1//===- CodeGenSchedule.cpp - Scheduling MachineModels ---------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines structures to encapsulate the machine model as described in
10// the target description.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenSchedule.h"
15#include "CodeGenInstruction.h"
16#include "CodeGenTarget.h"
17#include "llvm/ADT/MapVector.h"
18#include "llvm/ADT/STLExtras.h"
19#include "llvm/ADT/SmallPtrSet.h"
20#include "llvm/ADT/SmallVector.h"
21#include "llvm/Support/Casting.h"
22#include "llvm/Support/Debug.h"
23#include "llvm/Support/Regex.h"
24#include "llvm/Support/raw_ostream.h"
25#include "llvm/TableGen/Error.h"
26#include <algorithm>
27#include <iterator>
28#include <utility>
29
30using namespace llvm;
31
32#define DEBUG_TYPE "subtarget-emitter"
33
34#ifndef NDEBUG
35static void dumpIdxVec(ArrayRef<unsigned> V) {
36  for (unsigned Idx : V)
37    dbgs() << Idx << ", ";
38}
39#endif
40
41namespace {
42
43// (instrs a, b, ...) Evaluate and union all arguments. Identical to AddOp.
44struct InstrsOp : public SetTheory::Operator {
45  void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
46             ArrayRef<SMLoc> Loc) override {
47    ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts, Loc);
48  }
49};
50
51// (instregex "OpcPat",...) Find all instructions matching an opcode pattern.
52struct InstRegexOp : public SetTheory::Operator {
53  const CodeGenTarget &Target;
54  InstRegexOp(const CodeGenTarget &t): Target(t) {}
55
56  /// Remove any text inside of parentheses from S.
57  static std::string removeParens(llvm::StringRef S) {
58    std::string Result;
59    unsigned Paren = 0;
60    // NB: We don't care about escaped parens here.
61    for (char C : S) {
62      switch (C) {
63      case '(':
64        ++Paren;
65        break;
66      case ')':
67        --Paren;
68        break;
69      default:
70        if (Paren == 0)
71          Result += C;
72      }
73    }
74    return Result;
75  }
76
77  void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
78             ArrayRef<SMLoc> Loc) override {
79    ArrayRef<const CodeGenInstruction *> Instructions =
80        Target.getInstructionsByEnumValue();
81
82    unsigned NumGeneric = Target.getNumFixedInstructions();
83    unsigned NumPseudos = Target.getNumPseudoInstructions();
84    auto Generics = Instructions.slice(0, NumGeneric);
85    auto Pseudos = Instructions.slice(NumGeneric, NumPseudos);
86    auto NonPseudos = Instructions.slice(NumGeneric + NumPseudos);
87
88    for (Init *Arg : Expr->getArgs()) {
89      StringInit *SI = dyn_cast<StringInit>(Arg);
90      if (!SI)
91        PrintFatalError(Loc, "instregex requires pattern string: " +
92                                 Expr->getAsString());
93      StringRef Original = SI->getValue();
94
95      // Extract a prefix that we can binary search on.
96      static const char RegexMetachars[] = "()^$|*+?.[]\\{}";
97      auto FirstMeta = Original.find_first_of(RegexMetachars);
98
99      // Look for top-level | or ?. We cannot optimize them to binary search.
100      if (removeParens(Original).find_first_of("|?") != std::string::npos)
101        FirstMeta = 0;
102
103      std::optional<Regex> Regexpr;
104      StringRef Prefix = Original.substr(0, FirstMeta);
105      StringRef PatStr = Original.substr(FirstMeta);
106      if (!PatStr.empty()) {
107        // For the rest use a python-style prefix match.
108        std::string pat = std::string(PatStr);
109        if (pat[0] != '^') {
110          pat.insert(0, "^(");
111          pat.insert(pat.end(), ')');
112        }
113        Regexpr = Regex(pat);
114      }
115
116      int NumMatches = 0;
117
118      // The generic opcodes are unsorted, handle them manually.
119      for (auto *Inst : Generics) {
120        StringRef InstName = Inst->TheDef->getName();
121        if (InstName.startswith(Prefix) &&
122            (!Regexpr || Regexpr->match(InstName.substr(Prefix.size())))) {
123          Elts.insert(Inst->TheDef);
124          NumMatches++;
125        }
126      }
127
128      // Target instructions are split into two ranges: pseudo instructions
129      // first, than non-pseudos. Each range is in lexicographical order
130      // sorted by name. Find the sub-ranges that start with our prefix.
131      struct Comp {
132        bool operator()(const CodeGenInstruction *LHS, StringRef RHS) {
133          return LHS->TheDef->getName() < RHS;
134        }
135        bool operator()(StringRef LHS, const CodeGenInstruction *RHS) {
136          return LHS < RHS->TheDef->getName() &&
137                 !RHS->TheDef->getName().startswith(LHS);
138        }
139      };
140      auto Range1 =
141          std::equal_range(Pseudos.begin(), Pseudos.end(), Prefix, Comp());
142      auto Range2 = std::equal_range(NonPseudos.begin(), NonPseudos.end(),
143                                     Prefix, Comp());
144
145      // For these ranges we know that instruction names start with the prefix.
146      // Check if there's a regex that needs to be checked.
147      const auto HandleNonGeneric = [&](const CodeGenInstruction *Inst) {
148        StringRef InstName = Inst->TheDef->getName();
149        if (!Regexpr || Regexpr->match(InstName.substr(Prefix.size()))) {
150          Elts.insert(Inst->TheDef);
151          NumMatches++;
152        }
153      };
154      std::for_each(Range1.first, Range1.second, HandleNonGeneric);
155      std::for_each(Range2.first, Range2.second, HandleNonGeneric);
156
157      if (0 == NumMatches)
158        PrintFatalError(Loc, "instregex has no matches: " + Original);
159    }
160  }
161};
162
163} // end anonymous namespace
164
165/// CodeGenModels ctor interprets machine model records and populates maps.
166CodeGenSchedModels::CodeGenSchedModels(RecordKeeper &RK,
167                                       const CodeGenTarget &TGT):
168  Records(RK), Target(TGT) {
169
170  Sets.addFieldExpander("InstRW", "Instrs");
171
172  // Allow Set evaluation to recognize the dags used in InstRW records:
173  // (instrs Op1, Op1...)
174  Sets.addOperator("instrs", std::make_unique<InstrsOp>());
175  Sets.addOperator("instregex", std::make_unique<InstRegexOp>(Target));
176
177  // Instantiate a CodeGenProcModel for each SchedMachineModel with the values
178  // that are explicitly referenced in tablegen records. Resources associated
179  // with each processor will be derived later. Populate ProcModelMap with the
180  // CodeGenProcModel instances.
181  collectProcModels();
182
183  // Instantiate a CodeGenSchedRW for each SchedReadWrite record explicitly
184  // defined, and populate SchedReads and SchedWrites vectors. Implicit
185  // SchedReadWrites that represent sequences derived from expanded variant will
186  // be inferred later.
187  collectSchedRW();
188
189  // Instantiate a CodeGenSchedClass for each unique SchedRW signature directly
190  // required by an instruction definition, and populate SchedClassIdxMap. Set
191  // NumItineraryClasses to the number of explicit itinerary classes referenced
192  // by instructions. Set NumInstrSchedClasses to the number of itinerary
193  // classes plus any classes implied by instructions that derive from class
194  // Sched and provide SchedRW list. This does not infer any new classes from
195  // SchedVariant.
196  collectSchedClasses();
197
198  // Find instruction itineraries for each processor. Sort and populate
199  // CodeGenProcModel::ItinDefList. (Cycle-to-cycle itineraries). This requires
200  // all itinerary classes to be discovered.
201  collectProcItins();
202
203  // Find ItinRW records for each processor and itinerary class.
204  // (For per-operand resources mapped to itinerary classes).
205  collectProcItinRW();
206
207  // Find UnsupportedFeatures records for each processor.
208  // (For per-operand resources mapped to itinerary classes).
209  collectProcUnsupportedFeatures();
210
211  // Infer new SchedClasses from SchedVariant.
212  inferSchedClasses();
213
214  // Populate each CodeGenProcModel's WriteResDefs, ReadAdvanceDefs, and
215  // ProcResourceDefs.
216  LLVM_DEBUG(
217      dbgs() << "\n+++ RESOURCE DEFINITIONS (collectProcResources) +++\n");
218  collectProcResources();
219
220  // Collect optional processor description.
221  collectOptionalProcessorInfo();
222
223  // Check MCInstPredicate definitions.
224  checkMCInstPredicates();
225
226  // Check STIPredicate definitions.
227  checkSTIPredicates();
228
229  // Find STIPredicate definitions for each processor model, and construct
230  // STIPredicateFunction objects.
231  collectSTIPredicates();
232
233  checkCompleteness();
234}
235
236void CodeGenSchedModels::checkSTIPredicates() const {
237  DenseMap<StringRef, const Record *> Declarations;
238
239  // There cannot be multiple declarations with the same name.
240  const RecVec Decls = Records.getAllDerivedDefinitions("STIPredicateDecl");
241  for (const Record *R : Decls) {
242    StringRef Name = R->getValueAsString("Name");
243    const auto It = Declarations.find(Name);
244    if (It == Declarations.end()) {
245      Declarations[Name] = R;
246      continue;
247    }
248
249    PrintError(R->getLoc(), "STIPredicate " + Name + " multiply declared.");
250    PrintFatalNote(It->second->getLoc(), "Previous declaration was here.");
251  }
252
253  // Disallow InstructionEquivalenceClasses with an empty instruction list.
254  const RecVec Defs =
255      Records.getAllDerivedDefinitions("InstructionEquivalenceClass");
256  for (const Record *R : Defs) {
257    RecVec Opcodes = R->getValueAsListOfDefs("Opcodes");
258    if (Opcodes.empty()) {
259      PrintFatalError(R->getLoc(), "Invalid InstructionEquivalenceClass "
260                                   "defined with an empty opcode list.");
261    }
262  }
263}
264
265// Used by function `processSTIPredicate` to construct a mask of machine
266// instruction operands.
267static APInt constructOperandMask(ArrayRef<int64_t> Indices) {
268  APInt OperandMask;
269  if (Indices.empty())
270    return OperandMask;
271
272  int64_t MaxIndex = *std::max_element(Indices.begin(), Indices.end());
273  assert(MaxIndex >= 0 && "Invalid negative indices in input!");
274  OperandMask = OperandMask.zext(MaxIndex + 1);
275  for (const int64_t Index : Indices) {
276    assert(Index >= 0 && "Invalid negative indices!");
277    OperandMask.setBit(Index);
278  }
279
280  return OperandMask;
281}
282
283static void
284processSTIPredicate(STIPredicateFunction &Fn,
285                    const ProcModelMapTy &ProcModelMap) {
286  DenseMap<const Record *, unsigned> Opcode2Index;
287  using OpcodeMapPair = std::pair<const Record *, OpcodeInfo>;
288  std::vector<OpcodeMapPair> OpcodeMappings;
289  std::vector<std::pair<APInt, APInt>> OpcodeMasks;
290
291  DenseMap<const Record *, unsigned> Predicate2Index;
292  unsigned NumUniquePredicates = 0;
293
294  // Number unique predicates and opcodes used by InstructionEquivalenceClass
295  // definitions. Each unique opcode will be associated with an OpcodeInfo
296  // object.
297  for (const Record *Def : Fn.getDefinitions()) {
298    RecVec Classes = Def->getValueAsListOfDefs("Classes");
299    for (const Record *EC : Classes) {
300      const Record *Pred = EC->getValueAsDef("Predicate");
301      if (Predicate2Index.find(Pred) == Predicate2Index.end())
302        Predicate2Index[Pred] = NumUniquePredicates++;
303
304      RecVec Opcodes = EC->getValueAsListOfDefs("Opcodes");
305      for (const Record *Opcode : Opcodes) {
306        if (Opcode2Index.find(Opcode) == Opcode2Index.end()) {
307          Opcode2Index[Opcode] = OpcodeMappings.size();
308          OpcodeMappings.emplace_back(Opcode, OpcodeInfo());
309        }
310      }
311    }
312  }
313
314  // Initialize vector `OpcodeMasks` with default values.  We want to keep track
315  // of which processors "use" which opcodes.  We also want to be able to
316  // identify predicates that are used by different processors for a same
317  // opcode.
318  // This information is used later on by this algorithm to sort OpcodeMapping
319  // elements based on their processor and predicate sets.
320  OpcodeMasks.resize(OpcodeMappings.size());
321  APInt DefaultProcMask(ProcModelMap.size(), 0);
322  APInt DefaultPredMask(NumUniquePredicates, 0);
323  for (std::pair<APInt, APInt> &MaskPair : OpcodeMasks)
324    MaskPair = std::make_pair(DefaultProcMask, DefaultPredMask);
325
326  // Construct a OpcodeInfo object for every unique opcode declared by an
327  // InstructionEquivalenceClass definition.
