1//===- SCCPSolver.cpp - SCCP Utility --------------------------- *- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// \file
10// This file implements the Sparse Conditional Constant Propagation (SCCP)
11// utility.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/Utils/SCCPSolver.h"
16#include "llvm/Analysis/ConstantFolding.h"
17#include "llvm/Analysis/InstructionSimplify.h"
18#include "llvm/Analysis/ValueLattice.h"
19#include "llvm/Analysis/ValueLatticeUtils.h"
20#include "llvm/IR/InstVisitor.h"
21#include "llvm/Support/Casting.h"
22#include "llvm/Support/Debug.h"
23#include "llvm/Support/ErrorHandling.h"
24#include "llvm/Support/raw_ostream.h"
25#include "llvm/Transforms/Utils/Local.h"
26#include <cassert>
27#include <utility>
28#include <vector>
29
30using namespace llvm;
31
32#define DEBUG_TYPE "sccp"
33
34// The maximum number of range extensions allowed for operations requiring
35// widening.
36static const unsigned MaxNumRangeExtensions = 10;
37
38/// Returns MergeOptions with MaxWidenSteps set to MaxNumRangeExtensions.
39static ValueLatticeElement::MergeOptions getMaxWidenStepsOpts() {
40  return ValueLatticeElement::MergeOptions().setMaxWidenSteps(
41      MaxNumRangeExtensions);
42}
43
44namespace llvm {
45
46bool SCCPSolver::isConstant(const ValueLatticeElement &LV) {
47  return LV.isConstant() ||
48         (LV.isConstantRange() && LV.getConstantRange().isSingleElement());
49}
50
51bool SCCPSolver::isOverdefined(const ValueLatticeElement &LV) {
52  return !LV.isUnknownOrUndef() && !SCCPSolver::isConstant(LV);
53}
54
55static bool canRemoveInstruction(Instruction *I) {
56  if (wouldInstructionBeTriviallyDead(I))
57    return true;
58
59  // Some instructions can be handled but are rejected above. Catch
60  // those cases by falling through to here.
61  // TODO: Mark globals as being constant earlier, so
62  // TODO: wouldInstructionBeTriviallyDead() knows that atomic loads
63  // TODO: are safe to remove.
64  return isa<LoadInst>(I);
65}
66
67bool SCCPSolver::tryToReplaceWithConstant(Value *V) {
68  Constant *Const = nullptr;
69  if (V->getType()->isStructTy()) {
70    std::vector<ValueLatticeElement> IVs = getStructLatticeValueFor(V);
71    if (llvm::any_of(IVs, isOverdefined))
72      return false;
73    std::vector<Constant *> ConstVals;
74    auto *ST = cast<StructType>(V->getType());
75    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
76      ValueLatticeElement V = IVs[i];
77      ConstVals.push_back(SCCPSolver::isConstant(V)
78                              ? getConstant(V)
79                              : UndefValue::get(ST->getElementType(i)));
80    }
81    Const = ConstantStruct::get(ST, ConstVals);
82  } else {
83    const ValueLatticeElement &IV = getLatticeValueFor(V);
84    if (isOverdefined(IV))
85      return false;
86
87    Const = SCCPSolver::isConstant(IV) ? getConstant(IV)
88                                       : UndefValue::get(V->getType());
89  }
90  assert(Const && "Constant is nullptr here!");
91
92  // Replacing `musttail` instructions with constant breaks `musttail` invariant
93  // unless the call itself can be removed.
94  // Calls with "clang.arc.attachedcall" implicitly use the return value and
95  // those uses cannot be updated with a constant.
96  CallBase *CB = dyn_cast<CallBase>(V);
97  if (CB && ((CB->isMustTailCall() &&
98              !canRemoveInstruction(CB)) ||
99             CB->getOperandBundle(LLVMContext::OB_clang_arc_attachedcall))) {
100    Function *F = CB->getCalledFunction();
101
102    // Don't zap returns of the callee
103    if (F)
104      addToMustPreserveReturnsInFunctions(F);
105
106    LLVM_DEBUG(dbgs() << "  Can\'t treat the result of call " << *CB
107                      << " as a constant\n");
108    return false;
109  }
110
111  LLVM_DEBUG(dbgs() << "  Constant: " << *Const << " = " << *V << '\n');
112
113  // Replaces all of the uses of a variable with uses of the constant.
114  V->replaceAllUsesWith(Const);
115  return true;
116}
117
118/// Try to replace signed instructions with their unsigned equivalent.
119static bool replaceSignedInst(SCCPSolver &Solver,
120                              SmallPtrSetImpl<Value *> &InsertedValues,
121                              Instruction &Inst) {
122  // Determine if a signed value is known to be >= 0.
123  auto isNonNegative = [&Solver](Value *V) {
124    // If this value was constant-folded, it may not have a solver entry.
125    // Handle integers. Otherwise, return false.
126    if (auto *C = dyn_cast<Constant>(V)) {
127      auto *CInt = dyn_cast<ConstantInt>(C);
128      return CInt && !CInt->isNegative();
129    }
130    const ValueLatticeElement &IV = Solver.getLatticeValueFor(V);
131    return IV.isConstantRange(/*UndefAllowed=*/false) &&
132           IV.getConstantRange().isAllNonNegative();
133  };
134
135  Instruction *NewInst = nullptr;
136  switch (Inst.getOpcode()) {
137  // Note: We do not fold sitofp -> uitofp here because that could be more
138  // expensive in codegen and may not be reversible in the backend.
139  case Instruction::SExt: {
140    // If the source value is not negative, this is a zext.
141    Value *Op0 = Inst.getOperand(0);
142    if (InsertedValues.count(Op0) || !isNonNegative(Op0))
143      return false;
144    NewInst = new ZExtInst(Op0, Inst.getType(), "", &Inst);
145    break;
146  }
147  case Instruction::AShr: {
148    // If the shifted value is not negative, this is a logical shift right.
149    Value *Op0 = Inst.getOperand(0);
150    if (InsertedValues.count(Op0) || !isNonNegative(Op0))
151      return false;
152    NewInst = BinaryOperator::CreateLShr(Op0, Inst.getOperand(1), "", &Inst);
153    break;
154  }
155  case Instruction::SDiv:
156  case Instruction::SRem: {
157    // If both operands are not negative, this is the same as udiv/urem.
158    Value *Op0 = Inst.getOperand(0), *Op1 = Inst.getOperand(1);
159    if (InsertedValues.count(Op0) || InsertedValues.count(Op1) ||
160        !isNonNegative(Op0) || !isNonNegative(Op1))
161      return false;
162    auto NewOpcode = Inst.getOpcode() == Instruction::SDiv ? Instruction::UDiv
163                                                           : Instruction::URem;
164    NewInst = BinaryOperator::Create(NewOpcode, Op0, Op1, "", &Inst);
165    break;
166  }
167  default:
168    return false;
169  }
170
171  // Wire up the new instruction and update state.
172  assert(NewInst && "Expected replacement instruction");
173  NewInst->takeName(&Inst);
174  InsertedValues.insert(NewInst);
175  Inst.replaceAllUsesWith(NewInst);
176  Solver.removeLatticeValueFor(&Inst);
177  Inst.eraseFromParent();
178  return true;
179}
180
181bool SCCPSolver::simplifyInstsInBlock(BasicBlock &BB,
182                                      SmallPtrSetImpl<Value *> &InsertedValues,
183                                      Statistic &InstRemovedStat,
184                                      Statistic &InstReplacedStat) {
185  bool MadeChanges = false;
186  for (Instruction &Inst : make_early_inc_range(BB)) {
187    if (Inst.getType()->isVoidTy())
188      continue;
189    if (tryToReplaceWithConstant(&Inst)) {
190      if (canRemoveInstruction(&Inst))
191        Inst.eraseFromParent();
192
193      MadeChanges = true;
194      ++InstRemovedStat;
195    } else if (replaceSignedInst(*this, InsertedValues, Inst)) {
196      MadeChanges = true;
197      ++InstReplacedStat;
198    }
199  }
200  return MadeChanges;
201}
202
203bool SCCPSolver::removeNonFeasibleEdges(BasicBlock *BB, DomTreeUpdater &DTU,
204                                        BasicBlock *&NewUnreachableBB) const {
205  SmallPtrSet<BasicBlock *, 8> FeasibleSuccessors;
206  bool HasNonFeasibleEdges = false;
207  for (BasicBlock *Succ : successors(BB)) {
208    if (isEdgeFeasible(BB, Succ))
209      FeasibleSuccessors.insert(Succ);
210    else
211      HasNonFeasibleEdges = true;
212  }
213
214  // All edges feasible, nothing to do.
215  if (!HasNonFeasibleEdges)
216    return false;
217
218  // SCCP can only determine non-feasible edges for br, switch and indirectbr.
219  Instruction *TI = BB->getTerminator();
220  assert((isa<BranchInst>(TI) || isa<SwitchInst>(TI) ||
221          isa<IndirectBrInst>(TI)) &&
222         "Terminator must be a br, switch or indirectbr");
223
224  if (FeasibleSuccessors.size() == 0) {
225    // Branch on undef/poison, replace with unreachable.
226    SmallPtrSet<BasicBlock *, 8> SeenSuccs;
227    SmallVector<DominatorTree::UpdateType, 8> Updates;
228    for (BasicBlock *Succ : successors(BB)) {
229      Succ->removePredecessor(BB);
230      if (SeenSuccs.insert(Succ).second)
231        Updates.push_back({DominatorTree::Delete, BB, Succ});
232    }
233    TI->eraseFromParent();
234    new UnreachableInst(BB->getContext(), BB);
235    DTU.applyUpdatesPermissive(Updates);
236  } else if (FeasibleSuccessors.size() == 1) {
237    // Replace with an unconditional branch to the only feasible successor.
