1//===- LoopFlatten.cpp - Loop flattening pass------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass flattens pairs nested loops into a single loop.
10//
11// The intention is to optimise loop nests like this, which together access an
12// array linearly:
13//
14//   for (int i = 0; i < N; ++i)
15//     for (int j = 0; j < M; ++j)
16//       f(A[i*M+j]);
17//
18// into one loop:
19//
20//   for (int i = 0; i < (N*M); ++i)
21//     f(A[i]);
22//
23// It can also flatten loops where the induction variables are not used in the
24// loop. This is only worth doing if the induction variables are only used in an
25// expression like i*M+j. If they had any other uses, we would have to insert a
26// div/mod to reconstruct the original values, so this wouldn't be profitable.
27//
28// We also need to prove that N*M will not overflow. The preferred solution is
29// to widen the IV, which avoids overflow checks, so that is tried first. If
30// the IV cannot be widened, then we try to determine that this new tripcount
31// expression won't overflow.
32//
33// Q: Does LoopFlatten use SCEV?
34// Short answer: Yes and no.
35//
36// Long answer:
37// For this transformation to be valid, we require all uses of the induction
38// variables to be linear expressions of the form i*M+j. The different Loop
39// APIs are used to get some loop components like the induction variable,
40// compare statement, etc. In addition, we do some pattern matching to find the
41// linear expressions and other loop components like the loop increment. The
42// latter are examples of expressions that do use the induction variable, but
43// are safe to ignore when we check all uses to be of the form i*M+j. We keep
44// track of all of this in bookkeeping struct FlattenInfo.
45// We assume the loops to be canonical, i.e. starting at 0 and increment with
46// 1. This makes RHS of the compare the loop tripcount (with the right
47// predicate). We use SCEV to then sanity check that this tripcount matches
48// with the tripcount as computed by SCEV.
49//
50//===----------------------------------------------------------------------===//
51
52#include "llvm/Transforms/Scalar/LoopFlatten.h"
53
54#include "llvm/ADT/Statistic.h"
55#include "llvm/Analysis/AssumptionCache.h"
56#include "llvm/Analysis/LoopInfo.h"
57#include "llvm/Analysis/LoopNestAnalysis.h"
58#include "llvm/Analysis/MemorySSAUpdater.h"
59#include "llvm/Analysis/OptimizationRemarkEmitter.h"
60#include "llvm/Analysis/ScalarEvolution.h"
61#include "llvm/Analysis/TargetTransformInfo.h"
62#include "llvm/Analysis/ValueTracking.h"
63#include "llvm/IR/Dominators.h"
64#include "llvm/IR/Function.h"
65#include "llvm/IR/IRBuilder.h"
66#include "llvm/IR/Module.h"
67#include "llvm/IR/PatternMatch.h"
68#include "llvm/InitializePasses.h"
69#include "llvm/Pass.h"
70#include "llvm/Support/Debug.h"
71#include "llvm/Support/raw_ostream.h"
72#include "llvm/Transforms/Scalar.h"
73#include "llvm/Transforms/Scalar/LoopPassManager.h"
74#include "llvm/Transforms/Utils/Local.h"
75#include "llvm/Transforms/Utils/LoopUtils.h"
76#include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
77#include "llvm/Transforms/Utils/SimplifyIndVar.h"
78#include <optional>
79
80using namespace llvm;
81using namespace llvm::PatternMatch;
82
83#define DEBUG_TYPE "loop-flatten"
84
85STATISTIC(NumFlattened, "Number of loops flattened");
86
87static cl::opt<unsigned> RepeatedInstructionThreshold(
88    "loop-flatten-cost-threshold", cl::Hidden, cl::init(2),
89    cl::desc("Limit on the cost of instructions that can be repeated due to "
90             "loop flattening"));
91
92static cl::opt<bool>
93    AssumeNoOverflow("loop-flatten-assume-no-overflow", cl::Hidden,
94                     cl::init(false),
95                     cl::desc("Assume that the product of the two iteration "
96                              "trip counts will never overflow"));
97
98static cl::opt<bool>
99    WidenIV("loop-flatten-widen-iv", cl::Hidden, cl::init(true),
100            cl::desc("Widen the loop induction variables, if possible, so "
101                     "overflow checks won't reject flattening"));
102
103namespace {
104// We require all uses of both induction variables to match this pattern:
105//
106//   (OuterPHI * InnerTripCount) + InnerPHI
107//
108// I.e., it needs to be a linear expression of the induction variables and the
109// inner loop trip count. We keep track of all different expressions on which
110// checks will be performed in this bookkeeping struct.