328  for (const Record *Def : Fn.getDefinitions()) {
329    RecVec Classes = Def->getValueAsListOfDefs("Classes");
330    const Record *SchedModel = Def->getValueAsDef("SchedModel");
331    unsigned ProcIndex = ProcModelMap.find(SchedModel)->second;
332    APInt ProcMask(ProcModelMap.size(), 0);
333    ProcMask.setBit(ProcIndex);
334
335    for (const Record *EC : Classes) {
336      RecVec Opcodes = EC->getValueAsListOfDefs("Opcodes");
337
338      std::vector<int64_t> OpIndices =
339          EC->getValueAsListOfInts("OperandIndices");
340      APInt OperandMask = constructOperandMask(OpIndices);
341
342      const Record *Pred = EC->getValueAsDef("Predicate");
343      APInt PredMask(NumUniquePredicates, 0);
344      PredMask.setBit(Predicate2Index[Pred]);
345
346      for (const Record *Opcode : Opcodes) {
347        unsigned OpcodeIdx = Opcode2Index[Opcode];
348        if (OpcodeMasks[OpcodeIdx].first[ProcIndex]) {
349          std::string Message =
350              "Opcode " + Opcode->getName().str() +
351              " used by multiple InstructionEquivalenceClass definitions.";
352          PrintFatalError(EC->getLoc(), Message);
353        }
354        OpcodeMasks[OpcodeIdx].first |= ProcMask;
355        OpcodeMasks[OpcodeIdx].second |= PredMask;
356        OpcodeInfo &OI = OpcodeMappings[OpcodeIdx].second;
357
358        OI.addPredicateForProcModel(ProcMask, OperandMask, Pred);
359      }
360    }
361  }
362
363  // Sort OpcodeMappings elements based on their CPU and predicate masks.
364  // As a last resort, order elements by opcode identifier.
365  llvm::sort(OpcodeMappings,
366             [&](const OpcodeMapPair &Lhs, const OpcodeMapPair &Rhs) {
367               unsigned LhsIdx = Opcode2Index[Lhs.first];
368               unsigned RhsIdx = Opcode2Index[Rhs.first];
369               const std::pair<APInt, APInt> &LhsMasks = OpcodeMasks[LhsIdx];
370               const std::pair<APInt, APInt> &RhsMasks = OpcodeMasks[RhsIdx];
371
372               auto LessThan = [](const APInt &Lhs, const APInt &Rhs) {
373                 unsigned LhsCountPopulation = Lhs.countPopulation();
374                 unsigned RhsCountPopulation = Rhs.countPopulation();
375                 return ((LhsCountPopulation < RhsCountPopulation) ||
376                         ((LhsCountPopulation == RhsCountPopulation) &&
377                          (Lhs.countLeadingZeros() > Rhs.countLeadingZeros())));
378               };
379
380               if (LhsMasks.first != RhsMasks.first)
381                 return LessThan(LhsMasks.first, RhsMasks.first);
382
383               if (LhsMasks.second != RhsMasks.second)
384                 return LessThan(LhsMasks.second, RhsMasks.second);
385
386               return LhsIdx < RhsIdx;
387             });
388
389  // Now construct opcode groups. Groups are used by the SubtargetEmitter when
390  // expanding the body of a STIPredicate function. In particular, each opcode
391  // group is expanded into a sequence of labels in a switch statement.
392  // It identifies opcodes for which different processors define same predicates
393  // and same opcode masks.
394  for (OpcodeMapPair &Info : OpcodeMappings)
395    Fn.addOpcode(Info.first, std::move(Info.second));
396}
397
398void CodeGenSchedModels::collectSTIPredicates() {
399  // Map STIPredicateDecl records to elements of vector
400  // CodeGenSchedModels::STIPredicates.
401  DenseMap<const Record *, unsigned> Decl2Index;
402
403  RecVec RV = Records.getAllDerivedDefinitions("STIPredicate");
404  for (const Record *R : RV) {
405    const Record *Decl = R->getValueAsDef("Declaration");
406
407    const auto It = Decl2Index.find(Decl);
408    if (It == Decl2Index.end()) {
409      Decl2Index[Decl] = STIPredicates.size();
410      STIPredicateFunction Predicate(Decl);
411      Predicate.addDefinition(R);
412      STIPredicates.emplace_back(std::move(Predicate));
413      continue;
414    }
415
416    STIPredicateFunction &PreviousDef = STIPredicates[It->second];
417    PreviousDef.addDefinition(R);
418  }
419
420  for (STIPredicateFunction &Fn : STIPredicates)
421    processSTIPredicate(Fn, ProcModelMap);
422}
423
424void OpcodeInfo::addPredicateForProcModel(const llvm::APInt &CpuMask,
425                                          const llvm::APInt &OperandMask,
426                                          const Record *Predicate) {
427  auto It = llvm::find_if(
428      Predicates, [&OperandMask, &Predicate](const PredicateInfo &P) {
429        return P.Predicate == Predicate && P.OperandMask == OperandMask;
430      });
431  if (It == Predicates.end()) {
432    Predicates.emplace_back(CpuMask, OperandMask, Predicate);
433    return;
434  }
435  It->ProcModelMask |= CpuMask;
436}
437
438void CodeGenSchedModels::checkMCInstPredicates() const {
439  RecVec MCPredicates = Records.getAllDerivedDefinitions("TIIPredicate");
440  if (MCPredicates.empty())
441    return;
442
443  // A target cannot have multiple TIIPredicate definitions with a same name.
444  llvm::StringMap<const Record *> TIIPredicates(MCPredicates.size());
445  for (const Record *TIIPred : MCPredicates) {
446    StringRef Name = TIIPred->getValueAsString("FunctionName");
447    StringMap<const Record *>::const_iterator It = TIIPredicates.find(Name);
448    if (It == TIIPredicates.end()) {
449      TIIPredicates[Name] = TIIPred;
450      continue;
451    }
452
453    PrintError(TIIPred->getLoc(),
454               "TIIPredicate " + Name + " is multiply defined.");
455    PrintFatalNote(It->second->getLoc(),
456                   " Previous definition of " + Name + " was here.");
457  }
458}
459
460void CodeGenSchedModels::collectRetireControlUnits() {
461  RecVec Units = Records.getAllDerivedDefinitions("RetireControlUnit");
462
463  for (Record *RCU : Units) {
464    CodeGenProcModel &PM = getProcModel(RCU->getValueAsDef("SchedModel"));
465    if (PM.RetireControlUnit) {
466      PrintError(RCU->getLoc(),
467                 "Expected a single RetireControlUnit definition");
468      PrintNote(PM.RetireControlUnit->getLoc(),
469                "Previous definition of RetireControlUnit was here");
470    }
471    PM.RetireControlUnit = RCU;
472  }
473}
474
475void CodeGenSchedModels::collectLoadStoreQueueInfo() {
476  RecVec Queues = Records.getAllDerivedDefinitions("MemoryQueue");
477
478  for (Record *Queue : Queues) {
479    CodeGenProcModel &PM = getProcModel(Queue->getValueAsDef("SchedModel"));
480    if (Queue->isSubClassOf("LoadQueue")) {
481      if (PM.LoadQueue) {
482        PrintError(Queue->getLoc(),
483                   "Expected a single LoadQueue definition");
484        PrintNote(PM.LoadQueue->getLoc(),
485                  "Previous definition of LoadQueue was here");
486      }
487
488      PM.LoadQueue = Queue;
489    }
490
491    if (Queue->isSubClassOf("StoreQueue")) {
492      if (PM.StoreQueue) {
493        PrintError(Queue->getLoc(),
494                   "Expected a single StoreQueue definition");
495        PrintNote(PM.StoreQueue->getLoc(),
496                  "Previous definition of StoreQueue was here");
497      }
498
499      PM.StoreQueue = Queue;
500    }
501  }
502}
503
504/// Collect optional processor information.
505void CodeGenSchedModels::collectOptionalProcessorInfo() {
506  // Find register file definitions for each processor.
507  collectRegisterFiles();
508
509  // Collect processor RetireControlUnit descriptors if available.
510  collectRetireControlUnits();
511
512  // Collect information about load/store queues.
513  collectLoadStoreQueueInfo();
514
515  checkCompleteness();
516}
517
518/// Gather all processor models.
519void CodeGenSchedModels::collectProcModels() {
520  RecVec ProcRecords = Records.getAllDerivedDefinitions("Processor");
521  llvm::sort(ProcRecords, LessRecordFieldName());
522
523  // Check for duplicated names.
524  auto I = std::adjacent_find(ProcRecords.begin(), ProcRecords.end(),
525                              [](const Record *Rec1, const Record *Rec2) {
526    return Rec1->getValueAsString("Name") == Rec2->getValueAsString("Name");
527  });
528  if (I != ProcRecords.end())
529    PrintFatalError((*I)->getLoc(), "Duplicate processor name " +
530                    (*I)->getValueAsString("Name"));
531
532  // Reserve space because we can. Reallocation would be ok.
533  ProcModels.reserve(ProcRecords.size()+1);
534
535  // Use idx=0 for NoModel/NoItineraries.
536  Record *NoModelDef = Records.getDef("NoSchedModel");
537  Record *NoItinsDef = Records.getDef("NoItineraries");
538  ProcModels.emplace_back(0, "NoSchedModel", NoModelDef, NoItinsDef);
539  ProcModelMap[NoModelDef] = 0;
540
541  // For each processor, find a unique machine model.
542  LLVM_DEBUG(dbgs() << "+++ PROCESSOR MODELs (addProcModel) +++\n");
543  for (Record *ProcRecord : ProcRecords)
544    addProcModel(ProcRecord);
545}
546
547/// Get a unique processor model based on the defined MachineModel and
548/// ProcessorItineraries.
549void CodeGenSchedModels::addProcModel(Record *ProcDef) {
550  Record *ModelKey = getModelOrItinDef(ProcDef);
551  if (!ProcModelMap.insert(std::make_pair(ModelKey, ProcModels.size())).second)
552    return;
553
554  std::string Name = std::string(ModelKey->getName());
555  if (ModelKey->isSubClassOf("SchedMachineModel")) {
556    Record *ItinsDef = ModelKey->getValueAsDef("Itineraries");
557    ProcModels.emplace_back(ProcModels.size(), Name, ModelKey, ItinsDef);
558  }
559  else {
560    // An itinerary is defined without a machine model. Infer a new model.
561    if (!ModelKey->getValueAsListOfDefs("IID").empty())
562      Name = Name + "Model";
563    ProcModels.emplace_back(ProcModels.size(), Name,
564                            ProcDef->getValueAsDef("SchedModel"), ModelKey);
565  }
566  LLVM_DEBUG(ProcModels.back().dump());
567}
568
569// Recursively find all reachable SchedReadWrite records.
570static void scanSchedRW(Record *RWDef, RecVec &RWDefs,
571                        SmallPtrSet<Record*, 16> &RWSet) {
572  if (!RWSet.insert(RWDef).second)
573    return;
574  RWDefs.push_back(RWDef);
575  // Reads don't currently have sequence records, but it can be added later.
576  if (RWDef->isSubClassOf("WriteSequence")) {
577    RecVec Seq = RWDef->getValueAsListOfDefs("Writes");
578    for (Record *WSRec : Seq)
579      scanSchedRW(WSRec, RWDefs, RWSet);
580  }
581  else if (RWDef->isSubClassOf("SchedVariant")) {
582    // Visit each variant (guarded by a different predicate).
583    RecVec Vars = RWDef->getValueAsListOfDefs("Variants");
584    for (Record *Variant : Vars) {
585      // Visit each RW in the sequence selected by the current variant.
586      RecVec Selected = Variant->getValueAsListOfDefs("Selected");
587      for (Record *SelDef : Selected)
588        scanSchedRW(SelDef, RWDefs, RWSet);
589    }
590  }
591}
592
593// Collect and sort all SchedReadWrites reachable via tablegen records.
594// More may be inferred later when inferring new SchedClasses from variants.
595void CodeGenSchedModels::collectSchedRW() {
596  // Reserve idx=0 for invalid writes/reads.
597  SchedWrites.resize(1);
598  SchedReads.resize(1);
599
600  SmallPtrSet<Record*, 16> RWSet;
601
602  // Find all SchedReadWrites referenced by instruction defs.
603  RecVec SWDefs, SRDefs;
604  for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
605    Record *SchedDef = Inst->TheDef;
606    if (SchedDef->isValueUnset("SchedRW"))
607      continue;
608    RecVec RWs = SchedDef->getValueAsListOfDefs("SchedRW");
609    for (Record *RW : RWs) {
610      if (RW->isSubClassOf("SchedWrite"))
611        scanSchedRW(RW, SWDefs, RWSet);
612      else {
613        assert(RW->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
614        scanSchedRW(RW, SRDefs, RWSet);
615      }
616    }
617  }
618  // Find all ReadWrites referenced by InstRW.
619  RecVec InstRWDefs = Records.getAllDerivedDefinitions("InstRW");
620  for (Record *InstRWDef : InstRWDefs) {
621    // For all OperandReadWrites.
622    RecVec RWDefs = InstRWDef->getValueAsListOfDefs("OperandReadWrites");
623    for (Record *RWDef : RWDefs) {
624      if (RWDef->isSubClassOf("SchedWrite"))
625        scanSchedRW(RWDef, SWDefs, RWSet);
626      else {
627        assert(RWDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
628        scanSchedRW(RWDef, SRDefs, RWSet);
629      }
630    }
631  }
632  // Find all ReadWrites referenced by ItinRW.