238    BasicBlock *OnlyFeasibleSuccessor = *FeasibleSuccessors.begin();
239    SmallVector<DominatorTree::UpdateType, 8> Updates;
240    bool HaveSeenOnlyFeasibleSuccessor = false;
241    for (BasicBlock *Succ : successors(BB)) {
242      if (Succ == OnlyFeasibleSuccessor && !HaveSeenOnlyFeasibleSuccessor) {
243        // Don't remove the edge to the only feasible successor the first time
244        // we see it. We still do need to remove any multi-edges to it though.
245        HaveSeenOnlyFeasibleSuccessor = true;
246        continue;
247      }
248
249      Succ->removePredecessor(BB);
250      Updates.push_back({DominatorTree::Delete, BB, Succ});
251    }
252
253    BranchInst::Create(OnlyFeasibleSuccessor, BB);
254    TI->eraseFromParent();
255    DTU.applyUpdatesPermissive(Updates);
256  } else if (FeasibleSuccessors.size() > 1) {
257    SwitchInstProfUpdateWrapper SI(*cast<SwitchInst>(TI));
258    SmallVector<DominatorTree::UpdateType, 8> Updates;
259
260    // If the default destination is unfeasible it will never be taken. Replace
261    // it with a new block with a single Unreachable instruction.
262    BasicBlock *DefaultDest = SI->getDefaultDest();
263    if (!FeasibleSuccessors.contains(DefaultDest)) {
264      if (!NewUnreachableBB) {
265        NewUnreachableBB =
266            BasicBlock::Create(DefaultDest->getContext(), "default.unreachable",
267                               DefaultDest->getParent(), DefaultDest);
268        new UnreachableInst(DefaultDest->getContext(), NewUnreachableBB);
269      }
270
271      SI->setDefaultDest(NewUnreachableBB);
272      Updates.push_back({DominatorTree::Delete, BB, DefaultDest});
273      Updates.push_back({DominatorTree::Insert, BB, NewUnreachableBB});
274    }
275
276    for (auto CI = SI->case_begin(); CI != SI->case_end();) {
277      if (FeasibleSuccessors.contains(CI->getCaseSuccessor())) {
278        ++CI;
279        continue;
280      }
281
282      BasicBlock *Succ = CI->getCaseSuccessor();
283      Succ->removePredecessor(BB);
284      Updates.push_back({DominatorTree::Delete, BB, Succ});
285      SI.removeCase(CI);
286      // Don't increment CI, as we removed a case.
287    }
288
289    DTU.applyUpdatesPermissive(Updates);
290  } else {
291    llvm_unreachable("Must have at least one feasible successor");
292  }
293  return true;
294}
295
296/// Helper class for SCCPSolver. This implements the instruction visitor and
297/// holds all the state.
298class SCCPInstVisitor : public InstVisitor<SCCPInstVisitor> {
299  const DataLayout &DL;
300  std::function<const TargetLibraryInfo &(Function &)> GetTLI;
301  SmallPtrSet<BasicBlock *, 8> BBExecutable; // The BBs that are executable.
302  DenseMap<Value *, ValueLatticeElement>
303      ValueState; // The state each value is in.
304
305  /// StructValueState - This maintains ValueState for values that have
306  /// StructType, for example for formal arguments, calls, insertelement, etc.
307  DenseMap<std::pair<Value *, unsigned>, ValueLatticeElement> StructValueState;
308
309  /// GlobalValue - If we are tracking any values for the contents of a global
310  /// variable, we keep a mapping from the constant accessor to the element of
311  /// the global, to the currently known value.  If the value becomes
312  /// overdefined, it's entry is simply removed from this map.
313  DenseMap<GlobalVariable *, ValueLatticeElement> TrackedGlobals;
314
315  /// TrackedRetVals - If we are tracking arguments into and the return
316  /// value out of a function, it will have an entry in this map, indicating
317  /// what the known return value for the function is.
318  MapVector<Function *, ValueLatticeElement> TrackedRetVals;
319
320  /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions
321  /// that return multiple values.
322  MapVector<std::pair<Function *, unsigned>, ValueLatticeElement>
323      TrackedMultipleRetVals;
324
325  /// MRVFunctionsTracked - Each function in TrackedMultipleRetVals is
326  /// represented here for efficient lookup.
327  SmallPtrSet<Function *, 16> MRVFunctionsTracked;
328
329  /// A list of functions whose return cannot be modified.
330  SmallPtrSet<Function *, 16> MustPreserveReturnsInFunctions;
331
332  /// TrackingIncomingArguments - This is the set of functions for whose
333  /// arguments we make optimistic assumptions about and try to prove as
334  /// constants.
335  SmallPtrSet<Function *, 16> TrackingIncomingArguments;
336
337  /// The reason for two worklists is that overdefined is the lowest state
338  /// on the lattice, and moving things to overdefined as fast as possible
339  /// makes SCCP converge much faster.
340  ///
341  /// By having a separate worklist, we accomplish this because everything
342  /// possibly overdefined will become overdefined at the soonest possible
343  /// point.
344  SmallVector<Value *, 64> OverdefinedInstWorkList;
345  SmallVector<Value *, 64> InstWorkList;
346
347  // The BasicBlock work list
348  SmallVector<BasicBlock *, 64> BBWorkList;
349
350  /// KnownFeasibleEdges - Entries in this set are edges which have already had
351  /// PHI nodes retriggered.
352  using Edge = std::pair<BasicBlock *, BasicBlock *>;
353  DenseSet<Edge> KnownFeasibleEdges;
354
355  DenseMap<Function *, AnalysisResultsForFn> AnalysisResults;
356  DenseMap<Value *, SmallPtrSet<User *, 2>> AdditionalUsers;
357
358  LLVMContext &Ctx;
359
360private:
361  ConstantInt *getConstantInt(const ValueLatticeElement &IV) const {
362    return dyn_cast_or_null<ConstantInt>(getConstant(IV));
363  }
364
365  // pushToWorkList - Helper for markConstant/markOverdefined
366  void pushToWorkList(ValueLatticeElement &IV, Value *V);
367
368  // Helper to push \p V to the worklist, after updating it to \p IV. Also
369  // prints a debug message with the updated value.
370  void pushToWorkListMsg(ValueLatticeElement &IV, Value *V);
371
372  // markConstant - Make a value be marked as "constant".  If the value
373  // is not already a constant, add it to the instruction work list so that
374  // the users of the instruction are updated later.
375  bool markConstant(ValueLatticeElement &IV, Value *V, Constant *C,
376                    bool MayIncludeUndef = false);
377
378  bool markConstant(Value *V, Constant *C) {
379    assert(!V->getType()->isStructTy() && "structs should use mergeInValue");
380    return markConstant(ValueState[V], V, C);
381  }
382
383  // markOverdefined - Make a value be marked as "overdefined". If the
384  // value is not already overdefined, add it to the overdefined instruction
385  // work list so that the users of the instruction are updated later.
386  bool markOverdefined(ValueLatticeElement &IV, Value *V);
387
388  /// Merge \p MergeWithV into \p IV and push \p V to the worklist, if \p IV
389  /// changes.
390  bool mergeInValue(ValueLatticeElement &IV, Value *V,
391                    ValueLatticeElement MergeWithV,
392                    ValueLatticeElement::MergeOptions Opts = {
393                        /*MayIncludeUndef=*/false, /*CheckWiden=*/false});
394
395  bool mergeInValue(Value *V, ValueLatticeElement MergeWithV,
396                    ValueLatticeElement::MergeOptions Opts = {
397                        /*MayIncludeUndef=*/false, /*CheckWiden=*/false}) {
398    assert(!V->getType()->isStructTy() &&
399           "non-structs should use markConstant");
400    return mergeInValue(ValueState[V], V, MergeWithV, Opts);
401  }
402
403  /// getValueState - Return the ValueLatticeElement object that corresponds to
404  /// the value.  This function handles the case when the value hasn't been seen
405  /// yet by properly seeding constants etc.
406  ValueLatticeElement &getValueState(Value *V) {
407    assert(!V->getType()->isStructTy() && "Should use getStructValueState");
408
409    auto I = ValueState.insert(std::make_pair(V, ValueLatticeElement()));
410    ValueLatticeElement &LV = I.first->second;
411
412    if (!I.second)
413      return LV; // Common case, already in the map.
414
415    if (auto *C = dyn_cast<Constant>(V))
416      LV.markConstant(C); // Constants are constant
417
418    // All others are unknown by default.
419    return LV;
420  }
421
422  /// getStructValueState - Return the ValueLatticeElement object that
423  /// corresponds to the value/field pair.  This function handles the case when
424  /// the value hasn't been seen yet by properly seeding constants etc.
425  ValueLatticeElement &getStructValueState(Value *V, unsigned i) {
426    assert(V->getType()->isStructTy() && "Should use getValueState");
427    assert(i < cast<StructType>(V->getType())->getNumElements() &&
428           "Invalid element #");
429
430    auto I = StructValueState.insert(
431        std::make_pair(std::make_pair(V, i), ValueLatticeElement()));
432    ValueLatticeElement &LV = I.first->second;
433
434    if (!I.second)
435      return LV; // Common case, already in the map.
436
437    if (auto *C = dyn_cast<Constant>(V)) {
438      Constant *Elt = C->getAggregateElement(i);
439
440      if (!Elt)
441        LV.markOverdefined(); // Unknown sort of constant.
442      else
443        LV.markConstant(Elt); // Constants are constant.
444    }
445
446    // All others are underdefined by default.
447    return LV;
448  }
449
450  /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
451  /// work list if it is not already executable.
452  bool markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest);
453
454  // getFeasibleSuccessors - Return a vector of booleans to indicate which
455  // successors are reachable from a given terminator instruction.
456  void getFeasibleSuccessors(Instruction &TI, SmallVectorImpl<bool> &Succs);
457
458  // OperandChangedState - This method is invoked on all of the users of an
459  // instruction that was just changed state somehow.  Based on this
460  // information, we need to update the specified user of this instruction.
461  void operandChangedState(Instruction *I) {
462    if (BBExecutable.count(I->getParent())) // Inst is executable?
463      visit(*I);
464  }
465
466  // Add U as additional user of V.