111//
112struct FlattenInfo {
113  Loop *OuterLoop = nullptr;  // The loop pair to be flattened.
114  Loop *InnerLoop = nullptr;
115
116  PHINode *InnerInductionPHI = nullptr; // These PHINodes correspond to loop
117  PHINode *OuterInductionPHI = nullptr; // induction variables, which are
118                                        // expected to start at zero and
119                                        // increment by one on each loop.
120
121  Value *InnerTripCount = nullptr; // The product of these two tripcounts
122  Value *OuterTripCount = nullptr; // will be the new flattened loop
123                                   // tripcount. Also used to recognise a
124                                   // linear expression that will be replaced.
125
126  SmallPtrSet<Value *, 4> LinearIVUses;  // Contains the linear expressions
127                                         // of the form i*M+j that will be
128                                         // replaced.
129
130  BinaryOperator *InnerIncrement = nullptr;  // Uses of induction variables in
131  BinaryOperator *OuterIncrement = nullptr;  // loop control statements that
132  BranchInst *InnerBranch = nullptr;         // are safe to ignore.
133
134  BranchInst *OuterBranch = nullptr; // The instruction that needs to be
135                                     // updated with new tripcount.
136
137  SmallPtrSet<PHINode *, 4> InnerPHIsToTransform;
138
139  bool Widened = false; // Whether this holds the flatten info before or after
140                        // widening.
141
142  PHINode *NarrowInnerInductionPHI = nullptr; // Holds the old/narrow induction
143  PHINode *NarrowOuterInductionPHI = nullptr; // phis, i.e. the Phis before IV
144                                              // has been applied. Used to skip
145                                              // checks on phi nodes.
146
147  FlattenInfo(Loop *OL, Loop *IL) : OuterLoop(OL), InnerLoop(IL){};
148
149  bool isNarrowInductionPhi(PHINode *Phi) {
150    // This can't be the narrow phi if we haven't widened the IV first.
151    if (!Widened)
152      return false;
153    return NarrowInnerInductionPHI == Phi || NarrowOuterInductionPHI == Phi;
154  }
155  bool isInnerLoopIncrement(User *U) {
156    return InnerIncrement == U;
157  }
158  bool isOuterLoopIncrement(User *U) {
159    return OuterIncrement == U;
160  }
161  bool isInnerLoopTest(User *U) {
162    return InnerBranch->getCondition() == U;
163  }
164
165  bool checkOuterInductionPhiUsers(SmallPtrSet<Value *, 4> &ValidOuterPHIUses) {
166    for (User *U : OuterInductionPHI->users()) {
167      if (isOuterLoopIncrement(U))
168        continue;
169
170      auto IsValidOuterPHIUses = [&] (User *U) -> bool {
171        LLVM_DEBUG(dbgs() << "Found use of outer induction variable: "; U->dump());
172        if (!ValidOuterPHIUses.count(U)) {
173          LLVM_DEBUG(dbgs() << "Did not match expected pattern, bailing\n");
174          return false;
175        }
176        LLVM_DEBUG(dbgs() << "Use is optimisable\n");
177        return true;
178      };
179
180      if (auto *V = dyn_cast<TruncInst>(U)) {
181        for (auto *K : V->users()) {
182          if (!IsValidOuterPHIUses(K))
183            return false;
184        }
185        continue;
186      }
187
188      if (!IsValidOuterPHIUses(U))
189        return false;
190    }
191    return true;
192  }
193
194  bool matchLinearIVUser(User *U, Value *InnerTripCount,
195                         SmallPtrSet<Value *, 4> &ValidOuterPHIUses) {
196    LLVM_DEBUG(dbgs() << "Checking linear i*M+j expression for: "; U->dump());
197    Value *MatchedMul = nullptr;
198    Value *MatchedItCount = nullptr;
199
200    bool IsAdd = match(U, m_c_Add(m_Specific(InnerInductionPHI),
201                                  m_Value(MatchedMul))) &&
202                 match(MatchedMul, m_c_Mul(m_Specific(OuterInductionPHI),
203                                           m_Value(MatchedItCount)));
204
205    // Matches the same pattern as above, except it also looks for truncs
206    // on the phi, which can be the result of widening the induction variables.