633  RecVec ItinRWDefs = Records.getAllDerivedDefinitions("ItinRW");
634  for (Record *ItinRWDef : ItinRWDefs) {
635    // For all OperandReadWrites.
636    RecVec RWDefs = ItinRWDef->getValueAsListOfDefs("OperandReadWrites");
637    for (Record *RWDef : RWDefs) {
638      if (RWDef->isSubClassOf("SchedWrite"))
639        scanSchedRW(RWDef, SWDefs, RWSet);
640      else {
641        assert(RWDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
642        scanSchedRW(RWDef, SRDefs, RWSet);
643      }
644    }
645  }
646  // Find all ReadWrites referenced by SchedAlias. AliasDefs needs to be sorted
647  // for the loop below that initializes Alias vectors.
648  RecVec AliasDefs = Records.getAllDerivedDefinitions("SchedAlias");
649  llvm::sort(AliasDefs, LessRecord());
650  for (Record *ADef : AliasDefs) {
651    Record *MatchDef = ADef->getValueAsDef("MatchRW");
652    Record *AliasDef = ADef->getValueAsDef("AliasRW");
653    if (MatchDef->isSubClassOf("SchedWrite")) {
654      if (!AliasDef->isSubClassOf("SchedWrite"))
655        PrintFatalError(ADef->getLoc(), "SchedWrite Alias must be SchedWrite");
656      scanSchedRW(AliasDef, SWDefs, RWSet);
657    }
658    else {
659      assert(MatchDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
660      if (!AliasDef->isSubClassOf("SchedRead"))
661        PrintFatalError(ADef->getLoc(), "SchedRead Alias must be SchedRead");
662      scanSchedRW(AliasDef, SRDefs, RWSet);
663    }
664  }
665  // Sort and add the SchedReadWrites directly referenced by instructions or
666  // itinerary resources. Index reads and writes in separate domains.
667  llvm::sort(SWDefs, LessRecord());
668  for (Record *SWDef : SWDefs) {
669    assert(!getSchedRWIdx(SWDef, /*IsRead=*/false) && "duplicate SchedWrite");
670    SchedWrites.emplace_back(SchedWrites.size(), SWDef);
671  }
672  llvm::sort(SRDefs, LessRecord());
673  for (Record *SRDef : SRDefs) {
674    assert(!getSchedRWIdx(SRDef, /*IsRead-*/true) && "duplicate SchedWrite");
675    SchedReads.emplace_back(SchedReads.size(), SRDef);
676  }
677  // Initialize WriteSequence vectors.
678  for (CodeGenSchedRW &CGRW : SchedWrites) {
679    if (!CGRW.IsSequence)
680      continue;
681    findRWs(CGRW.TheDef->getValueAsListOfDefs("Writes"), CGRW.Sequence,
682            /*IsRead=*/false);
683  }
684  // Initialize Aliases vectors.
685  for (Record *ADef : AliasDefs) {
686    Record *AliasDef = ADef->getValueAsDef("AliasRW");
687    getSchedRW(AliasDef).IsAlias = true;
688    Record *MatchDef = ADef->getValueAsDef("MatchRW");
689    CodeGenSchedRW &RW = getSchedRW(MatchDef);
690    if (RW.IsAlias)
691      PrintFatalError(ADef->getLoc(), "Cannot Alias an Alias");
692    RW.Aliases.push_back(ADef);
693  }
694  LLVM_DEBUG(
695      dbgs() << "\n+++ SCHED READS and WRITES (collectSchedRW) +++\n";
696      for (unsigned WIdx = 0, WEnd = SchedWrites.size(); WIdx != WEnd; ++WIdx) {
697        dbgs() << WIdx << ": ";
698        SchedWrites[WIdx].dump();
699        dbgs() << '\n';
700      } for (unsigned RIdx = 0, REnd = SchedReads.size(); RIdx != REnd;
701             ++RIdx) {
702        dbgs() << RIdx << ": ";
703        SchedReads[RIdx].dump();
704        dbgs() << '\n';
705      } RecVec RWDefs = Records.getAllDerivedDefinitions("SchedReadWrite");
706      for (Record *RWDef
707           : RWDefs) {
708        if (!getSchedRWIdx(RWDef, RWDef->isSubClassOf("SchedRead"))) {
709          StringRef Name = RWDef->getName();
710          if (Name != "NoWrite" && Name != "ReadDefault")
711            dbgs() << "Unused SchedReadWrite " << Name << '\n';
712        }
713      });
714}
715
716/// Compute a SchedWrite name from a sequence of writes.
717std::string CodeGenSchedModels::genRWName(ArrayRef<unsigned> Seq, bool IsRead) {
718  std::string Name("(");
719  ListSeparator LS("_");
720  for (unsigned I : Seq) {
721    Name += LS;
722    Name += getSchedRW(I, IsRead).Name;
723  }
724  Name += ')';
725  return Name;
726}
727
728unsigned CodeGenSchedModels::getSchedRWIdx(const Record *Def,
729                                           bool IsRead) const {
730  const std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites;
731  const auto I = find_if(
732      RWVec, [Def](const CodeGenSchedRW &RW) { return RW.TheDef == Def; });
733  return I == RWVec.end() ? 0 : std::distance(RWVec.begin(), I);
734}
735
736bool CodeGenSchedModels::hasReadOfWrite(Record *WriteDef) const {
737  for (auto& ProcModel : ProcModels) {
738    const RecVec &RADefs = ProcModel.ReadAdvanceDefs;
739    for (auto& RADef : RADefs) {
740      RecVec ValidWrites = RADef->getValueAsListOfDefs("ValidWrites");
741      if (is_contained(ValidWrites, WriteDef))
742        return true;
743    }
744  }
745  return false;
746}
747
748static void splitSchedReadWrites(const RecVec &RWDefs,
749                                 RecVec &WriteDefs, RecVec &ReadDefs) {
750  for (Record *RWDef : RWDefs) {
751    if (RWDef->isSubClassOf("SchedWrite"))
752      WriteDefs.push_back(RWDef);
753    else {
754      assert(RWDef->isSubClassOf("SchedRead") && "unknown SchedReadWrite");
755      ReadDefs.push_back(RWDef);
756    }
757  }
758}
759
760// Split the SchedReadWrites defs and call findRWs for each list.
761void CodeGenSchedModels::findRWs(const RecVec &RWDefs,
762                                 IdxVec &Writes, IdxVec &Reads) const {
763  RecVec WriteDefs;
764  RecVec ReadDefs;
765  splitSchedReadWrites(RWDefs, WriteDefs, ReadDefs);
766  findRWs(WriteDefs, Writes, false);
767  findRWs(ReadDefs, Reads, true);
768}
769
770// Call getSchedRWIdx for all elements in a sequence of SchedRW defs.
771void CodeGenSchedModels::findRWs(const RecVec &RWDefs, IdxVec &RWs,
772                                 bool IsRead) const {
773  for (Record *RWDef : RWDefs) {
774    unsigned Idx = getSchedRWIdx(RWDef, IsRead);
775    assert(Idx && "failed to collect SchedReadWrite");
776    RWs.push_back(Idx);
777  }
778}
779
780void CodeGenSchedModels::expandRWSequence(unsigned RWIdx, IdxVec &RWSeq,
781                                          bool IsRead) const {
782  const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead);
783  if (!SchedRW.IsSequence) {
784    RWSeq.push_back(RWIdx);
785    return;
786  }
787  int Repeat =
788    SchedRW.TheDef ? SchedRW.TheDef->getValueAsInt("Repeat") : 1;
789  for (int i = 0; i < Repeat; ++i) {
790    for (unsigned I : SchedRW.Sequence) {
791      expandRWSequence(I, RWSeq, IsRead);
792    }
793  }
794}
795
796// Expand a SchedWrite as a sequence following any aliases that coincide with
797// the given processor model.
798void CodeGenSchedModels::expandRWSeqForProc(
799  unsigned RWIdx, IdxVec &RWSeq, bool IsRead,
800  const CodeGenProcModel &ProcModel) const {
801
802  const CodeGenSchedRW &SchedWrite = getSchedRW(RWIdx, IsRead);
803  Record *AliasDef = nullptr;
804  for (const Record *Rec : SchedWrite.Aliases) {
805    const CodeGenSchedRW &AliasRW = getSchedRW(Rec->getValueAsDef("AliasRW"));
806    if (Rec->getValueInit("SchedModel")->isComplete()) {
807      Record *ModelDef = Rec->getValueAsDef("SchedModel");
808      if (&getProcModel(ModelDef) != &ProcModel)
809        continue;
810    }
811    if (AliasDef)
812      PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases "
813                      "defined for processor " + ProcModel.ModelName +
814                      " Ensure only one SchedAlias exists per RW.");
815    AliasDef = AliasRW.TheDef;
816  }
817  if (AliasDef) {
818    expandRWSeqForProc(getSchedRWIdx(AliasDef, IsRead),
819                       RWSeq, IsRead,ProcModel);
820    return;
821  }
822  if (!SchedWrite.IsSequence) {
823    RWSeq.push_back(RWIdx);
824    return;
825  }
826  int Repeat =
827    SchedWrite.TheDef ? SchedWrite.TheDef->getValueAsInt("Repeat") : 1;
828  for (int I = 0, E = Repeat; I < E; ++I) {
829    for (unsigned Idx : SchedWrite.Sequence) {
830      expandRWSeqForProc(Idx, RWSeq, IsRead, ProcModel);
831    }
832  }
833}
834
835// Find the existing SchedWrite that models this sequence of writes.
836unsigned CodeGenSchedModels::findRWForSequence(ArrayRef<unsigned> Seq,
837                                               bool IsRead) {
838  std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites;
839
840  auto I = find_if(RWVec, [Seq](CodeGenSchedRW &RW) {
841    return ArrayRef(RW.Sequence) == Seq;
842  });
843  // Index zero reserved for invalid RW.
844  return I == RWVec.end() ? 0 : std::distance(RWVec.begin(), I);
845}
846
847/// Add this ReadWrite if it doesn't already exist.
848unsigned CodeGenSchedModels::findOrInsertRW(ArrayRef<unsigned> Seq,
849                                            bool IsRead) {
850  assert(!Seq.empty() && "cannot insert empty sequence");
851  if (Seq.size() == 1)
852    return Seq.back();
853
854  unsigned Idx = findRWForSequence(Seq, IsRead);
855  if (Idx)
856    return Idx;
857
858  std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites;
859  unsigned RWIdx = RWVec.size();
860  CodeGenSchedRW SchedRW(RWIdx, IsRead, Seq, genRWName(Seq, IsRead));
861  RWVec.push_back(SchedRW);
862  return RWIdx;
863}
864
865/// Visit all the instruction definitions for this target to gather and
866/// enumerate the itinerary classes. These are the explicitly specified
867/// SchedClasses. More SchedClasses may be inferred.
868void CodeGenSchedModels::collectSchedClasses() {
869
870  // NoItinerary is always the first class at Idx=0
871  assert(SchedClasses.empty() && "Expected empty sched class");
872  SchedClasses.emplace_back(0, "NoInstrModel",
873                            Records.getDef("NoItinerary"));
874  SchedClasses.back().ProcIndices.push_back(0);
875
876  // Create a SchedClass for each unique combination of itinerary class and
877  // SchedRW list.
878  for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
879    Record *ItinDef = Inst->TheDef->getValueAsDef("Itinerary");
880    IdxVec Writes, Reads;
881    if (!Inst->TheDef->isValueUnset("SchedRW"))
882      findRWs(Inst->TheDef->getValueAsListOfDefs("SchedRW"), Writes, Reads);
883
884    // ProcIdx == 0 indicates the class applies to all processors.
885    unsigned SCIdx = addSchedClass(ItinDef, Writes, Reads, /*ProcIndices*/{0});
886    InstrClassMap[Inst->TheDef] = SCIdx;
887  }
888  // Create classes for InstRW defs.
