1//===-- DifferenceEngine.cpp - Structural function/module comparison ------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This header defines the implementation of the LLVM difference
10// engine, which structurally compares global values within a module.
11//
12//===----------------------------------------------------------------------===//
13
14#include "DifferenceEngine.h"
15#include "llvm/ADT/DenseMap.h"
16#include "llvm/ADT/DenseSet.h"
17#include "llvm/ADT/SmallString.h"
18#include "llvm/ADT/SmallVector.h"
19#include "llvm/ADT/StringSet.h"
20#include "llvm/IR/BasicBlock.h"
21#include "llvm/IR/CFG.h"
22#include "llvm/IR/Constants.h"
23#include "llvm/IR/Function.h"
24#include "llvm/IR/Instructions.h"
25#include "llvm/IR/Module.h"
26#include "llvm/Support/ErrorHandling.h"
27#include "llvm/Support/raw_ostream.h"
28#include "llvm/Support/type_traits.h"
29#include <utility>
30
31using namespace llvm;
32
33namespace {
34
35/// A priority queue, implemented as a heap.
36template <class T, class Sorter, unsigned InlineCapacity>
37class PriorityQueue {
38  Sorter Precedes;
39  llvm::SmallVector<T, InlineCapacity> Storage;
40
41public:
42  PriorityQueue(const Sorter &Precedes) : Precedes(Precedes) {}
43
44  /// Checks whether the heap is empty.
45  bool empty() const { return Storage.empty(); }
46
47  /// Insert a new value on the heap.
48  void insert(const T &V) {
49    unsigned Index = Storage.size();
50    Storage.push_back(V);
51    if (Index == 0) return;
52
53    T *data = Storage.data();
54    while (true) {
55      unsigned Target = (Index + 1) / 2 - 1;
56      if (!Precedes(data[Index], data[Target])) return;
57      std::swap(data[Index], data[Target]);
58      if (Target == 0) return;
59      Index = Target;
60    }
61  }
62
63  /// Remove the minimum value in the heap.  Only valid on a non-empty heap.
64  T remove_min() {
65    assert(!empty());
66    T tmp = Storage[0];
67
68    unsigned NewSize = Storage.size() - 1;
69    if (NewSize) {
70      // Move the slot at the end to the beginning.
71      if (std::is_trivially_copyable<T>::value)
72        Storage[0] = Storage[NewSize];
73      else
74        std::swap(Storage[0], Storage[NewSize]);
75
76      // Bubble the root up as necessary.
77      unsigned Index = 0;
78      while (true) {
79        // With a 1-based index, the children would be Index*2 and Index*2+1.
80        unsigned R = (Index + 1) * 2;
81        unsigned L = R - 1;
82
83        // If R is out of bounds, we're done after this in any case.
84        if (R >= NewSize) {
85          // If L is also out of bounds, we're done immediately.
86          if (L >= NewSize) break;
87
88          // Otherwise, test whether we should swap L and Index.
89          if (Precedes(Storage[L], Storage[Index]))
90            std::swap(Storage[L], Storage[Index]);
91          break;
92        }
93
94        // Otherwise, we need to compare with the smaller of L and R.
95        // Prefer R because it's closer to the end of the array.
96        unsigned IndexToTest = (Precedes(Storage[L], Storage[R]) ? L : R);
97
98        // If Index is >= the min of L and R, then heap ordering is restored.
99        if (!Precedes(Storage[IndexToTest], Storage[Index]))
100          break;
101
102        // Otherwise, keep bubbling up.
103        std::swap(Storage[IndexToTest], Storage[Index]);
104        Index = IndexToTest;
105      }
106    }
107    Storage.pop_back();
108
109    return tmp;
110  }
111};
112
113/// A function-scope difference engine.
114class FunctionDifferenceEngine {
115  DifferenceEngine &Engine;
116
117  // Some initializers may reference the variable we're currently checking. This
118  // can cause an infinite loop. The Saved[LR]HS ivars can be checked to prevent
119  // recursing.
120  const Value *SavedLHS;
121  const Value *SavedRHS;
122
123  // The current mapping from old local values to new local values.
124  DenseMap<const Value *, const Value *> Values;
125
126  // The current mapping from old blocks to new blocks.
127  DenseMap<const BasicBlock *, const BasicBlock *> Blocks;
128
129  // The tentative mapping from old local values while comparing a pair of
130  // basic blocks. Once the pair has been processed, the tentative mapping is
131  // committed to the Values map.
132  DenseSet<std::pair<const Value *, const Value *>> TentativeValues;
133
134  // Equivalence Assumptions
135  //
136  // For basic blocks in loops, some values in phi nodes may depend on
137  // values from not yet processed basic blocks in the loop. When encountering
138  // such values, we optimistically asssume their equivalence and store this
139  // assumption in a BlockDiffCandidate for the pair of compared BBs.
140  //
141  // Once we have diffed all BBs, for every BlockDiffCandidate, we check all
142  // stored assumptions using the Values map that stores proven equivalences
143  // between the old and new values, and report a diff if an assumption cannot
144  // be proven to be true.