467  void addAdditionalUser(Value *V, User *U) {
468    auto Iter = AdditionalUsers.insert({V, {}});
469    Iter.first->second.insert(U);
470  }
471
472  // Mark I's users as changed, including AdditionalUsers.
473  void markUsersAsChanged(Value *I) {
474    // Functions include their arguments in the use-list. Changed function
475    // values mean that the result of the function changed. We only need to
476    // update the call sites with the new function result and do not have to
477    // propagate the call arguments.
478    if (isa<Function>(I)) {
479      for (User *U : I->users()) {
480        if (auto *CB = dyn_cast<CallBase>(U))
481          handleCallResult(*CB);
482      }
483    } else {
484      for (User *U : I->users())
485        if (auto *UI = dyn_cast<Instruction>(U))
486          operandChangedState(UI);
487    }
488
489    auto Iter = AdditionalUsers.find(I);
490    if (Iter != AdditionalUsers.end()) {
491      // Copy additional users before notifying them of changes, because new
492      // users may be added, potentially invalidating the iterator.
493      SmallVector<Instruction *, 2> ToNotify;
494      for (User *U : Iter->second)
495        if (auto *UI = dyn_cast<Instruction>(U))
496          ToNotify.push_back(UI);
497      for (Instruction *UI : ToNotify)
498        operandChangedState(UI);
499    }
500  }
501  void handleCallOverdefined(CallBase &CB);
502  void handleCallResult(CallBase &CB);
503  void handleCallArguments(CallBase &CB);
504  void handleExtractOfWithOverflow(ExtractValueInst &EVI,
505                                   const WithOverflowInst *WO, unsigned Idx);
506
507private:
508  friend class InstVisitor<SCCPInstVisitor>;
509
510  // visit implementations - Something changed in this instruction.  Either an
511  // operand made a transition, or the instruction is newly executable.  Change
512  // the value type of I to reflect these changes if appropriate.
513  void visitPHINode(PHINode &I);
514
515  // Terminators
516
517  void visitReturnInst(ReturnInst &I);
518  void visitTerminator(Instruction &TI);
519
520  void visitCastInst(CastInst &I);
521  void visitSelectInst(SelectInst &I);
522  void visitUnaryOperator(Instruction &I);
523  void visitBinaryOperator(Instruction &I);
524  void visitCmpInst(CmpInst &I);
525  void visitExtractValueInst(ExtractValueInst &EVI);
526  void visitInsertValueInst(InsertValueInst &IVI);
527
528  void visitCatchSwitchInst(CatchSwitchInst &CPI) {
529    markOverdefined(&CPI);
530    visitTerminator(CPI);
531  }
532
533  // Instructions that cannot be folded away.
534
535  void visitStoreInst(StoreInst &I);
536  void visitLoadInst(LoadInst &I);
537  void visitGetElementPtrInst(GetElementPtrInst &I);
538
539  void visitInvokeInst(InvokeInst &II) {
540    visitCallBase(II);
541    visitTerminator(II);
542  }
543
544  void visitCallBrInst(CallBrInst &CBI) {
545    visitCallBase(CBI);
546    visitTerminator(CBI);
547  }
548
549  void visitCallBase(CallBase &CB);
550  void visitResumeInst(ResumeInst &I) { /*returns void*/
551  }
552  void visitUnreachableInst(UnreachableInst &I) { /*returns void*/
553  }
554  void visitFenceInst(FenceInst &I) { /*returns void*/
555  }
556
557  void visitInstruction(Instruction &I);
558
559public:
560  void addAnalysis(Function &F, AnalysisResultsForFn A) {
561    AnalysisResults.insert({&F, std::move(A)});
562  }
563
564  void visitCallInst(CallInst &I) { visitCallBase(I); }
565
566  bool markBlockExecutable(BasicBlock *BB);
567
568  const PredicateBase *getPredicateInfoFor(Instruction *I) {
569    auto A = AnalysisResults.find(I->getParent()->getParent());
570    if (A == AnalysisResults.end())
571      return nullptr;
572    return A->second.PredInfo->getPredicateInfoFor(I);
573  }
574
575  const LoopInfo &getLoopInfo(Function &F) {
576    auto A = AnalysisResults.find(&F);
577    assert(A != AnalysisResults.end() && A->second.LI &&
578           "Need LoopInfo analysis results for function.");
579    return *A->second.LI;
580  }
581
582  DomTreeUpdater getDTU(Function &F) {
583    auto A = AnalysisResults.find(&F);
584    assert(A != AnalysisResults.end() && "Need analysis results for function.");
585    return {A->second.DT, A->second.PDT, DomTreeUpdater::UpdateStrategy::Lazy};
586  }
587
588  SCCPInstVisitor(const DataLayout &DL,
589                  std::function<const TargetLibraryInfo &(Function &)> GetTLI,
590                  LLVMContext &Ctx)
591      : DL(DL), GetTLI(GetTLI), Ctx(Ctx) {}
592
593  void trackValueOfGlobalVariable(GlobalVariable *GV) {
594    // We only track the contents of scalar globals.
595    if (GV->getValueType()->isSingleValueType()) {
596      ValueLatticeElement &IV = TrackedGlobals[GV];
597      IV.markConstant(GV->getInitializer());
598    }
599  }
600
601  void addTrackedFunction(Function *F) {
602    // Add an entry, F -> undef.
603    if (auto *STy = dyn_cast<StructType>(F->getReturnType())) {
604      MRVFunctionsTracked.insert(F);
605      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
606        TrackedMultipleRetVals.insert(
607            std::make_pair(std::make_pair(F, i), ValueLatticeElement()));
608    } else if (!F->getReturnType()->isVoidTy())
609      TrackedRetVals.insert(std::make_pair(F, ValueLatticeElement()));
610  }
611
612  void addToMustPreserveReturnsInFunctions(Function *F) {
613    MustPreserveReturnsInFunctions.insert(F);
614  }
615
616  bool mustPreserveReturn(Function *F) {
617    return MustPreserveReturnsInFunctions.count(F);
618  }
619
620  void addArgumentTrackedFunction(Function *F) {
621    TrackingIncomingArguments.insert(F);
622  }
623
624  bool isArgumentTrackedFunction(Function *F) {
625    return TrackingIncomingArguments.count(F);
626  }
627
628  void solve();
629
630  bool resolvedUndefsIn(Function &F);
631
632  bool isBlockExecutable(BasicBlock *BB) const {
633    return BBExecutable.count(BB);
634  }
635
636  bool isEdgeFeasible(BasicBlock *From, BasicBlock *To) const;
637
638  std::vector<ValueLatticeElement> getStructLatticeValueFor(Value *V) const {
639    std::vector<ValueLatticeElement> StructValues;
640    auto *STy = dyn_cast<StructType>(V->getType());
641    assert(STy && "getStructLatticeValueFor() can be called only on structs");
642    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
643      auto I = StructValueState.find(std::make_pair(V, i));
644      assert(I != StructValueState.end() && "Value not in valuemap!");
645      StructValues.push_back(I->second);
646    }
647    return StructValues;
648  }
649
650  void removeLatticeValueFor(Value *V) { ValueState.erase(V); }
651
652  const ValueLatticeElement &getLatticeValueFor(Value *V) const {
653    assert(!V->getType()->isStructTy() &&
654           "Should use getStructLatticeValueFor");
655    DenseMap<Value *, ValueLatticeElement>::const_iterator I =
656        ValueState.find(V);
657    assert(I != ValueState.end() &&
658           "V not found in ValueState nor Paramstate map!");
659    return I->second;
660  }
661
662  const MapVector<Function *, ValueLatticeElement> &getTrackedRetVals() {
663    return TrackedRetVals;
664  }
665
666  const DenseMap<GlobalVariable *, ValueLatticeElement> &getTrackedGlobals() {
667    return TrackedGlobals;
668  }
669
670  const SmallPtrSet<Function *, 16> getMRVFunctionsTracked() {
671    return MRVFunctionsTracked;
672  }
673
674  void markOverdefined(Value *V) {
675    if (auto *STy = dyn_cast<StructType>(V->getType()))
676      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
677        markOverdefined(getStructValueState(V, i), V);
678    else
679      markOverdefined(ValueState[V], V);
680  }
681
682  bool isStructLatticeConstant(Function *F, StructType *STy);
683
684  Constant *getConstant(const ValueLatticeElement &LV) const;
685  ConstantRange getConstantRange(const ValueLatticeElement &LV, Type *Ty) const;
686
687  SmallPtrSetImpl<Function *> &getArgumentTrackedFunctions() {
688    return TrackingIncomingArguments;
689  }
690
691  void markArgInFuncSpecialization(Function *F,
692                                   const SmallVectorImpl<ArgInfo> &Args);
693
694  void markFunctionUnreachable(Function *F) {
695    for (auto &BB : *F)
696      BBExecutable.erase(&BB);
697  }
698
699  void solveWhileResolvedUndefsIn(Module &M) {
700    bool ResolvedUndefs = true;
701    while (ResolvedUndefs) {
702      solve();
703      ResolvedUndefs = false;
704      for (Function &F : M)
705        ResolvedUndefs |= resolvedUndefsIn(F);
706    }
707  }
708
709  void solveWhileResolvedUndefsIn(SmallVectorImpl<Function *> &WorkList) {
710    bool ResolvedUndefs = true;
711    while (ResolvedUndefs) {
712      solve();
713      ResolvedUndefs = false;
714      for (Function *F : WorkList)
715        ResolvedUndefs |= resolvedUndefsIn(*F);
716    }
717  }
718};
719
720} // namespace llvm
721
722bool SCCPInstVisitor::markBlockExecutable(BasicBlock *BB) {
723  if (!BBExecutable.insert(BB).second)
724    return false;