889  RecVec InstRWDefs = Records.getAllDerivedDefinitions("InstRW");
890  llvm::sort(InstRWDefs, LessRecord());
891  LLVM_DEBUG(dbgs() << "\n+++ SCHED CLASSES (createInstRWClass) +++\n");
892  for (Record *RWDef : InstRWDefs)
893    createInstRWClass(RWDef);
894
895  NumInstrSchedClasses = SchedClasses.size();
896
897  bool EnableDump = false;
898  LLVM_DEBUG(EnableDump = true);
899  if (!EnableDump)
900    return;
901
902  LLVM_DEBUG(
903      dbgs()
904      << "\n+++ ITINERARIES and/or MACHINE MODELS (collectSchedClasses) +++\n");
905  for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
906    StringRef InstName = Inst->TheDef->getName();
907    unsigned SCIdx = getSchedClassIdx(*Inst);
908    if (!SCIdx) {
909      LLVM_DEBUG({
910        if (!Inst->hasNoSchedulingInfo)
911          dbgs() << "No machine model for " << Inst->TheDef->getName() << '\n';
912      });
913      continue;
914    }
915    CodeGenSchedClass &SC = getSchedClass(SCIdx);
916    if (SC.ProcIndices[0] != 0)
917      PrintFatalError(Inst->TheDef->getLoc(), "Instruction's sched class "
918                      "must not be subtarget specific.");
919
920    IdxVec ProcIndices;
921    if (SC.ItinClassDef->getName() != "NoItinerary") {
922      ProcIndices.push_back(0);
923      dbgs() << "Itinerary for " << InstName << ": "
924             << SC.ItinClassDef->getName() << '\n';
925    }
926    if (!SC.Writes.empty()) {
927      ProcIndices.push_back(0);
928      LLVM_DEBUG({
929        dbgs() << "SchedRW machine model for " << InstName;
930        for (unsigned int Write : SC.Writes)
931          dbgs() << " " << SchedWrites[Write].Name;
932        for (unsigned int Read : SC.Reads)
933          dbgs() << " " << SchedReads[Read].Name;
934        dbgs() << '\n';
935      });
936    }
937    const RecVec &RWDefs = SchedClasses[SCIdx].InstRWs;
938    for (Record *RWDef : RWDefs) {
939      const CodeGenProcModel &ProcModel =
940          getProcModel(RWDef->getValueAsDef("SchedModel"));
941      ProcIndices.push_back(ProcModel.Index);
942      LLVM_DEBUG(dbgs() << "InstRW on " << ProcModel.ModelName << " for "
943                        << InstName);
944      IdxVec Writes;
945      IdxVec Reads;
946      findRWs(RWDef->getValueAsListOfDefs("OperandReadWrites"),
947              Writes, Reads);
948      LLVM_DEBUG({
949        for (unsigned WIdx : Writes)
950          dbgs() << " " << SchedWrites[WIdx].Name;
951        for (unsigned RIdx : Reads)
952          dbgs() << " " << SchedReads[RIdx].Name;
953        dbgs() << '\n';
954      });
955    }
956    // If ProcIndices contains zero, the class applies to all processors.
957    LLVM_DEBUG({
958      if (!llvm::is_contained(ProcIndices, 0)) {
959        for (const CodeGenProcModel &PM : ProcModels) {
960          if (!llvm::is_contained(ProcIndices, PM.Index))
961            dbgs() << "No machine model for " << Inst->TheDef->getName()
962                   << " on processor " << PM.ModelName << '\n';
963        }
964      }
965    });
966  }
967}
968
969// Get the SchedClass index for an instruction.
970unsigned
971CodeGenSchedModels::getSchedClassIdx(const CodeGenInstruction &Inst) const {
972  return InstrClassMap.lookup(Inst.TheDef);
973}
974
975std::string
976CodeGenSchedModels::createSchedClassName(Record *ItinClassDef,
977                                         ArrayRef<unsigned> OperWrites,
978                                         ArrayRef<unsigned> OperReads) {
979
980  std::string Name;
981  if (ItinClassDef && ItinClassDef->getName() != "NoItinerary")
982    Name = std::string(ItinClassDef->getName());
983  for (unsigned Idx : OperWrites) {
984    if (!Name.empty())
985      Name += '_';
986    Name += SchedWrites[Idx].Name;
987  }
988  for (unsigned Idx : OperReads) {
989    Name += '_';
990    Name += SchedReads[Idx].Name;
991  }
992  return Name;
993}
994
995std::string CodeGenSchedModels::createSchedClassName(const RecVec &InstDefs) {
996
997  std::string Name;
998  ListSeparator LS("_");
999  for (const Record *InstDef : InstDefs) {
1000    Name += LS;
1001    Name += InstDef->getName();
1002  }
1003  return Name;
1004}
1005
1006/// Add an inferred sched class from an itinerary class and per-operand list of
1007/// SchedWrites and SchedReads. ProcIndices contains the set of IDs of
1008/// processors that may utilize this class.
1009unsigned CodeGenSchedModels::addSchedClass(Record *ItinClassDef,
1010                                           ArrayRef<unsigned> OperWrites,
1011                                           ArrayRef<unsigned> OperReads,
1012                                           ArrayRef<unsigned> ProcIndices) {
1013  assert(!ProcIndices.empty() && "expect at least one ProcIdx");
1014
1015  auto IsKeyEqual = [=](const CodeGenSchedClass &SC) {
1016                     return SC.isKeyEqual(ItinClassDef, OperWrites, OperReads);
1017                   };
1018
1019  auto I = find_if(make_range(schedClassBegin(), schedClassEnd()), IsKeyEqual);
1020  unsigned Idx = I == schedClassEnd() ? 0 : std::distance(schedClassBegin(), I);
1021  if (Idx || SchedClasses[0].isKeyEqual(ItinClassDef, OperWrites, OperReads)) {
1022    IdxVec PI;
1023    std::set_union(SchedClasses[Idx].ProcIndices.begin(),
1024                   SchedClasses[Idx].ProcIndices.end(),
1025                   ProcIndices.begin(), ProcIndices.end(),
1026                   std::back_inserter(PI));
1027    SchedClasses[Idx].ProcIndices = std::move(PI);
1028    return Idx;
1029  }
1030  Idx = SchedClasses.size();
1031  SchedClasses.emplace_back(Idx,
1032                            createSchedClassName(ItinClassDef, OperWrites,
1033                                                 OperReads),
1034                            ItinClassDef);
1035  CodeGenSchedClass &SC = SchedClasses.back();
1036  SC.Writes = OperWrites;
1037  SC.Reads = OperReads;
1038  SC.ProcIndices = ProcIndices;
1039
1040  return Idx;
1041}
1042
1043// Create classes for each set of opcodes that are in the same InstReadWrite
1044// definition across all processors.
1045void CodeGenSchedModels::createInstRWClass(Record *InstRWDef) {
1046  // ClassInstrs will hold an entry for each subset of Instrs in InstRWDef that
1047  // intersects with an existing class via a previous InstRWDef. Instrs that do
1048  // not intersect with an existing class refer back to their former class as
1049  // determined from ItinDef or SchedRW.
1050  SmallMapVector<unsigned, SmallVector<Record *, 8>, 4> ClassInstrs;
1051  // Sort Instrs into sets.
1052  const RecVec *InstDefs = Sets.expand(InstRWDef);
1053  if (InstDefs->empty())
1054    PrintFatalError(InstRWDef->getLoc(), "No matching instruction opcodes");
1055
1056  for (Record *InstDef : *InstDefs) {
1057    InstClassMapTy::const_iterator Pos = InstrClassMap.find(InstDef);
1058    if (Pos == InstrClassMap.end())
1059      PrintFatalError(InstDef->getLoc(), "No sched class for instruction.");
1060    unsigned SCIdx = Pos->second;
1061    ClassInstrs[SCIdx].push_back(InstDef);
1062  }
1063  // For each set of Instrs, create a new class if necessary, and map or remap
1064  // the Instrs to it.
1065  for (auto &Entry : ClassInstrs) {
1066    unsigned OldSCIdx = Entry.first;
1067    ArrayRef<Record*> InstDefs = Entry.second;
1068    // If the all instrs in the current class are accounted for, then leave
1069    // them mapped to their old class.
1070    if (OldSCIdx) {
1071      const RecVec &RWDefs = SchedClasses[OldSCIdx].InstRWs;
1072      if (!RWDefs.empty()) {
1073        const RecVec *OrigInstDefs = Sets.expand(RWDefs[0]);
1074        unsigned OrigNumInstrs =
1075          count_if(*OrigInstDefs, [&](Record *OIDef) {
1076                     return InstrClassMap[OIDef] == OldSCIdx;
1077                   });
1078        if (OrigNumInstrs == InstDefs.size()) {
1079          assert(SchedClasses[OldSCIdx].ProcIndices[0] == 0 &&
1080                 "expected a generic SchedClass");
1081          Record *RWModelDef = InstRWDef->getValueAsDef("SchedModel");
1082          // Make sure we didn't already have a InstRW containing this
1083          // instruction on this model.
1084          for (Record *RWD : RWDefs) {
1085            if (RWD->getValueAsDef("SchedModel") == RWModelDef &&
1086                RWModelDef->getValueAsBit("FullInstRWOverlapCheck")) {
1087              assert(!InstDefs.empty()); // Checked at function start.
1088              PrintError(
1089                  InstRWDef->getLoc(),
1090                  "Overlapping InstRW definition for \"" +
1091                      InstDefs.front()->getName() +
1092                      "\" also matches previous \"" +
1093                      RWD->getValue("Instrs")->getValue()->getAsString() +
1094                      "\".");
1095              PrintFatalNote(RWD->getLoc(), "Previous match was here.");
1096            }
1097          }
1098          LLVM_DEBUG(dbgs() << "InstRW: Reuse SC " << OldSCIdx << ":"
1099                            << SchedClasses[OldSCIdx].Name << " on "
1100                            << RWModelDef->getName() << "\n");
1101          SchedClasses[OldSCIdx].InstRWs.push_back(InstRWDef);
1102          continue;
1103        }
1104      }
1105    }
1106    unsigned SCIdx = SchedClasses.size();
1107    SchedClasses.emplace_back(SCIdx, createSchedClassName(InstDefs), nullptr);
1108    CodeGenSchedClass &SC = SchedClasses.back();
1109    LLVM_DEBUG(dbgs() << "InstRW: New SC " << SCIdx << ":" << SC.Name << " on "
1110                      << InstRWDef->getValueAsDef("SchedModel")->getName()
1111                      << "\n");
1112
1113    // Preserve ItinDef and Writes/Reads for processors without an InstRW entry.
1114    SC.ItinClassDef = SchedClasses[OldSCIdx].ItinClassDef;
1115    SC.Writes = SchedClasses[OldSCIdx].Writes;
1116    SC.Reads = SchedClasses[OldSCIdx].Reads;
1117    SC.ProcIndices.push_back(0);
1118    // If we had an old class, copy it's InstRWs to this new class.
1119    if (OldSCIdx) {
1120      Record *RWModelDef = InstRWDef->getValueAsDef("SchedModel");
1121      for (Record *OldRWDef : SchedClasses[OldSCIdx].InstRWs) {
1122        if (OldRWDef->getValueAsDef("SchedModel") == RWModelDef) {
1123          assert(!InstDefs.empty()); // Checked at function start.
1124          PrintError(
1125              InstRWDef->getLoc(),
1126              "Overlapping InstRW definition for \"" +
1127                  InstDefs.front()->getName() + "\" also matches previous \"" +
1128                  OldRWDef->getValue("Instrs")->getValue()->getAsString() +
1129                  "\".");
1130          PrintFatalNote(OldRWDef->getLoc(), "Previous match was here.");
1131        }
1132        assert(OldRWDef != InstRWDef &&
1133               "SchedClass has duplicate InstRW def");
1134        SC.InstRWs.push_back(OldRWDef);
1135      }
1136    }
1137    // Map each Instr to this new class.
1138    for (Record *InstDef : InstDefs)
1139      InstrClassMap[InstDef] = SCIdx;
1140    SC.InstRWs.push_back(InstRWDef);
1141  }
1142}
1143
1144// True if collectProcItins found anything.
1145bool CodeGenSchedModels::hasItineraries() const {
1146  for (const CodeGenProcModel &PM : make_range(procModelBegin(),procModelEnd()))
1147    if (PM.hasItineraries())
1148      return true;
1149  return false;
1150}
1151
1152// Gather the processor itineraries.
1153void CodeGenSchedModels::collectProcItins() {
1154  LLVM_DEBUG(dbgs() << "\n+++ PROBLEM ITINERARIES (collectProcItins) +++\n");
1155  for (CodeGenProcModel &ProcModel : ProcModels) {
1156    if (!ProcModel.hasItineraries())
1157      continue;
1158
1159    RecVec ItinRecords = ProcModel.ItinsDef->getValueAsListOfDefs("IID");
1160    assert(!ItinRecords.empty() && "ProcModel.hasItineraries is incorrect");
1161
1162    // Populate ItinDefList with Itinerary records.
1163    ProcModel.ItinDefList.resize(NumInstrSchedClasses);
1164
1165    // Insert each itinerary data record in the correct position within
1166    // the processor model's ItinDefList.
1167    for (Record *ItinData : ItinRecords) {
1168      const Record *ItinDef = ItinData->getValueAsDef("TheClass");
1169      bool FoundClass = false;
1170
1171      for (const CodeGenSchedClass &SC :
1172           make_range(schedClassBegin(), schedClassEnd())) {
1173        // Multiple SchedClasses may share an itinerary. Update all of them.
1174        if (SC.ItinClassDef == ItinDef) {
1175          ProcModel.ItinDefList[SC.Index] = ItinData;
1176          FoundClass = true;
1177        }
1178      }
1179      if (!FoundClass) {
1180        LLVM_DEBUG(dbgs() << ProcModel.ItinsDef->getName()
1181                          << " missing class for itinerary "
1182                          << ItinDef->getName() << '\n');
1183      }
1184    }
1185    // Check for missing itinerary entries.
1186    assert(!ProcModel.ItinDefList[0] && "NoItinerary class can't have rec");
1187    LLVM_DEBUG(
1188        for (unsigned i = 1, N = ProcModel.ItinDefList.size(); i < N; ++i) {
1189          if (!ProcModel.ItinDefList[i])
1190            dbgs() << ProcModel.ItinsDef->getName()
1191                   << " missing itinerary for class " << SchedClasses[i].Name
1192                   << '\n';
1193        });
1194  }
1195}
1196
1197// Gather the read/write types for each itinerary class.