145  //
146  // Note that after having made an assumption, all further determined
147  // equivalences implicitly depend on that assumption. These will not be
148  // reverted or reported if the assumption proves to be false, because these
149  // are considered indirect diffs caused by earlier direct diffs.
150  //
151  // We aim to avoid false negatives in llvm-diff, that is, ensure that
152  // whenever no diff is reported, the functions are indeed equal. If
153  // assumptions were made, this is not entirely clear, because in principle we
154  // could end up with a circular proof where the proof of equivalence of two
155  // nodes is depending on the assumption of their equivalence.
156  //
157  // To see that assumptions do not add false negatives, note that if we do not
158  // report a diff, this means that there is an equivalence mapping between old
159  // and new values that is consistent with all assumptions made. The circular
160  // dependency that exists on an IR value level does not exist at run time,
161  // because the values selected by the phi nodes must always already have been
162  // computed. Hence, we can prove equivalence of the old and new functions by
163  // considering step-wise parallel execution, and incrementally proving
164  // equivalence of every new computed value. Another way to think about it is
165  // to imagine cloning the loop BBs for every iteration, turning the loops
166  // into (possibly infinite) DAGs, and proving equivalence by induction on the
167  // iteration, using the computed value mapping.
168
169  // The class BlockDiffCandidate stores pairs which either have already been
170  // proven to differ, or pairs whose equivalence depends on assumptions to be
171  // verified later.
172  struct BlockDiffCandidate {
173    const BasicBlock *LBB;
174    const BasicBlock *RBB;
175    // Maps old values to assumed-to-be-equivalent new values
176    SmallDenseMap<const Value *, const Value *> EquivalenceAssumptions;
177    // If set, we already know the blocks differ.
178    bool KnownToDiffer;
179  };
180
181  // List of block diff candidates in the order found by processing.
182  // We generate reports in this order.
183  // For every LBB, there may only be one corresponding RBB.
184  SmallVector<BlockDiffCandidate> BlockDiffCandidates;
185  // Maps LBB to the index of its BlockDiffCandidate, if existing.
186  DenseMap<const BasicBlock *, uint64_t> BlockDiffCandidateIndices;
187
188  // Note: Every LBB must always be queried together with the same RBB.
189  // The returned reference is not permanently valid and should not be stored.
190  BlockDiffCandidate &getOrCreateBlockDiffCandidate(const BasicBlock *LBB,
191                                                    const BasicBlock *RBB) {
192    auto It = BlockDiffCandidateIndices.find(LBB);
193    // Check if LBB already has a diff candidate
194    if (It == BlockDiffCandidateIndices.end()) {
195      // Add new one
196      BlockDiffCandidateIndices[LBB] = BlockDiffCandidates.size();
197      BlockDiffCandidates.push_back(
198          {LBB, RBB, SmallDenseMap<const Value *, const Value *>(), false});
199      return BlockDiffCandidates.back();
200    }
201    // Use existing one
202    BlockDiffCandidate &Result = BlockDiffCandidates[It->second];
203    assert(Result.RBB == RBB && "Inconsistent basic block pairing!");
204    return Result;
205  }
206
207  // Optionally passed to equivalence checker functions, so these can add
208  // assumptions in BlockDiffCandidates. Its presence controls whether
209  // assumptions are generated.
210  struct AssumptionContext {
211    // The two basic blocks that need the two compared values to be equivalent.
212    const BasicBlock *LBB;
213    const BasicBlock *RBB;
214  };
215
216  unsigned getUnprocPredCount(const BasicBlock *Block) const {
217    unsigned Count = 0;
218    for (const_pred_iterator I = pred_begin(Block), E = pred_end(Block); I != E;
219         ++I)
220      if (!Blocks.count(*I)) Count++;
221    return Count;
222  }
223
224  typedef std::pair<const BasicBlock *, const BasicBlock *> BlockPair;
225
226  /// A type which sorts a priority queue by the number of unprocessed
227  /// predecessor blocks it has remaining.
228  ///
229  /// This is actually really expensive to calculate.
230  struct QueueSorter {
231    const FunctionDifferenceEngine &fde;
232    explicit QueueSorter(const FunctionDifferenceEngine &fde) : fde(fde) {}
233
234    bool operator()(BlockPair &Old, BlockPair &New) {
235      return fde.getUnprocPredCount(Old.first)
236           < fde.getUnprocPredCount(New.first);
237    }
238  };
239
240  /// A queue of unified blocks to process.
241  PriorityQueue<BlockPair, QueueSorter, 20> Queue;
242
243  /// Try to unify the given two blocks.  Enqueues them for processing
244  /// if they haven't already been processed.
245  ///
246  /// Returns true if there was a problem unifying them.
247  bool tryUnify(const BasicBlock *L, const BasicBlock *R) {
248    const BasicBlock *&Ref = Blocks[L];
249
250    if (Ref) {
251      if (Ref == R) return false;
252
253      Engine.logf("successor %l cannot be equivalent to %r; "
254                  "it's already equivalent to %r")
255        << L << R << Ref;
256      return true;
257    }
258
259    Ref = R;
260    Queue.insert(BlockPair(L, R));
261    return false;
262  }
263
264  /// Unifies two instructions, given that they're known not to have
265  /// structural differences.