207    bool IsAddTrunc =
208        match(U, m_c_Add(m_Trunc(m_Specific(InnerInductionPHI)),
209                         m_Value(MatchedMul))) &&
210        match(MatchedMul, m_c_Mul(m_Trunc(m_Specific(OuterInductionPHI)),
211                                  m_Value(MatchedItCount)));
212
213    if (!MatchedItCount)
214      return false;
215
216    LLVM_DEBUG(dbgs() << "Matched multiplication: "; MatchedMul->dump());
217    LLVM_DEBUG(dbgs() << "Matched iteration count: "; MatchedItCount->dump());
218
219    // The mul should not have any other uses. Widening may leave trivially dead
220    // uses, which can be ignored.
221    if (count_if(MatchedMul->users(), [](User *U) {
222          return !isInstructionTriviallyDead(cast<Instruction>(U));
223        }) > 1) {
224      LLVM_DEBUG(dbgs() << "Multiply has more than one use\n");
225      return false;
226    }
227
228    // Look through extends if the IV has been widened. Don't look through
229    // extends if we already looked through a trunc.
230    if (Widened && IsAdd &&
231        (isa<SExtInst>(MatchedItCount) || isa<ZExtInst>(MatchedItCount))) {
232      assert(MatchedItCount->getType() == InnerInductionPHI->getType() &&
233             "Unexpected type mismatch in types after widening");
234      MatchedItCount = isa<SExtInst>(MatchedItCount)
235                           ? dyn_cast<SExtInst>(MatchedItCount)->getOperand(0)
236                           : dyn_cast<ZExtInst>(MatchedItCount)->getOperand(0);
237    }
238
239    LLVM_DEBUG(dbgs() << "Looking for inner trip count: ";
240               InnerTripCount->dump());
241
242    if ((IsAdd || IsAddTrunc) && MatchedItCount == InnerTripCount) {
243      LLVM_DEBUG(dbgs() << "Found. This sse is optimisable\n");
244      ValidOuterPHIUses.insert(MatchedMul);
245      LinearIVUses.insert(U);
246      return true;
247    }
248
249    LLVM_DEBUG(dbgs() << "Did not match expected pattern, bailing\n");
250    return false;
251  }
252
253  bool checkInnerInductionPhiUsers(SmallPtrSet<Value *, 4> &ValidOuterPHIUses) {
254    Value *SExtInnerTripCount = InnerTripCount;
255    if (Widened &&
256        (isa<SExtInst>(InnerTripCount) || isa<ZExtInst>(InnerTripCount)))
257      SExtInnerTripCount = cast<Instruction>(InnerTripCount)->getOperand(0);
258
259    for (User *U : InnerInductionPHI->users()) {
260      LLVM_DEBUG(dbgs() << "Checking User: "; U->dump());
261      if (isInnerLoopIncrement(U)) {
262        LLVM_DEBUG(dbgs() << "Use is inner loop increment, continuing\n");
263        continue;
264      }
265
266      // After widening the IVs, a trunc instruction might have been introduced,
267      // so look through truncs.
268      if (isa<TruncInst>(U)) {
269        if (!U->hasOneUse())
270          return false;
271        U = *U->user_begin();
272      }
273
274      // If the use is in the compare (which is also the condition of the inner
275      // branch) then the compare has been altered by another transformation e.g
276      // icmp ult %inc, tripcount -> icmp ult %j, tripcount-1, where tripcount is
277      // a constant. Ignore this use as the compare gets removed later anyway.
278      if (isInnerLoopTest(U)) {
279        LLVM_DEBUG(dbgs() << "Use is the inner loop test, continuing\n");
280        continue;
281      }
282
283      if (!matchLinearIVUser(U, SExtInnerTripCount, ValidOuterPHIUses)) {
284        LLVM_DEBUG(dbgs() << "Not a linear IV user\n");
285        return false;
286      }
287      LLVM_DEBUG(dbgs() << "Linear IV users found!\n");
288    }
289    return true;
290  }
291};
292} // namespace
293
294static bool
295setLoopComponents(Value *&TC, Value *&TripCount, BinaryOperator *&Increment,
296                  SmallPtrSetImpl<Instruction *> &IterationInstructions) {
297  TripCount = TC;
298  IterationInstructions.insert(Increment);
299  LLVM_DEBUG(dbgs() << "Found Increment: "; Increment->dump());
300  LLVM_DEBUG(dbgs() << "Found trip count: "; TripCount->dump());
301  LLVM_DEBUG(dbgs() << "Successfully found all loop components\n");
302  return true;
303}
304
305// Given the RHS of the loop latch compare instruction, verify with SCEV
306// that this is indeed the loop tripcount.
