a multiple of 3 times.  */
91
92/* ??? Add some simple linear equation solving capability so that we can
93   determine the number of loop iterations for more complex loops.
94   For example, consider this loop from gdb
95   #define SWAP_TARGET_AND_HOST(buffer,len)
96     {
97       char tmp;
98       char *p = (char *) buffer;
99       char *q = ((char *) buffer) + len - 1;
100       int iterations = (len + 1) >> 1;
101       int i;
102       for (p; p < q; p++, q--;)
103	 {
104	   tmp = *q;
105	   *q = *p;
106	   *p = tmp;
107	 }
108     }
109   Note that:
110     start value = p = &buffer + current_iteration
111     end value   = q = &buffer + len - 1 - current_iteration
112   Given the loop exit test of "p < q", then there must be "q - p" iterations,
113   set equal to zero and solve for number of iterations:
114     q - p = len - 1 - 2*current_iteration = 0
115     current_iteration = (len - 1) / 2
116   Hence, there are (len - 1) / 2 (rounded up to the nearest integer)
117   iterations of this loop.  */
118
119/* ??? Currently, no labels are marked as loop invariant when doing loop
120   unrolling.  This is because an insn inside the loop, that loads the address
121   of a label inside the loop into a register, could be moved outside the loop
122   by the invariant code motion pass if labels were invariant.  If the loop
123   is subsequently unrolled, the code will be wrong because each unrolled
124   body of the loop will use the same address, whereas each actually needs a
125   different address.  A case where this happens is when a loop containing
126   a switch statement is unrolled.
127
128   It would be better to let labels be considered invariant.  When we
129   unroll loops here, check to see if any insns using a label local to the
130   loop were moved before the loop.  If so, then correct the problem, by
131   moving the insn back into the loop, or perhaps replicate the insn before
132   the loop, one copy for each time the loop is unrolled.  */
133
134#include "config.h"
135#include "system.h"
136#include "rtl.h"
137#include "tm_p.h"
138#include "insn-config.h"
139#include "integrate.h"
140#include "regs.h"
141#include "recog.h"
142#include "flags.h"
143#include "function.h"
144#include "expr.h"
145#include "loop.h"
146#include "toplev.h"
147#include "hard-reg-set.h"
148#include "basic-block.h"
149#include "predict.h"
150#include "params.h"
151
152/* The prime factors looked for when trying to unroll a loop by some
153   number which is modulo the total number of iterations.  Just checking
154   for these 4 prime factors will find at least one factor for 75% of
155   all numbers theoretically.  Practically speaking, this will succeed
156   almost all of the time since loops are generally a multiple of 2
157   and/or 5.  */
158
159#define NUM_FACTORS 4
160
161static struct _factor { const int factor; int count; }
162factors[NUM_FACTORS] = { {2, 0}, {3, 0}, {5, 0}, {7, 0}};
163
164/* Describes the different types of loop unrolling performed.  */
165
166enum unroll_types
167{
168  UNROLL_COMPLETELY,
169  UNROLL_MODULO,
170  UNROLL_NAIVE
171};
172
173/* Indexed by register number, if nonzero, then it contains a pointer
174   to a struct induction for a DEST_REG giv which has been combined with
175   one of more address givs.  This is needed because whenever such a DEST_REG
176   giv is modified, we must modify the value of all split address givs
177   that were combined with this DEST_REG giv.  */
178
179static struct induction **addr_combined_regs;
180
181/* Indexed by register number, if this is a splittable induction variable,
182   then this will hold the current value of the register, which depends on the
183   iteration number.  */
184
185static rtx *splittable_regs;
186
187/* Indexed by register number, if this is a splittable induction variable,
188   then this will hold the number of instructions in the loop that modify
189   the induction variable.  Used to ensure that only the last insn modifying
190   a split iv will update the original iv of the dest.  */
191
192static int *splittable_regs_updates;
193
194/* Forward declarations.  */
195
196static rtx simplify_cmp_and_jump_insns PARAMS ((enum rtx_code,
197						enum machine_mode,
198						rtx, rtx, rtx));
199static void init_reg_map PARAMS ((struct inline_remap *, int));
200static rtx calculate_giv_inc PARAMS ((rtx, rtx, unsigned int));
201static rtx initial_reg_note_copy PARAMS ((rtx, struct inline_remap *));
202static void final_reg_note_copy PARAMS ((rtx *, struct inline_remap *));
203static void copy_loop_body PARAMS ((struct loop *, rtx, rtx,
204				    struct inline_remap *, rtx, int,
205				    enum unroll_types, rtx, rtx, rtx, rtx));
206static int find_splittable_regs PARAMS ((const struct loop *,
207					 enum unroll_types, int));
208static int find_splittable_givs PARAMS ((const struct loop *,
209					 struct iv_class *, enum unroll_types,
210					 rtx, int));
211static int reg_dead_after_loop PARAMS ((const struct loop *, rtx));
212static rtx fold_rtx_mult_add PARAMS ((rtx, rtx, rtx, enum machine_mode));
213static rtx remap_split_bivs PARAMS ((struct loop *, rtx));
214static rtx find_common_reg_term PARAMS ((rtx, rtx));
215static rtx subtract_reg_term PARAMS ((rtx, rtx));
216static rtx loop_find_equiv_value PARAMS ((const struct loop *, rtx));
217static rtx ujump_to_loop_cont PARAMS ((rtx, rtx));
218
219/* Try to unroll one loop and split induction variables in the loop.
220
221   The loop is described by the arguments LOOP and INSN_COUNT.
222   STRENGTH_REDUCTION_P indicates whether information generated in the
223   strength reduction pass is available.
224
225   This function is intended to be called from within `strength_reduce'
226   in loop.c.  */
227
228void
229unroll_loop (loop, insn_count, strength_reduce_p)
230     struct loop *loop;
231     int insn_count;
232     int strength_reduce_p;
233{
234  struct loop_info *loop_info = LOOP_INFO (loop);
235  struct loop_ivs *ivs = LOOP_IVS (loop);
236  int i, j;
237  unsigned int r;
238  unsigned HOST_WIDE_INT temp;
239  int unroll_number = 1;
240  rtx copy_start, copy_end;
241  rtx insn, sequence, pattern, tem;
242  int max_labelno, max_insnno;
243  rtx insert_before;
244  struct inline_remap *map;
245  char *local_label = NULL;
246  char *local_regno;
247  unsigned int max_local_regnum;
248  unsigned int maxregnum;
249  rtx exit_label = 0;
250  rtx start_label;
251  struct iv_class *bl;
252  int splitting_not_safe = 0;
253  enum unroll_types unroll_type = UNROLL_NAIVE;
254  int loop_preconditioned = 0;
255  rtx safety_label;
256  /* This points to the last real insn in the loop, which should be either
257     a JUMP_INSN (for conditional jumps) or a BARRIER (for unconditional
258     jumps).  */
259  rtx last_loop_insn;
260  rtx loop_start = loop->start;
261  rtx loop_end = loop->end;
262
263  /* Don't bother unrolling huge loops.  Since the minimum factor is
264     two, loops greater than one half of MAX_UNROLLED_INSNS will never
265     be unrolled.  */
266  if (insn_count > MAX_UNROLLED_INSNS / 2)
267    {
268      if (loop_dump_stream)
269	fprintf (loop_dump_stream, "Unrolling failure: Loop too big.\n");
270      return;
271    }
272
273  /* Determine type of unroll to perform.  Depends on the number of iterations
274     and the size of the loop.  */
275
276  /* If there is no strength reduce info, then set
277     loop_info->n_iterations to zero.  This can happen if
278     strength_reduce can't find any bivs in the loop.  A value of zero
279     indicates that the number of iterations could not be calculated.  */
280
281  if (! strength_reduce_p)
282    loop_info->n_iterations = 0;
283
284  if (loop_dump_stream && loop_info->n_iterations > 0)
285    {
286      fputs ("Loop unrolling: ", loop_dump_stream);
287      fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC,
288	       loop_info->n_iterations);
289      fputs (" iterations.\n", loop_dump_stream);
290    }
291
292  /* Find and save a pointer to the last nonnote insn in the loop.  */
293
294  last_loop_insn = prev_nonnote_insn (loop_end);
295
296  /* Calculate how many times to unroll the loop.  Indicate whether or
297     not the loop is being completely unrolled.  */
298
299  if (loop_info->n_iterations == 1)
300    {
301      /* Handle the case where the loop begins with an unconditional
302	 jump to the loop condition.  Make sure to delete the jump
303	 insn, otherwise the loop body will never execute.  */
304
305      /* FIXME this actually checks for a jump to the continue point, which
306	 is not the same as the condition in a for loop.  As a result, this
307	 optimization fails for most for loops.  We should really use flow
308	 information rather than instruction pattern matching.  */
309      rtx ujump = ujump_to_loop_cont (loop->start, loop->cont);
310
311      /* If number of iterations is exactly 1, then eliminate the compare and
312	 branch at the end of the loop since they will never be taken.
313	 Then return, since no other action is needed here.  */
314
315      /* If the last instruction is not a BARRIER or a JUMP_INSN, then
316	 don't do anything.  */
317
318      if (GET_CODE (last_loop_insn) == BARRIER)
319	{
320	  /* Delete the jump insn.  This will delete the barrier also.  */
321	  last_loop_insn = PREV_INSN (last_loop_insn);
322	}
323
324      if (ujump && GET_CODE (last_loop_insn) == JUMP_INSN)
325	{
326#ifdef HAVE_cc0
327	  rtx prev = PREV_INSN (last_loop_insn);
328#endif
329	  delete_related_insns (last_loop_insn);
330#ifdef HAVE_cc0
331	  /* The immediately preceding insn may be a compare which must be
332	     deleted.  */
333	  if (only_sets_cc0_p (prev))
334	    delete_related_insns (prev);
335#endif
336
337	  delete_related_insns (ujump);
338
339	  /* Remove the loop notes since this is no longer a loop.  */
340	  if (loop->vtop)
341	    delete_related_insns (loop->vtop);
342	  if (loop->cont)
343	    delete_related_insns (loop->cont);
344	  if (loop_start)
345	    delete_related_insns (loop_start);
346	  if (loop_end)
347	    delete_related_insns (loop_end);
348
349	  return;
350	}
351    }
352
353  if (loop_info->n_iterations > 0
354      /* Avoid overflow in the next expression.  */
355      && loop_info->n_iterations < (unsigned) MAX_UNROLLED_INSNS
356      && loop_info->n_iterations * insn_count < (unsigned) MAX_UNROLLED_INSNS)
357    {
358      unroll_number = loop_info->n_iterations;
359      unroll_type = UNROLL_COMPLETELY;
360    }
361  else if (loop_info->n_iterations > 0)
362    {
363      /* Try to factor the number of iterations.  Don't bother with the
364	 general case, only using 2, 3, 5, and 7 will get 75% of all
365	 numbers theoretically, and almost all in practice.  */
366
367      for (i = 0; i < NUM_FACTORS; i++)
368	factors[i].count = 0;
369
370      temp = loop_info->n_iterations;
371      for (i = NUM_FACTORS - 1; i >= 0; i--)
372	while (temp % factors[i].factor == 0)
373	  {
374	    factors[i].count++;
375	    temp = temp / factors[i].factor;
376	  }
377
378      /* Start with the larger factors first so that we generally
379	 get lots of unrolling.  */
380
381      unroll_number = 1;
382      temp = insn_count;
383      for (i = 3; i >= 0; i--)
384	while (factors[i].count--)
385	  {
386	    if (temp * factors[i].factor < (unsigned) MAX_UNROLLED_INSNS)
387	      {
388		unroll_number *= factors[i].factor;
389		temp *= factors[i].factor;
390	      }
391	    else
392	      break;
393	  }
394
395      /* If we couldn't find any factors, then unroll as in the normal
396	 case.  */
397      if (unroll_number == 1)
398	{
399	  if (loop_dump_stream)
400	    fprintf (loop_dump_stream, "Loop unrolling: No factors found.\n");
401	}
402      else
403	unroll_type = UNROLL_MODULO;
404    }
405
406  /* Default case, calculate number of times to unroll loop based on its
407     size.  */
408  if (unroll_type == UNROLL_NAIVE)
409    {
410      if (8 * insn_count < MAX_UNROLLED_INSNS)
411	unroll_number = 8;
412      else if (4 * insn_count < MAX_UNROLLED_INSNS)
413	unroll_number = 4;
414      else
415	unroll_number = 2;
416    }
417
418  /* Now we know how many times to unroll the loop.  */
419
420  if (loop_dump_stream)
421    fprintf (loop_dump_stream, "Unrolling loop %d times.\n", unroll_number);
422
423  if (unroll_type == UNROLL_COMPLETELY || unroll_type == UNROLL_MODULO)
424    {
425      /* Loops of these types can start with jump down to the exit condition
426	 in rare circumstances.
427
428	 Consider a pair of nested loops where the inner loop is part
429	 of the exit code for the outer loop.
430
431	 In this case jump.c will not duplicate the exit test for the outer
432	 loop, so it will start with a jump to the exit code.
433
434	 Then consider if the inner loop turns out to iterate once and
435	 only once.  We will end up deleting the jumps associated with
436	 the inner loop.  However, the loop notes are not removed from
437	 the instruction stream.
438
439	 And finally assume that we can compute the number of iterations
440	 for the outer loop.
441
442	 In this case unroll may want to unroll the outer loop even though
443	 it starts with a jump to the outer loop's exit code.
444
445	 We could try to optimize this case, but it hardly seems worth it.
446	 Just return without unrolling the loop in such cases.  */
447
448      insn = loop_start;
449      while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
450	insn = NEXT_INSN (insn);
451      if (GET_CODE (insn) == JUMP_INSN)
452	return;
453    }
454
455  if (unroll_type == UNROLL_COMPLETELY)
456    {
457      /* Completely unrolling the loop:  Delete the compare and branch at
458	 the end (the last two instructions).   This delete must done at the
459	 very end of loop unrolling, to avoid problems with calls to
460	 back_branch_in_range_p, which is called by find_splittable_regs.
461	 All increments of splittable bivs/givs are changed to load constant
462	 instructions.  */
463
464      copy_start = loop_start;
465
466      /* Set insert_before to the instruction immediately after the JUMP_INSN
467	 (or BARRIER), so that any NOTEs between the JUMP_INSN and the end of
468	 the loop will be correctly handled by copy_loop_body.  */
469      insert_before = NEXT_INSN (last_loop_insn);
470
471      /* Set copy_end to the insn before the jump at the end of the loop.  */
472      if (GET_CODE (last_loop_insn) == BARRIER)
473	copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
474      else if (GET_CODE (last_loop_insn) == JUMP_INSN)
475	{
476	  copy_end = PREV_INSN (last_loop_insn);
477#ifdef HAVE_cc0
478	  /* The instruction immediately before the JUMP_INSN may be a compare
479	     instruction which we do not want to copy.  */
480	  if (sets_cc0_p (PREV_INSN (copy_end)))
481	    copy_end = PREV_INSN (copy_end);
482#endif
483	}
484      else
485	{
486	  /* We currently can't unroll a loop if it doesn't end with a
487	     JUMP_INSN.  There would need to be a mechanism that recognizes
488	     this case, and then inserts a jump after each loop body, which
489	     jumps to after the last loop body.  */
490	  if (loop_dump_stream)
491	    fprintf (loop_dump_stream,
492		     "Unrolling failure: loop does not end with a JUMP_INSN.\n");
493	  return;
494	}
495    }
496  else if (unroll_type == UNROLL_MODULO)
497    {
498      /* Partially unrolling the loop:  The compare and branch at the end
499	 (the last two instructions) must remain.  Don't copy the compare
500	 and branch instructions at the end of the loop.  Insert the unrolled
501	 code immediately before the compare/branch at the end so that the
502	 code will fall through to them as before.  */
503
504      copy_start = loop_start;
505
506      /* Set insert_before to the jump insn at the end of the loop.
507	 Set copy_end to before the jump insn at the end of the loop.  */
508      if (GET_CODE (last_loop_insn) == BARRIER)
509	{
510	  insert_before = PREV_INSN (last_loop_insn);
511	  copy_end = PREV_INSN (insert_before);
512	}
513      else if (GET_CODE (last_loop_insn) == JUMP_INSN)
514	{
515	  insert_before = last_loop_insn;
516#ifdef HAVE_cc0
517	  /* The instruction immediately before the JUMP_INSN may be a compare
518	     instruction which we do not want to copy or delete.  */
519	  if (sets_cc0_p (PREV_INSN (insert_before)))
520	    insert_before = PREV_INSN (insert_before);
521#endif
522	  copy_end = PREV_INSN (insert_before);
523	}
524      else
525	{
526	  /* We currently can't unroll a loop if it doesn't end with a
527	     JUMP_INSN.  There would need to be a mechanism that recognizes
528	     this case, and then inserts a jump after each loop body, which
529	     jumps to after the last loop body.  */
530	  if (loop_dump_stream)
531	    fprintf (loop_dump_stream,
532		     "Unrolling failure: loop does not end with a JUMP_INSN.\n");
533	  return;
534	}
535    }
536  else
537    {
538      /* Normal case: Must copy the compare and branch instructions at the
539	 end of the loop.  */
540
541      if (GET_CODE (last_loop_insn) == BARRIER)
542	{
543	  /* Loop ends with an unconditional jump and a barrier.
544	     Handle this like above, don't copy jump and barrier.
545	     This is not strictly necessary, but doing so prevents generating
546	     unconditional jumps to an immediately following label.
547
548	     This will be corrected below if the target of this jump is
549	     not the start_label.  */
550
551	  insert_before = PREV_INSN (last_loop_insn);
552	  copy_end = PREV_INSN (insert_before);
553	}
554      else if (GET_CODE (last_loop_insn) == JUMP_INSN)
555	{
556	  /* Set insert_before to immediately after the JUMP_INSN, so that
557	     NOTEs at the end of the loop will be correctly handled by
558	     copy_loop_body.  */
559	  insert_before = NEXT_INSN (last_loop_insn);
560	  copy_end = last_loop_insn;
561	}
562      else
563	{
564	  /* We currently can't unroll a loop if it doesn't end with a
565	     JUMP_INSN.  There would need to be a mechanism that recognizes
566	     this case, and then inserts a jump after each loop body, which
567	     jumps to after the last loop body.  */
568	  if (loop_dump_stream)
569	    fprintf (loop_dump_stream,
570		     "Unrolling failure: loop does not end with a JUMP_INSN.\n");
571	  return;
572	}
573
574      /* If copying exit test branches because they can not be eliminated,
575	 then must convert the fall through case of the branch to a jump past
576	 the end of the loop.  Create a label to emit after the loop and save
577	 it for later use.  Do not use the label after the loop, if any, since
578	 it might be used by insns outside the loop, or there might be insns
579	 added before it later by final_[bg]iv_value which must be after
580	 the real exit label.  */
581      exit_label = gen_label_rtx ();
582
583      insn = loop_start;
584      while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
585	insn = NEXT_INSN (insn);
586
587      if (GET_CODE (insn) == JUMP_INSN)
588	{
589	  /* The loop starts with a jump down to the exit condition test.
590	     Start copying the loop after the barrier following this
591	     jump insn.  */
592	  copy_start = NEXT_INSN (insn);
593
594	  /* Splitting induction variables doesn't work when the loop is
595	     entered via a jump to the bottom, because then we end up doing
596	     a comparison against a new register for a split variable, but
597	     we did not execute the set insn for the new register because
598	     it was skipped over.  */
599	  splitting_not_safe = 1;
600	  if (loop_dump_stream)
601	    fprintf (loop_dump_stream,
602		     "Splitting not safe, because loop not entered at top.\n");
603	}
604      else
605	copy_start = loop_start;
606    }
607
608  /* This should always be the first label in the loop.  */
609  start_label = NEXT_INSN (copy_start);
610  /* There may be a line number note and/or a loop continue note here.  */
611  while (GET_CODE (start_label) == NOTE)
612    start_label = NEXT_INSN (start_label);
613  if (GET_CODE (start_label) != CODE_LABEL)
614    {
615      /* This can happen as a result of jump threading.  If the first insns in
616	 the loop test the same condition as the loop's backward jump, or the
617	 opposite condition, then the backward jump will be modified to point
618	 to elsewhere, and the loop's start label is deleted.