725  LLVM_DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << '\n');
726  BBWorkList.push_back(BB); // Add the block to the work list!
727  return true;
728}
729
730void SCCPInstVisitor::pushToWorkList(ValueLatticeElement &IV, Value *V) {
731  if (IV.isOverdefined())
732    return OverdefinedInstWorkList.push_back(V);
733  InstWorkList.push_back(V);
734}
735
736void SCCPInstVisitor::pushToWorkListMsg(ValueLatticeElement &IV, Value *V) {
737  LLVM_DEBUG(dbgs() << "updated " << IV << ": " << *V << '\n');
738  pushToWorkList(IV, V);
739}
740
741bool SCCPInstVisitor::markConstant(ValueLatticeElement &IV, Value *V,
742                                   Constant *C, bool MayIncludeUndef) {
743  if (!IV.markConstant(C, MayIncludeUndef))
744    return false;
745  LLVM_DEBUG(dbgs() << "markConstant: " << *C << ": " << *V << '\n');
746  pushToWorkList(IV, V);
747  return true;
748}
749
750bool SCCPInstVisitor::markOverdefined(ValueLatticeElement &IV, Value *V) {
751  if (!IV.markOverdefined())
752    return false;
753
754  LLVM_DEBUG(dbgs() << "markOverdefined: ";
755             if (auto *F = dyn_cast<Function>(V)) dbgs()
756             << "Function '" << F->getName() << "'\n";
757             else dbgs() << *V << '\n');
758  // Only instructions go on the work list
759  pushToWorkList(IV, V);
760  return true;
761}
762
763bool SCCPInstVisitor::isStructLatticeConstant(Function *F, StructType *STy) {
764  for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
765    const auto &It = TrackedMultipleRetVals.find(std::make_pair(F, i));
766    assert(It != TrackedMultipleRetVals.end());
767    ValueLatticeElement LV = It->second;
768    if (!SCCPSolver::isConstant(LV))
769      return false;
770  }
771  return true;
772}
773
774Constant *SCCPInstVisitor::getConstant(const ValueLatticeElement &LV) const {
775  if (LV.isConstant())
776    return LV.getConstant();
777
778  if (LV.isConstantRange()) {
779    const auto &CR = LV.getConstantRange();
780    if (CR.getSingleElement())
781      return ConstantInt::get(Ctx, *CR.getSingleElement());
782  }
783  return nullptr;
784}
785
786ConstantRange
787SCCPInstVisitor::getConstantRange(const ValueLatticeElement &LV,
788                                  Type *Ty) const {
789  assert(Ty->isIntOrIntVectorTy() && "Should be int or int vector");
790  if (LV.isConstantRange())
791    return LV.getConstantRange();
792  return ConstantRange::getFull(Ty->getScalarSizeInBits());
793}
794
795void SCCPInstVisitor::markArgInFuncSpecialization(
796    Function *F, const SmallVectorImpl<ArgInfo> &Args) {
797  assert(!Args.empty() && "Specialization without arguments");
798  assert(F->arg_size() == Args[0].Formal->getParent()->arg_size() &&
799         "Functions should have the same number of arguments");
800
801  auto Iter = Args.begin();
802  Argument *NewArg = F->arg_begin();
803  Argument *OldArg = Args[0].Formal->getParent()->arg_begin();
804  for (auto End = F->arg_end(); NewArg != End; ++NewArg, ++OldArg) {
805
806    LLVM_DEBUG(dbgs() << "SCCP: Marking argument "
807                      << NewArg->getNameOrAsOperand() << "\n");
808
809    if (Iter != Args.end() && OldArg == Iter->Formal) {
810      // Mark the argument constants in the new function.
811      markConstant(NewArg, Iter->Actual);
812      ++Iter;
813    } else if (ValueState.count(OldArg)) {
814      // For the remaining arguments in the new function, copy the lattice state
815      // over from the old function.
816      //
817      // Note: This previously looked like this:
818      // ValueState[NewArg] = ValueState[OldArg];
819      // This is incorrect because the DenseMap class may resize the underlying
820      // memory when inserting `NewArg`, which will invalidate the reference to
821      // `OldArg`. Instead, we make sure `NewArg` exists before setting it.
822      auto &NewValue = ValueState[NewArg];
823      NewValue = ValueState[OldArg];
824      pushToWorkList(NewValue, NewArg);
825    }
826  }
827}
828
829void SCCPInstVisitor::visitInstruction(Instruction &I) {
830  // All the instructions we don't do any special handling for just
831  // go to overdefined.
832  LLVM_DEBUG(dbgs() << "SCCP: Don't know how to handle: " << I << '\n');
833  markOverdefined(&I);
834}
835
836bool SCCPInstVisitor::mergeInValue(ValueLatticeElement &IV, Value *V,
837                                   ValueLatticeElement MergeWithV,
838                                   ValueLatticeElement::MergeOptions Opts) {
839  if (IV.mergeIn(MergeWithV, Opts)) {
840    pushToWorkList(IV, V);
841    LLVM_DEBUG(dbgs() << "Merged " << MergeWithV << " into " << *V << " : "
842                      << IV << "\n");
843    return true;
844  }
845  return false;
846}
847
848bool SCCPInstVisitor::markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
849  if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
850    return false; // This edge is already known to be executable!
851
852  if (!markBlockExecutable(Dest)) {
853    // If the destination is already executable, we just made an *edge*
854    // feasible that wasn't before.  Revisit the PHI nodes in the block
855    // because they have potentially new operands.
856    LLVM_DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName()
857                      << " -> " << Dest->getName() << '\n');
858
859    for (PHINode &PN : Dest->phis())
860      visitPHINode(PN);
861  }
862  return true;
863}
864
865// getFeasibleSuccessors - Return a vector of booleans to indicate which
866// successors are reachable from a given terminator instruction.
867void SCCPInstVisitor::getFeasibleSuccessors(Instruction &TI,
868                                            SmallVectorImpl<bool> &Succs) {
869  Succs.resize(TI.getNumSuccessors());
870  if (auto *BI = dyn_cast<BranchInst>(&TI)) {
871    if (BI->isUnconditional()) {
872      Succs[0] = true;
873      return;
874    }
875
876    ValueLatticeElement BCValue = getValueState(BI->getCondition());
877    ConstantInt *CI = getConstantInt(BCValue);
878    if (!CI) {
879      // Overdefined condition variables, and branches on unfoldable constant
880      // conditions, mean the branch could go either way.
881      if (!BCValue.isUnknownOrUndef())
882        Succs[0] = Succs[1] = true;
883      return;
884    }
885
886    // Constant condition variables mean the branch can only go a single way.
887    Succs[CI->isZero()] = true;
888    return;
889  }
890
891  // Unwinding instructions successors are always executable.
892  if (TI.isExceptionalTerminator()) {
893    Succs.assign(TI.getNumSuccessors(), true);
894    return;
895  }
896
897  if (auto *SI = dyn_cast<SwitchInst>(&TI)) {
898    if (!SI->getNumCases()) {
899      Succs[0] = true;
900      return;
901    }
902    const ValueLatticeElement &SCValue = getValueState(SI->getCondition());
903    if (ConstantInt *CI = getConstantInt(SCValue)) {
904      Succs[SI->findCaseValue(CI)->getSuccessorIndex()] = true;
905      return;
906    }
907
908    // TODO: Switch on undef is UB. Stop passing false once the rest of LLVM
909    // is ready.
910    if (SCValue.isConstantRange(/*UndefAllowed=*/false)) {
911      const ConstantRange &Range = SCValue.getConstantRange();
912      for (const auto &Case : SI->cases()) {
913        const APInt &CaseValue = Case.getCaseValue()->getValue();
914        if (Range.contains(CaseValue))
915          Succs[Case.getSuccessorIndex()] = true;
916      }
917
918      // TODO: Determine whether default case is reachable.
919      Succs[SI->case_default()->getSuccessorIndex()] = true;
920      return;
921    }
922
923    // Overdefined or unknown condition? All destinations are executable!
924    if (!SCValue.isUnknownOrUndef())
925      Succs.assign(TI.getNumSuccessors(), true);
926    return;
927  }
928
929  // In case of indirect branch and its address is a blockaddress, we mark
930  // the target as executable.
931  if (auto *IBR = dyn_cast<IndirectBrInst>(&TI)) {
932    // Casts are folded by visitCastInst.
933    ValueLatticeElement IBRValue = getValueState(IBR->getAddress());
934    BlockAddress *Addr = dyn_cast_or_null<BlockAddress>(getConstant(IBRValue));
935    if (!Addr) { // Overdefined or unknown condition?
936      // All destinations are executable!
937      if (!IBRValue.isUnknownOrUndef())
938        Succs.assign(TI.getNumSuccessors(), true);
939      return;
940    }
941
942    BasicBlock *T = Addr->getBasicBlock();
943    assert(Addr->getFunction() == T->getParent() &&
944           "Block address of a different function ?");
945    for (unsigned i = 0; i < IBR->getNumSuccessors(); ++i) {
946      // This is the target.
947      if (IBR->getDestination(i) == T) {
948        Succs[i] = true;
949        return;
950      }
951    }
952
953    // If we didn't find our destination in the IBR successor list, then we
954    // have undefined behavior. Its ok to assume no successor is executable.
955    return;
956  }
957
958  // In case of callbr, we pessimistically assume that all successors are
959  // feasible.
960  if (isa<CallBrInst>(&TI)) {
961    Succs.assign(TI.getNumSuccessors(), true);
962    return;
963  }
964
965  LLVM_DEBUG(dbgs() << "Unknown terminator instruction: " << TI << '\n');
966  llvm_unreachable("SCCP: Don't know how to handle this terminator!");
967}
968
969// isEdgeFeasible - Return true if the control flow edge from the 'From' basic
970// block to the 'To' basic block is currently feasible.
971bool SCCPInstVisitor::isEdgeFeasible(BasicBlock *From, BasicBlock *To) const {
972  // Check if we've called markEdgeExecutable on the edge yet. (We could
973  // be more aggressive and try to consider edges which haven't been marked
974  // yet, but there isn't any need.)
975  return KnownFeasibleEdges.count(Edge(From, To));
976}
977
978// visit Implementations - Something changed in this instruction, either an
979// operand made a transition, or the instruction is newly executable.  Change
980// the value type of I to reflect these changes if appropriate.  This method
981// makes sure to do the following actions:
982//
983// 1. If a phi node merges two constants in, and has conflicting value coming
984//    from different branches, or if the PHI node merges in an overdefined
985//    value, then the PHI node becomes overdefined.
