1/* Standard register usage.  */
2
3/* Number of actual hardware registers.
4   The hardware registers are assigned numbers for the compiler
5   from 0 to just below FIRST_PSEUDO_REGISTER.
6   All registers that the compiler knows about must be given numbers,
7   even those that are not normally considered general registers.
8
9   HP-PA 1.0 has 32 fullword registers and 16 floating point
10   registers. The floating point registers hold either word or double
11   word values.
12
13   16 additional registers are reserved.
14
15   HP-PA 1.1 has 32 fullword registers and 32 floating point
16   registers. However, the floating point registers behave
17   differently: the left and right halves of registers are addressable
18   as 32 bit registers. So, we will set things up like the 68k which
19   has different fp units: define separate register sets for the 1.0
20   and 1.1 fp units.  */
21
22#define FIRST_PSEUDO_REGISTER 89  /* 32 general regs + 56 fp regs +
23				     + 1 shift reg */
24
25/* 1 for registers that have pervasive standard uses
26   and are not available for the register allocator.
27
28   On the HP-PA, these are:
29   Reg 0	= 0 (hardware). However, 0 is used for condition code,
30                  so is not fixed.
31   Reg 1	= ADDIL target/Temporary (hardware).
32   Reg 2	= Return Pointer
33   Reg 3	= Frame Pointer
34   Reg 4	= Frame Pointer (>8k varying frame with HP compilers only)
35   Reg 4-18	= Preserved Registers
36   Reg 19	= Linkage Table Register in HPUX 8.0 shared library scheme.
37   Reg 20-22	= Temporary Registers
38   Reg 23-26	= Temporary/Parameter Registers
39   Reg 27	= Global Data Pointer (hp)
40   Reg 28	= Temporary/Return Value register
41   Reg 29	= Temporary/Static Chain/Return Value register #2
42   Reg 30	= stack pointer
43   Reg 31	= Temporary/Millicode Return Pointer (hp)
44
45   Freg 0-3	= Status Registers	 -- Not known to the compiler.
46   Freg 4-7	= Arguments/Return Value
47   Freg 8-11	= Temporary Registers
48   Freg 12-15	= Preserved Registers
49
50   Freg 16-31	= Reserved
51
52   On the Snake, fp regs are
53
54   Freg 0-3	= Status Registers	-- Not known to the compiler.
55   Freg 4L-7R	= Arguments/Return Value
56   Freg 8L-11R	= Temporary Registers
57   Freg 12L-21R	= Preserved Registers
58   Freg 22L-31R = Temporary Registers
59
60*/
61
62#define FIXED_REGISTERS  \
63 {0, 0, 0, 0, 0, 0, 0, 0, \
64  0, 0, 0, 0, 0, 0, 0, 0, \
65  0, 0, 0, 0, 0, 0, 0, 0, \
66  0, 0, 0, 1, 0, 0, 1, 0, \
67  /* fp registers */	  \
68  0, 0, 0, 0, 0, 0, 0, 0, \
69  0, 0, 0, 0, 0, 0, 0, 0, \
70  0, 0, 0, 0, 0, 0, 0, 0, \
71  0, 0, 0, 0, 0, 0, 0, 0, \
72  0, 0, 0, 0, 0, 0, 0, 0, \
73  0, 0, 0, 0, 0, 0, 0, 0, \
74  0, 0, 0, 0, 0, 0, 0, 0, \
75  0}
76
77/* 1 for registers not available across function calls.
78   These must include the FIXED_REGISTERS and also any
79   registers that can be used without being saved.
80   The latter must include the registers where values are returned
81   and the register where structure-value addresses are passed.