1198void CodeGenSchedModels::collectProcItinRW() {
1199  RecVec ItinRWDefs = Records.getAllDerivedDefinitions("ItinRW");
1200  llvm::sort(ItinRWDefs, LessRecord());
1201  for (Record *RWDef  : ItinRWDefs) {
1202    if (!RWDef->getValueInit("SchedModel")->isComplete())
1203      PrintFatalError(RWDef->getLoc(), "SchedModel is undefined");
1204    Record *ModelDef = RWDef->getValueAsDef("SchedModel");
1205    ProcModelMapTy::const_iterator I = ProcModelMap.find(ModelDef);
1206    if (I == ProcModelMap.end()) {
1207      PrintFatalError(RWDef->getLoc(), "Undefined SchedMachineModel "
1208                    + ModelDef->getName());
1209    }
1210    ProcModels[I->second].ItinRWDefs.push_back(RWDef);
1211  }
1212}
1213
1214// Gather the unsupported features for processor models.
1215void CodeGenSchedModels::collectProcUnsupportedFeatures() {
1216  for (CodeGenProcModel &ProcModel : ProcModels)
1217    append_range(
1218        ProcModel.UnsupportedFeaturesDefs,
1219        ProcModel.ModelDef->getValueAsListOfDefs("UnsupportedFeatures"));
1220}
1221
1222/// Infer new classes from existing classes. In the process, this may create new
1223/// SchedWrites from sequences of existing SchedWrites.
1224void CodeGenSchedModels::inferSchedClasses() {
1225  LLVM_DEBUG(
1226      dbgs() << "\n+++ INFERRING SCHED CLASSES (inferSchedClasses) +++\n");
1227  LLVM_DEBUG(dbgs() << NumInstrSchedClasses << " instr sched classes.\n");
1228
1229  // Visit all existing classes and newly created classes.
1230  for (unsigned Idx = 0; Idx != SchedClasses.size(); ++Idx) {
1231    assert(SchedClasses[Idx].Index == Idx && "bad SCIdx");
1232
1233    if (SchedClasses[Idx].ItinClassDef)
1234      inferFromItinClass(SchedClasses[Idx].ItinClassDef, Idx);
1235    if (!SchedClasses[Idx].InstRWs.empty())
1236      inferFromInstRWs(Idx);
1237    if (!SchedClasses[Idx].Writes.empty()) {
1238      inferFromRW(SchedClasses[Idx].Writes, SchedClasses[Idx].Reads,
1239                  Idx, SchedClasses[Idx].ProcIndices);
1240    }
1241    assert(SchedClasses.size() < (NumInstrSchedClasses*6) &&
1242           "too many SchedVariants");
1243  }
1244}
1245
1246/// Infer classes from per-processor itinerary resources.
1247void CodeGenSchedModels::inferFromItinClass(Record *ItinClassDef,
1248                                            unsigned FromClassIdx) {
1249  for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) {
1250    const CodeGenProcModel &PM = ProcModels[PIdx];
1251    // For all ItinRW entries.
1252    bool HasMatch = false;
1253    for (const Record *Rec : PM.ItinRWDefs) {
1254      RecVec Matched = Rec->getValueAsListOfDefs("MatchedItinClasses");
1255      if (!llvm::is_contained(Matched, ItinClassDef))
1256        continue;
1257      if (HasMatch)
1258        PrintFatalError(Rec->getLoc(), "Duplicate itinerary class "
1259                      + ItinClassDef->getName()
1260                      + " in ItinResources for " + PM.ModelName);
1261      HasMatch = true;
1262      IdxVec Writes, Reads;
1263      findRWs(Rec->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
1264      inferFromRW(Writes, Reads, FromClassIdx, PIdx);
1265    }
1266  }
1267}
1268
1269/// Infer classes from per-processor InstReadWrite definitions.
1270void CodeGenSchedModels::inferFromInstRWs(unsigned SCIdx) {
1271  for (unsigned I = 0, E = SchedClasses[SCIdx].InstRWs.size(); I != E; ++I) {
1272    assert(SchedClasses[SCIdx].InstRWs.size() == E && "InstrRWs was mutated!");
1273    Record *Rec = SchedClasses[SCIdx].InstRWs[I];
1274    const RecVec *InstDefs = Sets.expand(Rec);
1275    RecIter II = InstDefs->begin(), IE = InstDefs->end();
1276    for (; II != IE; ++II) {
1277      if (InstrClassMap[*II] == SCIdx)
1278        break;
1279    }
1280    // If this class no longer has any instructions mapped to it, it has become
1281    // irrelevant.
1282    if (II == IE)
1283      continue;
1284    IdxVec Writes, Reads;
1285    findRWs(Rec->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
1286    unsigned PIdx = getProcModel(Rec->getValueAsDef("SchedModel")).Index;
1287    inferFromRW(Writes, Reads, SCIdx, PIdx); // May mutate SchedClasses.
1288    SchedClasses[SCIdx].InstRWProcIndices.insert(PIdx);
1289  }
1290}
1291
1292namespace {
1293
1294// Helper for substituteVariantOperand.
1295struct TransVariant {
1296  Record *VarOrSeqDef;  // Variant or sequence.
1297  unsigned RWIdx;       // Index of this variant or sequence's matched type.
1298  unsigned ProcIdx;     // Processor model index or zero for any.
1299  unsigned TransVecIdx; // Index into PredTransitions::TransVec.
1300
1301  TransVariant(Record *def, unsigned rwi, unsigned pi, unsigned ti):
1302    VarOrSeqDef(def), RWIdx(rwi), ProcIdx(pi), TransVecIdx(ti) {}
1303};
1304
1305// Associate a predicate with the SchedReadWrite that it guards.
1306// RWIdx is the index of the read/write variant.
1307struct PredCheck {
1308  bool IsRead;
1309  unsigned RWIdx;
1310  Record *Predicate;
1311
1312  PredCheck(bool r, unsigned w, Record *p): IsRead(r), RWIdx(w), Predicate(p) {}
1313};
1314
1315// A Predicate transition is a list of RW sequences guarded by a PredTerm.
1316struct PredTransition {
1317  // A predicate term is a conjunction of PredChecks.
1318  SmallVector<PredCheck, 4> PredTerm;
1319  SmallVector<SmallVector<unsigned,4>, 16> WriteSequences;
1320  SmallVector<SmallVector<unsigned,4>, 16> ReadSequences;
1321  unsigned ProcIndex = 0;
1322
1323  PredTransition() = default;
1324  PredTransition(ArrayRef<PredCheck> PT, unsigned ProcId) {
1325    PredTerm.assign(PT.begin(), PT.end());
1326    ProcIndex = ProcId;
1327  }
1328};
1329
1330// Encapsulate a set of partially constructed transitions.
1331// The results are built by repeated calls to substituteVariants.
1332class PredTransitions {
1333  CodeGenSchedModels &SchedModels;
1334
1335public:
1336  std::vector<PredTransition> TransVec;
1337
1338  PredTransitions(CodeGenSchedModels &sm): SchedModels(sm) {}
1339
1340  bool substituteVariantOperand(const SmallVectorImpl<unsigned> &RWSeq,
1341                                bool IsRead, unsigned StartIdx);
1342
1343  bool substituteVariants(const PredTransition &Trans);
1344
1345#ifndef NDEBUG
1346  void dump() const;
1347#endif
1348
1349private:
1350  bool mutuallyExclusive(Record *PredDef, ArrayRef<Record *> Preds,
1351                         ArrayRef<PredCheck> Term);
1352  void getIntersectingVariants(
1353    const CodeGenSchedRW &SchedRW, unsigned TransIdx,
1354    std::vector<TransVariant> &IntersectingVariants);
1355  void pushVariant(const TransVariant &VInfo, bool IsRead);
1356};
1357
1358} // end anonymous namespace
1359
1360// Return true if this predicate is mutually exclusive with a PredTerm. This
1361// degenerates into checking if the predicate is mutually exclusive with any
1362// predicate in the Term's conjunction.
1363//
1364// All predicates associated with a given SchedRW are considered mutually
1365// exclusive. This should work even if the conditions expressed by the
1366// predicates are not exclusive because the predicates for a given SchedWrite
1367// are always checked in the order they are defined in the .td file. Later
1368// conditions implicitly negate any prior condition.
1369bool PredTransitions::mutuallyExclusive(Record *PredDef,
1370                                        ArrayRef<Record *> Preds,
1371                                        ArrayRef<PredCheck> Term) {
1372  for (const PredCheck &PC: Term) {
1373    if (PC.Predicate == PredDef)
1374      return false;
1375
1376    const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(PC.RWIdx, PC.IsRead);
1377    assert(SchedRW.HasVariants && "PredCheck must refer to a SchedVariant");
1378    RecVec Variants = SchedRW.TheDef->getValueAsListOfDefs("Variants");
1379    if (any_of(Variants, [PredDef](const Record *R) {
1380          return R->getValueAsDef("Predicate") == PredDef;
1381        })) {
1382      // To check if PredDef is mutually exclusive with PC we also need to
1383      // check that PC.Predicate is exclusive with all predicates from variant
1384      // we're expanding. Consider following RW sequence with two variants
1385      // (1 & 2), where A, B and C are predicates from corresponding SchedVars:
1386      //
1387      // 1:A/B - 2:C/B
1388      //
1389      // Here C is not mutually exclusive with variant (1), because A doesn't
1390      // exist in variant (2). This means we have possible transitions from A
1391      // to C and from A to B, and fully expanded sequence would look like:
1392      //
1393      // if (A & C) return ...;
1394      // if (A & B) return ...;
1395      // if (B) return ...;
1396      //
1397      // Now let's consider another sequence:
1398      //
1399      // 1:A/B - 2:A/B
1400      //
1401      // Here A in variant (2) is mutually exclusive with variant (1), because
1402      // A also exists in (2). This means A->B transition is impossible and
1403      // expanded sequence would look like:
1404      //
1405      // if (A) return ...;
1406      // if (B) return ...;
1407      if (!llvm::is_contained(Preds, PC.Predicate))
1408        continue;
1409      return true;
1410    }
1411  }
1412  return false;
1413}
1414
1415static std::vector<Record *> getAllPredicates(ArrayRef<TransVariant> Variants,
1416                                              unsigned ProcId) {
1417  std::vector<Record *> Preds;
1418  for (auto &Variant : Variants) {
1419    if (!Variant.VarOrSeqDef->isSubClassOf("SchedVar"))
1420      continue;
1421    Preds.push_back(Variant.VarOrSeqDef->getValueAsDef("Predicate"));
1422  }
1423  return Preds;
1424}
1425
1426// Populate IntersectingVariants with any variants or aliased sequences of the
1427// given SchedRW whose processor indices and predicates are not mutually
1428// exclusive with the given transition.
1429void PredTransitions::getIntersectingVariants(
1430  const CodeGenSchedRW &SchedRW, unsigned TransIdx,
1431  std::vector<TransVariant> &IntersectingVariants) {
1432
1433  bool GenericRW = false;
1434
1435  std::vector<TransVariant> Variants;
1436  if (SchedRW.HasVariants) {
1437    unsigned VarProcIdx = 0;
1438    if (SchedRW.TheDef->getValueInit("SchedModel")->isComplete()) {
1439      Record *ModelDef = SchedRW.TheDef->getValueAsDef("SchedModel");
1440      VarProcIdx = SchedModels.getProcModel(ModelDef).Index;
1441    }
1442    if (VarProcIdx == 0 || VarProcIdx == TransVec[TransIdx].ProcIndex) {
1443      // Push each variant. Assign TransVecIdx later.
1444      const RecVec VarDefs = SchedRW.TheDef->getValueAsListOfDefs("Variants");
1445      for (Record *VarDef : VarDefs)
1446        Variants.emplace_back(VarDef, SchedRW.Index, VarProcIdx, 0);
1447      if (VarProcIdx == 0)
1448        GenericRW = true;
1449    }
1450  }
1451  for (RecIter AI = SchedRW.Aliases.begin(), AE = SchedRW.Aliases.end();
1452       AI != AE; ++AI) {
1453    // If either the SchedAlias itself or the SchedReadWrite that it aliases
1454    // to is defined within a processor model, constrain all variants to
1455    // that processor.