986// 2. If a phi node merges only constants in, and they all agree on value, the
987//    PHI node becomes a constant value equal to that.
988// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
989// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
990// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
991// 6. If a conditional branch has a value that is constant, make the selected
992//    destination executable
993// 7. If a conditional branch has a value that is overdefined, make all
994//    successors executable.
995void SCCPInstVisitor::visitPHINode(PHINode &PN) {
996  // If this PN returns a struct, just mark the result overdefined.
997  // TODO: We could do a lot better than this if code actually uses this.
998  if (PN.getType()->isStructTy())
999    return (void)markOverdefined(&PN);
1000
1001  if (getValueState(&PN).isOverdefined())
1002    return; // Quick exit
1003
1004  // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
1005  // and slow us down a lot.  Just mark them overdefined.
1006  if (PN.getNumIncomingValues() > 64)
1007    return (void)markOverdefined(&PN);
1008
1009  unsigned NumActiveIncoming = 0;
1010
1011  // Look at all of the executable operands of the PHI node.  If any of them
1012  // are overdefined, the PHI becomes overdefined as well.  If they are all
1013  // constant, and they agree with each other, the PHI becomes the identical
1014  // constant.  If they are constant and don't agree, the PHI is a constant
1015  // range. If there are no executable operands, the PHI remains unknown.
1016  ValueLatticeElement PhiState = getValueState(&PN);
1017  for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1018    if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent()))
1019      continue;
1020
1021    ValueLatticeElement IV = getValueState(PN.getIncomingValue(i));
1022    PhiState.mergeIn(IV);
1023    NumActiveIncoming++;
1024    if (PhiState.isOverdefined())
1025      break;
1026  }
1027
1028  // We allow up to 1 range extension per active incoming value and one
1029  // additional extension. Note that we manually adjust the number of range
1030  // extensions to match the number of active incoming values. This helps to
1031  // limit multiple extensions caused by the same incoming value, if other
1032  // incoming values are equal.
1033  mergeInValue(&PN, PhiState,
1034               ValueLatticeElement::MergeOptions().setMaxWidenSteps(
1035                   NumActiveIncoming + 1));
1036  ValueLatticeElement &PhiStateRef = getValueState(&PN);
1037  PhiStateRef.setNumRangeExtensions(
1038      std::max(NumActiveIncoming, PhiStateRef.getNumRangeExtensions()));
1039}
1040
1041void SCCPInstVisitor::visitReturnInst(ReturnInst &I) {
1042  if (I.getNumOperands() == 0)
1043    return; // ret void
1044
1045  Function *F = I.getParent()->getParent();
1046  Value *ResultOp = I.getOperand(0);
1047
1048  // If we are tracking the return value of this function, merge it in.
1049  if (!TrackedRetVals.empty() && !ResultOp->getType()->isStructTy()) {
1050    auto TFRVI = TrackedRetVals.find(F);
1051    if (TFRVI != TrackedRetVals.end()) {
1052      mergeInValue(TFRVI->second, F, getValueState(ResultOp));
1053      return;
1054    }
1055  }
1056
1057  // Handle functions that return multiple values.
1058  if (!TrackedMultipleRetVals.empty()) {
1059    if (auto *STy = dyn_cast<StructType>(ResultOp->getType()))
1060      if (MRVFunctionsTracked.count(F))
1061        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1062          mergeInValue(TrackedMultipleRetVals[std::make_pair(F, i)], F,
1063                       getStructValueState(ResultOp, i));
1064  }
1065}
1066
1067void SCCPInstVisitor::visitTerminator(Instruction &TI) {
1068  SmallVector<bool, 16> SuccFeasible;
1069  getFeasibleSuccessors(TI, SuccFeasible);
1070
1071  BasicBlock *BB = TI.getParent();
1072
1073  // Mark all feasible successors executable.
1074  for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
1075    if (SuccFeasible[i])
1076      markEdgeExecutable(BB, TI.getSuccessor(i));
1077}
1078
1079void SCCPInstVisitor::visitCastInst(CastInst &I) {
1080  // ResolvedUndefsIn might mark I as overdefined. Bail out, even if we would
1081  // discover a concrete value later.
1082  if (ValueState[&I].isOverdefined())
1083    return;
1084
1085  ValueLatticeElement OpSt = getValueState(I.getOperand(0));
1086  if (OpSt.isUnknownOrUndef())
1087    return;
1088
1089  if (Constant *OpC = getConstant(OpSt)) {
1090    // Fold the constant as we build.
1091    Constant *C = ConstantFoldCastOperand(I.getOpcode(), OpC, I.getType(), DL);
1092    markConstant(&I, C);
1093  } else if (I.getDestTy()->isIntegerTy() &&
1094             I.getSrcTy()->isIntOrIntVectorTy()) {
1095    auto &LV = getValueState(&I);
1096    ConstantRange OpRange = getConstantRange(OpSt, I.getSrcTy());
1097
1098    Type *DestTy = I.getDestTy();
1099    // Vectors where all elements have the same known constant range are treated
1100    // as a single constant range in the lattice. When bitcasting such vectors,
1101    // there is a mis-match between the width of the lattice value (single
1102    // constant range) and the original operands (vector). Go to overdefined in
1103    // that case.
1104    if (I.getOpcode() == Instruction::BitCast &&
1105        I.getOperand(0)->getType()->isVectorTy() &&
1106        OpRange.getBitWidth() < DL.getTypeSizeInBits(DestTy))
1107      return (void)markOverdefined(&I);
1108
1109    ConstantRange Res =
1110        OpRange.castOp(I.getOpcode(), DL.getTypeSizeInBits(DestTy));
1111    mergeInValue(LV, &I, ValueLatticeElement::getRange(Res));
1112  } else
1113    markOverdefined(&I);
1114}
1115
1116void SCCPInstVisitor::handleExtractOfWithOverflow(ExtractValueInst &EVI,
1117                                                  const WithOverflowInst *WO,
1118                                                  unsigned Idx) {
1119  Value *LHS = WO->getLHS(), *RHS = WO->getRHS();
1120  ValueLatticeElement L = getValueState(LHS);
1121  ValueLatticeElement R = getValueState(RHS);
1122  addAdditionalUser(LHS, &EVI);
1123  addAdditionalUser(RHS, &EVI);
1124  if (L.isUnknownOrUndef() || R.isUnknownOrUndef())
1125    return; // Wait to resolve.
1126
1127  Type *Ty = LHS->getType();
1128  ConstantRange LR = getConstantRange(L, Ty);
1129  ConstantRange RR = getConstantRange(R, Ty);
1130  if (Idx == 0) {
1131    ConstantRange Res = LR.binaryOp(WO->getBinaryOp(), RR);
1132    mergeInValue(&EVI, ValueLatticeElement::getRange(Res));
1133  } else {
1134    assert(Idx == 1 && "Index can only be 0 or 1");
1135    ConstantRange NWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
1136        WO->getBinaryOp(), RR, WO->getNoWrapKind());
1137    if (NWRegion.contains(LR))
1138      return (void)markConstant(&EVI, ConstantInt::getFalse(EVI.getType()));
1139    markOverdefined(&EVI);
1140  }
1141}
1142
1143void SCCPInstVisitor::visitExtractValueInst(ExtractValueInst &EVI) {
1144  // If this returns a struct, mark all elements over defined, we don't track
1145  // structs in structs.
1146  if (EVI.getType()->isStructTy())
1147    return (void)markOverdefined(&EVI);
1148
1149  // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would
1150  // discover a concrete value later.
1151  if (ValueState[&EVI].isOverdefined())
1152    return (void)markOverdefined(&EVI);
1153
1154  // If this is extracting from more than one level of struct, we don't know.
1155  if (EVI.getNumIndices() != 1)
1156    return (void)markOverdefined(&EVI);
1157
1158  Value *AggVal = EVI.getAggregateOperand();
1159  if (AggVal->getType()->isStructTy()) {
1160    unsigned i = *EVI.idx_begin();
1161    if (auto *WO = dyn_cast<WithOverflowInst>(AggVal))
1162      return handleExtractOfWithOverflow(EVI, WO, i);
1163    ValueLatticeElement EltVal = getStructValueState(AggVal, i);
1164    mergeInValue(getValueState(&EVI), &EVI, EltVal);
1165  } else {
1166    // Otherwise, must be extracting from an array.
1167    return (void)markOverdefined(&EVI);
1168  }
1169}
1170
1171void SCCPInstVisitor::visitInsertValueInst(InsertValueInst &IVI) {
1172  auto *STy = dyn_cast<StructType>(IVI.getType());
1173  if (!STy)
1174    return (void)markOverdefined(&IVI);
1175
1176  // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would
1177  // discover a concrete value later.
1178  if (SCCPSolver::isOverdefined(ValueState[&IVI]))
1179    return (void)markOverdefined(&IVI);
1180
1181  // If this has more than one index, we can't handle it, drive all results to
1182  // undef.
1183  if (IVI.getNumIndices() != 1)
1184    return (void)markOverdefined(&IVI);
1185
1186  Value *Aggr = IVI.getAggregateOperand();
1187  unsigned Idx = *IVI.idx_begin();
1188
1189  // Compute the result based on what we're inserting.
1190  for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1191    // This passes through all values that aren't the inserted element.
1192    if (i != Idx) {
1193      ValueLatticeElement EltVal = getStructValueState(Aggr, i);
1194      mergeInValue(getStructValueState(&IVI, i), &IVI, EltVal);
1195      continue;
1196    }
1197
1198    Value *Val = IVI.getInsertedValueOperand();
1199    if (Val->getType()->isStructTy())
1200      // We don't track structs in structs.
1201      markOverdefined(getStructValueState(&IVI, i), &IVI);
1202    else {
1203      ValueLatticeElement InVal = getValueState(Val);
1204      mergeInValue(getStructValueState(&IVI, i), &IVI, InVal);
1205    }
1206  }
1207}
1208
1209void SCCPInstVisitor::visitSelectInst(SelectInst &I) {
1210  // If this select returns a struct, just mark the result overdefined.