619
620	 This case currently can not be handled by the loop unrolling code.  */
621
622      if (loop_dump_stream)
623	fprintf (loop_dump_stream,
624		 "Unrolling failure: unknown insns between BEG note and loop label.\n");
625      return;
626    }
627  if (LABEL_NAME (start_label))
628    {
629      /* The jump optimization pass must have combined the original start label
630	 with a named label for a goto.  We can't unroll this case because
631	 jumps which go to the named label must be handled differently than
632	 jumps to the loop start, and it is impossible to differentiate them
633	 in this case.  */
634      if (loop_dump_stream)
635	fprintf (loop_dump_stream,
636		 "Unrolling failure: loop start label is gone\n");
637      return;
638    }
639
640  if (unroll_type == UNROLL_NAIVE
641      && GET_CODE (last_loop_insn) == BARRIER
642      && GET_CODE (PREV_INSN (last_loop_insn)) == JUMP_INSN
643      && start_label != JUMP_LABEL (PREV_INSN (last_loop_insn)))
644    {
645      /* In this case, we must copy the jump and barrier, because they will
646	 not be converted to jumps to an immediately following label.  */
647
648      insert_before = NEXT_INSN (last_loop_insn);
649      copy_end = last_loop_insn;
650    }
651
652  if (unroll_type == UNROLL_NAIVE
653      && GET_CODE (last_loop_insn) == JUMP_INSN
654      && start_label != JUMP_LABEL (last_loop_insn))
655    {
656      /* ??? The loop ends with a conditional branch that does not branch back
657	 to the loop start label.  In this case, we must emit an unconditional
658	 branch to the loop exit after emitting the final branch.
659	 copy_loop_body does not have support for this currently, so we
660	 give up.  It doesn't seem worthwhile to unroll anyways since
661	 unrolling would increase the number of branch instructions
662	 executed.  */
663      if (loop_dump_stream)
664	fprintf (loop_dump_stream,
665		 "Unrolling failure: final conditional branch not to loop start\n");
666      return;
667    }
668
669  /* Allocate a translation table for the labels and insn numbers.
670     They will be filled in as we copy the insns in the loop.  */
671
672  max_labelno = max_label_num ();
673  max_insnno = get_max_uid ();
674
675  /* Various paths through the unroll code may reach the "egress" label
676     without initializing fields within the map structure.
677
678     To be safe, we use xcalloc to zero the memory.  */
679  map = (struct inline_remap *) xcalloc (1, sizeof (struct inline_remap));
680
681  /* Allocate the label map.  */
682
683  if (max_labelno > 0)
684    {
685      map->label_map = (rtx *) xcalloc (max_labelno, sizeof (rtx));
686      local_label = (char *) xcalloc (max_labelno, sizeof (char));
687    }
688
689  /* Search the loop and mark all local labels, i.e. the ones which have to
690     be distinct labels when copied.  For all labels which might be
691     non-local, set their label_map entries to point to themselves.
692     If they happen to be local their label_map entries will be overwritten
693     before the loop body is copied.  The label_map entries for local labels
694     will be set to a different value each time the loop body is copied.  */
695
696  for (insn = copy_start; insn != loop_end; insn = NEXT_INSN (insn))
697    {
698      rtx note;
699
700      if (GET_CODE (insn) == CODE_LABEL)
701	local_label[CODE_LABEL_NUMBER (insn)] = 1;
702      else if (GET_CODE (insn) == JUMP_INSN)
703	{
704	  if (JUMP_LABEL (insn))
705	    set_label_in_map (map,
706			      CODE_LABEL_NUMBER (JUMP_LABEL (insn)),
707			      JUMP_LABEL (insn));
708	  else if (GET_CODE (PATTERN (insn)) == ADDR_VEC
709		   || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
710	    {
711	      rtx pat = PATTERN (insn);
712	      int diff_vec_p = GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC;
713	      int len = XVECLEN (pat, diff_vec_p);
714	      rtx label;
715
716	      for (i = 0; i < len; i++)
717		{
718		  label = XEXP (XVECEXP (pat, diff_vec_p, i), 0);
719		  set_label_in_map (map, CODE_LABEL_NUMBER (label), label);
720		}
721	    }
722	}
723      if ((note = find_reg_note (insn, REG_LABEL, NULL_RTX)))
724	set_label_in_map (map, CODE_LABEL_NUMBER (XEXP (note, 0)),
725			  XEXP (note, 0));
726    }
727
728  /* Allocate space for the insn map.  */
729
730  map->insn_map = (rtx *) xmalloc (max_insnno * sizeof (rtx));
731
732  /* Set this to zero, to indicate that we are doing loop unrolling,
733     not function inlining.  */
734  map->inline_target = 0;
735
736  /* The register and constant maps depend on the number of registers
737     present, so the final maps can't be created until after
738     find_splittable_regs is called.  However, they are needed for
739     preconditioning, so we create temporary maps when preconditioning
740     is performed.  */
741
742  /* The preconditioning code may allocate two new pseudo registers.  */
743  maxregnum = max_reg_num ();
744
745  /* local_regno is only valid for regnos < max_local_regnum.  */
746  max_local_regnum = maxregnum;
747
748  /* Allocate and zero out the splittable_regs and addr_combined_regs
749     arrays.  These must be zeroed here because they will be used if
750     loop preconditioning is performed, and must be zero for that case.
751
752     It is safe to do this here, since the extra registers created by the
753     preconditioning code and find_splittable_regs will never be used
754     to access the splittable_regs[] and addr_combined_regs[] arrays.  */
755
756  splittable_regs = (rtx *) xcalloc (maxregnum, sizeof (rtx));
757  splittable_regs_updates = (int *) xcalloc (maxregnum, sizeof (int));
758  addr_combined_regs
759    = (struct induction **) xcalloc (maxregnum, sizeof (struct induction *));
760  local_regno = (char *) xcalloc (maxregnum, sizeof (char));
761
762  /* Mark all local registers, i.e. the ones which are referenced only
763     inside the loop.  */
764  if (INSN_UID (copy_end) < max_uid_for_loop)
765    {
766      int copy_start_luid = INSN_LUID (copy_start);
767      int copy_end_luid = INSN_LUID (copy_end);
768
769      /* If a register is used in the jump insn, we must not duplicate it
770	 since it will also be used outside the loop.  */
771      if (GET_CODE (copy_end) == JUMP_INSN)
772	copy_end_luid--;
773
774      /* If we have a target that uses cc0, then we also must not duplicate
775	 the insn that sets cc0 before the jump insn, if one is present.  */
776#ifdef HAVE_cc0
777      if (GET_CODE (copy_end) == JUMP_INSN
778	  && sets_cc0_p (PREV_INSN (copy_end)))
779	copy_end_luid--;
780#endif
781
782      /* If copy_start points to the NOTE that starts the loop, then we must
783	 use the next luid, because invariant pseudo-regs moved out of the loop
784	 have their lifetimes modified to start here, but they are not safe
785	 to duplicate.  */
786      if (copy_start == loop_start)
787	copy_start_luid++;
788
789      /* If a pseudo's lifetime is entirely contained within this loop, then we
790	 can use a different pseudo in each unrolled copy of the loop.  This
791	 results in better code.  */
792      /* We must limit the generic test to max_reg_before_loop, because only
793	 these pseudo registers have valid regno_first_uid info.  */
794      for (r = FIRST_PSEUDO_REGISTER; r < max_reg_before_loop; ++r)
795	if (REGNO_FIRST_UID (r) > 0 && REGNO_FIRST_UID (r) < max_uid_for_loop
796	    && REGNO_FIRST_LUID (r) >= copy_start_luid
797	    && REGNO_LAST_NOTE_UID (r) > 0 && REGNO_LAST_NOTE_UID (r) < max_uid_for_loop
798	    && REGNO_LAST_NOTE_LUID (r) <= copy_end_luid)
799	  {
800	    /* However, we must also check for loop-carried dependencies.
801	       If the value the pseudo has at the end of iteration X is
802	       used by iteration X+1, then we can not use a different pseudo
803	       for each unrolled copy of the loop.  */
804	    /* A pseudo is safe if regno_first_uid is a set, and this
805	       set dominates all instructions from regno_first_uid to
806	       regno_last_uid.  */
807	    /* ??? This check is simplistic.  We would get better code if
808	       this check was more sophisticated.  */
809	    if (set_dominates_use (r, REGNO_FIRST_UID (r), REGNO_LAST_UID (r),
810				   copy_start, copy_end))
811	      local_regno[r] = 1;
812
813	    if (loop_dump_stream)
814	      {
815		if (local_regno[r])
816		  fprintf (loop_dump_stream, "Marked reg %d as local\n", r);
817		else
818		  fprintf (loop_dump_stream, "Did not mark reg %d as local\n",
819			   r);
820	      }
821	  }
822    }
823
824  /* If this loop requires exit tests when unrolled, check to see if we
825     can precondition the loop so as to make the exit tests unnecessary.
826     Just like variable splitting, this is not safe if the loop is entered
827     via a jump to the bottom.  Also, can not do this if no strength
828     reduce info, because precondition_loop_p uses this info.  */
829
830  /* Must copy the loop body for preconditioning before the following
831     find_splittable_regs call since that will emit insns which need to
832     be after the preconditioned loop copies, but immediately before the
833     unrolled loop copies.  */
834
835  /* Also, it is not safe to split induction variables for the preconditioned
836     copies of the loop body.  If we split induction variables, then the code
837     assumes that each induction variable can be represented as a function
838     of its initial value and the loop iteration number.  This is not true
839     in this case, because the last preconditioned copy of the loop body
840     could be any iteration from the first up to the `unroll_number-1'th,
841     depending on the initial value of the iteration variable.  Therefore
842     we can not split induction variables here, because we can not calculate
843     their value.  Hence, this code must occur before find_splittable_regs
844     is called.  */
845
846  if (unroll_type == UNROLL_NAIVE && ! splitting_not_safe && strength_reduce_p)
847    {
848      rtx initial_value, final_value, increment;
849      enum machine_mode mode;
850
851      if (precondition_loop_p (loop,
852			       &initial_value, &final_value, &increment,
853			       &mode))
854	{
855	  rtx diff, insn;
856	  rtx *labels;
857	  int abs_inc, neg_inc;
858	  enum rtx_code cc = loop_info->comparison_code;
859	  int less_p     = (cc == LE  || cc == LEU || cc == LT  || cc == LTU);
860	  int unsigned_p = (cc == LEU || cc == GEU || cc == LTU || cc == GTU);
861
862	  map->reg_map = (rtx *) xmalloc (maxregnum * sizeof (rtx));
863
864	  VARRAY_CONST_EQUIV_INIT (map->const_equiv_varray, maxregnum,
865				   "unroll_loop_precondition");
866	  global_const_equiv_varray = map->const_equiv_varray;
867
868	  init_reg_map (map, maxregnum);
869
870	  /* Limit loop unrolling to 4, since this will make 7 copies of
871	     the loop body.  */
872	  if (unroll_number > 4)
873	    unroll_number = 4;
874
875	  /* Save the absolute value of the increment, and also whether or
876	     not it is negative.  */
877	  neg_inc = 0;
878	  abs_inc = INTVAL (increment);
879	  if (abs_inc < 0)
880	    {
881	      abs_inc = -abs_inc;
882	      neg_inc = 1;
883	    }
884
885	  start_sequence ();
886
887	  /* We must copy the final and initial values here to avoid
888	     improperly shared rtl.  */
889	  final_value = copy_rtx (final_value);
890	  initial_value = copy_rtx (initial_value);
891
892	  /* Final value may have form of (PLUS val1 const1_rtx).  We need
893	     to convert it into general operand, so compute the real value.  */
894
895	  final_value = force_operand (final_value, NULL_RTX);
896	  if (!nonmemory_operand (final_value, VOIDmode))
897	    final_value = force_reg (mode, final_value);
898
899	  /* Calculate the difference between the final and initial values.
900	     Final value may be a (plus (reg x) (const_int 1)) rtx.
901
902	     We have to deal with for (i = 0; --i < 6;) type loops.
903	     For such loops the real final value is the first time the
904	     loop variable overflows, so the diff we calculate is the
905	     distance from the overflow value.  This is 0 or ~0 for
906	     unsigned loops depending on the direction, or INT_MAX,
907	     INT_MAX+1 for signed loops.  We really do not need the
908	     exact value, since we are only interested in the diff
909	     modulo the increment, and the increment is a power of 2,
910	     so we can pretend that the overflow value is 0/~0.  */
911
912	  if (cc == NE || less_p != neg_inc)
913	    diff = simplify_gen_binary (MINUS, mode, final_value,
914					initial_value);
915	  else
916	    diff = simplify_gen_unary (neg_inc ? NOT : NEG, mode,
917				       initial_value, mode);
918	  diff = force_operand (diff, NULL_RTX);
919
920	  /* Now calculate (diff % (unroll * abs (increment))) by using an
921	     and instruction.  */
922	  diff = simplify_gen_binary (AND, mode, diff,
923				      GEN_INT (unroll_number*abs_inc - 1));
924	  diff = force_operand (diff, NULL_RTX);
925
926	  /* Now emit a sequence of branches to jump to the proper precond
927	     loop entry point.  */
928
929	  labels = (rtx *) xmalloc (sizeof (rtx) * unroll_number);
930	  for (i = 0; i < unroll_number; i++)
931	    labels[i] = gen_label_rtx ();
932
933	  /* Check for the case where the initial value is greater than or
934	     equal to the final value.  In that case, we want to execute
935	     exactly one loop iteration.  The code below will fail for this
936	     case.  This check does not apply if the loop has a NE
937	     comparison at the end.  */
938
939	  if (cc != NE)
940	    {
941	      rtx incremented_initval;
942	      enum rtx_code cmp_code;
943
944	      incremented_initval
945		= simplify_gen_binary (PLUS, mode, initial_value, increment);
946	      incremented_initval
947		= force_operand (incremented_initval, NULL_RTX);
948
949	      cmp_code = (less_p
950			  ? (unsigned_p ? GEU : GE)
951			  : (unsigned_p ? LEU : LE));
952
953	      insn = simplify_cmp_and_jump_insns (cmp_code, mode,
954						  incremented_initval,
955						  final_value, labels[1]);
956	      if (insn)
957	        predict_insn_def (insn, PRED_LOOP_CONDITION, TAKEN);
958	    }
959
960	  /* Assuming the unroll_number is 4, and the increment is 2, then
961	     for a negative increment:	for a positive increment:
962	     diff = 0,1   precond 0	diff = 0,7   precond 0
963	     diff = 2,3   precond 3     diff = 1,2   precond 1
964	     diff = 4,5   precond 2     diff = 3,4   precond 2
965	     diff = 6,7   precond 1     diff = 5,6   precond 3  */
966
967	  /* We only need to emit (unroll_number - 1) branches here, the
968	     last case just falls through to the following code.  */
969
970	  /* ??? This would give better code if we emitted a tree of branches
971	     instead of the current linear list of branches.  */
972
973	  for (i = 0; i < unroll_number - 1; i++)
974	    {
975	      int cmp_const;
976	      enum rtx_code cmp_code;
977
978	      /* For negative increments, must invert the constant compared
979		 against, except when comparing against zero.  */
980	      if (i == 0)
981		{
982		  cmp_const = 0;
983		  cmp_code = EQ;
984		}
985	      else if (neg_inc)
986		{
987		  cmp_const = unroll_number - i;
988		  cmp_code = GE;
989		}
990	      else
991		{
992		  cmp_const = i;
993		  cmp_code = LE;
994		}
995
996	      insn = simplify_cmp_and_jump_insns (cmp_code, mode, diff,
997						  GEN_INT (abs_inc*cmp_const),
998						  labels[i]);
999	      if (insn)
1000	        predict_insn (insn, PRED_LOOP_PRECONDITIONING,
1001			      REG_BR_PROB_BASE / (unroll_number - i));
1002	    }
1003
1004	  /* If the increment is greater than one, then we need another branch,
1005	     to handle other cases equivalent to 0.  */
1006
1007	  /* ??? This should be merged into the code above somehow to help
1008	     simplify the code here, and reduce the number of branches emitted.
1009	     For the negative increment case, the branch here could easily
1010	     be merged with the `0' case branch above.  For the positive
1011	     increment case, it is not clear how this can be simplified.  */
1012
1013	  if (abs_inc != 1)
1014	    {
1015	      int cmp_const;
1016	      enum rtx_code cmp_code;
1017
1018	      if (neg_inc)
1019		{
1020		  cmp_const = abs_inc - 1;
1021		  cmp_code = LE;
1022		}
1023	      else
1024		{
1025		  cmp_const = abs_inc * (unroll_number - 1) + 1;
1026		  cmp_code = GE;
1027		}
1028
1029	      simplify_cmp_and_jump_insns (cmp_code, mode, diff,
1030					   GEN_INT (cmp_const), labels[0]);
1031	    }
1032
1033	  sequence = get_insns ();
1034	  end_sequence ();
1035	  loop_insn_hoist (loop, sequence);
1036
1037	  /* Only the last copy of the loop body here needs the exit
1038	     test, so set copy_end to exclude the compare/branch here,
1039	     and then reset it inside the loop when get to the last
1040	     copy.  */
1041
1042	  if (GET_CODE (last_loop_insn) == BARRIER)
1043	    copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1044	  else if (GET_CODE (last_loop_insn) == JUMP_INSN)
1045	    {
1046	      copy_end = PREV_INSN (last_loop_insn);
1047#ifdef HAVE_cc0
1048	      /* The immediately preceding insn may be a compare which
1049		 we do not want to copy.  */
1050	      if (sets_cc0_p (PREV_INSN (copy_end)))
1051		copy_end = PREV_INSN (copy_end);
1052#endif
1053	    }
1054	  else
1055	    abort ();
1056
1057	  for (i = 1; i < unroll_number; i++)
1058	    {
1059	      emit_label_after (labels[unroll_number - i],
1060				PREV_INSN (loop_start));
1061
1062	      memset ((char *) map->insn_map, 0, max_insnno * sizeof (rtx));
1063	      memset ((char *) &VARRAY_CONST_EQUIV (map->const_equiv_varray, 0),
1064		      0, (VARRAY_SIZE (map->const_equiv_varray)
1065			  * sizeof (struct const_equiv_data)));
1066	      map->const_age = 0;
1067
1068	      for (j = 0; j < max_labelno; j++)
1069		if (local_label[j])
1070		  set_label_in_map (map, j, gen_label_rtx ());
1071
1072	      for (r = FIRST_PSEUDO_REGISTER; r < max_local_regnum; r++)
1073		if (local_regno[r])
1074		  {
1075		    map->reg_map[r]
1076		      = gen_reg_rtx (GET_MODE (regno_reg_rtx[r]));
1077		    record_base_value (REGNO (map->reg_map[r]),
1078				       regno_reg_rtx[r], 0);
1079		  }
1080	      /* The last copy needs the compare/branch insns at the end,
1081		 so reset copy_end here if the loop ends with a conditional
1082		 branch.  */
1083
1084	      if (i == unroll_number - 1)
1085		{
1086		  if (GET_CODE (last_loop_insn) == BARRIER)
1087		    copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1088		  else
1089		    copy_end = last_loop_insn;
1090		}
1091
1092	      /* None of the copies are the `last_iteration', so just
1093		 pass zero for that parameter.  */
1094	      copy_loop_body (loop, copy_start, copy_end, map, exit_label, 0,
1095			      unroll_type, start_label, loop_end,
1096			      loop_start, copy_end);
1097	    }
1098	  emit_label_after (labels[0], PREV_INSN (loop_start));
1099
1100	  if (GET_CODE (last_loop_insn) == BARRIER)
1101	    {
1102	      insert_before = PREV_INSN (last_loop_insn);
1103	      copy_end = PREV_INSN (insert_before);
1104	    }
1105	  else
1106	    {
1107	      insert_before = last_loop_insn;
1108#ifdef HAVE_cc0
1109	      /* The instruction immediately before the JUMP_INSN may
1110		 be a compare instruction which we do not want to copy
1111		 or delete.  */
1112	      if (sets_cc0_p (PREV_INSN (insert_before)))
1113		insert_before = PREV_INSN (insert_before);
1114#endif
1115	      copy_end = PREV_INSN (insert_before);
1116	    }
1117
1118	  /* Set unroll type to MODULO now.  */
1119	  unroll_type = UNROLL_MODULO;
1120	  loop_preconditioned = 1;
1121
1122	  /* Preconditioning changes the loop's initial value.  We set
1123	     it to an unknown value so that doloop_optimize won't get
1124	     confused.  */
1125	  loop_info->initial_value = 0;
1126
1127	  /* Clean up.  */
1128	  free (labels);
1129	}
1130    }
1131
1132  /* If reach here, and the loop type is UNROLL_NAIVE, then don't unroll
1133     the loop unless all loops are being unrolled.  */
1134  if (unroll_type == UNROLL_NAIVE && ! flag_unroll_all_loops)
1135    {
1136      if (loop_dump_stream)
1137	fprintf (loop_dump_stream,
1138		 "Unrolling failure: Naive unrolling not being done.\n");
1139      goto egress;
1140    }
1141
1142  /* At this point, we are guaranteed to unroll the loop.  */
1143
1144  /* Keep track of the unroll factor for the loop.  */
1145  loop_info->unroll_number = unroll_number;
1146
1147  /* And whether the loop has been preconditioned.  */
1148  loop_info->preconditioned = loop_preconditioned;
1149
1150  /* Remember whether it was preconditioned for the second loop pass.  */
1151  NOTE_PRECONDITIONED (loop->end) = loop_preconditioned;
1152
1153  /* For each biv and giv, determine whether it can be safely split into
1154     a different variable for each unrolled copy of the loop body.