82   Aside from that, you can include as many other registers as you like.  */
83#define CALL_USED_REGISTERS  \
84 {1, 1, 1, 0, 0, 0, 0, 0, \
85  0, 0, 0, 0, 0, 0, 0, 0, \
86  0, 0, 0, 1, 1, 1, 1, 1, \
87  1, 1, 1, 1, 1, 1, 1, 1, \
88  /* fp registers */	  \
89  1, 1, 1, 1, 1, 1, 1, 1, \
90  1, 1, 1, 1, 1, 1, 1, 1, \
91  0, 0, 0, 0, 0, 0, 0, 0, \
92  0, 0, 0, 0, 0, 0, 0, 0, \
93  0, 0, 0, 0, 1, 1, 1, 1, \
94  1, 1, 1, 1, 1, 1, 1, 1, \
95  1, 1, 1, 1, 1, 1, 1, 1, \
96  1}
97
98#define CONDITIONAL_REGISTER_USAGE \
99{						\
100  int i;					\
101  if (!TARGET_PA_11)				\
102    {						\
103      for (i = 56; i < 88; i++) 		\
104	fixed_regs[i] = call_used_regs[i] = 1; 	\
105      for (i = 33; i < 88; i += 2) 		\
106	fixed_regs[i] = call_used_regs[i] = 1; 	\
107    }						\
108  if (TARGET_DISABLE_FPREGS || TARGET_SOFT_FLOAT)\
109    {						\
110      for (i = 32; i < 88; i++) 		\
111	fixed_regs[i] = call_used_regs[i] = 1; 	\
112    }						\
113  if (flag_pic)					\
114    fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1;	\
115}
116
117/* Allocate the call used registers first.  This should minimize
118   the number of registers that need to be saved (as call used
119   registers will generally not be allocated across a call).
120
121   Experimentation has shown slightly better results by allocating
122   FP registers first.
123
124   FP registers are ordered so that all L registers are selected before
125   R registers.  This works around a false dependency interlock on the
126   PA8000 when accessing the high and low parts of an FP register
127   independently.  */
128
129#define REG_ALLOC_ORDER \
130 {					\
131  /* caller-saved fp regs.  */		\
132  68, 70, 72, 74, 76, 78, 80, 82,	\
133  84, 86, 40, 42, 44, 46, 32, 34,	\
134  36, 38,				\
135  69, 71, 73, 75, 77, 79, 81, 83,	\
136  85, 87, 41, 43, 45, 47, 33, 35,	\
137  37, 39,				\
138  /* caller-saved general regs.  */	\
139  19, 20, 21, 22, 23, 24, 25, 26,	\
140  27, 28, 29, 31,  2,			\
141  /* callee-saved fp regs.  */		\
142  48, 50, 52, 54, 56, 58, 60, 62,	\
143  64, 66,				\
144  49, 51, 53, 55, 57, 59, 61, 63,	\
145  65, 67,				\
146  /* callee-saved general regs.  */	\
147   3,  4,  5,  6,  7,  8,  9, 10, 	\
148  11, 12, 13, 14, 15, 16, 17, 18,	\
149  /* special registers.  */		\
150   1, 30,  0, 88}
151
152
153/* Return number of consecutive hard regs needed starting at reg REGNO
154   to hold something of mode MODE.
155   This is ordinarily the length in words of a value of mode MODE
156   but can be less for certain modes in special long registers.
157
158   On the HP-PA, ordinary registers hold 32 bits worth;
159   The floating point registers are 64 bits wide. Snake fp regs are 32
160   bits wide */
161#define HARD_REGNO_NREGS(REGNO, MODE)					\
162  (FP_REGNO_P (REGNO)							\
163   ? (!TARGET_PA_11 ? 1 : (GET_MODE_SIZE (MODE) + 4 - 1) / 4)		\
164   : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
165
166/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
167   On the HP-PA, the cpu registers can hold any mode.  For DImode, we
168   choose a set of general register that includes the incoming arguments
169   and the return value.  We specify a set with no overlaps so that we don't
170   have to specify that the destination register in patterns using this mode
171   is an early clobber.  */
172#define HARD_REGNO_MODE_OK(REGNO, MODE) \
173  ((REGNO) == 0 ? (MODE) == CCmode || (MODE) == CCFPmode		\
174   /* On 1.0 machines, don't allow wide non-fp modes in fp regs.  */	\
175   : !TARGET_PA_11 && FP_REGNO_P (REGNO)				\
176     ? GET_MODE_SIZE (MODE) <= 4 || GET_MODE_CLASS (MODE) == MODE_FLOAT	\
177   : FP_REGNO_P (REGNO)							\
178     ? GET_MODE_SIZE (MODE) <= 4 || ((REGNO) & 1) == 0			\
179   : (GET_MODE_SIZE (MODE) <= UNITS_PER_WORD				\
180      || (GET_MODE_SIZE (MODE) == 2 * UNITS_PER_WORD			\
181	  && ((((REGNO) & 1) == 1 && (REGNO) <= 25) || (REGNO) == 28))	\
182      || (GET_MODE_SIZE (MODE) == 4 * UNITS_PER_WORD			\
183	  && (((REGNO) & 3) == 3 && (REGNO) <= 23))))
184
185/* How to renumber registers for dbx and gdb.