1456    unsigned AliasProcIdx = 0;
1457    if ((*AI)->getValueInit("SchedModel")->isComplete()) {
1458      Record *ModelDef = (*AI)->getValueAsDef("SchedModel");
1459      AliasProcIdx = SchedModels.getProcModel(ModelDef).Index;
1460    }
1461    if (AliasProcIdx && AliasProcIdx != TransVec[TransIdx].ProcIndex)
1462      continue;
1463    if (!Variants.empty()) {
1464      const CodeGenProcModel &PM =
1465          *(SchedModels.procModelBegin() + AliasProcIdx);
1466      PrintFatalError((*AI)->getLoc(),
1467                      "Multiple variants defined for processor " +
1468                          PM.ModelName +
1469                          " Ensure only one SchedAlias exists per RW.");
1470    }
1471
1472    const CodeGenSchedRW &AliasRW =
1473      SchedModels.getSchedRW((*AI)->getValueAsDef("AliasRW"));
1474
1475    if (AliasRW.HasVariants) {
1476      const RecVec VarDefs = AliasRW.TheDef->getValueAsListOfDefs("Variants");
1477      for (Record *VD : VarDefs)
1478        Variants.emplace_back(VD, AliasRW.Index, AliasProcIdx, 0);
1479    }
1480    if (AliasRW.IsSequence)
1481      Variants.emplace_back(AliasRW.TheDef, SchedRW.Index, AliasProcIdx, 0);
1482    if (AliasProcIdx == 0)
1483      GenericRW = true;
1484  }
1485  std::vector<Record *> AllPreds =
1486      getAllPredicates(Variants, TransVec[TransIdx].ProcIndex);
1487  for (TransVariant &Variant : Variants) {
1488    // Don't expand variants if the processor models don't intersect.
1489    // A zero processor index means any processor.
1490    if (Variant.VarOrSeqDef->isSubClassOf("SchedVar")) {
1491      Record *PredDef = Variant.VarOrSeqDef->getValueAsDef("Predicate");
1492      if (mutuallyExclusive(PredDef, AllPreds, TransVec[TransIdx].PredTerm))
1493        continue;
1494    }
1495
1496    if (IntersectingVariants.empty()) {
1497      // The first variant builds on the existing transition.
1498      Variant.TransVecIdx = TransIdx;
1499      IntersectingVariants.push_back(Variant);
1500    }
1501    else {
1502      // Push another copy of the current transition for more variants.
1503      Variant.TransVecIdx = TransVec.size();
1504      IntersectingVariants.push_back(Variant);
1505      TransVec.push_back(TransVec[TransIdx]);
1506    }
1507  }
1508  if (GenericRW && IntersectingVariants.empty()) {
1509    PrintFatalError(SchedRW.TheDef->getLoc(), "No variant of this type has "
1510                    "a matching predicate on any processor");
1511  }
1512}
1513
1514// Push the Reads/Writes selected by this variant onto the PredTransition
1515// specified by VInfo.
1516void PredTransitions::
1517pushVariant(const TransVariant &VInfo, bool IsRead) {
1518  PredTransition &Trans = TransVec[VInfo.TransVecIdx];
1519
1520  // If this operand transition is reached through a processor-specific alias,
1521  // then the whole transition is specific to this processor.
1522  IdxVec SelectedRWs;
1523  if (VInfo.VarOrSeqDef->isSubClassOf("SchedVar")) {
1524    Record *PredDef = VInfo.VarOrSeqDef->getValueAsDef("Predicate");
1525    Trans.PredTerm.emplace_back(IsRead, VInfo.RWIdx,PredDef);
1526    RecVec SelectedDefs = VInfo.VarOrSeqDef->getValueAsListOfDefs("Selected");
1527    SchedModels.findRWs(SelectedDefs, SelectedRWs, IsRead);
1528  }
1529  else {
1530    assert(VInfo.VarOrSeqDef->isSubClassOf("WriteSequence") &&
1531           "variant must be a SchedVariant or aliased WriteSequence");
1532    SelectedRWs.push_back(SchedModels.getSchedRWIdx(VInfo.VarOrSeqDef, IsRead));
1533  }
1534
1535  const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(VInfo.RWIdx, IsRead);
1536
1537  SmallVectorImpl<SmallVector<unsigned,4>> &RWSequences = IsRead
1538    ? Trans.ReadSequences : Trans.WriteSequences;
1539  if (SchedRW.IsVariadic) {
1540    unsigned OperIdx = RWSequences.size()-1;
1541    // Make N-1 copies of this transition's last sequence.
1542    RWSequences.reserve(RWSequences.size() + SelectedRWs.size() - 1);
1543    RWSequences.insert(RWSequences.end(), SelectedRWs.size() - 1,
1544                       RWSequences[OperIdx]);
1545    // Push each of the N elements of the SelectedRWs onto a copy of the last
1546    // sequence (split the current operand into N operands).
1547    // Note that write sequences should be expanded within this loop--the entire
1548    // sequence belongs to a single operand.
1549    for (IdxIter RWI = SelectedRWs.begin(), RWE = SelectedRWs.end();
1550         RWI != RWE; ++RWI, ++OperIdx) {
1551      IdxVec ExpandedRWs;
1552      if (IsRead)
1553        ExpandedRWs.push_back(*RWI);
1554      else
1555        SchedModels.expandRWSequence(*RWI, ExpandedRWs, IsRead);
1556      llvm::append_range(RWSequences[OperIdx], ExpandedRWs);
1557    }
1558    assert(OperIdx == RWSequences.size() && "missed a sequence");
1559  }
1560  else {
1561    // Push this transition's expanded sequence onto this transition's last
1562    // sequence (add to the current operand's sequence).
1563    SmallVectorImpl<unsigned> &Seq = RWSequences.back();
1564    IdxVec ExpandedRWs;
1565    for (unsigned int SelectedRW : SelectedRWs) {
1566      if (IsRead)
1567        ExpandedRWs.push_back(SelectedRW);
1568      else
1569        SchedModels.expandRWSequence(SelectedRW, ExpandedRWs, IsRead);
1570    }
1571    llvm::append_range(Seq, ExpandedRWs);
1572  }
1573}
1574
1575// RWSeq is a sequence of all Reads or all Writes for the next read or write
1576// operand. StartIdx is an index into TransVec where partial results
1577// starts. RWSeq must be applied to all transitions between StartIdx and the end
1578// of TransVec.
1579bool PredTransitions::substituteVariantOperand(
1580    const SmallVectorImpl<unsigned> &RWSeq, bool IsRead, unsigned StartIdx) {
1581  bool Subst = false;
1582  // Visit each original RW within the current sequence.
1583  for (unsigned int RWI : RWSeq) {
1584    const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(RWI, IsRead);
1585    // Push this RW on all partial PredTransitions or distribute variants.
1586    // New PredTransitions may be pushed within this loop which should not be
1587    // revisited (TransEnd must be loop invariant).
1588    for (unsigned TransIdx = StartIdx, TransEnd = TransVec.size();
1589         TransIdx != TransEnd; ++TransIdx) {
1590      // Distribute this partial PredTransition across intersecting variants.
1591      // This will push a copies of TransVec[TransIdx] on the back of TransVec.
1592      std::vector<TransVariant> IntersectingVariants;
1593      getIntersectingVariants(SchedRW, TransIdx, IntersectingVariants);
1594      // Now expand each variant on top of its copy of the transition.
1595      for (const TransVariant &IV : IntersectingVariants)
1596        pushVariant(IV, IsRead);
1597      if (IntersectingVariants.empty()) {
1598        if (IsRead)
1599          TransVec[TransIdx].ReadSequences.back().push_back(RWI);
1600        else
1601          TransVec[TransIdx].WriteSequences.back().push_back(RWI);
1602        continue;
1603      } else {
1604        Subst = true;
1605      }
1606    }
1607  }
1608  return Subst;
1609}
1610
1611// For each variant of a Read/Write in Trans, substitute the sequence of
1612// Read/Writes guarded by the variant. This is exponential in the number of
1613// variant Read/Writes, but in practice detection of mutually exclusive
1614// predicates should result in linear growth in the total number variants.
1615//
1616// This is one step in a breadth-first search of nested variants.
1617bool PredTransitions::substituteVariants(const PredTransition &Trans) {
1618  // Build up a set of partial results starting at the back of
1619  // PredTransitions. Remember the first new transition.
1620  unsigned StartIdx = TransVec.size();
1621  bool Subst = false;
1622  assert(Trans.ProcIndex != 0);
1623  TransVec.emplace_back(Trans.PredTerm, Trans.ProcIndex);
1624
1625  // Visit each original write sequence.
1626  for (const auto &WriteSequence : Trans.WriteSequences) {
1627    // Push a new (empty) write sequence onto all partial Transitions.
1628    for (std::vector<PredTransition>::iterator I =
1629           TransVec.begin() + StartIdx, E = TransVec.end(); I != E; ++I) {
1630      I->WriteSequences.emplace_back();
1631    }
1632    Subst |=
1633        substituteVariantOperand(WriteSequence, /*IsRead=*/false, StartIdx);
1634  }
1635  // Visit each original read sequence.
1636  for (const auto &ReadSequence : Trans.ReadSequences) {
1637    // Push a new (empty) read sequence onto all partial Transitions.
1638    for (std::vector<PredTransition>::iterator I =
1639           TransVec.begin() + StartIdx, E = TransVec.end(); I != E; ++I) {
1640      I->ReadSequences.emplace_back();
1641    }
1642    Subst |= substituteVariantOperand(ReadSequence, /*IsRead=*/true, StartIdx);
1643  }
1644  return Subst;
1645}
1646
1647static void addSequences(CodeGenSchedModels &SchedModels,
1648                         const SmallVectorImpl<SmallVector<unsigned, 4>> &Seqs,
1649                         IdxVec &Result, bool IsRead) {
1650  for (const auto &S : Seqs)
1651    if (!S.empty())
1652      Result.push_back(SchedModels.findOrInsertRW(S, IsRead));
1653}
1654
1655#ifndef NDEBUG
1656static void dumpRecVec(const RecVec &RV) {
1657  for (const Record *R : RV)
1658    dbgs() << R->getName() << ", ";
1659}
1660#endif
1661
1662static void dumpTransition(const CodeGenSchedModels &SchedModels,
1663                           const CodeGenSchedClass &FromSC,
1664                           const CodeGenSchedTransition &SCTrans,
1665                           const RecVec &Preds) {
1666  LLVM_DEBUG(dbgs() << "Adding transition from " << FromSC.Name << "("
1667                    << FromSC.Index << ") to "
1668                    << SchedModels.getSchedClass(SCTrans.ToClassIdx).Name << "("
1669                    << SCTrans.ToClassIdx << ") on pred term: (";
1670             dumpRecVec(Preds);
1671             dbgs() << ") on processor (" << SCTrans.ProcIndex << ")\n");
1672}
1673// Create a new SchedClass for each variant found by inferFromRW. Pass
1674static void inferFromTransitions(ArrayRef<PredTransition> LastTransitions,
1675                                 unsigned FromClassIdx,
1676                                 CodeGenSchedModels &SchedModels) {
1677  // For each PredTransition, create a new CodeGenSchedTransition, which usually
1678  // requires creating a new SchedClass.
1679  for (const auto &LastTransition : LastTransitions) {
1680    // Variant expansion (substituteVariants) may create unconditional
1681    // transitions. We don't need to build sched classes for them.
1682    if (LastTransition.PredTerm.empty())
1683      continue;
1684    IdxVec OperWritesVariant, OperReadsVariant;
1685    addSequences(SchedModels, LastTransition.WriteSequences, OperWritesVariant,
1686                 false);
1687    addSequences(SchedModels, LastTransition.ReadSequences, OperReadsVariant,
1688                 true);
1689    CodeGenSchedTransition SCTrans;
1690
1691    // Transition should not contain processor indices already assigned to
1692    // InstRWs in this scheduling class.
1693    const CodeGenSchedClass &FromSC = SchedModels.getSchedClass(FromClassIdx);
1694    if (FromSC.InstRWProcIndices.count(LastTransition.ProcIndex))
1695      continue;
1696    SCTrans.ProcIndex = LastTransition.ProcIndex;
1697    SCTrans.ToClassIdx =
1698        SchedModels.addSchedClass(/*ItinClassDef=*/nullptr, OperWritesVariant,
1699                                  OperReadsVariant, LastTransition.ProcIndex);
1700
1701    // The final PredTerm is unique set of predicates guarding the transition.
1702    RecVec Preds;
1703    transform(LastTransition.PredTerm, std::back_inserter(Preds),
1704              [](const PredCheck &P) { return P.Predicate; });
1705    Preds.erase(std::unique(Preds.begin(), Preds.end()), Preds.end());
1706    dumpTransition(SchedModels, FromSC, SCTrans, Preds);
1707    SCTrans.PredTerm = std::move(Preds);
1708    SchedModels.getSchedClass(FromClassIdx)
1709        .Transitions.push_back(std::move(SCTrans));
1710  }
1711}
1712
1713std::vector<unsigned> CodeGenSchedModels::getAllProcIndices() const {
1714  std::vector<unsigned> ProcIdVec;
1715  for (const auto &PM : ProcModelMap)
1716    if (PM.second != 0)
1717      ProcIdVec.push_back(PM.second);
1718  // The order of the keys (Record pointers) of ProcModelMap are not stable.
1719  // Sort to stabalize the values.
1720  llvm::sort(ProcIdVec);
1721  return ProcIdVec;
1722}
1723
1724static std::vector<PredTransition>
1725makePerProcessorTransitions(const PredTransition &Trans,
1726                            ArrayRef<unsigned> ProcIndices) {
1727  std::vector<PredTransition> PerCpuTransVec;
1728  for (unsigned ProcId : ProcIndices) {
1729    assert(ProcId != 0);
1730    PerCpuTransVec.push_back(Trans);
1731    PerCpuTransVec.back().ProcIndex = ProcId;
1732  }
1733  return PerCpuTransVec;
1734}
1735
1736// Create new SchedClasses for the given ReadWrite list. If any of the
1737// ReadWrites refers to a SchedVariant, create a new SchedClass for each variant
1738// of the ReadWrite list, following Aliases if necessary.