1155     We precalculate and save this info here, since computing it is
1156     expensive.
1157
1158     Do this before deleting any instructions from the loop, so that
1159     back_branch_in_range_p will work correctly.  */
1160
1161  if (splitting_not_safe)
1162    temp = 0;
1163  else
1164    temp = find_splittable_regs (loop, unroll_type, unroll_number);
1165
1166  /* find_splittable_regs may have created some new registers, so must
1167     reallocate the reg_map with the new larger size, and must realloc
1168     the constant maps also.  */
1169
1170  maxregnum = max_reg_num ();
1171  map->reg_map = (rtx *) xmalloc (maxregnum * sizeof (rtx));
1172
1173  init_reg_map (map, maxregnum);
1174
1175  if (map->const_equiv_varray == 0)
1176    VARRAY_CONST_EQUIV_INIT (map->const_equiv_varray,
1177			     maxregnum + temp * unroll_number * 2,
1178			     "unroll_loop");
1179  global_const_equiv_varray = map->const_equiv_varray;
1180
1181  /* Search the list of bivs and givs to find ones which need to be remapped
1182     when split, and set their reg_map entry appropriately.  */
1183
1184  for (bl = ivs->list; bl; bl = bl->next)
1185    {
1186      if (REGNO (bl->biv->src_reg) != bl->regno)
1187	map->reg_map[bl->regno] = bl->biv->src_reg;
1188#if 0
1189      /* Currently, non-reduced/final-value givs are never split.  */
1190      for (v = bl->giv; v; v = v->next_iv)
1191	if (REGNO (v->src_reg) != bl->regno)
1192	  map->reg_map[REGNO (v->dest_reg)] = v->src_reg;
1193#endif
1194    }
1195
1196  /* Use our current register alignment and pointer flags.  */
1197  map->regno_pointer_align = cfun->emit->regno_pointer_align;
1198  map->x_regno_reg_rtx = cfun->emit->x_regno_reg_rtx;
1199
1200  /* If the loop is being partially unrolled, and the iteration variables
1201     are being split, and are being renamed for the split, then must fix up
1202     the compare/jump instruction at the end of the loop to refer to the new
1203     registers.  This compare isn't copied, so the registers used in it
1204     will never be replaced if it isn't done here.  */
1205
1206  if (unroll_type == UNROLL_MODULO)
1207    {
1208      insn = NEXT_INSN (copy_end);
1209      if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
1210	PATTERN (insn) = remap_split_bivs (loop, PATTERN (insn));
1211    }
1212
1213  /* For unroll_number times, make a copy of each instruction
1214     between copy_start and copy_end, and insert these new instructions
1215     before the end of the loop.  */
1216
1217  for (i = 0; i < unroll_number; i++)
1218    {
1219      memset ((char *) map->insn_map, 0, max_insnno * sizeof (rtx));
1220      memset ((char *) &VARRAY_CONST_EQUIV (map->const_equiv_varray, 0), 0,
1221	      VARRAY_SIZE (map->const_equiv_varray) * sizeof (struct const_equiv_data));
1222      map->const_age = 0;
1223
1224      for (j = 0; j < max_labelno; j++)
1225	if (local_label[j])
1226	  set_label_in_map (map, j, gen_label_rtx ());
1227
1228      for (r = FIRST_PSEUDO_REGISTER; r < max_local_regnum; r++)
1229	if (local_regno[r])
1230	  {
1231	    map->reg_map[r] = gen_reg_rtx (GET_MODE (regno_reg_rtx[r]));
1232	    record_base_value (REGNO (map->reg_map[r]),
1233			       regno_reg_rtx[r], 0);
1234	  }
1235
1236      /* If loop starts with a branch to the test, then fix it so that
1237	 it points to the test of the first unrolled copy of the loop.  */
1238      if (i == 0 && loop_start != copy_start)
1239	{
1240	  insn = PREV_INSN (copy_start);
1241	  pattern = PATTERN (insn);
1242
1243	  tem = get_label_from_map (map,
1244				    CODE_LABEL_NUMBER
1245				    (XEXP (SET_SRC (pattern), 0)));
1246	  SET_SRC (pattern) = gen_rtx_LABEL_REF (VOIDmode, tem);
1247
1248	  /* Set the jump label so that it can be used by later loop unrolling
1249	     passes.  */
1250	  JUMP_LABEL (insn) = tem;
1251	  LABEL_NUSES (tem)++;
1252	}
1253
1254      copy_loop_body (loop, copy_start, copy_end, map, exit_label,
1255		      i == unroll_number - 1, unroll_type, start_label,
1256		      loop_end, insert_before, insert_before);
1257    }
1258
1259  /* Before deleting any insns, emit a CODE_LABEL immediately after the last
1260     insn to be deleted.  This prevents any runaway delete_insn call from
1261     more insns that it should, as it always stops at a CODE_LABEL.  */
1262
1263  /* Delete the compare and branch at the end of the loop if completely
1264     unrolling the loop.  Deleting the backward branch at the end also
1265     deletes the code label at the start of the loop.  This is done at
1266     the very end to avoid problems with back_branch_in_range_p.  */
1267
1268  if (unroll_type == UNROLL_COMPLETELY)
1269    safety_label = emit_label_after (gen_label_rtx (), last_loop_insn);
1270  else
1271    safety_label = emit_label_after (gen_label_rtx (), copy_end);
1272
1273  /* Delete all of the original loop instructions.  Don't delete the
1274     LOOP_BEG note, or the first code label in the loop.  */
1275
1276  insn = NEXT_INSN (copy_start);
1277  while (insn != safety_label)
1278    {
1279      /* ??? Don't delete named code labels.  They will be deleted when the
1280	 jump that references them is deleted.  Otherwise, we end up deleting
1281	 them twice, which causes them to completely disappear instead of turn
1282	 into NOTE_INSN_DELETED_LABEL notes.  This in turn causes aborts in
1283	 dwarfout.c/dwarf2out.c.  We could perhaps fix the dwarf*out.c files
1284	 to handle deleted labels instead.  Or perhaps fix DECL_RTL of the
1285	 associated LABEL_DECL to point to one of the new label instances.  */
1286      /* ??? Likewise, we can't delete a NOTE_INSN_DELETED_LABEL note.  */
1287      if (insn != start_label
1288	  && ! (GET_CODE (insn) == CODE_LABEL && LABEL_NAME (insn))
1289	  && ! (GET_CODE (insn) == NOTE
1290		&& NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL))
1291	insn = delete_related_insns (insn);
1292      else
1293	insn = NEXT_INSN (insn);
1294    }
1295
1296  /* Can now delete the 'safety' label emitted to protect us from runaway
1297     delete_related_insns calls.  */
1298  if (INSN_DELETED_P (safety_label))
1299    abort ();
1300  delete_related_insns (safety_label);
1301
1302  /* If exit_label exists, emit it after the loop.  Doing the emit here
1303     forces it to have a higher INSN_UID than any insn in the unrolled loop.
1304     This is needed so that mostly_true_jump in reorg.c will treat jumps
1305     to this loop end label correctly, i.e. predict that they are usually
1306     not taken.  */
1307  if (exit_label)
1308    emit_label_after (exit_label, loop_end);
1309
1310 egress:
1311  if (unroll_type == UNROLL_COMPLETELY)
1312    {
1313      /* Remove the loop notes since this is no longer a loop.  */
1314      if (loop->vtop)
1315	delete_related_insns (loop->vtop);
1316      if (loop->cont)
1317	delete_related_insns (loop->cont);
1318      if (loop_start)
1319	delete_related_insns (loop_start);
1320      if (loop_end)
1321	delete_related_insns (loop_end);
1322    }
1323
1324  if (map->const_equiv_varray)
1325    VARRAY_FREE (map->const_equiv_varray);
1326  if (map->label_map)
1327    {
1328      free (map->label_map);
1329      free (local_label);
1330    }
1331  free (map->insn_map);
1332  free (splittable_regs);
1333  free (splittable_regs_updates);
1334  free (addr_combined_regs);
1335  free (local_regno);
1336  if (map->reg_map)
1337    free (map->reg_map);
1338  free (map);
1339}
1340
1341/* A helper function for unroll_loop.  Emit a compare and branch to
1342   satisfy (CMP OP1 OP2), but pass this through the simplifier first.
1343   If the branch turned out to be conditional, return it, otherwise
1344   return NULL.  */
1345
1346static rtx
1347simplify_cmp_and_jump_insns (code, mode, op0, op1, label)
1348     enum rtx_code code;
1349     enum machine_mode mode;
1350     rtx op0, op1, label;
1351{
1352  rtx t, insn;
1353
1354  t = simplify_relational_operation (code, mode, op0, op1);
1355  if (!t)
1356    {
1357      enum rtx_code scode = signed_condition (code);
1358      emit_cmp_and_jump_insns (op0, op1, scode, NULL_RTX, mode,
1359			       code != scode, label);
1360      insn = get_last_insn ();
1361
1362      JUMP_LABEL (insn) = label;
1363      LABEL_NUSES (label) += 1;
1364
1365      return insn;
1366    }
1367  else if (t == const_true_rtx)
1368    {
1369      insn = emit_jump_insn (gen_jump (label));
1370      emit_barrier ();
1371      JUMP_LABEL (insn) = label;
1372      LABEL_NUSES (label) += 1;
1373    }
1374
1375  return NULL_RTX;
1376}
1377
1378/* Return true if the loop can be safely, and profitably, preconditioned
1379   so that the unrolled copies of the loop body don't need exit tests.
1380
1381   This only works if final_value, initial_value and increment can be
1382   determined, and if increment is a constant power of 2.
1383   If increment is not a power of 2, then the preconditioning modulo
1384   operation would require a real modulo instead of a boolean AND, and this
1385   is not considered `profitable'.  */
1386
1387/* ??? If the loop is known to be executed very many times, or the machine
1388   has a very cheap divide instruction, then preconditioning is a win even
1389   when the increment is not a power of 2.  Use RTX_COST to compute
1390   whether divide is cheap.
1391   ??? A divide by constant doesn't actually need a divide, look at
1392   expand_divmod.  The reduced cost of this optimized modulo is not
1393   reflected in RTX_COST.  */
1394
1395int
1396precondition_loop_p (loop, initial_value, final_value, increment, mode)
1397     const struct loop *loop;
1398     rtx *initial_value, *final_value, *increment;
1399     enum machine_mode *mode;
1400{
1401  rtx loop_start = loop->start;
1402  struct loop_info *loop_info = LOOP_INFO (loop);
1403
1404  if (loop_info->n_iterations > 0)
1405    {
1406      if (INTVAL (loop_info->increment) > 0)
1407	{
1408	  *initial_value = const0_rtx;
1409	  *increment = const1_rtx;
1410	  *final_value = GEN_INT (loop_info->n_iterations);
1411	}
1412      else
1413	{
1414	  *initial_value = GEN_INT (loop_info->n_iterations);
1415	  *increment = constm1_rtx;
1416	  *final_value = const0_rtx;
1417	}
1418      *mode = word_mode;
1419
1420      if (loop_dump_stream)
1421	{
1422	  fputs ("Preconditioning: Success, number of iterations known, ",
1423		 loop_dump_stream);
1424	  fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC,
1425		   loop_info->n_iterations);
1426	  fputs (".\n", loop_dump_stream);
1427	}
1428      return 1;
1429    }
1430
1431  if (loop_info->iteration_var == 0)
1432    {
1433      if (loop_dump_stream)
1434	fprintf (loop_dump_stream,
1435		 "Preconditioning: Could not find iteration variable.\n");
1436      return 0;
1437    }
1438  else if (loop_info->initial_value == 0)
1439    {
1440      if (loop_dump_stream)
1441	fprintf (loop_dump_stream,
1442		 "Preconditioning: Could not find initial value.\n");
1443      return 0;
1444    }
1445  else if (loop_info->increment == 0)
1446    {
1447      if (loop_dump_stream)
1448	fprintf (loop_dump_stream,
1449		 "Preconditioning: Could not find increment value.\n");
1450      return 0;
1451    }
1452  else if (GET_CODE (loop_info->increment) != CONST_INT)
1453    {
1454      if (loop_dump_stream)
1455	fprintf (loop_dump_stream,
1456		 "Preconditioning: Increment not a constant.\n");
1457      return 0;
1458    }
1459  else if ((exact_log2 (INTVAL (loop_info->increment)) < 0)
1460	   && (exact_log2 (-INTVAL (loop_info->increment)) < 0))
1461    {
1462      if (loop_dump_stream)
1463	fprintf (loop_dump_stream,
1464		 "Preconditioning: Increment not a constant power of 2.\n");
1465      return 0;
1466    }
1467
1468  /* Unsigned_compare and compare_dir can be ignored here, since they do
1469     not matter for preconditioning.  */
1470
1471  if (loop_info->final_value == 0)
1472    {
1473      if (loop_dump_stream)
1474	fprintf (loop_dump_stream,
1475		 "Preconditioning: EQ comparison loop.\n");
1476      return 0;
1477    }
1478
1479  /* Must ensure that final_value is invariant, so call
1480     loop_invariant_p to check.  Before doing so, must check regno
1481     against max_reg_before_loop to make sure that the register is in
1482     the range covered by loop_invariant_p.  If it isn't, then it is
1483     most likely a biv/giv which by definition are not invariant.  */
1484  if ((GET_CODE (loop_info->final_value) == REG
1485       && REGNO (loop_info->final_value) >= max_reg_before_loop)
1486      || (GET_CODE (loop_info->final_value) == PLUS
1487	  && REGNO (XEXP (loop_info->final_value, 0)) >= max_reg_before_loop)
1488      || ! loop_invariant_p (loop, loop_info->final_value))
1489    {
1490      if (loop_dump_stream)
1491	fprintf (loop_dump_stream,
1492		 "Preconditioning: Final value not invariant.\n");
1493      return 0;
1494    }
1495
1496  /* Fail for floating point values, since the caller of this function
1497     does not have code to deal with them.  */
1498  if (GET_MODE_CLASS (GET_MODE (loop_info->final_value)) == MODE_FLOAT
1499      || GET_MODE_CLASS (GET_MODE (loop_info->initial_value)) == MODE_FLOAT)
1500    {
1501      if (loop_dump_stream)
1502	fprintf (loop_dump_stream,
1503		 "Preconditioning: Floating point final or initial value.\n");
1504      return 0;
1505    }
1506
1507  /* Fail if loop_info->iteration_var is not live before loop_start,
1508     since we need to test its value in the preconditioning code.  */
1509
1510  if (REGNO_FIRST_LUID (REGNO (loop_info->iteration_var))
1511      > INSN_LUID (loop_start))
1512    {
1513      if (loop_dump_stream)
1514	fprintf (loop_dump_stream,
1515		 "Preconditioning: Iteration var not live before loop start.\n");
1516      return 0;
1517    }
1518
1519  /* Note that loop_iterations biases the initial value for GIV iterators
1520     such as "while (i-- > 0)" so that we can calculate the number of
1521     iterations just like for BIV iterators.
1522
1523     Also note that the absolute values of initial_value and
1524     final_value are unimportant as only their difference is used for
1525     calculating the number of loop iterations.  */
1526  *initial_value = loop_info->initial_value;
1527  *increment = loop_info->increment;
1528  *final_value = loop_info->final_value;
1529
1530  /* Decide what mode to do these calculations in.  Choose the larger
1531     of final_value's mode and initial_value's mode, or a full-word if
1532     both are constants.  */
1533  *mode = GET_MODE (*final_value);
1534  if (*mode == VOIDmode)
1535    {
1536      *mode = GET_MODE (*initial_value);
1537      if (*mode == VOIDmode)
1538	*mode = word_mode;
1539    }
1540  else if (*mode != GET_MODE (*initial_value)
1541	   && (GET_MODE_SIZE (*mode)
1542	       < GET_MODE_SIZE (GET_MODE (*initial_value))))
1543    *mode = GET_MODE (*initial_value);
1544
1545  /* Success!  */
1546  if (loop_dump_stream)
1547    fprintf (loop_dump_stream, "Preconditioning: Successful.\n");
1548  return 1;
1549}
1550
1551/* All pseudo-registers must be mapped to themselves.  Two hard registers
1552   must be mapped, VIRTUAL_STACK_VARS_REGNUM and VIRTUAL_INCOMING_ARGS_
1553   REGNUM, to avoid function-inlining specific conversions of these
1554   registers.  All other hard regs can not be mapped because they may be
1555   used with different
1556   modes.  */
1557
1558static void
1559init_reg_map (map, maxregnum)
1560     struct inline_remap *map;
1561     int maxregnum;
1562{
1563  int i;
1564
1565  for (i = maxregnum - 1; i > LAST_VIRTUAL_REGISTER; i--)
1566    map->reg_map[i] = regno_reg_rtx[i];
1567  /* Just clear the rest of the entries.  */
1568  for (i = LAST_VIRTUAL_REGISTER; i >= 0; i--)
1569    map->reg_map[i] = 0;
1570
1571  map->reg_map[VIRTUAL_STACK_VARS_REGNUM]
1572    = regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM];
1573  map->reg_map[VIRTUAL_INCOMING_ARGS_REGNUM]
1574    = regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM];
1575}
1576
1577/* Strength-reduction will often emit code for optimized biv/givs which
1578   calculates their value in a temporary register, and then copies the result
1579   to the iv.  This procedure reconstructs the pattern computing the iv;
1580   verifying that all operands are of the proper form.