307// TODO: This used to be a straightforward check but has grown to be quite
308// complicated now. It is therefore worth revisiting what the additional
309// benefits are of this (compared to relying on canonical loops and pattern
310// matching).
311static bool verifyTripCount(Value *RHS, Loop *L,
312     SmallPtrSetImpl<Instruction *> &IterationInstructions,
313    PHINode *&InductionPHI, Value *&TripCount, BinaryOperator *&Increment,
314    BranchInst *&BackBranch, ScalarEvolution *SE, bool IsWidened) {
315  const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
316  if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
317    LLVM_DEBUG(dbgs() << "Backedge-taken count is not predictable\n");
318    return false;
319  }
320
321  // The Extend=false flag is used for getTripCountFromExitCount as we want
322  // to verify and match it with the pattern matched tripcount. Please note
323  // that overflow checks are performed in checkOverflow, but are first tried
324  // to avoid by widening the IV.
325  const SCEV *SCEVTripCount =
326      SE->getTripCountFromExitCount(BackedgeTakenCount, /*Extend=*/false);
327
328  const SCEV *SCEVRHS = SE->getSCEV(RHS);
329  if (SCEVRHS == SCEVTripCount)
330    return setLoopComponents(RHS, TripCount, Increment, IterationInstructions);
331  ConstantInt *ConstantRHS = dyn_cast<ConstantInt>(RHS);
332  if (ConstantRHS) {
333    const SCEV *BackedgeTCExt = nullptr;
334    if (IsWidened) {
335      const SCEV *SCEVTripCountExt;
336      // Find the extended backedge taken count and extended trip count using
337      // SCEV. One of these should now match the RHS of the compare.
338      BackedgeTCExt = SE->getZeroExtendExpr(BackedgeTakenCount, RHS->getType());
339      SCEVTripCountExt = SE->getTripCountFromExitCount(BackedgeTCExt, false);
340      if (SCEVRHS != BackedgeTCExt && SCEVRHS != SCEVTripCountExt) {
341        LLVM_DEBUG(dbgs() << "Could not find valid trip count\n");
342        return false;
343      }
344    }
345    // If the RHS of the compare is equal to the backedge taken count we need
346    // to add one to get the trip count.
347    if (SCEVRHS == BackedgeTCExt || SCEVRHS == BackedgeTakenCount) {
348      ConstantInt *One = ConstantInt::get(ConstantRHS->getType(), 1);
349      Value *NewRHS = ConstantInt::get(
350          ConstantRHS->getContext(), ConstantRHS->getValue() + One->getValue());
351      return setLoopComponents(NewRHS, TripCount, Increment,
352                               IterationInstructions);
353    }
354    return setLoopComponents(RHS, TripCount, Increment, IterationInstructions);
355  }
356  // If the RHS isn't a constant then check that the reason it doesn't match
357  // the SCEV trip count is because the RHS is a ZExt or SExt instruction
358  // (and take the trip count to be the RHS).
359  if (!IsWidened) {
360    LLVM_DEBUG(dbgs() << "Could not find valid trip count\n");
361    return false;
362  }
363  auto *TripCountInst = dyn_cast<Instruction>(RHS);
364  if (!TripCountInst) {
365    LLVM_DEBUG(dbgs() << "Could not find valid trip count\n");
366    return false;
367  }
368  if ((!isa<ZExtInst>(TripCountInst) && !isa<SExtInst>(TripCountInst)) ||
369      SE->getSCEV(TripCountInst->getOperand(0)) != SCEVTripCount) {
370    LLVM_DEBUG(dbgs() << "Could not find valid extended trip count\n");
371    return false;
372  }
373  return setLoopComponents(RHS, TripCount, Increment, IterationInstructions);
374}
375
376// Finds the induction variable, increment and trip count for a simple loop that
377// we can flatten.