266  void unify(const Instruction *L, const Instruction *R) {
267    DifferenceEngine::Context C(Engine, L, R);
268
269    bool Result = diff(L, R, true, true, true);
270    assert(!Result && "structural differences second time around?");
271    (void) Result;
272    if (!L->use_empty())
273      Values[L] = R;
274  }
275
276  void processQueue() {
277    while (!Queue.empty()) {
278      BlockPair Pair = Queue.remove_min();
279      diff(Pair.first, Pair.second);
280    }
281  }
282
283  void checkAndReportDiffCandidates() {
284    for (BlockDiffCandidate &BDC : BlockDiffCandidates) {
285
286      // Check assumptions
287      for (const auto &[L, R] : BDC.EquivalenceAssumptions) {
288        auto It = Values.find(L);
289        if (It == Values.end() || It->second != R) {
290          BDC.KnownToDiffer = true;
291          break;
292        }
293      }
294
295      // Run block diff if the BBs differ
296      if (BDC.KnownToDiffer) {
297        DifferenceEngine::Context C(Engine, BDC.LBB, BDC.RBB);
298        runBlockDiff(BDC.LBB->begin(), BDC.RBB->begin());
299      }
300    }
301  }
302
303  void diff(const BasicBlock *L, const BasicBlock *R) {
304    DifferenceEngine::Context C(Engine, L, R);
305
306    BasicBlock::const_iterator LI = L->begin(), LE = L->end();
307    BasicBlock::const_iterator RI = R->begin();
308
309    do {
310      assert(LI != LE && RI != R->end());
311      const Instruction *LeftI = &*LI, *RightI = &*RI;
312
313      // If the instructions differ, start the more sophisticated diff
314      // algorithm at the start of the block.
315      if (diff(LeftI, RightI, false, false, true)) {
316        TentativeValues.clear();
317        // Register (L, R) as diffing pair. Note that we could directly emit a
318        // block diff here, but this way we ensure all diffs are emitted in one
319        // consistent order, independent of whether the diffs were detected
320        // immediately or via invalid assumptions.
321        getOrCreateBlockDiffCandidate(L, R).KnownToDiffer = true;
322        return;
323      }
324
325      // Otherwise, tentatively unify them.
326      if (!LeftI->use_empty())
327        TentativeValues.insert(std::make_pair(LeftI, RightI));
328
329      ++LI;
330      ++RI;
331    } while (LI != LE); // This is sufficient: we can't get equality of
332                        // terminators if there are residual instructions.
333
334    // Unify everything in the block, non-tentatively this time.
335    TentativeValues.clear();
336    for (LI = L->begin(), RI = R->begin(); LI != LE; ++LI, ++RI)
337      unify(&*LI, &*RI);
338  }
339
340  bool matchForBlockDiff(const Instruction *L, const Instruction *R);
341  void runBlockDiff(BasicBlock::const_iterator LI,
342                    BasicBlock::const_iterator RI);
343
344  bool diffCallSites(const CallBase &L, const CallBase &R, bool Complain) {
345    // FIXME: call attributes
346    AssumptionContext AC = {L.getParent(), R.getParent()};
347    if (!equivalentAsOperands(L.getCalledOperand(), R.getCalledOperand(),
348                              &AC)) {
349      if (Complain) Engine.log("called functions differ");
350      return true;
351    }
352    if (L.arg_size() != R.arg_size()) {
353      if (Complain) Engine.log("argument counts differ");
354      return true;
355    }
356    for (unsigned I = 0, E = L.arg_size(); I != E; ++I)
357      if (!equivalentAsOperands(L.getArgOperand(I), R.getArgOperand(I), &AC)) {
358        if (Complain)
359          Engine.logf("arguments %l and %r differ")
360              << L.getArgOperand(I) << R.getArgOperand(I);
361        return true;
362      }
363    return false;
364  }
365
366  // If AllowAssumptions is enabled, whenever we encounter a pair of values
367  // that we cannot prove to be equivalent, we assume equivalence and store that
368  // assumption to be checked later in BlockDiffCandidates.
369  bool diff(const Instruction *L, const Instruction *R, bool Complain,
370            bool TryUnify, bool AllowAssumptions) {
371    // FIXME: metadata (if Complain is set)
372    AssumptionContext ACValue = {L->getParent(), R->getParent()};
373    // nullptr AssumptionContext disables assumption generation.
374    const AssumptionContext *AC = AllowAssumptions ? &ACValue : nullptr;
375
376    // Different opcodes always imply different operations.