1211  // TODO: We could do a lot better than this if code actually uses this.
1212  if (I.getType()->isStructTy())
1213    return (void)markOverdefined(&I);
1214
1215  // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would
1216  // discover a concrete value later.
1217  if (ValueState[&I].isOverdefined())
1218    return (void)markOverdefined(&I);
1219
1220  ValueLatticeElement CondValue = getValueState(I.getCondition());
1221  if (CondValue.isUnknownOrUndef())
1222    return;
1223
1224  if (ConstantInt *CondCB = getConstantInt(CondValue)) {
1225    Value *OpVal = CondCB->isZero() ? I.getFalseValue() : I.getTrueValue();
1226    mergeInValue(&I, getValueState(OpVal));
1227    return;
1228  }
1229
1230  // Otherwise, the condition is overdefined or a constant we can't evaluate.
1231  // See if we can produce something better than overdefined based on the T/F
1232  // value.
1233  ValueLatticeElement TVal = getValueState(I.getTrueValue());
1234  ValueLatticeElement FVal = getValueState(I.getFalseValue());
1235
1236  bool Changed = ValueState[&I].mergeIn(TVal);
1237  Changed |= ValueState[&I].mergeIn(FVal);
1238  if (Changed)
1239    pushToWorkListMsg(ValueState[&I], &I);
1240}
1241
1242// Handle Unary Operators.
1243void SCCPInstVisitor::visitUnaryOperator(Instruction &I) {
1244  ValueLatticeElement V0State = getValueState(I.getOperand(0));
1245
1246  ValueLatticeElement &IV = ValueState[&I];
1247  // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would
1248  // discover a concrete value later.
1249  if (SCCPSolver::isOverdefined(IV))
1250    return (void)markOverdefined(&I);
1251
1252  // If something is unknown/undef, wait for it to resolve.
1253  if (V0State.isUnknownOrUndef())
1254    return;
1255
1256  if (SCCPSolver::isConstant(V0State))
1257    if (Constant *C = ConstantFoldUnaryOpOperand(I.getOpcode(),
1258                                                 getConstant(V0State), DL))
1259      return (void)markConstant(IV, &I, C);
1260
1261  markOverdefined(&I);
1262}
1263
1264// Handle Binary Operators.
1265void SCCPInstVisitor::visitBinaryOperator(Instruction &I) {
1266  ValueLatticeElement V1State = getValueState(I.getOperand(0));
1267  ValueLatticeElement V2State = getValueState(I.getOperand(1));
1268
1269  ValueLatticeElement &IV = ValueState[&I];
1270  if (IV.isOverdefined())
1271    return;
1272
1273  // If something is undef, wait for it to resolve.
1274  if (V1State.isUnknownOrUndef() || V2State.isUnknownOrUndef())
1275    return;
1276
1277  if (V1State.isOverdefined() && V2State.isOverdefined())
1278    return (void)markOverdefined(&I);
1279
1280  // If either of the operands is a constant, try to fold it to a constant.
1281  // TODO: Use information from notconstant better.
1282  if ((V1State.isConstant() || V2State.isConstant())) {
1283    Value *V1 = SCCPSolver::isConstant(V1State) ? getConstant(V1State)
1284                                                : I.getOperand(0);
1285    Value *V2 = SCCPSolver::isConstant(V2State) ? getConstant(V2State)
1286                                                : I.getOperand(1);
1287    Value *R = simplifyBinOp(I.getOpcode(), V1, V2, SimplifyQuery(DL));
1288    auto *C = dyn_cast_or_null<Constant>(R);
1289    if (C) {
1290      // Conservatively assume that the result may be based on operands that may
1291      // be undef. Note that we use mergeInValue to combine the constant with
1292      // the existing lattice value for I, as different constants might be found
1293      // after one of the operands go to overdefined, e.g. due to one operand
1294      // being a special floating value.
1295      ValueLatticeElement NewV;
1296      NewV.markConstant(C, /*MayIncludeUndef=*/true);
1297      return (void)mergeInValue(&I, NewV);
1298    }
1299  }
1300
1301  // Only use ranges for binary operators on integers.
1302  if (!I.getType()->isIntegerTy())
1303    return markOverdefined(&I);
1304
1305  // Try to simplify to a constant range.
1306  ConstantRange A = getConstantRange(V1State, I.getType());
1307  ConstantRange B = getConstantRange(V2State, I.getType());
1308  ConstantRange R = A.binaryOp(cast<BinaryOperator>(&I)->getOpcode(), B);
1309  mergeInValue(&I, ValueLatticeElement::getRange(R));
1310
1311  // TODO: Currently we do not exploit special values that produce something
1312  // better than overdefined with an overdefined operand for vector or floating
1313  // point types, like and <4 x i32> overdefined, zeroinitializer.
1314}
1315
1316// Handle ICmpInst instruction.
1317void SCCPInstVisitor::visitCmpInst(CmpInst &I) {
1318  // Do not cache this lookup, getValueState calls later in the function might
1319  // invalidate the reference.
1320  if (SCCPSolver::isOverdefined(ValueState[&I]))
1321    return (void)markOverdefined(&I);
1322
1323  Value *Op1 = I.getOperand(0);
1324  Value *Op2 = I.getOperand(1);
1325
1326  // For parameters, use ParamState which includes constant range info if
1327  // available.
1328  auto V1State = getValueState(Op1);
1329  auto V2State = getValueState(Op2);
1330
1331  Constant *C = V1State.getCompare(I.getPredicate(), I.getType(), V2State, DL);
1332  if (C) {
1333    ValueLatticeElement CV;
1334    CV.markConstant(C);
1335    mergeInValue(&I, CV);
1336    return;
1337  }
1338
1339  // If operands are still unknown, wait for it to resolve.
1340  if ((V1State.isUnknownOrUndef() || V2State.isUnknownOrUndef()) &&
1341      !SCCPSolver::isConstant(ValueState[&I]))
1342    return;
1343
1344  markOverdefined(&I);
1345}
1346
1347// Handle getelementptr instructions.  If all operands are constants then we
1348// can turn this into a getelementptr ConstantExpr.
1349void SCCPInstVisitor::visitGetElementPtrInst(GetElementPtrInst &I) {
1350  if (SCCPSolver::isOverdefined(ValueState[&I]))
1351    return (void)markOverdefined(&I);
1352
1353  SmallVector<Constant *, 8> Operands;
1354  Operands.reserve(I.getNumOperands());
1355
1356  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
1357    ValueLatticeElement State = getValueState(I.getOperand(i));
1358    if (State.isUnknownOrUndef())
1359      return; // Operands are not resolved yet.
1360
1361    if (SCCPSolver::isOverdefined(State))
1362      return (void)markOverdefined(&I);
1363
1364    if (Constant *C = getConstant(State)) {
1365      Operands.push_back(C);
1366      continue;
1367    }
1368
1369    return (void)markOverdefined(&I);
1370  }
1371
1372  Constant *Ptr = Operands[0];
1373  auto Indices = ArrayRef(Operands.begin() + 1, Operands.end());
1374  Constant *C =
1375      ConstantExpr::getGetElementPtr(I.getSourceElementType(), Ptr, Indices);
1376  markConstant(&I, C);
1377}
1378
1379void SCCPInstVisitor::visitStoreInst(StoreInst &SI) {
1380  // If this store is of a struct, ignore it.
1381  if (SI.getOperand(0)->getType()->isStructTy())
1382    return;
1383
1384  if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1)))
1385    return;
1386
1387  GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1));
1388  auto I = TrackedGlobals.find(GV);
1389  if (I == TrackedGlobals.end())
1390    return;
1391
1392  // Get the value we are storing into the global, then merge it.
1393  mergeInValue(I->second, GV, getValueState(SI.getOperand(0)),
1394               ValueLatticeElement::MergeOptions().setCheckWiden(false));
1395  if (I->second.isOverdefined())
1396    TrackedGlobals.erase(I); // No need to keep tracking this!
1397}
1398
1399static ValueLatticeElement getValueFromMetadata(const Instruction *I) {
1400  if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range))
1401    if (I->getType()->isIntegerTy())
1402      return ValueLatticeElement::getRange(
1403          getConstantRangeFromMetadata(*Ranges));
1404  if (I->hasMetadata(LLVMContext::MD_nonnull))
1405    return ValueLatticeElement::getNot(
1406        ConstantPointerNull::get(cast<PointerType>(I->getType())));
1407  return ValueLatticeElement::getOverdefined();
1408}
1409
1410// Handle load instructions.  If the operand is a constant pointer to a constant
1411// global, we can replace the load with the loaded constant value!
1412void SCCPInstVisitor::visitLoadInst(LoadInst &I) {
1413  // If this load is of a struct or the load is volatile, just mark the result
1414  // as overdefined.
1415  if (I.getType()->isStructTy() || I.isVolatile())
1416    return (void)markOverdefined(&I);
1417
1418  // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would
1419  // discover a concrete value later.
1420  if (ValueState[&I].isOverdefined())
1421    return (void)markOverdefined(&I);
1422
1423  ValueLatticeElement PtrVal = getValueState(I.getOperand(0));
1424  if (PtrVal.isUnknownOrUndef())
1425    return; // The pointer is not resolved yet!
1426
1427  ValueLatticeElement &IV = ValueState[&I];
1428
1429  if (SCCPSolver::isConstant(PtrVal)) {
1430    Constant *Ptr = getConstant(PtrVal);
1431
1432    // load null is undefined.
1433    if (isa<ConstantPointerNull>(Ptr)) {
1434      if (NullPointerIsDefined(I.getFunction(), I.getPointerAddressSpace()))
1435        return (void)markOverdefined(IV, &I);
1436      else
1437        return;
1438    }
1439
1440    // Transform load (constant global) into the value loaded.
1441    if (auto *GV = dyn_cast<GlobalVariable>(Ptr)) {
1442      if (!TrackedGlobals.empty()) {
1443        // If we are tracking this global, merge in the known value for it.