378static bool findLoopComponents(
379    Loop *L, SmallPtrSetImpl<Instruction *> &IterationInstructions,
380    PHINode *&InductionPHI, Value *&TripCount, BinaryOperator *&Increment,
381    BranchInst *&BackBranch, ScalarEvolution *SE, bool IsWidened) {
382  LLVM_DEBUG(dbgs() << "Finding components of loop: " << L->getName() << "\n");
383
384  if (!L->isLoopSimplifyForm()) {
385    LLVM_DEBUG(dbgs() << "Loop is not in normal form\n");
386    return false;
387  }
388
389  // Currently, to simplify the implementation, the Loop induction variable must
390  // start at zero and increment with a step size of one.
391  if (!L->isCanonical(*SE)) {
392    LLVM_DEBUG(dbgs() << "Loop is not canonical\n");
393    return false;
394  }
395
396  // There must be exactly one exiting block, and it must be the same at the
397  // latch.
398  BasicBlock *Latch = L->getLoopLatch();
399  if (L->getExitingBlock() != Latch) {
400    LLVM_DEBUG(dbgs() << "Exiting and latch block are different\n");
401    return false;
402  }
403
404  // Find the induction PHI. If there is no induction PHI, we can't do the
405  // transformation. TODO: could other variables trigger this? Do we have to
406  // search for the best one?
407  InductionPHI = L->getInductionVariable(*SE);
408  if (!InductionPHI) {
409    LLVM_DEBUG(dbgs() << "Could not find induction PHI\n");
410    return false;
411  }
412  LLVM_DEBUG(dbgs() << "Found induction PHI: "; InductionPHI->dump());
413
414  bool ContinueOnTrue = L->contains(Latch->getTerminator()->getSuccessor(0));
415  auto IsValidPredicate = [&](ICmpInst::Predicate Pred) {
416    if (ContinueOnTrue)
417      return Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT;
418    else
419      return Pred == CmpInst::ICMP_EQ;
420  };
421
422  // Find Compare and make sure it is valid. getLatchCmpInst checks that the
423  // back branch of the latch is conditional.
424  ICmpInst *Compare = L->getLatchCmpInst();
425  if (!Compare || !IsValidPredicate(Compare->getUnsignedPredicate()) ||
426      Compare->hasNUsesOrMore(2)) {
427    LLVM_DEBUG(dbgs() << "Could not find valid comparison\n");
428    return false;
429  }
430  BackBranch = cast<BranchInst>(Latch->getTerminator());
431  IterationInstructions.insert(BackBranch);
432  LLVM_DEBUG(dbgs() << "Found back branch: "; BackBranch->dump());
433  IterationInstructions.insert(Compare);
434  LLVM_DEBUG(dbgs() << "Found comparison: "; Compare->dump());
435
436  // Find increment and trip count.
437  // There are exactly 2 incoming values to the induction phi; one from the
438  // pre-header and one from the latch. The incoming latch value is the
439  // increment variable.
440  Increment =
441      cast<BinaryOperator>(InductionPHI->getIncomingValueForBlock(Latch));
442  if ((Compare->getOperand(0) != Increment || !Increment->hasNUses(2)) &&
443      !Increment->hasNUses(1)) {
444    LLVM_DEBUG(dbgs() << "Could not find valid increment\n");
445    return false;
446  }
447  // The trip count is the RHS of the compare. If this doesn't match the trip
448  // count computed by SCEV then this is because the trip count variable
449  // has been widened so the types don't match, or because it is a constant and
450  // another transformation has changed the compare (e.g. icmp ult %inc,
451  // tripcount -> icmp ult %j, tripcount-1), or both.
452  Value *RHS = Compare->getOperand(1);
453
454  return verifyTripCount(RHS, L, IterationInstructions, InductionPHI, TripCount,
455                         Increment, BackBranch, SE, IsWidened);
456}
457
458static bool checkPHIs(FlattenInfo &FI, const TargetTransformInfo *TTI) {
459  // All PHIs in the inner and outer headers must either be:
460  // - The induction PHI, which we are going to rewrite as one induction in
461  //   the new loop. This is already checked by findLoopComponents.
462  // - An outer header PHI with all incoming values from outside the loop.
463  //   LoopSimplify guarantees we have a pre-header, so we don't need to
464  //   worry about that here.