377    if (L->getOpcode() != R->getOpcode()) {
378      if (Complain) Engine.log("different instruction types");
379      return true;
380    }
381
382    if (isa<CmpInst>(L)) {
383      if (cast<CmpInst>(L)->getPredicate()
384            != cast<CmpInst>(R)->getPredicate()) {
385        if (Complain) Engine.log("different predicates");
386        return true;
387      }
388    } else if (isa<CallInst>(L)) {
389      return diffCallSites(cast<CallInst>(*L), cast<CallInst>(*R), Complain);
390    } else if (isa<PHINode>(L)) {
391      const PHINode &LI = cast<PHINode>(*L);
392      const PHINode &RI = cast<PHINode>(*R);
393
394      // This is really weird;  type uniquing is broken?
395      if (LI.getType() != RI.getType()) {
396        if (!LI.getType()->isPointerTy() || !RI.getType()->isPointerTy()) {
397          if (Complain) Engine.log("different phi types");
398          return true;
399        }
400      }
401
402      if (LI.getNumIncomingValues() != RI.getNumIncomingValues()) {
403        if (Complain)
404          Engine.log("PHI node # of incoming values differ");
405        return true;
406      }
407
408      for (unsigned I = 0; I < LI.getNumIncomingValues(); ++I) {
409        if (TryUnify)
410          tryUnify(LI.getIncomingBlock(I), RI.getIncomingBlock(I));
411
412        if (!equivalentAsOperands(LI.getIncomingValue(I),
413                                  RI.getIncomingValue(I), AC)) {
414          if (Complain)
415            Engine.log("PHI node incoming values differ");
416          return true;
417        }
418      }
419
420      return false;
421
422    // Terminators.
423    } else if (isa<InvokeInst>(L)) {
424      const InvokeInst &LI = cast<InvokeInst>(*L);
425      const InvokeInst &RI = cast<InvokeInst>(*R);
426      if (diffCallSites(LI, RI, Complain))
427        return true;
428
429      if (TryUnify) {
430        tryUnify(LI.getNormalDest(), RI.getNormalDest());
431        tryUnify(LI.getUnwindDest(), RI.getUnwindDest());
432      }
433      return false;
434
435    } else if (isa<CallBrInst>(L)) {
436      const CallBrInst &LI = cast<CallBrInst>(*L);
437      const CallBrInst &RI = cast<CallBrInst>(*R);
438      if (LI.getNumIndirectDests() != RI.getNumIndirectDests()) {
439        if (Complain)
440          Engine.log("callbr # of indirect destinations differ");
441        return true;
442      }
443
444      // Perform the "try unify" step so that we can equate the indirect
445      // destinations before checking the call site.
446      for (unsigned I = 0; I < LI.getNumIndirectDests(); I++)
447        tryUnify(LI.getIndirectDest(I), RI.getIndirectDest(I));
448
449      if (diffCallSites(LI, RI, Complain))
450        return true;
451
452      if (TryUnify)
453        tryUnify(LI.getDefaultDest(), RI.getDefaultDest());
454      return false;
455
456    } else if (isa<BranchInst>(L)) {
457      const BranchInst *LI = cast<BranchInst>(L);
458      const BranchInst *RI = cast<BranchInst>(R);
459      if (LI->isConditional() != RI->isConditional()) {
460        if (Complain) Engine.log("branch conditionality differs");
461        return true;
462      }
463
464      if (LI->isConditional()) {
465        if (!equivalentAsOperands(LI->getCondition(), RI->getCondition(), AC)) {
466          if (Complain) Engine.log("branch conditions differ");
467          return true;
468        }
469        if (TryUnify) tryUnify(LI->getSuccessor(1), RI->getSuccessor(1));
470      }
471      if (TryUnify) tryUnify(LI->getSuccessor(0), RI->getSuccessor(0));
472      return false;
473
474    } else if (isa<IndirectBrInst>(L)) {
475      const IndirectBrInst *LI = cast<IndirectBrInst>(L);
476      const IndirectBrInst *RI = cast<IndirectBrInst>(R);
477      if (LI->getNumDestinations() != RI->getNumDestinations()) {
478        if (Complain) Engine.log("indirectbr # of destinations differ");
479        return true;
480      }
481
482      if (!equivalentAsOperands(LI->getAddress(), RI->getAddress(), AC)) {
483        if (Complain) Engine.log("indirectbr addresses differ");
484        return true;
485      }
486
487      if (TryUnify) {
488        for (unsigned i = 0; i < LI->getNumDestinations(); i++) {
489          tryUnify(LI->getDestination(i), RI->getDestination(i));
490        }
491      }
492      return false;
493
494    } else if (isa<SwitchInst>(L)) {
495      const SwitchInst *LI = cast<SwitchInst>(L);
496      const SwitchInst *RI = cast<SwitchInst>(R);
497      if (!equivalentAsOperands(LI->getCondition(), RI->getCondition(), AC)) {
498        if (Complain) Engine.log("switch conditions differ");
499        return true;
500      }
501      if (TryUnify) tryUnify(LI->getDefaultDest(), RI->getDefaultDest());
502
503      bool Difference = false;
504
505      DenseMap<const ConstantInt *, const BasicBlock *> LCases;
506      for (auto Case : LI->cases())
507        LCases[Case.getCaseValue()] = Case.getCaseSuccessor();
508
509      for (auto Case : RI->cases()) {
510        const ConstantInt *CaseValue = Case.getCaseValue();
511        const BasicBlock *LCase = LCases[CaseValue];