186
187   Registers 0  - 31 remain unchanged.
188
189   Registers 32 - 87 are mapped to 72 - 127
190
191   Register 88 is mapped to 32.  */
192
193#define DBX_REGISTER_NUMBER(REGNO) \
194  ((REGNO) <= 31 ? (REGNO) :						\
195   ((REGNO) <= 87 ? (REGNO) + 40 : 32))
196
197/* We must not use the DBX register numbers for the DWARF 2 CFA column
198   numbers because that maps to numbers beyond FIRST_PSEUDO_REGISTER.
199   Instead use the identity mapping.  */
200#define DWARF_FRAME_REGNUM(REG) REG
201
202/* Define the classes of registers for register constraints in the
203   machine description.  Also define ranges of constants.
204
205   One of the classes must always be named ALL_REGS and include all hard regs.
206   If there is more than one class, another class must be named NO_REGS
207   and contain no registers.
208
209   The name GENERAL_REGS must be the name of a class (or an alias for
210   another name such as ALL_REGS).  This is the class of registers
211   that is allowed by "g" or "r" in a register constraint.
212   Also, registers outside this class are allocated only when
213   instructions express preferences for them.
214
215   The classes must be numbered in nondecreasing order; that is,
216   a larger-numbered class must never be contained completely
217   in a smaller-numbered class.
218
219   For any two classes, it is very desirable that there be another
220   class that represents their union.  */
221
222  /* The HP-PA has four kinds of registers: general regs, 1.0 fp regs,
223     1.1 fp regs, and the high 1.1 fp regs, to which the operands of
224     fmpyadd and fmpysub are restricted.  */
225
226enum reg_class { NO_REGS, R1_REGS, GENERAL_REGS, FPUPPER_REGS, FP_REGS,
227		 GENERAL_OR_FP_REGS, SHIFT_REGS, ALL_REGS, LIM_REG_CLASSES};
228
229#define N_REG_CLASSES (int) LIM_REG_CLASSES
230
231/* Give names of register classes as strings for dump file.   */
232
233#define REG_CLASS_NAMES \
234  {"NO_REGS", "R1_REGS", "GENERAL_REGS", "FPUPPER_REGS", "FP_REGS", \
235   "GENERAL_OR_FP_REGS", "SHIFT_REGS", "ALL_REGS"}
236
237/* Define which registers fit in which classes.
238   This is an initializer for a vector of HARD_REG_SET
239   of length N_REG_CLASSES. Register 0, the "condition code" register,
240   is in no class.  */
241
242#define REG_CLASS_CONTENTS	\
243 {{0x00000000, 0x00000000, 0x00000000},	/* NO_REGS */			\
244  {0x00000002, 0x00000000, 0x00000000},	/* R1_REGS */			\
245  {0xfffffffe, 0x00000000, 0x00000000},	/* GENERAL_REGS */		\
246  {0x00000000, 0xff000000, 0x00ffffff},	/* FPUPPER_REGS */		\
247  {0x00000000, 0xffffffff, 0x00ffffff},	/* FP_REGS */			\
248  {0xfffffffe, 0xffffffff, 0x00ffffff},	/* GENERAL_OR_FP_REGS */	\
249  {0x00000000, 0x00000000, 0x01000000},	/* SHIFT_REGS */		\
250  {0xfffffffe, 0xffffffff, 0x01ffffff}}	/* ALL_REGS */
251
252/* Return the class number of the smallest class containing
253   reg number REGNO.  This could be a conditional expression
254   or could index an array.  */
255