1581
1582   PATTERN must be the result of single_set.
1583   The return value is the amount that the giv is incremented by.  */
1584
1585static rtx
1586calculate_giv_inc (pattern, src_insn, regno)
1587     rtx pattern, src_insn;
1588     unsigned int regno;
1589{
1590  rtx increment;
1591  rtx increment_total = 0;
1592  int tries = 0;
1593
1594 retry:
1595  /* Verify that we have an increment insn here.  First check for a plus
1596     as the set source.  */
1597  if (GET_CODE (SET_SRC (pattern)) != PLUS)
1598    {
1599      /* SR sometimes computes the new giv value in a temp, then copies it
1600	 to the new_reg.  */
1601      src_insn = PREV_INSN (src_insn);
1602      pattern = single_set (src_insn);
1603      if (GET_CODE (SET_SRC (pattern)) != PLUS)
1604	abort ();
1605
1606      /* The last insn emitted is not needed, so delete it to avoid confusing
1607	 the second cse pass.  This insn sets the giv unnecessarily.  */
1608      delete_related_insns (get_last_insn ());
1609    }
1610
1611  /* Verify that we have a constant as the second operand of the plus.  */
1612  increment = XEXP (SET_SRC (pattern), 1);
1613  if (GET_CODE (increment) != CONST_INT)
1614    {
1615      /* SR sometimes puts the constant in a register, especially if it is
1616	 too big to be an add immed operand.  */
1617      increment = find_last_value (increment, &src_insn, NULL_RTX, 0);
1618
1619      /* SR may have used LO_SUM to compute the constant if it is too large
1620	 for a load immed operand.  In this case, the constant is in operand
1621	 one of the LO_SUM rtx.  */
1622      if (GET_CODE (increment) == LO_SUM)
1623	increment = XEXP (increment, 1);
1624
1625      /* Some ports store large constants in memory and add a REG_EQUAL
1626	 note to the store insn.  */
1627      else if (GET_CODE (increment) == MEM)
1628	{
1629	  rtx note = find_reg_note (src_insn, REG_EQUAL, 0);
1630	  if (note)
1631	    increment = XEXP (note, 0);
1632	}
1633
1634      else if (GET_CODE (increment) == IOR
1635	       || GET_CODE (increment) == PLUS
1636	       || GET_CODE (increment) == ASHIFT
1637	       || GET_CODE (increment) == LSHIFTRT)
1638	{
1639	  /* The rs6000 port loads some constants with IOR.
1640	     The alpha port loads some constants with ASHIFT and PLUS.
1641	     The sparc64 port loads some constants with LSHIFTRT.  */
1642	  rtx second_part = XEXP (increment, 1);
1643	  enum rtx_code code = GET_CODE (increment);
1644
1645	  increment = find_last_value (XEXP (increment, 0),
1646				       &src_insn, NULL_RTX, 0);
1647	  /* Don't need the last insn anymore.  */
1648	  delete_related_insns (get_last_insn ());
1649
1650	  if (GET_CODE (second_part) != CONST_INT
1651	      || GET_CODE (increment) != CONST_INT)
1652	    abort ();
1653
1654	  if (code == IOR)
1655	    increment = GEN_INT (INTVAL (increment) | INTVAL (second_part));
1656	  else if (code == PLUS)
1657	    increment = GEN_INT (INTVAL (increment) + INTVAL (second_part));
1658	  else if (code == ASHIFT)
1659	    increment = GEN_INT (INTVAL (increment) << INTVAL (second_part));
1660	  else
1661	    increment = GEN_INT ((unsigned HOST_WIDE_INT) INTVAL (increment) >> INTVAL (second_part));
1662	}
1663
1664      if (GET_CODE (increment) != CONST_INT)
1665	abort ();
1666
1667      /* The insn loading the constant into a register is no longer needed,
1668	 so delete it.  */
1669      delete_related_insns (get_last_insn ());
1670    }
1671
1672  if (increment_total)
1673    increment_total = GEN_INT (INTVAL (increment_total) + INTVAL (increment));
1674  else
1675    increment_total = increment;
1676
1677  /* Check that the source register is the same as the register we expected
1678     to see as the source.  If not, something is seriously wrong.  */
1679  if (GET_CODE (XEXP (SET_SRC (pattern), 0)) != REG
1680      || REGNO (XEXP (SET_SRC (pattern), 0)) != regno)
1681    {
1682      /* Some machines (e.g. the romp), may emit two add instructions for
1683	 certain constants, so lets try looking for another add immediately
1684	 before this one if we have only seen one add insn so far.  */
1685
1686      if (tries == 0)
1687	{
1688	  tries++;
1689
1690	  src_insn = PREV_INSN (src_insn);
1691	  pattern = single_set (src_insn);
1692
1693	  delete_related_insns (get_last_insn ());
1694
1695	  goto retry;
1696	}
1697
1698      abort ();
1699    }
1700
1701  return increment_total;
1702}
1703
1704/* Copy REG_NOTES, except for insn references, because not all insn_map
1705   entries are valid yet.  We do need to copy registers now though, because
1706   the reg_map entries can change during copying.  */
1707
1708static rtx
1709initial_reg_note_copy (notes, map)
1710     rtx notes;
1711     struct inline_remap *map;
1712{
1713  rtx copy;
1714
1715  if (notes == 0)
1716    return 0;
1717
1718  copy = rtx_alloc (GET_CODE (notes));
1719  PUT_REG_NOTE_KIND (copy, REG_NOTE_KIND (notes));
1720
1721  if (GET_CODE (notes) == EXPR_LIST)
1722    XEXP (copy, 0) = copy_rtx_and_substitute (XEXP (notes, 0), map, 0);
1723  else if (GET_CODE (notes) == INSN_LIST)
1724    /* Don't substitute for these yet.  */
1725    XEXP (copy, 0) = copy_rtx (XEXP (notes, 0));
1726  else
1727    abort ();
1728
1729  XEXP (copy, 1) = initial_reg_note_copy (XEXP (notes, 1), map);
1730
1731  return copy;
1732}
1733
1734/* Fixup insn references in copied REG_NOTES.  */
1735
1736static void
1737final_reg_note_copy (notesp, map)
1738     rtx *notesp;
1739     struct inline_remap *map;
1740{
1741  while (*notesp)
1742    {
1743      rtx note = *notesp;
1744
1745      if (GET_CODE (note) == INSN_LIST)
1746	{
1747	  /* Sometimes, we have a REG_WAS_0 note that points to a
1748	     deleted instruction.  In that case, we can just delete the
1749	     note.  */
1750	  if (REG_NOTE_KIND (note) == REG_WAS_0)
1751	    {
1752	      *notesp = XEXP (note, 1);
1753	      continue;
1754	    }
1755	  else
1756	    {
1757	      rtx insn = map->insn_map[INSN_UID (XEXP (note, 0))];
1758
1759	      /* If we failed to remap the note, something is awry.
1760		 Allow REG_LABEL as it may reference label outside
1761		 the unrolled loop.  */
1762	      if (!insn)
1763		{
1764		  if (REG_NOTE_KIND (note) != REG_LABEL)
1765		    abort ();
1766		}
1767	      else
1768	        XEXP (note, 0) = insn;
1769	    }
1770	}
1771
1772      notesp = &XEXP (note, 1);
1773    }
1774}
1775
1776/* Copy each instruction in the loop, substituting from map as appropriate.
1777   This is very similar to a loop in expand_inline_function.  */
1778
1779static void
1780copy_loop_body (loop, copy_start, copy_end, map, exit_label, last_iteration,
1781		unroll_type, start_label, loop_end, insert_before,
1782		copy_notes_from)
1783     struct loop *loop;
1784     rtx copy_start, copy_end;
1785     struct inline_remap *map;
1786     rtx exit_label;
1787     int last_iteration;
1788     enum unroll_types unroll_type;
1789     rtx start_label, loop_end, insert_before, copy_notes_from;
1790{
1791  struct loop_ivs *ivs = LOOP_IVS (loop);
1792  rtx insn, pattern;
1793  rtx set, tem, copy = NULL_RTX;
1794  int dest_reg_was_split, i;
1795#ifdef HAVE_cc0
1796  rtx cc0_insn = 0;
1797#endif
1798  rtx final_label = 0;
1799  rtx giv_inc, giv_dest_reg, giv_src_reg;
1800
1801  /* If this isn't the last iteration, then map any references to the
1802     start_label to final_label.  Final label will then be emitted immediately
1803     after the end of this loop body if it was ever used.
1804
1805     If this is the last iteration, then map references to the start_label
1806     to itself.  */
1807  if (! last_iteration)
1808    {
1809      final_label = gen_label_rtx ();
1810      set_label_in_map (map, CODE_LABEL_NUMBER (start_label), final_label);
1811    }
1812  else
1813    set_label_in_map (map, CODE_LABEL_NUMBER (start_label), start_label);
1814
1815  start_sequence ();
1816
1817  insn = copy_start;
1818  do
1819    {
1820      insn = NEXT_INSN (insn);
1821
1822      map->orig_asm_operands_vector = 0;
1823
1824      switch (GET_CODE (insn))
1825	{
1826	case INSN:
1827	  pattern = PATTERN (insn);
1828	  copy = 0;
1829	  giv_inc = 0;
1830
1831	  /* Check to see if this is a giv that has been combined with
1832	     some split address givs.  (Combined in the sense that
1833	     `combine_givs' in loop.c has put two givs in the same register.)
1834	     In this case, we must search all givs based on the same biv to
1835	     find the address givs.  Then split the address givs.
1836	     Do this before splitting the giv, since that may map the
1837	     SET_DEST to a new register.  */
1838
1839	  if ((set = single_set (insn))
1840	      && GET_CODE (SET_DEST (set)) == REG
1841	      && addr_combined_regs[REGNO (SET_DEST (set))])
1842	    {
1843	      struct iv_class *bl;
1844	      struct induction *v, *tv;
1845	      unsigned int regno = REGNO (SET_DEST (set));
1846
1847	      v = addr_combined_regs[REGNO (SET_DEST (set))];
1848	      bl = REG_IV_CLASS (ivs, REGNO (v->src_reg));
1849
1850	      /* Although the giv_inc amount is not needed here, we must call
1851		 calculate_giv_inc here since it might try to delete the
1852		 last insn emitted.  If we wait until later to call it,
1853		 we might accidentally delete insns generated immediately
1854		 below by emit_unrolled_add.  */
1855
1856	      giv_inc = calculate_giv_inc (set, insn, regno);
1857
1858	      /* Now find all address giv's that were combined with this
1859		 giv 'v'.  */
1860	      for (tv = bl->giv; tv; tv = tv->next_iv)
1861		if (tv->giv_type == DEST_ADDR && tv->same == v)
1862		  {
1863		    int this_giv_inc;
1864
1865		    /* If this DEST_ADDR giv was not split, then ignore it.  */
1866		    if (*tv->location != tv->dest_reg)
1867		      continue;
1868
1869		    /* Scale this_giv_inc if the multiplicative factors of
1870		       the two givs are different.  */
1871		    this_giv_inc = INTVAL (giv_inc);
1872		    if (tv->mult_val != v->mult_val)
1873		      this_giv_inc = (this_giv_inc / INTVAL (v->mult_val)
1874				      * INTVAL (tv->mult_val));
1875
1876		    tv->dest_reg = plus_constant (tv->dest_reg, this_giv_inc);
1877		    *tv->location = tv->dest_reg;
1878
1879		    if (last_iteration && unroll_type != UNROLL_COMPLETELY)
1880		      {
1881			/* Must emit an insn to increment the split address
1882			   giv.  Add in the const_adjust field in case there
1883			   was a constant eliminated from the address.  */
1884			rtx value, dest_reg;
1885
1886			/* tv->dest_reg will be either a bare register,
1887			   or else a register plus a constant.  */
1888			if (GET_CODE (tv->dest_reg) == REG)
1889			  dest_reg = tv->dest_reg;
1890			else
1891			  dest_reg = XEXP (tv->dest_reg, 0);
1892
1893			/* Check for shared address givs, and avoid
1894			   incrementing the shared pseudo reg more than
1895			   once.  */
1896			if (! tv->same_insn && ! tv->shared)
1897			  {
1898			    /* tv->dest_reg may actually be a (PLUS (REG)
1899			       (CONST)) here, so we must call plus_constant
1900			       to add the const_adjust amount before calling
1901			       emit_unrolled_add below.  */
1902			    value = plus_constant (tv->dest_reg,
1903						   tv->const_adjust);
1904
1905			    if (GET_CODE (value) == PLUS)
1906			      {
1907				/* The constant could be too large for an add
1908				   immediate, so can't directly emit an insn
1909				   here.  */
1910				emit_unrolled_add (dest_reg, XEXP (value, 0),
1911						   XEXP (value, 1));
1912			      }
1913			  }
1914
1915			/* Reset the giv to be just the register again, in case
1916			   it is used after the set we have just emitted.
1917			   We must subtract the const_adjust factor added in
1918			   above.  */
1919			tv->dest_reg = plus_constant (dest_reg,
1920						      -tv->const_adjust);
1921			*tv->location = tv->dest_reg;
1922		      }
1923		  }
1924	    }
1925
1926	  /* If this is a setting of a splittable variable, then determine
1927	     how to split the variable, create a new set based on this split,
1928	     and set up the reg_map so that later uses of the variable will
1929	     use the new split variable.  */
1930
1931	  dest_reg_was_split = 0;
1932
1933	  if ((set = single_set (insn))
1934	      && GET_CODE (SET_DEST (set)) == REG
1935	      && splittable_regs[REGNO (SET_DEST (set))])
1936	    {
1937	      unsigned int regno = REGNO (SET_DEST (set));
1938	      unsigned int src_regno;
1939
1940	      dest_reg_was_split = 1;
1941
1942	      giv_dest_reg = SET_DEST (set);
1943	      giv_src_reg = giv_dest_reg;
1944	      /* Compute the increment value for the giv, if it wasn't
1945		 already computed above.  */
1946	      if (giv_inc == 0)
1947		giv_inc = calculate_giv_inc (set, insn, regno);
1948
1949	      src_regno = REGNO (giv_src_reg);
1950
1951	      if (unroll_type == UNROLL_COMPLETELY)
1952		{
1953		  /* Completely unrolling the loop.  Set the induction
1954		     variable to a known constant value.  */
1955
1956		  /* The value in splittable_regs may be an invariant
1957		     value, so we must use plus_constant here.  */
1958		  splittable_regs[regno]
1959		    = plus_constant (splittable_regs[src_regno],
1960				     INTVAL (giv_inc));
1961
1962		  if (GET_CODE (splittable_regs[regno]) == PLUS)
1963		    {
1964		      giv_src_reg = XEXP (splittable_regs[regno], 0);
1965		      giv_inc = XEXP (splittable_regs[regno], 1);
1966		    }
1967		  else
1968		    {
1969		      /* The splittable_regs value must be a REG or a
1970			 CONST_INT, so put the entire value in the giv_src_reg
1971			 variable.  */
1972		      giv_src_reg = splittable_regs[regno];
1973		      giv_inc = const0_rtx;
1974		    }
1975		}
1976	      else
1977		{
1978		  /* Partially unrolling loop.  Create a new pseudo
1979		     register for the iteration variable, and set it to
1980		     be a constant plus the original register.  Except
1981		     on the last iteration, when the result has to
1982		     go back into the original iteration var register.  */
1983
1984		  /* Handle bivs which must be mapped to a new register
1985		     when split.  This happens for bivs which need their
1986		     final value set before loop entry.  The new register
1987		     for the biv was stored in the biv's first struct
1988		     induction entry by find_splittable_regs.  */
1989
1990		  if (regno < ivs->n_regs
1991		      && REG_IV_TYPE (ivs, regno) == BASIC_INDUCT)
1992		    {
1993		      giv_src_reg = REG_IV_CLASS (ivs, regno)->biv->src_reg;
1994		      giv_dest_reg = giv_src_reg;
1995		    }
1996
1997#if 0
1998		  /* If non-reduced/final-value givs were split, then
1999		     this would have to remap those givs also.  See
2000		     find_splittable_regs.  */
2001#endif
2002
2003		  splittable_regs[regno]
2004		    = simplify_gen_binary (PLUS, GET_MODE (giv_src_reg),
2005					   giv_inc,
2006					   splittable_regs[src_regno]);
2007		  giv_inc = splittable_regs[regno];
2008
2009		  /* Now split the induction variable by changing the dest
2010		     of this insn to a new register, and setting its
2011		     reg_map entry to point to this new register.
2012
2013		     If this is the last iteration, and this is the last insn
2014		     that will update the iv, then reuse the original dest,
2015		     to ensure that the iv will have the proper value when
2016		     the loop exits or repeats.
2017
2018		     Using splittable_regs_updates here like this is safe,
2019		     because it can only be greater than one if all
2020		     instructions modifying the iv are always executed in
2021		     order.  */
2022
2023		  if (! last_iteration
2024		      || (splittable_regs_updates[regno]-- != 1))
2025		    {
2026		      tem = gen_reg_rtx (GET_MODE (giv_src_reg));
2027		      giv_dest_reg = tem;
2028		      map->reg_map[regno] = tem;
2029		      record_base_value (REGNO (tem),
2030					 giv_inc == const0_rtx
2031					 ? giv_src_reg
2032					 : gen_rtx_PLUS (GET_MODE (giv_src_reg),
2033							 giv_src_reg, giv_inc),
2034					 1);
2035		    }
2036		  else
2037		    map->reg_map[regno] = giv_src_reg;
2038		}
2039
2040	      /* The constant being added could be too large for an add
2041		 immediate, so can't directly emit an insn here.  */
2042	      emit_unrolled_add (giv_dest_reg, giv_src_reg, giv_inc);
2043	      copy = get_last_insn ();
2044	      pattern = PATTERN (copy);
2045	    }
2046	  else
2047	    {
2048	      pattern = copy_rtx_and_substitute (pattern, map, 0);
2049	      copy = emit_insn (pattern);
2050	    }
2051	  REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
2052	  INSN_SCOPE (copy) = INSN_SCOPE (insn);
2053
2054	  /* If there is a REG_EQUAL note present whose value
2055	     is not loop invariant, then delete it, since it
2056	     may cause problems with later optimization passes.  */
2057	  if ((tem = find_reg_note (copy, REG_EQUAL, NULL_RTX))
2058	      && !loop_invariant_p (loop, XEXP (tem, 0)))
2059	    remove_note (copy, tem);
2060
2061#ifdef HAVE_cc0
2062	  /* If this insn is setting CC0, it may need to look at
2063	     the insn that uses CC0 to see what type of insn it is.
2064	     In that case, the call to recog via validate_change will
2065	     fail.  So don't substitute constants here.  Instead,
2066	     do it when we emit the following insn.
2067
2068	     For example, see the pyr.md file.  That machine has signed and
2069	     unsigned compares.  The compare patterns must check the
2070	     following branch insn to see which what kind of compare to
2071	     emit.