512        if (LCase) {
513          if (TryUnify)
514            tryUnify(LCase, Case.getCaseSuccessor());
515          LCases.erase(CaseValue);
516        } else if (Complain || !Difference) {
517          if (Complain)
518            Engine.logf("right switch has extra case %r") << CaseValue;
519          Difference = true;
520        }
521      }
522      if (!Difference)
523        for (DenseMap<const ConstantInt *, const BasicBlock *>::iterator
524                 I = LCases.begin(),
525                 E = LCases.end();
526             I != E; ++I) {
527          if (Complain)
528            Engine.logf("left switch has extra case %l") << I->first;
529          Difference = true;
530        }
531      return Difference;
532    } else if (isa<UnreachableInst>(L)) {
533      return false;
534    }
535
536    if (L->getNumOperands() != R->getNumOperands()) {
537      if (Complain) Engine.log("instructions have different operand counts");
538      return true;
539    }
540
541    for (unsigned I = 0, E = L->getNumOperands(); I != E; ++I) {
542      Value *LO = L->getOperand(I), *RO = R->getOperand(I);
543      if (!equivalentAsOperands(LO, RO, AC)) {
544        if (Complain) Engine.logf("operands %l and %r differ") << LO << RO;
545        return true;
546      }
547    }
548
549    return false;
550  }
551
552public:
553  bool equivalentAsOperands(const Constant *L, const Constant *R,
554                            const AssumptionContext *AC) {
555    // Use equality as a preliminary filter.
556    if (L == R)
557      return true;
558
559    if (L->getValueID() != R->getValueID())
560      return false;
561
562    // Ask the engine about global values.
563    if (isa<GlobalValue>(L))
564      return Engine.equivalentAsOperands(cast<GlobalValue>(L),
565                                         cast<GlobalValue>(R));
566
567    // Compare constant expressions structurally.
568    if (isa<ConstantExpr>(L))
569      return equivalentAsOperands(cast<ConstantExpr>(L), cast<ConstantExpr>(R),
570                                  AC);
571
572    // Constants of the "same type" don't always actually have the same
573    // type; I don't know why.  Just white-list them.
574    if (isa<ConstantPointerNull>(L) || isa<UndefValue>(L) || isa<ConstantAggregateZero>(L))
575      return true;
576
577    // Block addresses only match if we've already encountered the
578    // block.  FIXME: tentative matches?
579    if (isa<BlockAddress>(L))
580      return Blocks[cast<BlockAddress>(L)->getBasicBlock()]
581                 == cast<BlockAddress>(R)->getBasicBlock();
582
583    // If L and R are ConstantVectors, compare each element
584    if (isa<ConstantVector>(L)) {
585      const ConstantVector *CVL = cast<ConstantVector>(L);
586      const ConstantVector *CVR = cast<ConstantVector>(R);
587      if (CVL->getType()->getNumElements() != CVR->getType()->getNumElements())
588        return false;
589      for (unsigned i = 0; i < CVL->getType()->getNumElements(); i++) {
590        if (!equivalentAsOperands(CVL->getOperand(i), CVR->getOperand(i), AC))
591          return false;
592      }
593      return true;
594    }
595
596    // If L and R are ConstantArrays, compare the element count and types.
597    if (isa<ConstantArray>(L)) {
598      const ConstantArray *CAL = cast<ConstantArray>(L);
599      const ConstantArray *CAR = cast<ConstantArray>(R);
600      // Sometimes a type may be equivalent, but not uniquified---e.g. it may
601      // contain a GEP instruction. Do a deeper comparison of the types.
602      if (CAL->getType()->getNumElements() != CAR->getType()->getNumElements())
603        return false;
604
605      for (unsigned I = 0; I < CAL->getType()->getNumElements(); ++I) {
606        if (!equivalentAsOperands(CAL->getAggregateElement(I),
607                                  CAR->getAggregateElement(I), AC))
608          return false;
609      }
610
611      return true;
612    }
613
614    // If L and R are ConstantStructs, compare each field and type.
615    if (isa<ConstantStruct>(L)) {
616      const ConstantStruct *CSL = cast<ConstantStruct>(L);
617      const ConstantStruct *CSR = cast<ConstantStruct>(R);
618
619      const StructType *LTy = cast<StructType>(CSL->getType());
620      const StructType *RTy = cast<StructType>(CSR->getType());
621
622      // The StructTypes should have the same attributes. Don't use
623      // isLayoutIdentical(), because that just checks the element pointers,
624      // which may not work here.
625      if (LTy->getNumElements() != RTy->getNumElements() ||
626          LTy->isPacked() != RTy->isPacked())
627        return false;
628
629      for (unsigned I = 0; I < LTy->getNumElements(); I++) {
630        const Value *LAgg = CSL->getAggregateElement(I);
631        const Value *RAgg = CSR->getAggregateElement(I);
632
633        if (LAgg == SavedLHS || RAgg == SavedRHS) {
634          if (LAgg != SavedLHS || RAgg != SavedRHS)
635            // If the left and right operands aren't both re-analyzing the
636            // variable, then the initialiers don't match, so report "false".