256#define REGNO_REG_CLASS(REGNO)						\
257  ((REGNO) == 0 ? NO_REGS 						\
258   : (REGNO) == 1 ? R1_REGS						\
259   : (REGNO) < 32 ? GENERAL_REGS					\
260   : (REGNO) < 56 ? FP_REGS						\
261   : (REGNO) < 88 ? FPUPPER_REGS					\
262   : SHIFT_REGS)
263
264/* Get reg_class from a letter such as appears in the machine description.  */
265/* Keep 'x' for backward compatibility with user asm.   */
266#define REG_CLASS_FROM_LETTER(C) \
267  ((C) == 'f' ? FP_REGS :					\
268   (C) == 'y' ? FPUPPER_REGS :					\
269   (C) == 'x' ? FP_REGS :					\
270   (C) == 'q' ? SHIFT_REGS :					\
271   (C) == 'a' ? R1_REGS :					\
272   (C) == 'Z' ? ALL_REGS : NO_REGS)
273
274/* Return the maximum number of consecutive registers
275   needed to represent mode MODE in a register of class CLASS.  */
276#define CLASS_MAX_NREGS(CLASS, MODE)					\
277  ((CLASS) == FP_REGS || (CLASS) == FPUPPER_REGS			\
278   ? (!TARGET_PA_11 ? 1 : (GET_MODE_SIZE (MODE) + 4 - 1) / 4)		\
279   : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
280
281/* 1 if N is a possible register number for function argument passing.  */
282
283#define FUNCTION_ARG_REGNO_P(N) \
284  (((N) >= 23 && (N) <= 26) || (! TARGET_SOFT_FLOAT && (N) >= 32 && (N) <= 39))
285
286/* How to refer to registers in assembler output.
287   This sequence is indexed by compiler's hard-register-number (see above).  */
288
289#define REGISTER_NAMES \
290{"%r0",   "%r1",    "%r2",   "%r3",    "%r4",   "%r5",    "%r6",   "%r7",    \
291 "%r8",   "%r9",    "%r10",  "%r11",   "%r12",  "%r13",   "%r14",  "%r15",   \
292 "%r16",  "%r17",   "%r18",  "%r19",   "%r20",  "%r21",   "%r22",  "%r23",   \
293 "%r24",  "%r25",   "%r26",  "%r27",   "%r28",  "%r29",   "%r30",  "%r31",   \
294 "%fr4",  "%fr4R",  "%fr5",  "%fr5R",  "%fr6",  "%fr6R",  "%fr7",  "%fr7R",  \
295 "%fr8",  "%fr8R",  "%fr9",  "%fr9R",  "%fr10", "%fr10R", "%fr11", "%fr11R", \
296 "%fr12", "%fr12R", "%fr13", "%fr13R", "%fr14", "%fr14R", "%fr15", "%fr15R", \
297 "%fr16", "%fr16R", "%fr17", "%fr17R", "%fr18", "%fr18R", "%fr19", "%fr19R", \
298 "%fr20", "%fr20R", "%fr21", "%fr21R", "%fr22", "%fr22R", "%fr23", "%fr23R", \
299 "%fr24", "%fr24R", "%fr25", "%fr25R", "%fr26", "%fr26R", "%fr27", "%fr27R", \
300 "%fr28", "%fr28R", "%fr29", "%fr29R", "%fr30", "%fr30R", "%fr31", "%fr31R", \
301 "SAR"}
302
303#define ADDITIONAL_REGISTER_NAMES \
304{{"%fr4L",32}, {"%fr5L",34}, {"%fr6L",36}, {"%fr7L",38},		\
305 {"%fr8L",40}, {"%fr9L",42}, {"%fr10L",44}, {"%fr11L",46},		\
306 {"%fr12L",48}, {"%fr13L",50}, {"%fr14L",52}, {"%fr15L",54},		\
307 {"%fr16L",56}, {"%fr17L",58}, {"%fr18L",60}, {"%fr19L",62},		\
308 {"%fr20L",64}, {"%fr21L",66}, {"%fr22L",68}, {"%fr23L",70},		\
309 {"%fr24L",72}, {"%fr25L",74}, {"%fr26L",76}, {"%fr27L",78},		\
310 {"%fr28L",80}, {"%fr29L",82}, {"%fr30L",84}, {"%fr31R",86},		\
311 {"%cr11",88}}
312
313#define FP_SAVED_REG_LAST 66
314#define FP_SAVED_REG_FIRST 48
315#define FP_REG_STEP 2
316#define FP_REG_FIRST 32
317#define FP_REG_LAST 87
318