2072
2073	     If the previous insn set CC0, substitute constants on it as
2074	     well.  */
2075	  if (sets_cc0_p (PATTERN (copy)) != 0)
2076	    cc0_insn = copy;
2077	  else
2078	    {
2079	      if (cc0_insn)
2080		try_constants (cc0_insn, map);
2081	      cc0_insn = 0;
2082	      try_constants (copy, map);
2083	    }
2084#else
2085	  try_constants (copy, map);
2086#endif
2087
2088	  /* Make split induction variable constants `permanent' since we
2089	     know there are no backward branches across iteration variable
2090	     settings which would invalidate this.  */
2091	  if (dest_reg_was_split)
2092	    {
2093	      int regno = REGNO (SET_DEST (set));
2094
2095	      if ((size_t) regno < VARRAY_SIZE (map->const_equiv_varray)
2096		  && (VARRAY_CONST_EQUIV (map->const_equiv_varray, regno).age
2097		      == map->const_age))
2098		VARRAY_CONST_EQUIV (map->const_equiv_varray, regno).age = -1;
2099	    }
2100	  break;
2101
2102	case JUMP_INSN:
2103	  pattern = copy_rtx_and_substitute (PATTERN (insn), map, 0);
2104	  copy = emit_jump_insn (pattern);
2105	  REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
2106	  INSN_SCOPE (copy) = INSN_SCOPE (insn);
2107
2108	  if (JUMP_LABEL (insn))
2109	    {
2110	      JUMP_LABEL (copy) = get_label_from_map (map,
2111						      CODE_LABEL_NUMBER
2112						      (JUMP_LABEL (insn)));
2113	      LABEL_NUSES (JUMP_LABEL (copy))++;
2114	    }
2115	  if (JUMP_LABEL (insn) == start_label && insn == copy_end
2116	      && ! last_iteration)
2117	    {
2118
2119	      /* This is a branch to the beginning of the loop; this is the
2120		 last insn being copied; and this is not the last iteration.
2121		 In this case, we want to change the original fall through
2122		 case to be a branch past the end of the loop, and the
2123		 original jump label case to fall_through.  */
2124
2125	      if (!invert_jump (copy, exit_label, 0))
2126		{
2127		  rtx jmp;
2128		  rtx lab = gen_label_rtx ();
2129		  /* Can't do it by reversing the jump (probably because we
2130		     couldn't reverse the conditions), so emit a new
2131		     jump_insn after COPY, and redirect the jump around
2132		     that.  */
2133		  jmp = emit_jump_insn_after (gen_jump (exit_label), copy);
2134		  JUMP_LABEL (jmp) = exit_label;
2135		  LABEL_NUSES (exit_label)++;
2136		  jmp = emit_barrier_after (jmp);
2137		  emit_label_after (lab, jmp);
2138		  LABEL_NUSES (lab) = 0;
2139		  if (!redirect_jump (copy, lab, 0))
2140		    abort ();
2141		}
2142	    }
2143
2144#ifdef HAVE_cc0
2145	  if (cc0_insn)
2146	    try_constants (cc0_insn, map);
2147	  cc0_insn = 0;
2148#endif
2149	  try_constants (copy, map);
2150
2151	  /* Set the jump label of COPY correctly to avoid problems with
2152	     later passes of unroll_loop, if INSN had jump label set.  */
2153	  if (JUMP_LABEL (insn))
2154	    {
2155	      rtx label = 0;
2156
2157	      /* Can't use the label_map for every insn, since this may be
2158		 the backward branch, and hence the label was not mapped.  */
2159	      if ((set = single_set (copy)))
2160		{
2161		  tem = SET_SRC (set);
2162		  if (GET_CODE (tem) == LABEL_REF)
2163		    label = XEXP (tem, 0);
2164		  else if (GET_CODE (tem) == IF_THEN_ELSE)
2165		    {
2166		      if (XEXP (tem, 1) != pc_rtx)
2167			label = XEXP (XEXP (tem, 1), 0);
2168		      else
2169			label = XEXP (XEXP (tem, 2), 0);
2170		    }
2171		}
2172
2173	      if (label && GET_CODE (label) == CODE_LABEL)
2174		JUMP_LABEL (copy) = label;
2175	      else
2176		{
2177		  /* An unrecognizable jump insn, probably the entry jump
2178		     for a switch statement.  This label must have been mapped,
2179		     so just use the label_map to get the new jump label.  */
2180		  JUMP_LABEL (copy)
2181		    = get_label_from_map (map,
2182					  CODE_LABEL_NUMBER (JUMP_LABEL (insn)));
2183		}
2184
2185	      /* If this is a non-local jump, then must increase the label
2186		 use count so that the label will not be deleted when the
2187		 original jump is deleted.  */
2188	      LABEL_NUSES (JUMP_LABEL (copy))++;
2189	    }
2190	  else if (GET_CODE (PATTERN (copy)) == ADDR_VEC
2191		   || GET_CODE (PATTERN (copy)) == ADDR_DIFF_VEC)
2192	    {
2193	      rtx pat = PATTERN (copy);
2194	      int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
2195	      int len = XVECLEN (pat, diff_vec_p);
2196	      int i;
2197
2198	      for (i = 0; i < len; i++)
2199		LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))++;
2200	    }
2201
2202	  /* If this used to be a conditional jump insn but whose branch
2203	     direction is now known, we must do something special.  */
2204	  if (any_condjump_p (insn) && onlyjump_p (insn) && map->last_pc_value)
2205	    {
2206#ifdef HAVE_cc0
2207	      /* If the previous insn set cc0 for us, delete it.  */
2208	      if (only_sets_cc0_p (PREV_INSN (copy)))
2209		delete_related_insns (PREV_INSN (copy));
2210#endif
2211
2212	      /* If this is now a no-op, delete it.  */
2213	      if (map->last_pc_value == pc_rtx)
2214		{
2215		  delete_insn (copy);
2216		  copy = 0;
2217		}
2218	      else
2219		/* Otherwise, this is unconditional jump so we must put a
2220		   BARRIER after it.  We could do some dead code elimination
2221		   here, but jump.c will do it just as well.  */
2222		emit_barrier ();
2223	    }
2224	  break;
2225
2226	case CALL_INSN:
2227	  pattern = copy_rtx_and_substitute (PATTERN (insn), map, 0);
2228	  copy = emit_call_insn (pattern);
2229	  REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
2230	  INSN_SCOPE (copy) = INSN_SCOPE (insn);
2231	  SIBLING_CALL_P (copy) = SIBLING_CALL_P (insn);
2232	  CONST_OR_PURE_CALL_P (copy) = CONST_OR_PURE_CALL_P (insn);
2233
2234	  /* Because the USAGE information potentially contains objects other
2235	     than hard registers, we need to copy it.  */
2236	  CALL_INSN_FUNCTION_USAGE (copy)
2237	    = copy_rtx_and_substitute (CALL_INSN_FUNCTION_USAGE (insn),
2238				       map, 0);
2239
2240#ifdef HAVE_cc0
2241	  if (cc0_insn)
2242	    try_constants (cc0_insn, map);
2243	  cc0_insn = 0;
2244#endif
2245	  try_constants (copy, map);
2246
2247	  /* Be lazy and assume CALL_INSNs clobber all hard registers.  */
2248	  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2249	    VARRAY_CONST_EQUIV (map->const_equiv_varray, i).rtx = 0;
2250	  break;
2251
2252	case CODE_LABEL:
2253	  /* If this is the loop start label, then we don't need to emit a
2254	     copy of this label since no one will use it.  */
2255
2256	  if (insn != start_label)
2257	    {
2258	      copy = emit_label (get_label_from_map (map,
2259						     CODE_LABEL_NUMBER (insn)));
2260	      map->const_age++;
2261	    }
2262	  break;
2263
2264	case BARRIER:
2265	  copy = emit_barrier ();
2266	  break;
2267
2268	case NOTE:
2269	  /* VTOP and CONT notes are valid only before the loop exit test.
2270	     If placed anywhere else, loop may generate bad code.  */
2271	  /* BASIC_BLOCK notes exist to stabilize basic block structures with
2272	     the associated rtl.  We do not want to share the structure in
2273	     this new block.  */
2274
2275	  if (NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED
2276	      && NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED_LABEL
2277	      && NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK
2278	      && ((NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_VTOP
2279		   && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_CONT)
2280		  || (last_iteration && unroll_type != UNROLL_COMPLETELY)))
2281	    copy = emit_note (NOTE_SOURCE_FILE (insn),
2282			      NOTE_LINE_NUMBER (insn));
2283	  else
2284	    copy = 0;
2285	  break;
2286
2287	default:
2288	  abort ();
2289	}
2290
2291      map->insn_map[INSN_UID (insn)] = copy;
2292    }
2293  while (insn != copy_end);
2294
2295  /* Now finish coping the REG_NOTES.  */
2296  insn = copy_start;
2297  do
2298    {
2299      insn = NEXT_INSN (insn);
2300      if ((GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
2301	   || GET_CODE (insn) == CALL_INSN)
2302	  && map->insn_map[INSN_UID (insn)])
2303	final_reg_note_copy (&REG_NOTES (map->insn_map[INSN_UID (insn)]), map);
2304    }
2305  while (insn != copy_end);
2306
2307  /* There may be notes between copy_notes_from and loop_end.  Emit a copy of
2308     each of these notes here, since there may be some important ones, such as
2309     NOTE_INSN_BLOCK_END notes, in this group.  We don't do this on the last
2310     iteration, because the original notes won't be deleted.
2311
2312     We can't use insert_before here, because when from preconditioning,
2313     insert_before points before the loop.  We can't use copy_end, because
2314     there may be insns already inserted after it (which we don't want to
2315     copy) when not from preconditioning code.  */
2316
2317  if (! last_iteration)
2318    {
2319      for (insn = copy_notes_from; insn != loop_end; insn = NEXT_INSN (insn))
2320	{
2321	  /* VTOP notes are valid only before the loop exit test.
2322	     If placed anywhere else, loop may generate bad code.
2323	     Although COPY_NOTES_FROM will be at most one or two (for cc0)
2324	     instructions before the last insn in the loop, COPY_NOTES_FROM
2325	     can be a NOTE_INSN_LOOP_CONT note if there is no VTOP note,
2326	     as in a do .. while loop.  */
2327	  if (GET_CODE (insn) == NOTE
2328	      && NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED
2329	      && NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK
2330	      && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_VTOP
2331	      && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_CONT)
2332	    emit_note (NOTE_SOURCE_FILE (insn), NOTE_LINE_NUMBER (insn));
2333	}
2334    }
2335
2336  if (final_label && LABEL_NUSES (final_label) > 0)
2337    emit_label (final_label);
2338
2339  tem = get_insns ();
2340  end_sequence ();
2341  loop_insn_emit_before (loop, 0, insert_before, tem);
2342}
2343
2344/* Emit an insn, using the expand_binop to ensure that a valid insn is
2345   emitted.  This will correctly handle the case where the increment value
2346   won't fit in the immediate field of a PLUS insns.  */
2347
2348void
2349emit_unrolled_add (dest_reg, src_reg, increment)
2350     rtx dest_reg, src_reg, increment;
2351{
2352  rtx result;
2353
2354  result = expand_simple_binop (GET_MODE (dest_reg), PLUS, src_reg, increment,
2355				dest_reg, 0, OPTAB_LIB_WIDEN);
2356
2357  if (dest_reg != result)
2358    emit_move_insn (dest_reg, result);
2359}
2360
2361/* Searches the insns between INSN and LOOP->END.  Returns 1 if there
2362   is a backward branch in that range that branches to somewhere between
2363   LOOP->START and INSN.  Returns 0 otherwise.  */
2364
2365/* ??? This is quadratic algorithm.  Could be rewritten to be linear.
2366   In practice, this is not a problem, because this function is seldom called,
2367   and uses a negligible amount of CPU time on average.  */
2368
2369int
2370back_branch_in_range_p (loop, insn)
2371     const struct loop *loop;
2372     rtx insn;
2373{
2374  rtx p, q, target_insn;
2375  rtx loop_start = loop->start;
2376  rtx loop_end = loop->end;
2377  rtx orig_loop_end = loop->end;
2378
2379  /* Stop before we get to the backward branch at the end of the loop.  */
2380  loop_end = prev_nonnote_insn (loop_end);
2381  if (GET_CODE (loop_end) == BARRIER)
2382    loop_end = PREV_INSN (loop_end);
2383
2384  /* Check in case insn has been deleted, search forward for first non
2385     deleted insn following it.  */
2386  while (INSN_DELETED_P (insn))
2387    insn = NEXT_INSN (insn);
2388
2389  /* Check for the case where insn is the last insn in the loop.  Deal
2390     with the case where INSN was a deleted loop test insn, in which case
2391     it will now be the NOTE_LOOP_END.  */
2392  if (insn == loop_end || insn == orig_loop_end)
2393    return 0;
2394
2395  for (p = NEXT_INSN (insn); p != loop_end; p = NEXT_INSN (p))
2396    {
2397      if (GET_CODE (p) == JUMP_INSN)
2398	{
2399	  target_insn = JUMP_LABEL (p);
2400
2401	  /* Search from loop_start to insn, to see if one of them is
2402	     the target_insn.  We can't use INSN_LUID comparisons here,
2403	     since insn may not have an LUID entry.  */
2404	  for (q = loop_start; q != insn; q = NEXT_INSN (q))
2405	    if (q == target_insn)
2406	      return 1;
2407	}
2408    }
2409
2410  return 0;
2411}
2412
2413/* Try to generate the simplest rtx for the expression
2414   (PLUS (MULT mult1 mult2) add1).  This is used to calculate the initial
2415   value of giv's.  */
2416
2417static rtx
2418fold_rtx_mult_add (mult1, mult2, add1, mode)
2419     rtx mult1, mult2, add1;
2420     enum machine_mode mode;
2421{
2422  rtx temp, mult_res;
2423  rtx result;
2424
2425  /* The modes must all be the same.  This should always be true.  For now,
2426     check to make sure.  */
2427  if ((GET_MODE (mult1) != mode && GET_MODE (mult1) != VOIDmode)
2428      || (GET_MODE (mult2) != mode && GET_MODE (mult2) != VOIDmode)
2429      || (GET_MODE (add1) != mode && GET_MODE (add1) != VOIDmode))
2430    abort ();
2431
2432  /* Ensure that if at least one of mult1/mult2 are constant, then mult2
2433     will be a constant.  */
2434  if (GET_CODE (mult1) == CONST_INT)
2435    {
2436      temp = mult2;
2437      mult2 = mult1;
2438      mult1 = temp;
2439    }
2440
2441  mult_res = simplify_binary_operation (MULT, mode, mult1, mult2);
2442  if (! mult_res)
2443    mult_res = gen_rtx_MULT (mode, mult1, mult2);
2444
2445  /* Again, put the constant second.  */
2446  if (GET_CODE (add1) == CONST_INT)
2447    {
2448      temp = add1;
2449      add1 = mult_res;
2450      mult_res = temp;
2451    }
2452
2453  result = simplify_binary_operation (PLUS, mode, add1, mult_res);
2454  if (! result)
2455    result = gen_rtx_PLUS (mode, add1, mult_res);
2456
2457  return result;
2458}
2459
2460/* Searches the list of induction struct's for the biv BL, to try to calculate
2461   the total increment value for one iteration of the loop as a constant.
2462
2463   Returns the increment value as an rtx, simplified as much as possible,
2464   if it can be calculated.  Otherwise, returns 0.  */
2465
2466rtx
2467biv_total_increment (bl)
2468     const struct iv_class *bl;
2469{
2470  struct induction *v;
2471  rtx result;
2472
2473  /* For increment, must check every instruction that sets it.  Each
2474     instruction must be executed only once each time through the loop.
2475     To verify this, we check that the insn is always executed, and that
2476     there are no backward branches after the insn that branch to before it.
2477     Also, the insn must have a mult_val of one (to make sure it really is
2478     an increment).  */
2479
2480  result = const0_rtx;
2481  for (v = bl->biv; v; v = v->next_iv)
2482    {
2483      if (v->always_computable && v->mult_val == const1_rtx
2484	  && ! v->maybe_multiple
2485	  && SCALAR_INT_MODE_P (v->mode))
2486	{
2487	  /* If we have already counted it, skip it.  */
2488	  if (v->same)
2489	    continue;
2490
2491	  result = fold_rtx_mult_add (result, const1_rtx, v->add_val, v->mode);
2492	}
2493      else
2494	return 0;
2495    }
2496
2497  return result;
2498}
2499
2500/* For each biv and giv, determine whether it can be safely split into
2501   a different variable for each unrolled copy of the loop body.  If it
2502   is safe to split, then indicate that by saving some useful info
2503   in the splittable_regs array.
2504
2505   If the loop is being completely unrolled, then splittable_regs will hold
2506   the current value of the induction variable while the loop is unrolled.
2507   It must be set to the initial value of the induction variable here.
2508   Otherwise, splittable_regs will hold the difference between the current
2509   value of the induction variable and the value the induction variable had
2510   at the top of the loop.  It must be set to the value 0 here.