637            // Otherwise, we skip these operands..
638            return false;
639
640          continue;
641        }
642
643        if (!equivalentAsOperands(LAgg, RAgg, AC)) {
644          return false;
645        }
646      }
647
648      return true;
649    }
650
651    return false;
652  }
653
654  bool equivalentAsOperands(const ConstantExpr *L, const ConstantExpr *R,
655                            const AssumptionContext *AC) {
656    if (L == R)
657      return true;
658
659    if (L->getOpcode() != R->getOpcode())
660      return false;
661
662    switch (L->getOpcode()) {
663    case Instruction::ICmp:
664    case Instruction::FCmp:
665      if (L->getPredicate() != R->getPredicate())
666        return false;
667      break;
668
669    case Instruction::GetElementPtr:
670      // FIXME: inbounds?
671      break;
672
673    default:
674      break;
675    }
676
677    if (L->getNumOperands() != R->getNumOperands())
678      return false;
679
680    for (unsigned I = 0, E = L->getNumOperands(); I != E; ++I) {
681      const auto *LOp = L->getOperand(I);
682      const auto *ROp = R->getOperand(I);
683
684      if (LOp == SavedLHS || ROp == SavedRHS) {
685        if (LOp != SavedLHS || ROp != SavedRHS)
686          // If the left and right operands aren't both re-analyzing the
687          // variable, then the initialiers don't match, so report "false".
688          // Otherwise, we skip these operands..
689          return false;
690
691        continue;
692      }
693
694      if (!equivalentAsOperands(LOp, ROp, AC))
695        return false;
696    }
697
698    return true;
699  }
700
701  // There are cases where we cannot determine whether two values are
702  // equivalent, because it depends on not yet processed basic blocks -- see the
703  // documentation on assumptions.
704  //
705  // AC is the context in which we are currently performing a diff.
706  // When we encounter a pair of values for which we can neither prove
707  // equivalence nor the opposite, we do the following:
708  //  * If AC is nullptr, we treat the pair as non-equivalent.
709  //  * If AC is set, we add an assumption for the basic blocks given by AC,
710  //    and treat the pair as equivalent. The assumption is checked later.
711  bool equivalentAsOperands(const Value *L, const Value *R,
712                            const AssumptionContext *AC) {
713    // Fall out if the values have different kind.
714    // This possibly shouldn't take priority over oracles.
715    if (L->getValueID() != R->getValueID())
716      return false;
717
718    // Value subtypes:  Argument, Constant, Instruction, BasicBlock,
719    //                  InlineAsm, MDNode, MDString, PseudoSourceValue
720
721    if (isa<Constant>(L))
722      return equivalentAsOperands(cast<Constant>(L), cast<Constant>(R), AC);
723
724    if (isa<Instruction>(L)) {
725      auto It = Values.find(L);
726      if (It != Values.end())
727        return It->second == R;
728
729      if (TentativeValues.count(std::make_pair(L, R)))
730        return true;
731
732      // L and R might be equivalent, this could depend on not yet processed
733      // basic blocks, so we cannot decide here.
734      if (AC) {
735        // Add an assumption, unless there is a conflict with an existing one
736        BlockDiffCandidate &BDC =
737            getOrCreateBlockDiffCandidate(AC->LBB, AC->RBB);
738        auto InsertionResult = BDC.EquivalenceAssumptions.insert({L, R});
739        if (!InsertionResult.second && InsertionResult.first->second != R) {
740          // We already have a conflicting equivalence assumption for L, so at
741          // least one must be wrong, and we know that there is a diff.
742          BDC.KnownToDiffer = true;
743          BDC.EquivalenceAssumptions.clear();
744          return false;
745        }
746        // Optimistically assume equivalence, and check later once all BBs
747        // have been processed.
748        return true;
749      }
750
751      // Assumptions disabled, so pessimistically assume non-equivalence.
752      return false;
753    }
754
755    if (isa<Argument>(L))
756      return Values[L] == R;
757
758    if (isa<BasicBlock>(L))
759      return Blocks[cast<BasicBlock>(L)] != R;
760
761    // Pretend everything else is identical.
762    return true;
763  }
764
765  // Avoid a gcc warning about accessing 'this' in an initializer.
766  FunctionDifferenceEngine *this_() { return this; }
767
768public:
769  FunctionDifferenceEngine(DifferenceEngine &Engine,
770                           const Value *SavedLHS = nullptr,
771                           const Value *SavedRHS = nullptr)
772      : Engine(Engine), SavedLHS(SavedLHS), SavedRHS(SavedRHS),
773        Queue(QueueSorter(*this_())) {}
774
775  void diff(const Function *L, const Function *R) {
776    assert(Values.empty() && "Multiple diffs per engine are not supported!");
777
778    if (L->arg_size() != R->arg_size())
779      Engine.log("different argument counts");
780
781    // Map the arguments.