1444        auto It = TrackedGlobals.find(GV);
1445        if (It != TrackedGlobals.end()) {
1446          mergeInValue(IV, &I, It->second, getMaxWidenStepsOpts());
1447          return;
1448        }
1449      }
1450    }
1451
1452    // Transform load from a constant into a constant if possible.
1453    if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, I.getType(), DL))
1454      return (void)markConstant(IV, &I, C);
1455  }
1456
1457  // Fall back to metadata.
1458  mergeInValue(&I, getValueFromMetadata(&I));
1459}
1460
1461void SCCPInstVisitor::visitCallBase(CallBase &CB) {
1462  handleCallResult(CB);
1463  handleCallArguments(CB);
1464}
1465
1466void SCCPInstVisitor::handleCallOverdefined(CallBase &CB) {
1467  Function *F = CB.getCalledFunction();
1468
1469  // Void return and not tracking callee, just bail.
1470  if (CB.getType()->isVoidTy())
1471    return;
1472
1473  // Always mark struct return as overdefined.
1474  if (CB.getType()->isStructTy())
1475    return (void)markOverdefined(&CB);
1476
1477  // Otherwise, if we have a single return value case, and if the function is
1478  // a declaration, maybe we can constant fold it.
1479  if (F && F->isDeclaration() && canConstantFoldCallTo(&CB, F)) {
1480    SmallVector<Constant *, 8> Operands;
1481    for (const Use &A : CB.args()) {
1482      if (A.get()->getType()->isStructTy())
1483        return markOverdefined(&CB); // Can't handle struct args.
1484      if (A.get()->getType()->isMetadataTy())
1485        continue;                    // Carried in CB, not allowed in Operands.
1486      ValueLatticeElement State = getValueState(A);
1487
1488      if (State.isUnknownOrUndef())
1489        return; // Operands are not resolved yet.
1490      if (SCCPSolver::isOverdefined(State))
1491        return (void)markOverdefined(&CB);
1492      assert(SCCPSolver::isConstant(State) && "Unknown state!");
1493      Operands.push_back(getConstant(State));
1494    }
1495
1496    if (SCCPSolver::isOverdefined(getValueState(&CB)))
1497      return (void)markOverdefined(&CB);
1498
1499    // If we can constant fold this, mark the result of the call as a
1500    // constant.
1501    if (Constant *C = ConstantFoldCall(&CB, F, Operands, &GetTLI(*F)))
1502      return (void)markConstant(&CB, C);
1503  }
1504
1505  // Fall back to metadata.
1506  mergeInValue(&CB, getValueFromMetadata(&CB));
1507}
1508
1509void SCCPInstVisitor::handleCallArguments(CallBase &CB) {
1510  Function *F = CB.getCalledFunction();
1511  // If this is a local function that doesn't have its address taken, mark its
1512  // entry block executable and merge in the actual arguments to the call into
1513  // the formal arguments of the function.
1514  if (TrackingIncomingArguments.count(F)) {
1515    markBlockExecutable(&F->front());
1516
1517    // Propagate information from this call site into the callee.
1518    auto CAI = CB.arg_begin();
1519    for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
1520         ++AI, ++CAI) {
1521      // If this argument is byval, and if the function is not readonly, there
1522      // will be an implicit copy formed of the input aggregate.
1523      if (AI->hasByValAttr() && !F->onlyReadsMemory()) {
1524        markOverdefined(&*AI);
1525        continue;
1526      }
1527
1528      if (auto *STy = dyn_cast<StructType>(AI->getType())) {
1529        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1530          ValueLatticeElement CallArg = getStructValueState(*CAI, i);
1531          mergeInValue(getStructValueState(&*AI, i), &*AI, CallArg,
1532                       getMaxWidenStepsOpts());
1533        }
1534      } else
1535        mergeInValue(&*AI, getValueState(*CAI), getMaxWidenStepsOpts());
1536    }
1537  }
1538}
1539
1540void SCCPInstVisitor::handleCallResult(CallBase &CB) {
1541  Function *F = CB.getCalledFunction();
1542
1543  if (auto *II = dyn_cast<IntrinsicInst>(&CB)) {
1544    if (II->getIntrinsicID() == Intrinsic::ssa_copy) {
1545      if (ValueState[&CB].isOverdefined())
1546        return;
1547
1548      Value *CopyOf = CB.getOperand(0);
1549      ValueLatticeElement CopyOfVal = getValueState(CopyOf);
1550      const auto *PI = getPredicateInfoFor(&CB);
1551      assert(PI && "Missing predicate info for ssa.copy");
1552
1553      const std::optional<PredicateConstraint> &Constraint =
1554          PI->getConstraint();
1555      if (!Constraint) {
1556        mergeInValue(ValueState[&CB], &CB, CopyOfVal);
1557        return;
1558      }
1559
1560      CmpInst::Predicate Pred = Constraint->Predicate;
1561      Value *OtherOp = Constraint->OtherOp;
1562
1563      // Wait until OtherOp is resolved.
1564      if (getValueState(OtherOp).isUnknown()) {
1565        addAdditionalUser(OtherOp, &CB);
1566        return;
1567      }
1568
1569      ValueLatticeElement CondVal = getValueState(OtherOp);
1570      ValueLatticeElement &IV = ValueState[&CB];
1571      if (CondVal.isConstantRange() || CopyOfVal.isConstantRange()) {
1572        auto ImposedCR =
1573            ConstantRange::getFull(DL.getTypeSizeInBits(CopyOf->getType()));
1574
1575        // Get the range imposed by the condition.
1576        if (CondVal.isConstantRange())
1577          ImposedCR = ConstantRange::makeAllowedICmpRegion(
1578              Pred, CondVal.getConstantRange());
1579
1580        // Combine range info for the original value with the new range from the
1581        // condition.
1582        auto CopyOfCR = getConstantRange(CopyOfVal, CopyOf->getType());
1583        auto NewCR = ImposedCR.intersectWith(CopyOfCR);
1584        // If the existing information is != x, do not use the information from
1585        // a chained predicate, as the != x information is more likely to be
1586        // helpful in practice.
1587        if (!CopyOfCR.contains(NewCR) && CopyOfCR.getSingleMissingElement())
1588          NewCR = CopyOfCR;
1589
1590        // The new range is based on a branch condition. That guarantees that
1591        // neither of the compare operands can be undef in the branch targets,
1592        // unless we have conditions that are always true/false (e.g. icmp ule
1593        // i32, %a, i32_max). For the latter overdefined/empty range will be
1594        // inferred, but the branch will get folded accordingly anyways.
1595        addAdditionalUser(OtherOp, &CB);
1596        mergeInValue(
1597            IV, &CB,
1598            ValueLatticeElement::getRange(NewCR, /*MayIncludeUndef*/ false));
1599        return;
1600      } else if (Pred == CmpInst::ICMP_EQ &&
1601                 (CondVal.isConstant() || CondVal.isNotConstant())) {
1602        // For non-integer values or integer constant expressions, only
1603        // propagate equal constants or not-constants.
1604        addAdditionalUser(OtherOp, &CB);
1605        mergeInValue(IV, &CB, CondVal);
1606        return;
1607      } else if (Pred == CmpInst::ICMP_NE && CondVal.isConstant()) {
1608        // Propagate inequalities.
1609        addAdditionalUser(OtherOp, &CB);
1610        mergeInValue(IV, &CB,
1611                     ValueLatticeElement::getNot(CondVal.getConstant()));
1612        return;
1613      }
1614
1615      return (void)mergeInValue(IV, &CB, CopyOfVal);
1616    }
1617
1618    if (ConstantRange::isIntrinsicSupported(II->getIntrinsicID())) {
1619      // Compute result range for intrinsics supported by ConstantRange.
1620      // Do this even if we don't know a range for all operands, as we may
1621      // still know something about the result range, e.g. of abs(x).
1622      SmallVector<ConstantRange, 2> OpRanges;
1623      for (Value *Op : II->args()) {
1624        const ValueLatticeElement &State = getValueState(Op);
1625        OpRanges.push_back(getConstantRange(State, Op->getType()));
1626      }
1627
1628      ConstantRange Result =
1629          ConstantRange::intrinsic(II->getIntrinsicID(), OpRanges);
1630      return (void)mergeInValue(II, ValueLatticeElement::getRange(Result));
1631    }
1632  }
1633
1634  // The common case is that we aren't tracking the callee, either because we
1635  // are not doing interprocedural analysis or the callee is indirect, or is
1636  // external.  Handle these cases first.
1637  if (!F || F->isDeclaration())
1638    return handleCallOverdefined(CB);
1639
1640  // If this is a single/zero retval case, see if we're tracking the function.
1641  if (auto *STy = dyn_cast<StructType>(F->getReturnType())) {
1642    if (!MRVFunctionsTracked.count(F))
1643      return handleCallOverdefined(CB); // Not tracking this callee.
1644
1645    // If we are tracking this callee, propagate the result of the function
1646    // into this call site.
1647    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1648      mergeInValue(getStructValueState(&CB, i), &CB,
1649                   TrackedMultipleRetVals[std::make_pair(F, i)],
1650                   getMaxWidenStepsOpts());
1651  } else {
1652    auto TFRVI = TrackedRetVals.find(F);
1653    if (TFRVI == TrackedRetVals.end())
1654      return handleCallOverdefined(CB); // Not tracking this callee.
1655
1656    // If so, propagate the return value of the callee into this call result.
1657    mergeInValue(&CB, TFRVI->second, getMaxWidenStepsOpts());
1658  }
1659}
1660
1661void SCCPInstVisitor::solve() {
1662  // Process the work lists until they are empty!
1663  while (!BBWorkList.empty() || !InstWorkList.empty() ||
1664         !OverdefinedInstWorkList.empty()) {
1665    // Process the overdefined instruction's work list first, which drives other
1666    // things to overdefined more quickly.