2511
2512   Returns the total number of instructions that set registers that are
2513   splittable.  */
2514
2515/* ?? If the loop is only unrolled twice, then most of the restrictions to
2516   constant values are unnecessary, since we can easily calculate increment
2517   values in this case even if nothing is constant.  The increment value
2518   should not involve a multiply however.  */
2519
2520/* ?? Even if the biv/giv increment values aren't constant, it may still
2521   be beneficial to split the variable if the loop is only unrolled a few
2522   times, since multiplies by small integers (1,2,3,4) are very cheap.  */
2523
2524static int
2525find_splittable_regs (loop, unroll_type, unroll_number)
2526     const struct loop *loop;
2527     enum unroll_types unroll_type;
2528     int unroll_number;
2529{
2530  struct loop_ivs *ivs = LOOP_IVS (loop);
2531  struct iv_class *bl;
2532  struct induction *v;
2533  rtx increment, tem;
2534  rtx biv_final_value;
2535  int biv_splittable;
2536  int result = 0;
2537
2538  for (bl = ivs->list; bl; bl = bl->next)
2539    {
2540      /* Biv_total_increment must return a constant value,
2541	 otherwise we can not calculate the split values.  */
2542
2543      increment = biv_total_increment (bl);
2544      if (! increment || GET_CODE (increment) != CONST_INT)
2545	continue;
2546
2547      /* The loop must be unrolled completely, or else have a known number
2548	 of iterations and only one exit, or else the biv must be dead
2549	 outside the loop, or else the final value must be known.  Otherwise,
2550	 it is unsafe to split the biv since it may not have the proper
2551	 value on loop exit.  */
2552
2553      /* loop_number_exit_count is nonzero if the loop has an exit other than
2554	 a fall through at the end.  */
2555
2556      biv_splittable = 1;
2557      biv_final_value = 0;
2558      if (unroll_type != UNROLL_COMPLETELY
2559	  && (loop->exit_count || unroll_type == UNROLL_NAIVE)
2560	  && (REGNO_LAST_LUID (bl->regno) >= INSN_LUID (loop->end)
2561	      || ! bl->init_insn
2562	      || INSN_UID (bl->init_insn) >= max_uid_for_loop
2563	      || (REGNO_FIRST_LUID (bl->regno)
2564		  < INSN_LUID (bl->init_insn))
2565	      || reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
2566	  && ! (biv_final_value = final_biv_value (loop, bl)))
2567	biv_splittable = 0;
2568
2569      /* If any of the insns setting the BIV don't do so with a simple
2570	 PLUS, we don't know how to split it.  */
2571      for (v = bl->biv; biv_splittable && v; v = v->next_iv)
2572	if ((tem = single_set (v->insn)) == 0
2573	    || GET_CODE (SET_DEST (tem)) != REG
2574	    || REGNO (SET_DEST (tem)) != bl->regno
2575	    || GET_CODE (SET_SRC (tem)) != PLUS)
2576	  biv_splittable = 0;
2577
2578      /* If final value is nonzero, then must emit an instruction which sets
2579	 the value of the biv to the proper value.  This is done after
2580	 handling all of the givs, since some of them may need to use the
2581	 biv's value in their initialization code.  */
2582
2583      /* This biv is splittable.  If completely unrolling the loop, save
2584	 the biv's initial value.  Otherwise, save the constant zero.  */
2585
2586      if (biv_splittable == 1)
2587	{
2588	  if (unroll_type == UNROLL_COMPLETELY)
2589	    {
2590	      /* If the initial value of the biv is itself (i.e. it is too
2591		 complicated for strength_reduce to compute), or is a hard
2592		 register, or it isn't invariant, then we must create a new
2593		 pseudo reg to hold the initial value of the biv.  */
2594
2595	      if (GET_CODE (bl->initial_value) == REG
2596		  && (REGNO (bl->initial_value) == bl->regno
2597		      || REGNO (bl->initial_value) < FIRST_PSEUDO_REGISTER
2598		      || ! loop_invariant_p (loop, bl->initial_value)))
2599		{
2600		  rtx tem = gen_reg_rtx (bl->biv->mode);
2601
2602		  record_base_value (REGNO (tem), bl->biv->add_val, 0);
2603		  loop_insn_hoist (loop,
2604				   gen_move_insn (tem, bl->biv->src_reg));
2605
2606		  if (loop_dump_stream)
2607		    fprintf (loop_dump_stream,
2608			     "Biv %d initial value remapped to %d.\n",
2609			     bl->regno, REGNO (tem));
2610
2611		  splittable_regs[bl->regno] = tem;
2612		}
2613	      else
2614		splittable_regs[bl->regno] = bl->initial_value;
2615	    }
2616	  else
2617	    splittable_regs[bl->regno] = const0_rtx;
2618
2619	  /* Save the number of instructions that modify the biv, so that
2620	     we can treat the last one specially.  */
2621
2622	  splittable_regs_updates[bl->regno] = bl->biv_count;
2623	  result += bl->biv_count;
2624
2625	  if (loop_dump_stream)
2626	    fprintf (loop_dump_stream,
2627		     "Biv %d safe to split.\n", bl->regno);
2628	}
2629
2630      /* Check every giv that depends on this biv to see whether it is
2631	 splittable also.  Even if the biv isn't splittable, givs which
2632	 depend on it may be splittable if the biv is live outside the
2633	 loop, and the givs aren't.  */
2634
2635      result += find_splittable_givs (loop, bl, unroll_type, increment,
2636				      unroll_number);
2637
2638      /* If final value is nonzero, then must emit an instruction which sets
2639	 the value of the biv to the proper value.  This is done after
2640	 handling all of the givs, since some of them may need to use the
2641	 biv's value in their initialization code.  */
2642      if (biv_final_value)
2643	{
2644	  /* If the loop has multiple exits, emit the insns before the
2645	     loop to ensure that it will always be executed no matter
2646	     how the loop exits.  Otherwise emit the insn after the loop,
2647	     since this is slightly more efficient.  */
2648	  if (! loop->exit_count)
2649	    loop_insn_sink (loop, gen_move_insn (bl->biv->src_reg,
2650						 biv_final_value));
2651	  else
2652	    {
2653	      /* Create a new register to hold the value of the biv, and then
2654		 set the biv to its final value before the loop start.  The biv
2655		 is set to its final value before loop start to ensure that
2656		 this insn will always be executed, no matter how the loop
2657		 exits.  */
2658	      rtx tem = gen_reg_rtx (bl->biv->mode);
2659	      record_base_value (REGNO (tem), bl->biv->add_val, 0);
2660
2661	      loop_insn_hoist (loop, gen_move_insn (tem, bl->biv->src_reg));
2662	      loop_insn_hoist (loop, gen_move_insn (bl->biv->src_reg,
2663						    biv_final_value));
2664
2665	      if (loop_dump_stream)
2666		fprintf (loop_dump_stream, "Biv %d mapped to %d for split.\n",
2667			 REGNO (bl->biv->src_reg), REGNO (tem));
2668
2669	      /* Set up the mapping from the original biv register to the new
2670		 register.  */
2671	      bl->biv->src_reg = tem;
2672	    }
2673	}
2674    }
2675  return result;
2676}
2677
2678/* For every giv based on the biv BL, check to determine whether it is
2679   splittable.  This is a subroutine to find_splittable_regs ().
2680
2681   Return the number of instructions that set splittable registers.  */
2682
2683static int
2684find_splittable_givs (loop, bl, unroll_type, increment, unroll_number)
2685     const struct loop *loop;
2686     struct iv_class *bl;
2687     enum unroll_types unroll_type;
2688     rtx increment;
2689     int unroll_number ATTRIBUTE_UNUSED;
2690{
2691  struct loop_ivs *ivs = LOOP_IVS (loop);
2692  struct induction *v, *v2;
2693  rtx final_value;
2694  rtx tem;
2695  int result = 0;
2696
2697  /* Scan the list of givs, and set the same_insn field when there are
2698     multiple identical givs in the same insn.  */
2699  for (v = bl->giv; v; v = v->next_iv)
2700    for (v2 = v->next_iv; v2; v2 = v2->next_iv)
2701      if (v->insn == v2->insn && rtx_equal_p (v->new_reg, v2->new_reg)
2702	  && ! v2->same_insn)
2703	v2->same_insn = v;
2704
2705  for (v = bl->giv; v; v = v->next_iv)
2706    {
2707      rtx giv_inc, value;
2708
2709      /* Only split the giv if it has already been reduced, or if the loop is
2710	 being completely unrolled.  */
2711      if (unroll_type != UNROLL_COMPLETELY && v->ignore)
2712	continue;
2713
2714      /* The giv can be split if the insn that sets the giv is executed once
2715	 and only once on every iteration of the loop.  */
2716      /* An address giv can always be split.  v->insn is just a use not a set,
2717	 and hence it does not matter whether it is always executed.  All that
2718	 matters is that all the biv increments are always executed, and we
2719	 won't reach here if they aren't.  */
2720      if (v->giv_type != DEST_ADDR
2721	  && (! v->always_computable
2722	      || back_branch_in_range_p (loop, v->insn)))
2723	continue;
2724
2725      /* The giv increment value must be a constant.  */
2726      giv_inc = fold_rtx_mult_add (v->mult_val, increment, const0_rtx,
2727				   v->mode);
2728      if (! giv_inc || GET_CODE (giv_inc) != CONST_INT)
2729	continue;
2730
2731      /* The loop must be unrolled completely, or else have a known number of
2732	 iterations and only one exit, or else the giv must be dead outside
2733	 the loop, or else the final value of the giv must be known.
2734	 Otherwise, it is not safe to split the giv since it may not have the
2735	 proper value on loop exit.  */
2736
2737      /* The used outside loop test will fail for DEST_ADDR givs.  They are
2738	 never used outside the loop anyways, so it is always safe to split a
2739	 DEST_ADDR giv.  */
2740
2741      final_value = 0;
2742      if (unroll_type != UNROLL_COMPLETELY
2743	  && (loop->exit_count || unroll_type == UNROLL_NAIVE)
2744	  && v->giv_type != DEST_ADDR
2745	  /* The next part is true if the pseudo is used outside the loop.
2746	     We assume that this is true for any pseudo created after loop
2747	     starts, because we don't have a reg_n_info entry for them.  */
2748	  && (REGNO (v->dest_reg) >= max_reg_before_loop
2749	      || (REGNO_FIRST_UID (REGNO (v->dest_reg)) != INSN_UID (v->insn)
2750		  /* Check for the case where the pseudo is set by a shift/add
2751		     sequence, in which case the first insn setting the pseudo
2752		     is the first insn of the shift/add sequence.  */
2753		  && (! (tem = find_reg_note (v->insn, REG_RETVAL, NULL_RTX))
2754		      || (REGNO_FIRST_UID (REGNO (v->dest_reg))
2755			  != INSN_UID (XEXP (tem, 0)))))
2756	      /* Line above always fails if INSN was moved by loop opt.  */
2757	      || (REGNO_LAST_LUID (REGNO (v->dest_reg))
2758		  >= INSN_LUID (loop->end)))
2759	  && ! (final_value = v->final_value))
2760	continue;
2761
2762#if 0
2763      /* Currently, non-reduced/final-value givs are never split.  */
2764      /* Should emit insns after the loop if possible, as the biv final value
2765	 code below does.  */
2766
2767      /* If the final value is nonzero, and the giv has not been reduced,
2768	 then must emit an instruction to set the final value.  */
2769      if (final_value && !v->new_reg)
2770	{
2771	  /* Create a new register to hold the value of the giv, and then set
2772	     the giv to its final value before the loop start.  The giv is set
2773	     to its final value before loop start to ensure that this insn
2774	     will always be executed, no matter how we exit.  */
2775	  tem = gen_reg_rtx (v->mode);
2776	  loop_insn_hoist (loop, gen_move_insn (tem, v->dest_reg));
2777	  loop_insn_hoist (loop, gen_move_insn (v->dest_reg, final_value));
2778
2779	  if (loop_dump_stream)
2780	    fprintf (loop_dump_stream, "Giv %d mapped to %d for split.\n",
2781		     REGNO (v->dest_reg), REGNO (tem));
2782
2783	  v->src_reg = tem;
2784	}
2785#endif
2786
2787      /* This giv is splittable.  If completely unrolling the loop, save the
2788	 giv's initial value.  Otherwise, save the constant zero for it.  */
2789
2790      if (unroll_type == UNROLL_COMPLETELY)
2791	{
2792	  /* It is not safe to use bl->initial_value here, because it may not
2793	     be invariant.  It is safe to use the initial value stored in
2794	     the splittable_regs array if it is set.  In rare cases, it won't
2795	     be set, so then we do exactly the same thing as
2796	     find_splittable_regs does to get a safe value.  */
2797	  rtx biv_initial_value;
2798
2799	  if (splittable_regs[bl->regno])
2800	    biv_initial_value = splittable_regs[bl->regno];
2801	  else if (GET_CODE (bl->initial_value) != REG
2802		   || (REGNO (bl->initial_value) != bl->regno
2803		       && REGNO (bl->initial_value) >= FIRST_PSEUDO_REGISTER))
2804	    biv_initial_value = bl->initial_value;
2805	  else
2806	    {
2807	      rtx tem = gen_reg_rtx (bl->biv->mode);
2808
2809	      record_base_value (REGNO (tem), bl->biv->add_val, 0);
2810	      loop_insn_hoist (loop, gen_move_insn (tem, bl->biv->src_reg));
2811	      biv_initial_value = tem;
2812	    }
2813	  biv_initial_value = extend_value_for_giv (v, biv_initial_value);
2814	  value = fold_rtx_mult_add (v->mult_val, biv_initial_value,
2815				     v->add_val, v->mode);
2816	}
2817      else
2818	value = const0_rtx;
2819
2820      if (v->new_reg)
2821	{
2822	  /* If a giv was combined with another giv, then we can only split
2823	     this giv if the giv it was combined with was reduced.  This
2824	     is because the value of v->new_reg is meaningless in this
2825	     case.  */
2826	  if (v->same && ! v->same->new_reg)
2827	    {
2828	      if (loop_dump_stream)
2829		fprintf (loop_dump_stream,
2830			 "giv combined with unreduced giv not split.\n");
2831	      continue;
2832	    }
2833	  /* If the giv is an address destination, it could be something other
2834	     than a simple register, these have to be treated differently.  */
2835	  else if (v->giv_type == DEST_REG)
2836	    {
2837	      /* If value is not a constant, register, or register plus
2838		 constant, then compute its value into a register before
2839		 loop start.  This prevents invalid rtx sharing, and should
2840		 generate better code.  We can use bl->initial_value here
2841		 instead of splittable_regs[bl->regno] because this code
2842		 is going before the loop start.  */
2843	      if (unroll_type == UNROLL_COMPLETELY
2844		  && GET_CODE (value) != CONST_INT
2845		  && GET_CODE (value) != REG
2846		  && (GET_CODE (value) != PLUS
2847		      || GET_CODE (XEXP (value, 0)) != REG
2848		      || GET_CODE (XEXP (value, 1)) != CONST_INT))
2849		{
2850		  rtx tem = gen_reg_rtx (v->mode);
2851		  record_base_value (REGNO (tem), v->add_val, 0);
2852		  loop_iv_add_mult_hoist (loop,
2853				extend_value_for_giv (v, bl->initial_value),
2854				v->mult_val, v->add_val, tem);
2855		  value = tem;
2856		}
2857
2858	      splittable_regs[reg_or_subregno (v->new_reg)] = value;
2859	    }
2860	  else
2861	    continue;
2862	}
2863      else
2864	{
2865#if 0
2866	  /* Currently, unreduced giv's can't be split.  This is not too much
2867	     of a problem since unreduced giv's are not live across loop
2868	     iterations anyways.  When unrolling a loop completely though,
2869	     it makes sense to reduce&split givs when possible, as this will
2870	     result in simpler instructions, and will not require that a reg
2871	     be live across loop iterations.  */
2872
2873	  splittable_regs[REGNO (v->dest_reg)] = value;
2874	  fprintf (stderr, "Giv %d at insn %d not reduced\n",
2875		   REGNO (v->dest_reg), INSN_UID (v->insn));
2876#else
2877	  continue;
2878#endif
2879	}
2880
2881      /* Unreduced givs are only updated once by definition.  Reduced givs
2882	 are updated as many times as their biv is.  Mark it so if this is
2883	 a splittable register.  Don't need to do anything for address givs
2884	 where this may not be a register.  */
2885
2886      if (GET_CODE (v->new_reg) == REG)
2887	{
2888	  int count = 1;
2889	  if (! v->ignore)
2890	    count = REG_IV_CLASS (ivs, REGNO (v->src_reg))->biv_count;
2891
2892	  splittable_regs_updates[reg_or_subregno (v->new_reg)] = count;
2893	}
2894
2895      result++;
2896
2897      if (loop_dump_stream)
2898	{
2899	  int regnum;
2900
2901	  if (GET_CODE (v->dest_reg) == CONST_INT)
2902	    regnum = -1;
2903	  else if (GET_CODE (v->dest_reg) != REG)
2904	    regnum = REGNO (XEXP (v->dest_reg, 0));
2905	  else
2906	    regnum = REGNO (v->dest_reg);
2907	  fprintf (loop_dump_stream, "Giv %d at insn %d safe to split.\n",
2908		   regnum, INSN_UID (v->insn));
2909	}
2910    }
2911
2912  return result;
2913}
2914
2915/* Try to prove that the register is dead after the loop exits.  Trace every
2916   loop exit looking for an insn that will always be executed, which sets
2917   the register to some value, and appears before the first use of the register
2918   is found.  If successful, then return 1, otherwise return 0.  */
2919
2920/* ?? Could be made more intelligent in the handling of jumps, so that
2921   it can search past if statements and other similar structures.  */
2922
2923static int
2924reg_dead_after_loop (loop, reg)
2925     const struct loop *loop;
2926     rtx reg;
2927{
2928  rtx insn, label;
2929  enum rtx_code code;
2930  int jump_count = 0;
2931  int label_count = 0;
2932
2933  /* In addition to checking all exits of this loop, we must also check
2934     all exits of inner nested loops that would exit this loop.  We don't
2935     have any way to identify those, so we just give up if there are any
2936     such inner loop exits.  */
2937
2938  for (label = loop->exit_labels; label; label = LABEL_NEXTREF (label))
2939    label_count++;
2940
2941  if (label_count != loop->exit_count)
2942    return 0;
2943
2944  /* HACK: Must also search the loop fall through exit, create a label_ref
2945     here which points to the loop->end, and append the loop_number_exit_labels
2946     list to it.  */
2947  label = gen_rtx_LABEL_REF (VOIDmode, loop->end);
2948  LABEL_NEXTREF (label) = loop->exit_labels;
2949
2950  for (; label; label = LABEL_NEXTREF (label))
2951    {
2952      /* Succeed if find an insn which sets the biv or if reach end of
2953	 function.  Fail if find an insn that uses the biv, or if come to
2954	 a conditional jump.  */
2955
2956      insn = NEXT_INSN (XEXP (label, 0));
2957      while (insn)
2958	{
2959	  code = GET_CODE (insn);
2960	  if (GET_RTX_CLASS (code) == 'i')
2961	    {
2962	      rtx set, note;
2963
2964	      if (reg_referenced_p (reg, PATTERN (insn)))
2965		return 0;
2966
2967	      note = find_reg_equal_equiv_note (insn);
2968	      if (note && reg_overlap_mentioned_p (reg, XEXP (note, 0)))
2969		return 0;
2970
2971	      set = single_set (insn);
2972	      if (set && rtx_equal_p (SET_DEST (set), reg))
2973		break;
2974	    }
2975
2976	  if (code == JUMP_INSN)
2977	    {
2978	      if (GET_CODE (PATTERN (insn)) == RETURN)
2979		break;
2980	      else if (!any_uncondjump_p (insn)
2981		       /* Prevent infinite loop following infinite loops.  */
2982		       || jump_count++ > 20)
2983		return 0;
2984	      else
2985		insn = JUMP_LABEL (insn);
2986	    }
2987
2988	  insn = NEXT_INSN (insn);
2989	}
2990    }
2991
2992  /* Success, the register is dead on all loop exits.  */
2993  return 1;
2994}
2995
2996/* Try to calculate the final value of the biv, the value it will have at
2997   the end of the loop.  If we can do it, return that value.  */
2998
2999rtx
3000final_biv_value (loop, bl)
3001     const struct loop *loop;
3002     struct iv_class *bl;
3003{
3004  unsigned HOST_WIDE_INT n_iterations = LOOP_INFO (loop)->n_iterations;
3005  rtx increment, tem;
3006
3007  /* ??? This only works for MODE_INT biv's.  Reject all others for now.  */
3008
3009  if (GET_MODE_CLASS (bl->biv->mode) != MODE_INT)
3010    return 0;
3011
3012  /* The final value for reversed bivs must be calculated differently than
3013     for ordinary bivs.  In this case, there is already an insn after the
3014     loop which sets this biv's final value (if necessary), and there are
3015     no other loop exits, so we can return any value.  */
3016  if (bl->reversed)
3017    {
3018      if (loop_dump_stream)
3019	fprintf (loop_dump_stream,
3020		 "Final biv value for %d, reversed biv.\n", bl->regno);
3021
3022      return const0_rtx;
3023    }
3024
3025  /* Try to calculate the final value as initial value + (number of iterations
3026     * increment).  For this to work, increment must be invariant, the only
3027     exit from the loop must be the fall through at the bottom (otherwise
3028     it may not have its final value when the loop exits), and the initial
3029     value of the biv must be invariant.  */
3030
3031  if (n_iterations != 0
3032      && ! loop->exit_count
3033      && loop_invariant_p (loop, bl->initial_value))
3034    {
3035      increment = biv_total_increment (bl);
3036
3037      if (increment && loop_invariant_p (loop, increment))
3038	{
3039	  /* Can calculate the loop exit value, emit insns after loop
3040	     end to calculate this value into a temporary register in
3041	     case it is needed later.  */
3042
3043	  tem = gen_reg_rtx (bl->biv->mode);
3044	  record_base_value (REGNO (tem), bl->biv->add_val, 0);
3045	  loop_iv_add_mult_sink (loop, increment, GEN_INT (n_iterations),
3046				 bl->initial_value, tem);
3047
3048	  if (loop_dump_stream)
3049	    fprintf (loop_dump_stream,
3050		     "Final biv value for %d, calculated.\n", bl->regno);
3051
3052	  return tem;
3053	}
3054    }
3055
3056  /* Check to see if the biv is dead at all loop exits.  */
3057  if (reg_dead_after_loop (loop, bl->biv->src_reg))
3058    {
3059      if (loop_dump_stream)
3060	fprintf (loop_dump_stream,
3061		 "Final biv value for %d, biv dead after loop exit.\n",
3062		 bl->regno);
3063
3064      return const0_rtx;
3065    }
3066
3067  return 0;
3068}
3069
3070/* Try to calculate the final value of the giv, the value it will have at
3071   the end of the loop.  If we can do it, return that value.  */
3072
3073rtx
3074final_giv_value (loop, v)
3075     const struct loop *loop;
3076     struct induction *v;
3077{
3078  struct loop_ivs *ivs = LOOP_IVS (loop);
3079  struct iv_class *bl;
3080  rtx insn;
3081  rtx increment, tem;
3082  rtx seq;
3083  rtx loop_end = loop->end;
3084  unsigned HOST_WIDE_INT n_iterations = LOOP_INFO (loop)->n_iterations;
3085
3086  bl = REG_IV_CLASS (ivs, REGNO (v->src_reg));
3087
3088  /* The final value for givs which depend on reversed bivs must be calculated
3089     differently than for ordinary givs.  In this case, there is already an
3090     insn after the loop which sets this giv's final value (if necessary),
3091     and there are no other loop exits, so we can return any value.  */
3092  if (bl->reversed)
3093    {
3094      if (loop_dump_stream)
3095	fprintf (loop_dump_stream,
3096		 "Final giv value for %d, depends on reversed biv\n",
3097		 REGNO (v->dest_reg));
3098      return const0_rtx;
3099    }
3100
3101  /* Try to calculate the final value as a function of the biv it depends
3102     upon.  The only exit from the loop must be the fall through at the bottom
3103     and the insn that sets the giv must be executed on every iteration
3104     (otherwise the giv may not have its final value when the loop exits).  */
3105
3106  /* ??? Can calculate the final giv value by subtracting off the
3107     extra biv increments times the giv's mult_val.  The loop must have
3108     only one exit for this to work, but the loop iterations does not need
3109     to be known.  */
3110
3111  if (n_iterations != 0
3112      && ! loop->exit_count
3113      && v->always_executed)
3114    {
3115      /* ?? It is tempting to use the biv's value here since these insns will
3116	 be put after the loop, and hence the biv will have its final value
3117	 then.  However, this fails if the biv is subsequently eliminated.