782    for (Function::const_arg_iterator LI = L->arg_begin(), LE = L->arg_end(),
783                                      RI = R->arg_begin(), RE = R->arg_end();
784         LI != LE && RI != RE; ++LI, ++RI)
785      Values[&*LI] = &*RI;
786
787    tryUnify(&*L->begin(), &*R->begin());
788    processQueue();
789    checkAndReportDiffCandidates();
790  }
791};
792
793struct DiffEntry {
794  DiffEntry() : Cost(0) {}
795
796  unsigned Cost;
797  llvm::SmallVector<char, 8> Path; // actually of DifferenceEngine::DiffChange
798};
799
800bool FunctionDifferenceEngine::matchForBlockDiff(const Instruction *L,
801                                                 const Instruction *R) {
802  return !diff(L, R, false, false, false);
803}
804
805void FunctionDifferenceEngine::runBlockDiff(BasicBlock::const_iterator LStart,
806                                            BasicBlock::const_iterator RStart) {
807  BasicBlock::const_iterator LE = LStart->getParent()->end();
808  BasicBlock::const_iterator RE = RStart->getParent()->end();
809
810  unsigned NL = std::distance(LStart, LE);
811
812  SmallVector<DiffEntry, 20> Paths1(NL+1);
813  SmallVector<DiffEntry, 20> Paths2(NL+1);
814
815  DiffEntry *Cur = Paths1.data();
816  DiffEntry *Next = Paths2.data();
817
818  const unsigned LeftCost = 2;
819  const unsigned RightCost = 2;
820  const unsigned MatchCost = 0;
821
822  assert(TentativeValues.empty());
823
824  // Initialize the first column.
825  for (unsigned I = 0; I != NL+1; ++I) {
826    Cur[I].Cost = I * LeftCost;
827    for (unsigned J = 0; J != I; ++J)
828      Cur[I].Path.push_back(DC_left);
829  }
830
831  for (BasicBlock::const_iterator RI = RStart; RI != RE; ++RI) {
832    // Initialize the first row.
833    Next[0] = Cur[0];
834    Next[0].Cost += RightCost;
835    Next[0].Path.push_back(DC_right);
836
837    unsigned Index = 1;
838    for (BasicBlock::const_iterator LI = LStart; LI != LE; ++LI, ++Index) {
839      if (matchForBlockDiff(&*LI, &*RI)) {
840        Next[Index] = Cur[Index-1];
841        Next[Index].Cost += MatchCost;
842        Next[Index].Path.push_back(DC_match);
843        TentativeValues.insert(std::make_pair(&*LI, &*RI));
844      } else if (Next[Index-1].Cost <= Cur[Index].Cost) {
845        Next[Index] = Next[Index-1];
846        Next[Index].Cost += LeftCost;
847        Next[Index].Path.push_back(DC_left);
848      } else {
849        Next[Index] = Cur[Index];
850        Next[Index].Cost += RightCost;
851        Next[Index].Path.push_back(DC_right);
852      }
853    }
854
855    std::swap(Cur, Next);
856  }
857
858  // We don't need the tentative values anymore; everything from here
859  // on out should be non-tentative.
860  TentativeValues.clear();
861
862  SmallVectorImpl<char> &Path = Cur[NL].Path;
863  BasicBlock::const_iterator LI = LStart, RI = RStart;
864
865  DiffLogBuilder Diff(Engine.getConsumer());
866
867  // Drop trailing matches.
868  while (Path.size() && Path.back() == DC_match)
869    Path.pop_back();
870
871  // Skip leading matches.
872  SmallVectorImpl<char>::iterator
873    PI = Path.begin(), PE = Path.end();
874  while (PI != PE && *PI == DC_match) {
875    unify(&*LI, &*RI);
876    ++PI;
877    ++LI;
878    ++RI;
879  }
880
881  for (; PI != PE; ++PI) {
882    switch (static_cast<DiffChange>(*PI)) {
883    case DC_match:
884      assert(LI != LE && RI != RE);
885      {
886        const Instruction *L = &*LI, *R = &*RI;
887        unify(L, R);
888        Diff.addMatch(L, R);
889      }
890      ++LI; ++RI;
891      break;
892
893    case DC_left:
894      assert(LI != LE);
895      Diff.addLeft(&*LI);
896      ++LI;
897      break;
898
899    case DC_right:
900      assert(RI != RE);
901      Diff.addRight(&*RI);
902      ++RI;
903      break;
904    }
905  }
906
907  // Finishing unifying and complaining about the tails of the block,
908  // which should be matches all the way through.
909  while (LI != LE) {
910    assert(RI != RE);
911    unify(&*LI, &*RI);
912    ++LI;
913    ++RI;
914  }
915
916  // If the terminators have different kinds, but one is an invoke and the
917  // other is an unconditional branch immediately following a call, unify
918  // the results and the destinations.