1739void CodeGenSchedModels::inferFromRW(ArrayRef<unsigned> OperWrites,
1740                                     ArrayRef<unsigned> OperReads,
1741                                     unsigned FromClassIdx,
1742                                     ArrayRef<unsigned> ProcIndices) {
1743  LLVM_DEBUG(dbgs() << "INFER RW proc("; dumpIdxVec(ProcIndices);
1744             dbgs() << ") ");
1745  // Create a seed transition with an empty PredTerm and the expanded sequences
1746  // of SchedWrites for the current SchedClass.
1747  std::vector<PredTransition> LastTransitions;
1748  LastTransitions.emplace_back();
1749
1750  for (unsigned WriteIdx : OperWrites) {
1751    IdxVec WriteSeq;
1752    expandRWSequence(WriteIdx, WriteSeq, /*IsRead=*/false);
1753    LastTransitions[0].WriteSequences.emplace_back();
1754    SmallVectorImpl<unsigned> &Seq = LastTransitions[0].WriteSequences.back();
1755    Seq.append(WriteSeq.begin(), WriteSeq.end());
1756    LLVM_DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") ");
1757  }
1758  LLVM_DEBUG(dbgs() << " Reads: ");
1759  for (unsigned ReadIdx : OperReads) {
1760    IdxVec ReadSeq;
1761    expandRWSequence(ReadIdx, ReadSeq, /*IsRead=*/true);
1762    LastTransitions[0].ReadSequences.emplace_back();
1763    SmallVectorImpl<unsigned> &Seq = LastTransitions[0].ReadSequences.back();
1764    Seq.append(ReadSeq.begin(), ReadSeq.end());
1765    LLVM_DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") ");
1766  }
1767  LLVM_DEBUG(dbgs() << '\n');
1768
1769  LastTransitions = makePerProcessorTransitions(
1770      LastTransitions[0], llvm::is_contained(ProcIndices, 0)
1771                              ? ArrayRef<unsigned>(getAllProcIndices())
1772                              : ProcIndices);
1773  // Collect all PredTransitions for individual operands.
1774  // Iterate until no variant writes remain.
1775  bool SubstitutedAny;
1776  do {
1777    SubstitutedAny = false;
1778    PredTransitions Transitions(*this);
1779    for (const PredTransition &Trans : LastTransitions)
1780      SubstitutedAny |= Transitions.substituteVariants(Trans);
1781    LLVM_DEBUG(Transitions.dump());
1782    LastTransitions.swap(Transitions.TransVec);
1783  } while (SubstitutedAny);
1784
1785  // WARNING: We are about to mutate the SchedClasses vector. Do not refer to
1786  // OperWrites, OperReads, or ProcIndices after calling inferFromTransitions.
1787  inferFromTransitions(LastTransitions, FromClassIdx, *this);
1788}
1789
1790// Check if any processor resource group contains all resource records in
1791// SubUnits.
1792bool CodeGenSchedModels::hasSuperGroup(RecVec &SubUnits, CodeGenProcModel &PM) {
1793  for (Record *ProcResourceDef : PM.ProcResourceDefs) {
1794    if (!ProcResourceDef->isSubClassOf("ProcResGroup"))
1795      continue;
1796    RecVec SuperUnits = ProcResourceDef->getValueAsListOfDefs("Resources");
1797    RecIter RI = SubUnits.begin(), RE = SubUnits.end();
1798    for ( ; RI != RE; ++RI) {
1799      if (!is_contained(SuperUnits, *RI)) {
1800        break;
1801      }
1802    }
1803    if (RI == RE)
1804      return true;
1805  }
1806  return false;
1807}
1808
1809// Verify that overlapping groups have a common supergroup.
1810void CodeGenSchedModels::verifyProcResourceGroups(CodeGenProcModel &PM) {
1811  for (unsigned i = 0, e = PM.ProcResourceDefs.size(); i < e; ++i) {
1812    if (!PM.ProcResourceDefs[i]->isSubClassOf("ProcResGroup"))
1813      continue;
1814    RecVec CheckUnits =
1815      PM.ProcResourceDefs[i]->getValueAsListOfDefs("Resources");
1816    for (unsigned j = i+1; j < e; ++j) {
1817      if (!PM.ProcResourceDefs[j]->isSubClassOf("ProcResGroup"))
1818        continue;
1819      RecVec OtherUnits =
1820        PM.ProcResourceDefs[j]->getValueAsListOfDefs("Resources");
1821      if (std::find_first_of(CheckUnits.begin(), CheckUnits.end(),
1822                             OtherUnits.begin(), OtherUnits.end())
1823          != CheckUnits.end()) {
1824        // CheckUnits and OtherUnits overlap
1825        llvm::append_range(OtherUnits, CheckUnits);
1826        if (!hasSuperGroup(OtherUnits, PM)) {
1827          PrintFatalError((PM.ProcResourceDefs[i])->getLoc(),
1828                          "proc resource group overlaps with "
1829                          + PM.ProcResourceDefs[j]->getName()
1830                          + " but no supergroup contains both.");
1831        }
1832      }
1833    }
1834  }
1835}
1836
1837// Collect all the RegisterFile definitions available in this target.
1838void CodeGenSchedModels::collectRegisterFiles() {
1839  RecVec RegisterFileDefs = Records.getAllDerivedDefinitions("RegisterFile");
1840
1841  // RegisterFiles is the vector of CodeGenRegisterFile.
1842  for (Record *RF : RegisterFileDefs) {
1843    // For each register file definition, construct a CodeGenRegisterFile object
1844    // and add it to the appropriate scheduling model.
1845    CodeGenProcModel &PM = getProcModel(RF->getValueAsDef("SchedModel"));
1846    PM.RegisterFiles.emplace_back(CodeGenRegisterFile(RF->getName(),RF));
1847    CodeGenRegisterFile &CGRF = PM.RegisterFiles.back();
1848    CGRF.MaxMovesEliminatedPerCycle =
1849        RF->getValueAsInt("MaxMovesEliminatedPerCycle");
1850    CGRF.AllowZeroMoveEliminationOnly =
1851        RF->getValueAsBit("AllowZeroMoveEliminationOnly");
1852
1853    // Now set the number of physical registers as well as the cost of registers
1854    // in each register class.
1855    CGRF.NumPhysRegs = RF->getValueAsInt("NumPhysRegs");
1856    if (!CGRF.NumPhysRegs) {
1857      PrintFatalError(RF->getLoc(),
1858                      "Invalid RegisterFile with zero physical registers");
1859    }
1860
1861    RecVec RegisterClasses = RF->getValueAsListOfDefs("RegClasses");
1862    std::vector<int64_t> RegisterCosts = RF->getValueAsListOfInts("RegCosts");
1863    ListInit *MoveElimInfo = RF->getValueAsListInit("AllowMoveElimination");
1864    for (unsigned I = 0, E = RegisterClasses.size(); I < E; ++I) {
1865      int Cost = RegisterCosts.size() > I ? RegisterCosts[I] : 1;
1866
1867      bool AllowMoveElim = false;
1868      if (MoveElimInfo->size() > I) {
1869        BitInit *Val = cast<BitInit>(MoveElimInfo->getElement(I));
1870        AllowMoveElim = Val->getValue();
1871      }
1872
1873      CGRF.Costs.emplace_back(RegisterClasses[I], Cost, AllowMoveElim);
1874    }
1875  }
1876}
1877
1878// Collect and sort WriteRes, ReadAdvance, and ProcResources.
1879void CodeGenSchedModels::collectProcResources() {
1880  ProcResourceDefs = Records.getAllDerivedDefinitions("ProcResourceUnits");
1881  ProcResGroups = Records.getAllDerivedDefinitions("ProcResGroup");
1882
1883  // Add any subtarget-specific SchedReadWrites that are directly associated
1884  // with processor resources. Refer to the parent SchedClass's ProcIndices to
1885  // determine which processors they apply to.
1886  for (const CodeGenSchedClass &SC :
1887       make_range(schedClassBegin(), schedClassEnd())) {
1888    if (SC.ItinClassDef) {
1889      collectItinProcResources(SC.ItinClassDef);
1890      continue;
1891    }
1892
1893    // This class may have a default ReadWrite list which can be overriden by
1894    // InstRW definitions.
1895    for (Record *RW : SC.InstRWs) {
1896      Record *RWModelDef = RW->getValueAsDef("SchedModel");
1897      unsigned PIdx = getProcModel(RWModelDef).Index;
1898      IdxVec Writes, Reads;
1899      findRWs(RW->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
1900      collectRWResources(Writes, Reads, PIdx);
1901    }
1902
1903    collectRWResources(SC.Writes, SC.Reads, SC.ProcIndices);
1904  }
1905  // Add resources separately defined by each subtarget.
1906  RecVec WRDefs = Records.getAllDerivedDefinitions("WriteRes");
1907  for (Record *WR : WRDefs) {
1908    Record *ModelDef = WR->getValueAsDef("SchedModel");
1909    addWriteRes(WR, getProcModel(ModelDef).Index);
1910  }
1911  RecVec SWRDefs = Records.getAllDerivedDefinitions("SchedWriteRes");
1912  for (Record *SWR : SWRDefs) {
1913    Record *ModelDef = SWR->getValueAsDef("SchedModel");
1914    addWriteRes(SWR, getProcModel(ModelDef).Index);
1915  }
1916  RecVec RADefs = Records.getAllDerivedDefinitions("ReadAdvance");
1917  for (Record *RA : RADefs) {
1918    Record *ModelDef = RA->getValueAsDef("SchedModel");
1919    addReadAdvance(RA, getProcModel(ModelDef).Index);
1920  }
1921  RecVec SRADefs = Records.getAllDerivedDefinitions("SchedReadAdvance");
1922  for (Record *SRA : SRADefs) {
1923    if (SRA->getValueInit("SchedModel")->isComplete()) {
1924      Record *ModelDef = SRA->getValueAsDef("SchedModel");
1925      addReadAdvance(SRA, getProcModel(ModelDef).Index);
1926    }
1927  }
1928  // Add ProcResGroups that are defined within this processor model, which may
1929  // not be directly referenced but may directly specify a buffer size.
1930  RecVec ProcResGroups = Records.getAllDerivedDefinitions("ProcResGroup");
1931  for (Record *PRG : ProcResGroups) {
1932    if (!PRG->getValueInit("SchedModel")->isComplete())
1933      continue;
1934    CodeGenProcModel &PM = getProcModel(PRG->getValueAsDef("SchedModel"));
1935    if (!is_contained(PM.ProcResourceDefs, PRG))
1936      PM.ProcResourceDefs.push_back(PRG);
1937  }
1938  // Add ProcResourceUnits unconditionally.
1939  for (Record *PRU : Records.getAllDerivedDefinitions("ProcResourceUnits")) {
1940    if (!PRU->getValueInit("SchedModel")->isComplete())
1941      continue;
1942    CodeGenProcModel &PM = getProcModel(PRU->getValueAsDef("SchedModel"));
1943    if (!is_contained(PM.ProcResourceDefs, PRU))
1944      PM.ProcResourceDefs.push_back(PRU);
1945  }
1946  // Finalize each ProcModel by sorting the record arrays.