3118	 Perhaps determine whether biv's are eliminable before trying to
3119	 determine whether giv's are replaceable so that we can use the
3120	 biv value here if it is not eliminable.  */
3121
3122      /* We are emitting code after the end of the loop, so we must make
3123	 sure that bl->initial_value is still valid then.  It will still
3124	 be valid if it is invariant.  */
3125
3126      increment = biv_total_increment (bl);
3127
3128      if (increment && loop_invariant_p (loop, increment)
3129	  && loop_invariant_p (loop, bl->initial_value))
3130	{
3131	  /* Can calculate the loop exit value of its biv as
3132	     (n_iterations * increment) + initial_value */
3133
3134	  /* The loop exit value of the giv is then
3135	     (final_biv_value - extra increments) * mult_val + add_val.
3136	     The extra increments are any increments to the biv which
3137	     occur in the loop after the giv's value is calculated.
3138	     We must search from the insn that sets the giv to the end
3139	     of the loop to calculate this value.  */
3140
3141	  /* Put the final biv value in tem.  */
3142	  tem = gen_reg_rtx (v->mode);
3143	  record_base_value (REGNO (tem), bl->biv->add_val, 0);
3144	  loop_iv_add_mult_sink (loop, extend_value_for_giv (v, increment),
3145				 GEN_INT (n_iterations),
3146				 extend_value_for_giv (v, bl->initial_value),
3147				 tem);
3148
3149	  /* Subtract off extra increments as we find them.  */
3150	  for (insn = NEXT_INSN (v->insn); insn != loop_end;
3151	       insn = NEXT_INSN (insn))
3152	    {
3153	      struct induction *biv;
3154
3155	      for (biv = bl->biv; biv; biv = biv->next_iv)
3156		if (biv->insn == insn)
3157		  {
3158		    start_sequence ();
3159		    tem = expand_simple_binop (GET_MODE (tem), MINUS, tem,
3160					       biv->add_val, NULL_RTX, 0,
3161					       OPTAB_LIB_WIDEN);
3162		    seq = get_insns ();
3163		    end_sequence ();
3164		    loop_insn_sink (loop, seq);
3165		  }
3166	    }
3167
3168	  /* Now calculate the giv's final value.  */
3169	  loop_iv_add_mult_sink (loop, tem, v->mult_val, v->add_val, tem);
3170
3171	  if (loop_dump_stream)
3172	    fprintf (loop_dump_stream,
3173		     "Final giv value for %d, calc from biv's value.\n",
3174		     REGNO (v->dest_reg));
3175
3176	  return tem;
3177	}
3178    }
3179
3180  /* Replaceable giv's should never reach here.  */
3181  if (v->replaceable)
3182    abort ();
3183
3184  /* Check to see if the biv is dead at all loop exits.  */
3185  if (reg_dead_after_loop (loop, v->dest_reg))
3186    {
3187      if (loop_dump_stream)
3188	fprintf (loop_dump_stream,
3189		 "Final giv value for %d, giv dead after loop exit.\n",
3190		 REGNO (v->dest_reg));
3191
3192      return const0_rtx;
3193    }
3194
3195  return 0;
3196}
3197
3198/* Look back before LOOP->START for the insn that sets REG and return
3199   the equivalent constant if there is a REG_EQUAL note otherwise just
3200   the SET_SRC of REG.  */
3201
3202static rtx
3203loop_find_equiv_value (loop, reg)
3204     const struct loop *loop;
3205     rtx reg;
3206{
3207  rtx loop_start = loop->start;
3208  rtx insn, set;
3209  rtx ret;
3210
3211  ret = reg;
3212  for (insn = PREV_INSN (loop_start); insn; insn = PREV_INSN (insn))
3213    {
3214      if (GET_CODE (insn) == CODE_LABEL)
3215	break;
3216
3217      else if (INSN_P (insn) && reg_set_p (reg, insn))
3218	{
3219	  /* We found the last insn before the loop that sets the register.
3220	     If it sets the entire register, and has a REG_EQUAL note,
3221	     then use the value of the REG_EQUAL note.  */
3222	  if ((set = single_set (insn))
3223	      && (SET_DEST (set) == reg))
3224	    {
3225	      rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3226
3227	      /* Only use the REG_EQUAL note if it is a constant.
3228		 Other things, divide in particular, will cause
3229		 problems later if we use them.  */
3230	      if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST
3231		  && CONSTANT_P (XEXP (note, 0)))
3232		ret = XEXP (note, 0);
3233	      else
3234		ret = SET_SRC (set);
3235
3236	      /* We cannot do this if it changes between the
3237		 assignment and loop start though.  */
3238	      if (modified_between_p (ret, insn, loop_start))
3239		ret = reg;
3240	    }
3241	  break;
3242	}
3243    }
3244  return ret;
3245}
3246
3247/* Return a simplified rtx for the expression OP - REG.
3248
3249   REG must appear in OP, and OP must be a register or the sum of a register
3250   and a second term.
3251
3252   Thus, the return value must be const0_rtx or the second term.
3253
3254   The caller is responsible for verifying that REG appears in OP and OP has
3255   the proper form.  */
3256
3257static rtx
3258subtract_reg_term (op, reg)
3259     rtx op, reg;
3260{
3261  if (op == reg)
3262    return const0_rtx;
3263  if (GET_CODE (op) == PLUS)
3264    {
3265      if (XEXP (op, 0) == reg)
3266	return XEXP (op, 1);
3267      else if (XEXP (op, 1) == reg)
3268	return XEXP (op, 0);
3269    }
3270  /* OP does not contain REG as a term.  */
3271  abort ();
3272}
3273
3274/* Find and return register term common to both expressions OP0 and
3275   OP1 or NULL_RTX if no such term exists.  Each expression must be a
3276   REG or a PLUS of a REG.  */
3277
3278static rtx
3279find_common_reg_term (op0, op1)
3280     rtx op0, op1;
3281{
3282  if ((GET_CODE (op0) == REG || GET_CODE (op0) == PLUS)
3283      && (GET_CODE (op1) == REG || GET_CODE (op1) == PLUS))
3284    {
3285      rtx op00;
3286      rtx op01;
3287      rtx op10;
3288      rtx op11;
3289
3290      if (GET_CODE (op0) == PLUS)
3291	op01 = XEXP (op0, 1), op00 = XEXP (op0, 0);
3292      else
3293	op01 = const0_rtx, op00 = op0;
3294
3295      if (GET_CODE (op1) == PLUS)
3296	op11 = XEXP (op1, 1), op10 = XEXP (op1, 0);
3297      else
3298	op11 = const0_rtx, op10 = op1;
3299
3300      /* Find and return common register term if present.  */
3301      if (REG_P (op00) && (op00 == op10 || op00 == op11))
3302	return op00;
3303      else if (REG_P (op01) && (op01 == op10 || op01 == op11))
3304	return op01;
3305    }
3306
3307  /* No common register term found.  */
3308  return NULL_RTX;
3309}
3310
3311/* Determine the loop iterator and calculate the number of loop
3312   iterations.  Returns the exact number of loop iterations if it can
3313   be calculated, otherwise returns zero.  */
3314
3315unsigned HOST_WIDE_INT
3316loop_iterations (loop)
3317     struct loop *loop;
3318{
3319  struct loop_info *loop_info = LOOP_INFO (loop);
3320  struct loop_ivs *ivs = LOOP_IVS (loop);
3321  rtx comparison, comparison_value;
3322  rtx iteration_var, initial_value, increment, final_value;
3323  enum rtx_code comparison_code;
3324  HOST_WIDE_INT inc;
3325  unsigned HOST_WIDE_INT abs_inc;
3326  unsigned HOST_WIDE_INT abs_diff;
3327  int off_by_one;
3328  int increment_dir;
3329  int unsigned_p, compare_dir, final_larger;
3330  rtx last_loop_insn;
3331  rtx reg_term;
3332  struct iv_class *bl;
3333
3334  loop_info->n_iterations = 0;
3335  loop_info->initial_value = 0;
3336  loop_info->initial_equiv_value = 0;
3337  loop_info->comparison_value = 0;
3338  loop_info->final_value = 0;
3339  loop_info->final_equiv_value = 0;
3340  loop_info->increment = 0;
3341  loop_info->iteration_var = 0;
3342  loop_info->unroll_number = 1;
3343  loop_info->iv = 0;
3344
3345  /* We used to use prev_nonnote_insn here, but that fails because it might
3346     accidentally get the branch for a contained loop if the branch for this
3347     loop was deleted.  We can only trust branches immediately before the
3348     loop_end.  */
3349  last_loop_insn = PREV_INSN (loop->end);
3350
3351  /* ??? We should probably try harder to find the jump insn
3352     at the end of the loop.  The following code assumes that
3353     the last loop insn is a jump to the top of the loop.  */
3354  if (GET_CODE (last_loop_insn) != JUMP_INSN)
3355    {
3356      if (loop_dump_stream)
3357	fprintf (loop_dump_stream,
3358		 "Loop iterations: No final conditional branch found.\n");
3359      return 0;
3360    }
3361
3362  /* If there is a more than a single jump to the top of the loop
3363     we cannot (easily) determine the iteration count.  */
3364  if (LABEL_NUSES (JUMP_LABEL (last_loop_insn)) > 1)
3365    {
3366      if (loop_dump_stream)
3367	fprintf (loop_dump_stream,
3368		 "Loop iterations: Loop has multiple back edges.\n");
3369      return 0;
3370    }
3371
3372  /* If there are multiple conditionalized loop exit tests, they may jump
3373     back to differing CODE_LABELs.  */
3374  if (loop->top && loop->cont)
3375    {
3376      rtx temp = PREV_INSN (last_loop_insn);
3377
3378      do
3379	{
3380	  if (GET_CODE (temp) == JUMP_INSN)
3381	    {
3382	      /* There are some kinds of jumps we can't deal with easily.  */
3383	      if (JUMP_LABEL (temp) == 0)
3384		{
3385		  if (loop_dump_stream)
3386		    fprintf
3387		      (loop_dump_stream,
3388		       "Loop iterations: Jump insn has null JUMP_LABEL.\n");
3389		  return 0;
3390		}
3391
3392	      if (/* Previous unrolling may have generated new insns not
3393		     covered by the uid_luid array.  */
3394		  INSN_UID (JUMP_LABEL (temp)) < max_uid_for_loop
3395		  /* Check if we jump back into the loop body.  */
3396		  && INSN_LUID (JUMP_LABEL (temp)) > INSN_LUID (loop->top)
3397		  && INSN_LUID (JUMP_LABEL (temp)) < INSN_LUID (loop->cont))
3398		{
3399		  if (loop_dump_stream)
3400		    fprintf
3401		      (loop_dump_stream,
3402		       "Loop iterations: Loop has multiple back edges.\n");
3403		  return 0;
3404		}
3405	    }
3406	}
3407      while ((temp = PREV_INSN (temp)) != loop->cont);
3408    }
3409
3410  /* Find the iteration variable.  If the last insn is a conditional
3411     branch, and the insn before tests a register value, make that the
3412     iteration variable.  */
3413
3414  comparison = get_condition_for_loop (loop, last_loop_insn);
3415  if (comparison == 0)
3416    {
3417      if (loop_dump_stream)
3418	fprintf (loop_dump_stream,
3419		 "Loop iterations: No final comparison found.\n");
3420      return 0;
3421    }
3422
3423  /* ??? Get_condition may switch position of induction variable and
3424     invariant register when it canonicalizes the comparison.  */
3425
3426  comparison_code = GET_CODE (comparison);
3427  iteration_var = XEXP (comparison, 0);
3428  comparison_value = XEXP (comparison, 1);
3429
3430  if (GET_CODE (iteration_var) != REG)
3431    {
3432      if (loop_dump_stream)
3433	fprintf (loop_dump_stream,
3434		 "Loop iterations: Comparison not against register.\n");
3435      return 0;
3436    }
3437
3438  /* The only new registers that are created before loop iterations
3439     are givs made from biv increments or registers created by
3440     load_mems.  In the latter case, it is possible that try_copy_prop
3441     will propagate a new pseudo into the old iteration register but
3442     this will be marked by having the REG_USERVAR_P bit set.  */
3443
3444  if ((unsigned) REGNO (iteration_var) >= ivs->n_regs
3445      && ! REG_USERVAR_P (iteration_var))
3446    abort ();
3447
3448  /* Determine the initial value of the iteration variable, and the amount
3449     that it is incremented each loop.  Use the tables constructed by
3450     the strength reduction pass to calculate these values.  */
3451
3452  /* Clear the result values, in case no answer can be found.  */
3453  initial_value = 0;
3454  increment = 0;
3455
3456  /* The iteration variable can be either a giv or a biv.  Check to see
3457     which it is, and compute the variable's initial value, and increment
3458     value if possible.  */
3459
3460  /* If this is a new register, can't handle it since we don't have any
3461     reg_iv_type entry for it.  */
3462  if ((unsigned) REGNO (iteration_var) >= ivs->n_regs)
3463    {
3464      if (loop_dump_stream)
3465	fprintf (loop_dump_stream,
3466		 "Loop iterations: No reg_iv_type entry for iteration var.\n");
3467      return 0;
3468    }
3469
3470  /* Reject iteration variables larger than the host wide int size, since they
3471     could result in a number of iterations greater than the range of our
3472     `unsigned HOST_WIDE_INT' variable loop_info->n_iterations.  */
3473  else if ((GET_MODE_BITSIZE (GET_MODE (iteration_var))
3474	    > HOST_BITS_PER_WIDE_INT))
3475    {
3476      if (loop_dump_stream)
3477	fprintf (loop_dump_stream,
3478		 "Loop iterations: Iteration var rejected because mode too large.\n");
3479      return 0;
3480    }
3481  else if (GET_MODE_CLASS (GET_MODE (iteration_var)) != MODE_INT)
3482    {
3483      if (loop_dump_stream)
3484	fprintf (loop_dump_stream,
3485		 "Loop iterations: Iteration var not an integer.\n");
3486      return 0;
3487    }
3488  else if (REG_IV_TYPE (ivs, REGNO (iteration_var)) == BASIC_INDUCT)
3489    {
3490      if (REGNO (iteration_var) >= ivs->n_regs)
3491	abort ();
3492
3493      /* Grab initial value, only useful if it is a constant.  */
3494      bl = REG_IV_CLASS (ivs, REGNO (iteration_var));
3495      initial_value = bl->initial_value;
3496      if (!bl->biv->always_executed || bl->biv->maybe_multiple)
3497	{
3498	  if (loop_dump_stream)
3499	    fprintf (loop_dump_stream,
3500		     "Loop iterations: Basic induction var not set once in each iteration.\n");
3501	  return 0;
3502	}
3503
3504      increment = biv_total_increment (bl);
3505    }
3506  else if (REG_IV_TYPE (ivs, REGNO (iteration_var)) == GENERAL_INDUCT)
3507    {
3508      HOST_WIDE_INT offset = 0;
3509      struct induction *v = REG_IV_INFO (ivs, REGNO (iteration_var));
3510      rtx biv_initial_value;
3511
3512      if (REGNO (v->src_reg) >= ivs->n_regs)
3513	abort ();
3514
3515      if (!v->always_executed || v->maybe_multiple)
3516	{
3517	  if (loop_dump_stream)
3518	    fprintf (loop_dump_stream,
3519		     "Loop iterations: General induction var not set once in each iteration.\n");
3520	  return 0;
3521	}
3522
3523      bl = REG_IV_CLASS (ivs, REGNO (v->src_reg));
3524
3525      /* Increment value is mult_val times the increment value of the biv.  */
3526
3527      increment = biv_total_increment (bl);
3528      if (increment)
3529	{
3530	  struct induction *biv_inc;
3531
3532	  increment = fold_rtx_mult_add (v->mult_val,
3533					 extend_value_for_giv (v, increment),
3534					 const0_rtx, v->mode);
3535	  /* The caller assumes that one full increment has occurred at the
3536	     first loop test.  But that's not true when the biv is incremented
3537	     after the giv is set (which is the usual case), e.g.:
3538	     i = 6; do {;} while (i++ < 9) .
3539	     Therefore, we bias the initial value by subtracting the amount of
3540	     the increment that occurs between the giv set and the giv test.  */
3541	  for (biv_inc = bl->biv; biv_inc; biv_inc = biv_inc->next_iv)
3542	    {
3543	      if (loop_insn_first_p (v->insn, biv_inc->insn))
3544		{
3545		  if (REG_P (biv_inc->add_val))
3546		    {
3547		      if (loop_dump_stream)
3548			fprintf (loop_dump_stream,
3549				 "Loop iterations: Basic induction var add_val is REG %d.\n",
3550				 REGNO (biv_inc->add_val));
3551			return 0;
3552		    }
3553
3554		  /* If we have already counted it, skip it.  */
3555		  if (biv_inc->same)
3556		    continue;
3557
3558		  offset -= INTVAL (biv_inc->add_val);
3559		}
3560	    }
3561	}
3562      if (loop_dump_stream)
3563	fprintf (loop_dump_stream,
3564		 "Loop iterations: Giv iterator, initial value bias %ld.\n",
3565		 (long) offset);
3566
3567      /* Initial value is mult_val times the biv's initial value plus
3568	 add_val.  Only useful if it is a constant.  */
3569      biv_initial_value = extend_value_for_giv (v, bl->initial_value);
3570      initial_value
3571	= fold_rtx_mult_add (v->mult_val,
3572			     plus_constant (biv_initial_value, offset),
3573			     v->add_val, v->mode);
3574    }
3575  else
3576    {
3577      if (loop_dump_stream)
3578	fprintf (loop_dump_stream,
3579		 "Loop iterations: Not basic or general induction var.\n");
3580      return 0;
3581    }
3582
3583  if (initial_value == 0)
3584    return 0;
3585
3586  unsigned_p = 0;
3587  off_by_one = 0;
3588  switch (comparison_code)
3589    {
3590    case LEU:
3591      unsigned_p = 1;
3592    case LE:
3593      compare_dir = 1;
3594      off_by_one = 1;
3595      break;
3596    case GEU:
3597      unsigned_p = 1;
3598    case GE:
3599      compare_dir = -1;
3600      off_by_one = -1;
3601      break;
3602    case EQ:
3603      /* Cannot determine loop iterations with this case.  */
3604      compare_dir = 0;
3605      break;
3606    case LTU:
3607      unsigned_p = 1;
3608    case LT:
3609      compare_dir = 1;
3610      break;
3611    case GTU:
3612      unsigned_p = 1;
3613    case GT:
3614      compare_dir = -1;
3615    case NE:
3616      compare_dir = 0;
3617      break;
3618    default:
3619      abort ();
3620    }
3621
3622  /* If the comparison value is an invariant register, then try to find
3623     its value from the insns before the start of the loop.  */
3624
3625  final_value = comparison_value;
3626  if (GET_CODE (comparison_value) == REG
3627      && loop_invariant_p (loop, comparison_value))
3628    {
3629      final_value = loop_find_equiv_value (loop, comparison_value);
3630
3631      /* If we don't get an invariant final value, we are better
3632	 off with the original register.  */
3633      if (! loop_invariant_p (loop, final_value))
3634	final_value = comparison_value;
3635    }
3636
3637  /* Calculate the approximate final value of the induction variable
3638     (on the last successful iteration).  The exact final value
3639     depends on the branch operator, and increment sign.  It will be
3640     wrong if the iteration variable is not incremented by one each
3641     time through the loop and (comparison_value + off_by_one -
3642     initial_value) % increment != 0.