919  const Instruction *LTerm = LStart->getParent()->getTerminator();
920  const Instruction *RTerm = RStart->getParent()->getTerminator();
921  if (isa<BranchInst>(LTerm) && isa<InvokeInst>(RTerm)) {
922    if (cast<BranchInst>(LTerm)->isConditional()) return;
923    BasicBlock::const_iterator I = LTerm->getIterator();
924    if (I == LStart->getParent()->begin()) return;
925    --I;
926    if (!isa<CallInst>(*I)) return;
927    const CallInst *LCall = cast<CallInst>(&*I);
928    const InvokeInst *RInvoke = cast<InvokeInst>(RTerm);
929    if (!equivalentAsOperands(LCall->getCalledOperand(),
930                              RInvoke->getCalledOperand(), nullptr))
931      return;
932    if (!LCall->use_empty())
933      Values[LCall] = RInvoke;
934    tryUnify(LTerm->getSuccessor(0), RInvoke->getNormalDest());
935  } else if (isa<InvokeInst>(LTerm) && isa<BranchInst>(RTerm)) {
936    if (cast<BranchInst>(RTerm)->isConditional()) return;
937    BasicBlock::const_iterator I = RTerm->getIterator();
938    if (I == RStart->getParent()->begin()) return;
939    --I;
940    if (!isa<CallInst>(*I)) return;
941    const CallInst *RCall = cast<CallInst>(I);
942    const InvokeInst *LInvoke = cast<InvokeInst>(LTerm);
943    if (!equivalentAsOperands(LInvoke->getCalledOperand(),
944                              RCall->getCalledOperand(), nullptr))
945      return;
946    if (!LInvoke->use_empty())
947      Values[LInvoke] = RCall;
948    tryUnify(LInvoke->getNormalDest(), RTerm->getSuccessor(0));
949  }
950}
951}
952
953void DifferenceEngine::Oracle::anchor() { }
954
955void DifferenceEngine::diff(const Function *L, const Function *R) {
956  Context C(*this, L, R);
957
958  // FIXME: types
959  // FIXME: attributes and CC
960  // FIXME: parameter attributes
961
962  // If both are declarations, we're done.
963  if (L->empty() && R->empty())
964    return;
965  else if (L->empty())
966    log("left function is declaration, right function is definition");
967  else if (R->empty())
968    log("right function is declaration, left function is definition");
969  else
970    FunctionDifferenceEngine(*this).diff(L, R);
971}
972
973void DifferenceEngine::diff(const Module *L, const Module *R) {
974  StringSet<> LNames;
975  SmallVector<std::pair<const Function *, const Function *>, 20> Queue;
976
977  unsigned LeftAnonCount = 0;
978  unsigned RightAnonCount = 0;
979
980  for (Module::const_iterator I = L->begin(), E = L->end(); I != E; ++I) {
981    const Function *LFn = &*I;
982    StringRef Name = LFn->getName();
983    if (Name.empty()) {
984      ++LeftAnonCount;
985      continue;
986    }
987
988    LNames.insert(Name);
989
990    if (Function *RFn = R->getFunction(LFn->getName()))
991      Queue.push_back(std::make_pair(LFn, RFn));
992    else
993      logf("function %l exists only in left module") << LFn;
994  }
995
996  for (Module::const_iterator I = R->begin(), E = R->end(); I != E; ++I) {
997    const Function *RFn = &*I;
998    StringRef Name = RFn->getName();
999    if (Name.empty()) {
1000      ++RightAnonCount;
1001      continue;
1002    }
1003
1004    if (!LNames.count(Name))
1005      logf("function %r exists only in right module") << RFn;
1006  }
1007
1008  if (LeftAnonCount != 0 || RightAnonCount != 0) {
1009    SmallString<32> Tmp;
1010    logf(("not comparing " + Twine(LeftAnonCount) +
1011          " anonymous functions in the left module and " +
1012          Twine(RightAnonCount) + " in the right module")
1013             .toStringRef(Tmp));
1014  }
1015
1016  for (SmallVectorImpl<std::pair<const Function *, const Function *>>::iterator
1017           I = Queue.begin(),
1018           E = Queue.end();
1019       I != E; ++I)
1020    diff(I->first, I->second);
1021}
1022
1023bool DifferenceEngine::equivalentAsOperands(const GlobalValue *L,
1024                                            const GlobalValue *R) {
1025  if (globalValueOracle) return (*globalValueOracle)(L, R);
1026
1027  if (isa<GlobalVariable>(L) && isa<GlobalVariable>(R)) {
1028    const GlobalVariable *GVL = cast<GlobalVariable>(L);
1029    const GlobalVariable *GVR = cast<GlobalVariable>(R);
1030    if (GVL->hasLocalLinkage() && GVL->hasUniqueInitializer() &&
1031        GVR->hasLocalLinkage() && GVR->hasUniqueInitializer())
1032      return FunctionDifferenceEngine(*this, GVL, GVR)
1033          .equivalentAsOperands(GVL->getInitializer(), GVR->getInitializer(),
1034                                nullptr);
1035  }
1036
1037  return L->getName() == R->getName();
1038}
1039