1667    while (!OverdefinedInstWorkList.empty()) {
1668      Value *I = OverdefinedInstWorkList.pop_back_val();
1669
1670      LLVM_DEBUG(dbgs() << "\nPopped off OI-WL: " << *I << '\n');
1671
1672      // "I" got into the work list because it either made the transition from
1673      // bottom to constant, or to overdefined.
1674      //
1675      // Anything on this worklist that is overdefined need not be visited
1676      // since all of its users will have already been marked as overdefined
1677      // Update all of the users of this instruction's value.
1678      //
1679      markUsersAsChanged(I);
1680    }
1681
1682    // Process the instruction work list.
1683    while (!InstWorkList.empty()) {
1684      Value *I = InstWorkList.pop_back_val();
1685
1686      LLVM_DEBUG(dbgs() << "\nPopped off I-WL: " << *I << '\n');
1687
1688      // "I" got into the work list because it made the transition from undef to
1689      // constant.
1690      //
1691      // Anything on this worklist that is overdefined need not be visited
1692      // since all of its users will have already been marked as overdefined.
1693      // Update all of the users of this instruction's value.
1694      //
1695      if (I->getType()->isStructTy() || !getValueState(I).isOverdefined())
1696        markUsersAsChanged(I);
1697    }
1698
1699    // Process the basic block work list.
1700    while (!BBWorkList.empty()) {
1701      BasicBlock *BB = BBWorkList.pop_back_val();
1702
1703      LLVM_DEBUG(dbgs() << "\nPopped off BBWL: " << *BB << '\n');
1704
1705      // Notify all instructions in this basic block that they are newly
1706      // executable.
1707      visit(BB);
1708    }
1709  }
1710}
1711
1712/// While solving the dataflow for a function, we don't compute a result for
1713/// operations with an undef operand, to allow undef to be lowered to a
1714/// constant later. For example, constant folding of "zext i8 undef to i16"
1715/// would result in "i16 0", and if undef is later lowered to "i8 1", then the
1716/// zext result would become "i16 1" and would result into an overdefined
1717/// lattice value once merged with the previous result. Not computing the
1718/// result of the zext (treating undef the same as unknown) allows us to handle
1719/// a later undef->constant lowering more optimally.
1720///
1721/// However, if the operand remains undef when the solver returns, we do need
1722/// to assign some result to the instruction (otherwise we would treat it as
1723/// unreachable). For simplicity, we mark any instructions that are still
1724/// unknown as overdefined.
1725bool SCCPInstVisitor::resolvedUndefsIn(Function &F) {
1726  bool MadeChange = false;
1727  for (BasicBlock &BB : F) {
1728    if (!BBExecutable.count(&BB))
1729      continue;
1730
1731    for (Instruction &I : BB) {
1732      // Look for instructions which produce undef values.
1733      if (I.getType()->isVoidTy())
1734        continue;
1735
1736      if (auto *STy = dyn_cast<StructType>(I.getType())) {
1737        // Only a few things that can be structs matter for undef.
1738
1739        // Tracked calls must never be marked overdefined in resolvedUndefsIn.
1740        if (auto *CB = dyn_cast<CallBase>(&I))
1741          if (Function *F = CB->getCalledFunction())
1742            if (MRVFunctionsTracked.count(F))
1743              continue;
1744
1745        // extractvalue and insertvalue don't need to be marked; they are
1746        // tracked as precisely as their operands.
1747        if (isa<ExtractValueInst>(I) || isa<InsertValueInst>(I))
1748          continue;
1749        // Send the results of everything else to overdefined.  We could be
1750        // more precise than this but it isn't worth bothering.
1751        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1752          ValueLatticeElement &LV = getStructValueState(&I, i);
1753          if (LV.isUnknown()) {
1754            markOverdefined(LV, &I);
1755            MadeChange = true;
1756          }
1757        }
1758        continue;
1759      }
1760
1761      ValueLatticeElement &LV = getValueState(&I);
1762      if (!LV.isUnknown())
1763        continue;
1764
1765      // There are two reasons a call can have an undef result
1766      // 1. It could be tracked.
1767      // 2. It could be constant-foldable.
1768      // Because of the way we solve return values, tracked calls must
1769      // never be marked overdefined in resolvedUndefsIn.
1770      if (auto *CB = dyn_cast<CallBase>(&I))
1771        if (Function *F = CB->getCalledFunction())
1772          if (TrackedRetVals.count(F))
1773            continue;
1774
1775      if (isa<LoadInst>(I)) {
1776        // A load here means one of two things: a load of undef from a global,
1777        // a load from an unknown pointer.  Either way, having it return undef
1778        // is okay.
1779        continue;
1780      }
1781
1782      markOverdefined(&I);
1783      MadeChange = true;
1784    }
1785  }
1786
1787  LLVM_DEBUG(if (MadeChange) dbgs()
1788             << "\nResolved undefs in " << F.getName() << '\n');
1789
1790  return MadeChange;
1791}
1792
1793//===----------------------------------------------------------------------===//
1794//
1795// SCCPSolver implementations
1796//
1797SCCPSolver::SCCPSolver(
1798    const DataLayout &DL,
1799    std::function<const TargetLibraryInfo &(Function &)> GetTLI,
1800    LLVMContext &Ctx)
1801    : Visitor(new SCCPInstVisitor(DL, std::move(GetTLI), Ctx)) {}
1802
1803SCCPSolver::~SCCPSolver() = default;
1804
1805void SCCPSolver::addAnalysis(Function &F, AnalysisResultsForFn A) {
1806  return Visitor->addAnalysis(F, std::move(A));
1807}
1808
1809bool SCCPSolver::markBlockExecutable(BasicBlock *BB) {
1810  return Visitor->markBlockExecutable(BB);
1811}
1812
1813const PredicateBase *SCCPSolver::getPredicateInfoFor(Instruction *I) {
1814  return Visitor->getPredicateInfoFor(I);
1815}
1816
1817const LoopInfo &SCCPSolver::getLoopInfo(Function &F) {
1818  return Visitor->getLoopInfo(F);
1819}
1820
1821DomTreeUpdater SCCPSolver::getDTU(Function &F) { return Visitor->getDTU(F); }
1822
1823void SCCPSolver::trackValueOfGlobalVariable(GlobalVariable *GV) {
1824  Visitor->trackValueOfGlobalVariable(GV);
1825}
1826
1827void SCCPSolver::addTrackedFunction(Function *F) {
1828  Visitor->addTrackedFunction(F);
1829}
1830
1831void SCCPSolver::addToMustPreserveReturnsInFunctions(Function *F) {
1832  Visitor->addToMustPreserveReturnsInFunctions(F);
1833}
1834
1835bool SCCPSolver::mustPreserveReturn(Function *F) {
1836  return Visitor->mustPreserveReturn(F);
1837}
1838
1839void SCCPSolver::addArgumentTrackedFunction(Function *F) {
1840  Visitor->addArgumentTrackedFunction(F);
1841}
1842
1843bool SCCPSolver::isArgumentTrackedFunction(Function *F) {
1844  return Visitor->isArgumentTrackedFunction(F);
1845}
1846
1847void SCCPSolver::solve() { Visitor->solve(); }
1848
1849bool SCCPSolver::resolvedUndefsIn(Function &F) {
1850  return Visitor->resolvedUndefsIn(F);
1851}
1852
1853void SCCPSolver::solveWhileResolvedUndefsIn(Module &M) {
1854  Visitor->solveWhileResolvedUndefsIn(M);
1855}
1856
1857void
1858SCCPSolver::solveWhileResolvedUndefsIn(SmallVectorImpl<Function *> &WorkList) {
1859  Visitor->solveWhileResolvedUndefsIn(WorkList);
1860}
1861
1862bool SCCPSolver::isBlockExecutable(BasicBlock *BB) const {
1863  return Visitor->isBlockExecutable(BB);
1864}
1865
1866bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) const {
1867  return Visitor->isEdgeFeasible(From, To);
1868}
1869
1870std::vector<ValueLatticeElement>
1871SCCPSolver::getStructLatticeValueFor(Value *V) const {
1872  return Visitor->getStructLatticeValueFor(V);
1873}
1874
1875void SCCPSolver::removeLatticeValueFor(Value *V) {
1876  return Visitor->removeLatticeValueFor(V);
1877}
1878
1879const ValueLatticeElement &SCCPSolver::getLatticeValueFor(Value *V) const {
1880  return Visitor->getLatticeValueFor(V);
1881}
1882
1883const MapVector<Function *, ValueLatticeElement> &
1884SCCPSolver::getTrackedRetVals() {
1885  return Visitor->getTrackedRetVals();
1886}
1887
1888const DenseMap<GlobalVariable *, ValueLatticeElement> &
1889SCCPSolver::getTrackedGlobals() {
1890  return Visitor->getTrackedGlobals();
1891}
1892
1893const SmallPtrSet<Function *, 16> SCCPSolver::getMRVFunctionsTracked() {
1894  return Visitor->getMRVFunctionsTracked();
1895}
1896
1897void SCCPSolver::markOverdefined(Value *V) { Visitor->markOverdefined(V); }
1898
1899bool SCCPSolver::isStructLatticeConstant(Function *F, StructType *STy) {
1900  return Visitor->isStructLatticeConstant(F, STy);
1901}
1902
1903Constant *SCCPSolver::getConstant(const ValueLatticeElement &LV) const {
1904  return Visitor->getConstant(LV);
1905}
1906
1907SmallPtrSetImpl<Function *> &SCCPSolver::getArgumentTrackedFunctions() {
1908  return Visitor->getArgumentTrackedFunctions();
1909}
1910
1911void SCCPSolver::markArgInFuncSpecialization(
1912    Function *F, const SmallVectorImpl<ArgInfo> &Args) {
1913  Visitor->markArgInFuncSpecialization(F, Args);
1914}
1915
1916void SCCPSolver::markFunctionUnreachable(Function *F) {
1917  Visitor->markFunctionUnreachable(F);
1918}
1919
1920void SCCPSolver::visit(Instruction *I) { Visitor->visit(I); }
1921
1922void SCCPSolver::visitCall(CallInst &I) { Visitor->visitCall(I); }
1923