3643     ??? Note that the final_value may overflow and thus final_larger
3644     will be bogus.  A potentially infinite loop will be classified
3645     as immediate, e.g. for (i = 0x7ffffff0; i <= 0x7fffffff; i++)  */
3646  if (off_by_one)
3647    final_value = plus_constant (final_value, off_by_one);
3648
3649  /* Save the calculated values describing this loop's bounds, in case
3650     precondition_loop_p will need them later.  These values can not be
3651     recalculated inside precondition_loop_p because strength reduction
3652     optimizations may obscure the loop's structure.
3653
3654     These values are only required by precondition_loop_p and insert_bct
3655     whenever the number of iterations cannot be computed at compile time.
3656     Only the difference between final_value and initial_value is
3657     important.  Note that final_value is only approximate.  */
3658  loop_info->initial_value = initial_value;
3659  loop_info->comparison_value = comparison_value;
3660  loop_info->final_value = plus_constant (comparison_value, off_by_one);
3661  loop_info->increment = increment;
3662  loop_info->iteration_var = iteration_var;
3663  loop_info->comparison_code = comparison_code;
3664  loop_info->iv = bl;
3665
3666  /* Try to determine the iteration count for loops such
3667     as (for i = init; i < init + const; i++).  When running the
3668     loop optimization twice, the first pass often converts simple
3669     loops into this form.  */
3670
3671  if (REG_P (initial_value))
3672    {
3673      rtx reg1;
3674      rtx reg2;
3675      rtx const2;
3676
3677      reg1 = initial_value;
3678      if (GET_CODE (final_value) == PLUS)
3679	reg2 = XEXP (final_value, 0), const2 = XEXP (final_value, 1);
3680      else
3681	reg2 = final_value, const2 = const0_rtx;
3682
3683      /* Check for initial_value = reg1, final_value = reg2 + const2,
3684	 where reg1 != reg2.  */
3685      if (REG_P (reg2) && reg2 != reg1)
3686	{
3687	  rtx temp;
3688
3689	  /* Find what reg1 is equivalent to.  Hopefully it will
3690	     either be reg2 or reg2 plus a constant.  */
3691	  temp = loop_find_equiv_value (loop, reg1);
3692
3693	  if (find_common_reg_term (temp, reg2))
3694	    initial_value = temp;
3695	  else if (loop_invariant_p (loop, reg2))
3696	    {
3697	      /* Find what reg2 is equivalent to.  Hopefully it will
3698		 either be reg1 or reg1 plus a constant.  Let's ignore
3699		 the latter case for now since it is not so common.  */
3700	      temp = loop_find_equiv_value (loop, reg2);
3701
3702	      if (temp == loop_info->iteration_var)
3703		temp = initial_value;
3704	      if (temp == reg1)
3705		final_value = (const2 == const0_rtx)
3706		  ? reg1 : gen_rtx_PLUS (GET_MODE (reg1), reg1, const2);
3707	    }
3708	}
3709      else if (loop->vtop && GET_CODE (reg2) == CONST_INT)
3710	{
3711	  rtx temp;
3712
3713	  /* When running the loop optimizer twice, check_dbra_loop
3714	     further obfuscates reversible loops of the form:
3715	     for (i = init; i < init + const; i++).  We often end up with
3716	     final_value = 0, initial_value = temp, temp = temp2 - init,
3717	     where temp2 = init + const.  If the loop has a vtop we
3718	     can replace initial_value with const.  */
3719
3720	  temp = loop_find_equiv_value (loop, reg1);
3721
3722	  if (GET_CODE (temp) == MINUS && REG_P (XEXP (temp, 0)))
3723	    {
3724	      rtx temp2 = loop_find_equiv_value (loop, XEXP (temp, 0));
3725
3726	      if (GET_CODE (temp2) == PLUS
3727		  && XEXP (temp2, 0) == XEXP (temp, 1))
3728		initial_value = XEXP (temp2, 1);
3729	    }
3730	}
3731    }
3732
3733  /* If have initial_value = reg + const1 and final_value = reg +
3734     const2, then replace initial_value with const1 and final_value
3735     with const2.  This should be safe since we are protected by the
3736     initial comparison before entering the loop if we have a vtop.
3737     For example, a + b < a + c is not equivalent to b < c for all a
3738     when using modulo arithmetic.
3739
3740     ??? Without a vtop we could still perform the optimization if we check
3741     the initial and final values carefully.  */
3742  if (loop->vtop
3743      && (reg_term = find_common_reg_term (initial_value, final_value)))
3744    {
3745      initial_value = subtract_reg_term (initial_value, reg_term);
3746      final_value = subtract_reg_term (final_value, reg_term);
3747    }
3748
3749  loop_info->initial_equiv_value = initial_value;
3750  loop_info->final_equiv_value = final_value;
3751
3752  /* For EQ comparison loops, we don't have a valid final value.
3753     Check this now so that we won't leave an invalid value if we
3754     return early for any other reason.  */
3755  if (comparison_code == EQ)
3756    loop_info->final_equiv_value = loop_info->final_value = 0;
3757
3758  if (increment == 0)
3759    {
3760      if (loop_dump_stream)
3761	fprintf (loop_dump_stream,
3762		 "Loop iterations: Increment value can't be calculated.\n");
3763      return 0;
3764    }
3765
3766  if (GET_CODE (increment) != CONST_INT)
3767    {
3768      /* If we have a REG, check to see if REG holds a constant value.  */
3769      /* ??? Other RTL, such as (neg (reg)) is possible here, but it isn't
3770	 clear if it is worthwhile to try to handle such RTL.  */
3771      if (GET_CODE (increment) == REG || GET_CODE (increment) == SUBREG)
3772	increment = loop_find_equiv_value (loop, increment);
3773
3774      if (GET_CODE (increment) != CONST_INT)
3775	{
3776	  if (loop_dump_stream)
3777	    {
3778	      fprintf (loop_dump_stream,
3779		       "Loop iterations: Increment value not constant ");
3780	      print_simple_rtl (loop_dump_stream, increment);
3781	      fprintf (loop_dump_stream, ".\n");
3782	    }
3783	  return 0;
3784	}
3785      loop_info->increment = increment;
3786    }
3787
3788  if (GET_CODE (initial_value) != CONST_INT)
3789    {
3790      if (loop_dump_stream)
3791	{
3792	  fprintf (loop_dump_stream,
3793		   "Loop iterations: Initial value not constant ");
3794	  print_simple_rtl (loop_dump_stream, initial_value);
3795	  fprintf (loop_dump_stream, ".\n");
3796	}
3797      return 0;
3798    }
3799  else if (GET_CODE (final_value) != CONST_INT)
3800    {
3801      if (loop_dump_stream)
3802	{
3803	  fprintf (loop_dump_stream,
3804		   "Loop iterations: Final value not constant ");
3805	  print_simple_rtl (loop_dump_stream, final_value);
3806	  fprintf (loop_dump_stream, ".\n");
3807	}
3808      return 0;
3809    }
3810  else if (comparison_code == EQ)
3811    {
3812      rtx inc_once;
3813
3814      if (loop_dump_stream)
3815	fprintf (loop_dump_stream, "Loop iterations: EQ comparison loop.\n");
3816
3817      inc_once = gen_int_mode (INTVAL (initial_value) + INTVAL (increment),
3818			       GET_MODE (iteration_var));
3819
3820      if (inc_once == final_value)
3821	{
3822	  /* The iterator value once through the loop is equal to the
3823	     comparision value.  Either we have an infinite loop, or
3824	     we'll loop twice.  */
3825	  if (increment == const0_rtx)
3826	    return 0;
3827	  loop_info->n_iterations = 2;
3828	}
3829      else
3830	loop_info->n_iterations = 1;
3831
3832      if (GET_CODE (loop_info->initial_value) == CONST_INT)
3833	loop_info->final_value
3834	  = gen_int_mode ((INTVAL (loop_info->initial_value)
3835			   + loop_info->n_iterations * INTVAL (increment)),
3836			  GET_MODE (iteration_var));
3837      else
3838	loop_info->final_value
3839	  = plus_constant (loop_info->initial_value,
3840			   loop_info->n_iterations * INTVAL (increment));
3841      loop_info->final_equiv_value
3842	= gen_int_mode ((INTVAL (initial_value)
3843			 + loop_info->n_iterations * INTVAL (increment)),
3844			GET_MODE (iteration_var));
3845      return loop_info->n_iterations;
3846    }
3847
3848  /* Final_larger is 1 if final larger, 0 if they are equal, otherwise -1.  */
3849  if (unsigned_p)
3850    final_larger
3851      = ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3852	 > (unsigned HOST_WIDE_INT) INTVAL (initial_value))
3853	- ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3854	   < (unsigned HOST_WIDE_INT) INTVAL (initial_value));
3855  else
3856    final_larger = (INTVAL (final_value) > INTVAL (initial_value))
3857      - (INTVAL (final_value) < INTVAL (initial_value));
3858
3859  if (INTVAL (increment) > 0)
3860    increment_dir = 1;
3861  else if (INTVAL (increment) == 0)
3862    increment_dir = 0;
3863  else
3864    increment_dir = -1;
3865
3866  /* There are 27 different cases: compare_dir = -1, 0, 1;
3867     final_larger = -1, 0, 1; increment_dir = -1, 0, 1.
3868     There are 4 normal cases, 4 reverse cases (where the iteration variable
3869     will overflow before the loop exits), 4 infinite loop cases, and 15
3870     immediate exit (0 or 1 iteration depending on loop type) cases.
3871     Only try to optimize the normal cases.  */
3872
3873  /* (compare_dir/final_larger/increment_dir)
3874     Normal cases: (0/-1/-1), (0/1/1), (-1/-1/-1), (1/1/1)
3875     Reverse cases: (0/-1/1), (0/1/-1), (-1/-1/1), (1/1/-1)
3876     Infinite loops: (0/-1/0), (0/1/0), (-1/-1/0), (1/1/0)
3877     Immediate exit: (0/0/X), (-1/0/X), (-1/1/X), (1/0/X), (1/-1/X) */
3878
3879  /* ?? If the meaning of reverse loops (where the iteration variable
3880     will overflow before the loop exits) is undefined, then could
3881     eliminate all of these special checks, and just always assume
3882     the loops are normal/immediate/infinite.  Note that this means
3883     the sign of increment_dir does not have to be known.  Also,
3884     since it does not really hurt if immediate exit loops or infinite loops
3885     are optimized, then that case could be ignored also, and hence all
3886     loops can be optimized.
3887
3888     According to ANSI Spec, the reverse loop case result is undefined,
3889     because the action on overflow is undefined.
3890
3891     See also the special test for NE loops below.  */
3892
3893  if (final_larger == increment_dir && final_larger != 0
3894      && (final_larger == compare_dir || compare_dir == 0))
3895    /* Normal case.  */
3896    ;
3897  else
3898    {
3899      if (loop_dump_stream)
3900	fprintf (loop_dump_stream, "Loop iterations: Not normal loop.\n");
3901      return 0;
3902    }
3903
3904  /* Calculate the number of iterations, final_value is only an approximation,
3905     so correct for that.  Note that abs_diff and n_iterations are
3906     unsigned, because they can be as large as 2^n - 1.  */
3907
3908  inc = INTVAL (increment);
3909  if (inc > 0)
3910    {
3911      abs_diff = INTVAL (final_value) - INTVAL (initial_value);
3912      abs_inc = inc;
3913    }
3914  else if (inc < 0)
3915    {
3916      abs_diff = INTVAL (initial_value) - INTVAL (final_value);
3917      abs_inc = -inc;
3918    }
3919  else
3920    abort ();
3921
3922  /* Given that iteration_var is going to iterate over its own mode,
3923     not HOST_WIDE_INT, disregard higher bits that might have come
3924     into the picture due to sign extension of initial and final
3925     values.  */
3926  abs_diff &= ((unsigned HOST_WIDE_INT) 1
3927	       << (GET_MODE_BITSIZE (GET_MODE (iteration_var)) - 1)
3928	       << 1) - 1;
3929
3930  /* For NE tests, make sure that the iteration variable won't miss
3931     the final value.  If abs_diff mod abs_incr is not zero, then the
3932     iteration variable will overflow before the loop exits, and we
3933     can not calculate the number of iterations.  */
3934  if (compare_dir == 0 && (abs_diff % abs_inc) != 0)
3935    return 0;
3936
3937  /* Note that the number of iterations could be calculated using
3938     (abs_diff + abs_inc - 1) / abs_inc, provided care was taken to
3939     handle potential overflow of the summation.  */
3940  loop_info->n_iterations = abs_diff / abs_inc + ((abs_diff % abs_inc) != 0);
3941  return loop_info->n_iterations;
3942}
3943
3944/* Replace uses of split bivs with their split pseudo register.  This is
3945   for original instructions which remain after loop unrolling without
3946   copying.  */
3947
3948static rtx
3949remap_split_bivs (loop, x)
3950     struct loop *loop;
3951     rtx x;
3952{
3953  struct loop_ivs *ivs = LOOP_IVS (loop);
3954  enum rtx_code code;
3955  int i;
3956  const char *fmt;
3957
3958  if (x == 0)
3959    return x;
3960
3961  code = GET_CODE (x);
3962  switch (code)
3963    {
3964    case SCRATCH:
3965    case PC:
3966    case CC0:
3967    case CONST_INT:
3968    case CONST_DOUBLE:
3969    case CONST:
3970    case SYMBOL_REF:
3971    case LABEL_REF:
3972      return x;
3973
3974    case REG:
3975#if 0
3976      /* If non-reduced/final-value givs were split, then this would also
3977	 have to remap those givs also.  */
3978#endif
3979      if (REGNO (x) < ivs->n_regs
3980	  && REG_IV_TYPE (ivs, REGNO (x)) == BASIC_INDUCT)
3981	return REG_IV_CLASS (ivs, REGNO (x))->biv->src_reg;
3982      break;
3983
3984    default:
3985      break;
3986    }
3987
3988  fmt = GET_RTX_FORMAT (code);
3989  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3990    {
3991      if (fmt[i] == 'e')
3992	XEXP (x, i) = remap_split_bivs (loop, XEXP (x, i));
3993      else if (fmt[i] == 'E')
3994	{
3995	  int j;
3996	  for (j = 0; j < XVECLEN (x, i); j++)
3997	    XVECEXP (x, i, j) = remap_split_bivs (loop, XVECEXP (x, i, j));
3998	}
3999    }
4000  return x;
4001}
4002
4003/* If FIRST_UID is a set of REGNO, and FIRST_UID dominates LAST_UID (e.g.
4004   FIST_UID is always executed if LAST_UID is), then return 1.  Otherwise
4005   return 0.  COPY_START is where we can start looking for the insns
4006   FIRST_UID and LAST_UID.  COPY_END is where we stop looking for these
4007   insns.
4008
4009   If there is no JUMP_INSN between LOOP_START and FIRST_UID, then FIRST_UID
4010   must dominate LAST_UID.
4011
4012   If there is a CODE_LABEL between FIRST_UID and LAST_UID, then FIRST_UID
4013   may not dominate LAST_UID.
4014
4015   If there is no CODE_LABEL between FIRST_UID and LAST_UID, then FIRST_UID
4016   must dominate LAST_UID.  */
4017
4018int
4019set_dominates_use (regno, first_uid, last_uid, copy_start, copy_end)
4020     int regno;
4021     int first_uid;
4022     int last_uid;
4023     rtx copy_start;
4024     rtx copy_end;
4025{
4026  int passed_jump = 0;
4027  rtx p = NEXT_INSN (copy_start);
4028
4029  while (INSN_UID (p) != first_uid)
4030    {
4031      if (GET_CODE (p) == JUMP_INSN)
4032	passed_jump = 1;
4033      /* Could not find FIRST_UID.  */
4034      if (p == copy_end)
4035	return 0;
4036      p = NEXT_INSN (p);
4037    }
4038
4039  /* Verify that FIRST_UID is an insn that entirely sets REGNO.  */
4040  if (! INSN_P (p) || ! dead_or_set_regno_p (p, regno))
4041    return 0;
4042
4043  /* FIRST_UID is always executed.  */
4044  if (passed_jump == 0)
4045    return 1;
4046
4047  while (INSN_UID (p) != last_uid)
4048    {
4049      /* If we see a CODE_LABEL between FIRST_UID and LAST_UID, then we
4050	 can not be sure that FIRST_UID dominates LAST_UID.  */
4051      if (GET_CODE (p) == CODE_LABEL)
4052	return 0;
4053      /* Could not find LAST_UID, but we reached the end of the loop, so
4054	 it must be safe.  */
4055      else if (p == copy_end)
4056	return 1;
4057      p = NEXT_INSN (p);
4058    }
4059
4060  /* FIRST_UID is always executed if LAST_UID is executed.  */
4061  return 1;
4062}
4063
4064/* This routine is called when the number of iterations for the unrolled
4065   loop is one.   The goal is to identify a loop that begins with an
4066   unconditional branch to the loop continuation note (or a label just after).
4067   In this case, the unconditional branch that starts the loop needs to be
4068   deleted so that we execute the single iteration.  */
4069
4070static rtx
4071ujump_to_loop_cont (loop_start, loop_cont)
4072     rtx loop_start;
4073     rtx loop_cont;
4074{
4075  rtx x, label, label_ref;
4076
4077  /* See if loop start, or the next insn is an unconditional jump.  */
4078  loop_start = next_nonnote_insn (loop_start);
4079
4080  x = pc_set (loop_start);
4081  if (!x)
4082    return NULL_RTX;
4083
4084  label_ref = SET_SRC (x);
4085  if (!label_ref)
4086    return NULL_RTX;
4087
4088  /* Examine insn after loop continuation note.  Return if not a label.  */
4089  label = next_nonnote_insn (loop_cont);
4090  if (label == 0 || GET_CODE (label) != CODE_LABEL)
4091    return NULL_RTX;
4092
4093  /* Return the loop start if the branch label matches the code label.  */
4094  if (CODE_LABEL_NUMBER (label) == CODE_LABEL_NUMBER (XEXP (label_ref, 0)))
4095    return loop_start;
4096  else
4097    return NULL_RTX;
4098}
4099