1947  for (CodeGenProcModel &PM : ProcModels) {
1948    llvm::sort(PM.WriteResDefs, LessRecord());
1949    llvm::sort(PM.ReadAdvanceDefs, LessRecord());
1950    llvm::sort(PM.ProcResourceDefs, LessRecord());
1951    LLVM_DEBUG(
1952        PM.dump(); dbgs() << "WriteResDefs: "; for (auto WriteResDef
1953                                                    : PM.WriteResDefs) {
1954          if (WriteResDef->isSubClassOf("WriteRes"))
1955            dbgs() << WriteResDef->getValueAsDef("WriteType")->getName() << " ";
1956          else
1957            dbgs() << WriteResDef->getName() << " ";
1958        } dbgs() << "\nReadAdvanceDefs: ";
1959        for (Record *ReadAdvanceDef
1960             : PM.ReadAdvanceDefs) {
1961          if (ReadAdvanceDef->isSubClassOf("ReadAdvance"))
1962            dbgs() << ReadAdvanceDef->getValueAsDef("ReadType")->getName()
1963                   << " ";
1964          else
1965            dbgs() << ReadAdvanceDef->getName() << " ";
1966        } dbgs()
1967        << "\nProcResourceDefs: ";
1968        for (Record *ProcResourceDef
1969             : PM.ProcResourceDefs) {
1970          dbgs() << ProcResourceDef->getName() << " ";
1971        } dbgs()
1972        << '\n');
1973    verifyProcResourceGroups(PM);
1974  }
1975
1976  ProcResourceDefs.clear();
1977  ProcResGroups.clear();
1978}
1979
1980void CodeGenSchedModels::checkCompleteness() {
1981  bool Complete = true;
1982  for (const CodeGenProcModel &ProcModel : procModels()) {
1983    const bool HasItineraries = ProcModel.hasItineraries();
1984    if (!ProcModel.ModelDef->getValueAsBit("CompleteModel"))
1985      continue;
1986    for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
1987      if (Inst->hasNoSchedulingInfo)
1988        continue;
1989      if (ProcModel.isUnsupported(*Inst))
1990        continue;
1991      unsigned SCIdx = getSchedClassIdx(*Inst);
1992      if (!SCIdx) {
1993        if (Inst->TheDef->isValueUnset("SchedRW")) {
1994          PrintError(Inst->TheDef->getLoc(),
1995                     "No schedule information for instruction '" +
1996                         Inst->TheDef->getName() + "' in SchedMachineModel '" +
1997                     ProcModel.ModelDef->getName() + "'");
1998          Complete = false;
1999        }
2000        continue;
2001      }
2002
2003      const CodeGenSchedClass &SC = getSchedClass(SCIdx);
2004      if (!SC.Writes.empty())
2005        continue;
2006      if (HasItineraries && SC.ItinClassDef != nullptr &&
2007          SC.ItinClassDef->getName() != "NoItinerary")
2008        continue;
2009
2010      const RecVec &InstRWs = SC.InstRWs;
2011      auto I = find_if(InstRWs, [&ProcModel](const Record *R) {
2012        return R->getValueAsDef("SchedModel") == ProcModel.ModelDef;
2013      });
2014      if (I == InstRWs.end()) {
2015        PrintError(Inst->TheDef->getLoc(), "'" + ProcModel.ModelName +
2016                                               "' lacks information for '" +
2017                                               Inst->TheDef->getName() + "'");
2018        Complete = false;
2019      }
2020    }
2021  }
2022  if (!Complete) {
2023    errs() << "\n\nIncomplete schedule models found.\n"
2024      << "- Consider setting 'CompleteModel = 0' while developing new models.\n"
2025      << "- Pseudo instructions can be marked with 'hasNoSchedulingInfo = 1'.\n"
2026      << "- Instructions should usually have Sched<[...]> as a superclass, "
2027         "you may temporarily use an empty list.\n"
2028      << "- Instructions related to unsupported features can be excluded with "
2029         "list<Predicate> UnsupportedFeatures = [HasA,..,HasY]; in the "
2030         "processor model.\n\n";
2031    PrintFatalError("Incomplete schedule model");
2032  }
2033}
2034
2035// Collect itinerary class resources for each processor.
2036void CodeGenSchedModels::collectItinProcResources(Record *ItinClassDef) {
2037  for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) {
2038    const CodeGenProcModel &PM = ProcModels[PIdx];
2039    // For all ItinRW entries.
2040    bool HasMatch = false;
2041    for (RecIter II = PM.ItinRWDefs.begin(), IE = PM.ItinRWDefs.end();
2042         II != IE; ++II) {
2043      RecVec Matched = (*II)->getValueAsListOfDefs("MatchedItinClasses");
2044      if (!llvm::is_contained(Matched, ItinClassDef))
2045        continue;
2046      if (HasMatch)
2047        PrintFatalError((*II)->getLoc(), "Duplicate itinerary class "
2048                        + ItinClassDef->getName()
2049                        + " in ItinResources for " + PM.ModelName);
2050      HasMatch = true;
2051      IdxVec Writes, Reads;
2052      findRWs((*II)->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
2053      collectRWResources(Writes, Reads, PIdx);
2054    }
2055  }
2056}
2057
2058void CodeGenSchedModels::collectRWResources(unsigned RWIdx, bool IsRead,
2059                                            ArrayRef<unsigned> ProcIndices) {
2060  const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead);
2061  if (SchedRW.TheDef) {
2062    if (!IsRead && SchedRW.TheDef->isSubClassOf("SchedWriteRes")) {
2063      for (unsigned Idx : ProcIndices)
2064        addWriteRes(SchedRW.TheDef, Idx);
2065    }
2066    else if (IsRead && SchedRW.TheDef->isSubClassOf("SchedReadAdvance")) {
2067      for (unsigned Idx : ProcIndices)
2068        addReadAdvance(SchedRW.TheDef, Idx);
2069    }
2070  }
2071  for (auto *Alias : SchedRW.Aliases) {
2072    IdxVec AliasProcIndices;
2073    if (Alias->getValueInit("SchedModel")->isComplete()) {
2074      AliasProcIndices.push_back(
2075          getProcModel(Alias->getValueAsDef("SchedModel")).Index);
2076    } else
2077      AliasProcIndices = ProcIndices;
2078    const CodeGenSchedRW &AliasRW = getSchedRW(Alias->getValueAsDef("AliasRW"));
2079    assert(AliasRW.IsRead == IsRead && "cannot alias reads to writes");
2080
2081    IdxVec ExpandedRWs;
2082    expandRWSequence(AliasRW.Index, ExpandedRWs, IsRead);
2083    for (unsigned int ExpandedRW : ExpandedRWs) {
2084      collectRWResources(ExpandedRW, IsRead, AliasProcIndices);
2085    }
2086  }
2087}
2088
2089// Collect resources for a set of read/write types and processor indices.
2090void CodeGenSchedModels::collectRWResources(ArrayRef<unsigned> Writes,
2091                                            ArrayRef<unsigned> Reads,
2092                                            ArrayRef<unsigned> ProcIndices) {
2093  for (unsigned Idx : Writes)
2094    collectRWResources(Idx, /*IsRead=*/false, ProcIndices);
2095
2096  for (unsigned Idx : Reads)
2097    collectRWResources(Idx, /*IsRead=*/true, ProcIndices);
2098}
2099
2100// Find the processor's resource units for this kind of resource.
2101Record *CodeGenSchedModels::findProcResUnits(Record *ProcResKind,
2102                                             const CodeGenProcModel &PM,
2103                                             ArrayRef<SMLoc> Loc) const {
2104  if (ProcResKind->isSubClassOf("ProcResourceUnits"))
2105    return ProcResKind;
2106
2107  Record *ProcUnitDef = nullptr;
2108  assert(!ProcResourceDefs.empty());
2109  assert(!ProcResGroups.empty());
2110
2111  for (Record *ProcResDef : ProcResourceDefs) {
2112    if (ProcResDef->getValueAsDef("Kind") == ProcResKind
2113        && ProcResDef->getValueAsDef("SchedModel") == PM.ModelDef) {
2114      if (ProcUnitDef) {
2115        PrintFatalError(Loc,
2116                        "Multiple ProcessorResourceUnits associated with "
2117                        + ProcResKind->getName());
2118      }
2119      ProcUnitDef = ProcResDef;
2120    }
2121  }
2122  for (Record *ProcResGroup : ProcResGroups) {
2123    if (ProcResGroup == ProcResKind
2124        && ProcResGroup->getValueAsDef("SchedModel") == PM.ModelDef) {
2125      if (ProcUnitDef) {
2126        PrintFatalError(Loc,
2127                        "Multiple ProcessorResourceUnits associated with "
2128                        + ProcResKind->getName());
2129      }
2130      ProcUnitDef = ProcResGroup;
2131    }
2132  }
2133  if (!ProcUnitDef) {
2134    PrintFatalError(Loc,
2135                    "No ProcessorResources associated with "
2136                    + ProcResKind->getName());
2137  }
2138  return ProcUnitDef;
2139}
2140
2141// Iteratively add a resource and its super resources.
2142void CodeGenSchedModels::addProcResource(Record *ProcResKind,
2143                                         CodeGenProcModel &PM,
2144                                         ArrayRef<SMLoc> Loc) {
2145  while (true) {
2146    Record *ProcResUnits = findProcResUnits(ProcResKind, PM, Loc);
2147
2148    // See if this ProcResource is already associated with this processor.
2149    if (is_contained(PM.ProcResourceDefs, ProcResUnits))
2150      return;
2151
2152    PM.ProcResourceDefs.push_back(ProcResUnits);
2153    if (ProcResUnits->isSubClassOf("ProcResGroup"))
2154      return;
2155
2156    if (!ProcResUnits->getValueInit("Super")->isComplete())
2157      return;
2158
2159    ProcResKind = ProcResUnits->getValueAsDef("Super");
2160  }
2161}
2162
2163// Add resources for a SchedWrite to this processor if they don't exist.
2164void CodeGenSchedModels::addWriteRes(Record *ProcWriteResDef, unsigned PIdx) {
2165  assert(PIdx && "don't add resources to an invalid Processor model");
2166
2167  RecVec &WRDefs = ProcModels[PIdx].WriteResDefs;
2168  if (is_contained(WRDefs, ProcWriteResDef))
2169    return;
2170  WRDefs.push_back(ProcWriteResDef);
2171
2172  // Visit ProcResourceKinds referenced by the newly discovered WriteRes.
2173  RecVec ProcResDefs = ProcWriteResDef->getValueAsListOfDefs("ProcResources");
2174  for (auto *ProcResDef : ProcResDefs) {
2175    addProcResource(ProcResDef, ProcModels[PIdx], ProcWriteResDef->getLoc());
2176  }
2177}
2178
2179// Add resources for a ReadAdvance to this processor if they don't exist.
2180void CodeGenSchedModels::addReadAdvance(Record *ProcReadAdvanceDef,
2181                                        unsigned PIdx) {
2182  RecVec &RADefs = ProcModels[PIdx].ReadAdvanceDefs;
2183  if (is_contained(RADefs, ProcReadAdvanceDef))
2184    return;
2185  RADefs.push_back(ProcReadAdvanceDef);
2186}
2187
2188unsigned CodeGenProcModel::getProcResourceIdx(Record *PRDef) const {
2189  RecIter PRPos = find(ProcResourceDefs, PRDef);
2190  if (PRPos == ProcResourceDefs.end())
2191    PrintFatalError(PRDef->getLoc(), "ProcResource def is not included in "
2192                    "the ProcResources list for " + ModelName);
2193  // Idx=0 is reserved for invalid.
2194  return 1 + (PRPos - ProcResourceDefs.begin());
2195}
2196
2197bool CodeGenProcModel::isUnsupported(const CodeGenInstruction &Inst) const {
2198  for (const Record *TheDef : UnsupportedFeaturesDefs) {
2199    for (const Record *PredDef : Inst.TheDef->getValueAsListOfDefs("Predicates")) {
2200      if (TheDef->getName() == PredDef->getName())
2201        return true;
2202    }
2203  }
2204  return false;
2205}
2206
2207#ifndef NDEBUG
2208void CodeGenProcModel::dump() const {
2209  dbgs() << Index << ": " << ModelName << " "
2210         << (ModelDef ? ModelDef->getName() : "inferred") << " "
2211         << (ItinsDef ? ItinsDef->getName() : "no itinerary") << '\n';
2212}
2213
2214void CodeGenSchedRW::dump() const {
2215  dbgs() << Name << (IsVariadic ? " (V) " : " ");
2216  if (IsSequence) {
2217    dbgs() << "(";
2218    dumpIdxVec(Sequence);
2219    dbgs() << ")";
2220  }
2221}
2222
2223void CodeGenSchedClass::dump(const CodeGenSchedModels* SchedModels) const {
2224  dbgs() << "SCHEDCLASS " << Index << ":" << Name << '\n'
2225         << "  Writes: ";
2226  for (unsigned i = 0, N = Writes.size(); i < N; ++i) {
2227    SchedModels->getSchedWrite(Writes[i]).dump();
2228    if (i < N-1) {
2229      dbgs() << '\n';
2230      dbgs().indent(10);
2231    }
2232  }
2233  dbgs() << "\n  Reads: ";
2234  for (unsigned i = 0, N = Reads.size(); i < N; ++i) {
2235    SchedModels->getSchedRead(Reads[i]).dump();
2236    if (i < N-1) {
2237      dbgs() << '\n';
2238      dbgs().indent(10);
2239    }
2240  }
2241  dbgs() << "\n  ProcIdx: "; dumpIdxVec(ProcIndices);
2242  if (!Transitions.empty()) {
2243    dbgs() << "\n Transitions for Proc ";
2244    for (const CodeGenSchedTransition &Transition : Transitions) {
2245      dbgs() << Transition.ProcIndex << ", ";
2246    }
2247  }
2248  dbgs() << '\n';
2249}
2250
2251void PredTransitions::dump() const {
2252  dbgs() << "Expanded Variants:\n";
2253  for (const auto &TI : TransVec) {
2254    dbgs() << "{";
2255    ListSeparator LS;
2256    for (const PredCheck &PC : TI.PredTerm)
2257      dbgs() << LS << SchedModels.getSchedRW(PC.RWIdx, PC.IsRead).Name << ":"
2258             << PC.Predicate->getName();
2259    dbgs() << "},\n  => {";
2260    for (SmallVectorImpl<SmallVector<unsigned, 4>>::const_iterator
2261             WSI = TI.WriteSequences.begin(),
2262             WSE = TI.WriteSequences.end();
2263         WSI != WSE; ++WSI) {
2264      dbgs() << "(";
2265      ListSeparator LS;
2266      for (unsigned N : *WSI)
2267        dbgs() << LS << SchedModels.getSchedWrite(N).Name;
2268      dbgs() << "),";
2269    }
2270    dbgs() << "}\n";
2271  }
2272}
2273#endif // NDEBUG
2274