465  // - Pairs of PHIs in the inner and outer headers, which implement a
466  //   loop-carried dependency that will still be valid in the new loop. To
467  //   be valid, this variable must be modified only in the inner loop.
468
469  // The set of PHI nodes in the outer loop header that we know will still be
470  // valid after the transformation. These will not need to be modified (with
471  // the exception of the induction variable), but we do need to check that
472  // there are no unsafe PHI nodes.
473  SmallPtrSet<PHINode *, 4> SafeOuterPHIs;
474  SafeOuterPHIs.insert(FI.OuterInductionPHI);
475
476  // Check that all PHI nodes in the inner loop header match one of the valid
477  // patterns.
478  for (PHINode &InnerPHI : FI.InnerLoop->getHeader()->phis()) {
479    // The induction PHIs break these rules, and that's OK because we treat
480    // them specially when doing the transformation.
481    if (&InnerPHI == FI.InnerInductionPHI)
482      continue;
483    if (FI.isNarrowInductionPhi(&InnerPHI))
484      continue;
485
486    // Each inner loop PHI node must have two incoming values/blocks - one
487    // from the pre-header, and one from the latch.
488    assert(InnerPHI.getNumIncomingValues() == 2);
489    Value *PreHeaderValue =
490        InnerPHI.getIncomingValueForBlock(FI.InnerLoop->getLoopPreheader());
491    Value *LatchValue =
492        InnerPHI.getIncomingValueForBlock(FI.InnerLoop->getLoopLatch());
493
494    // The incoming value from the outer loop must be the PHI node in the
495    // outer loop header, with no modifications made in the top of the outer
496    // loop.
497    PHINode *OuterPHI = dyn_cast<PHINode>(PreHeaderValue);
498    if (!OuterPHI || OuterPHI->getParent() != FI.OuterLoop->getHeader()) {
499      LLVM_DEBUG(dbgs() << "value modified in top of outer loop\n");
500      return false;
501    }
502
503    // The other incoming value must come from the inner loop, without any
504    // modifications in the tail end of the outer loop. We are in LCSSA form,
505    // so this will actually be a PHI in the inner loop's exit block, which
506    // only uses values from inside the inner loop.
507    PHINode *LCSSAPHI = dyn_cast<PHINode>(
508        OuterPHI->getIncomingValueForBlock(FI.OuterLoop->getLoopLatch()));
509    if (!LCSSAPHI) {
510      LLVM_DEBUG(dbgs() << "could not find LCSSA PHI\n");
511      return false;
512    }
513
514    // The value used by the LCSSA PHI must be the same one that the inner
515    // loop's PHI uses.
516    if (LCSSAPHI->hasConstantValue() != LatchValue) {
517      LLVM_DEBUG(
518          dbgs() << "LCSSA PHI incoming value does not match latch value\n");
519      return false;
520    }
521
522    LLVM_DEBUG(dbgs() << "PHI pair is safe:\n");
523    LLVM_DEBUG(dbgs() << "  Inner: "; InnerPHI.dump());
524    LLVM_DEBUG(dbgs() << "  Outer: "; OuterPHI->dump());
525    SafeOuterPHIs.insert(OuterPHI);
526    FI.InnerPHIsToTransform.insert(&InnerPHI);
527  }
528
529  for (PHINode &OuterPHI : FI.OuterLoop->getHeader()->phis()) {
530    if (FI.isNarrowInductionPhi(&OuterPHI))
531      continue;
532    if (!SafeOuterPHIs.count(&OuterPHI)) {
533      LLVM_DEBUG(dbgs() << "found unsafe PHI in outer loop: "; OuterPHI.dump());
534      return false;
535    }
536  }
537
538  LLVM_DEBUG(dbgs() << "checkPHIs: OK\n");
539  return true;
540}
541
542static bool
543checkOuterLoopInsts(FlattenInfo &FI,
544                    SmallPtrSetImpl<Instruction *> &IterationInstructions,
545                    const TargetTransformInfo *TTI) {
546  // Check for instructions in the outer but not inner loop. If any of these
547  // have side-effects then this transformation is not legal, and if there is
548  // a significant amount of code here which can't be optimised out that it's
549  // not profitable (as these instructions would get executed for each
550  // iteration of the inner loop).
551  InstructionCost RepeatedInstrCost = 0;
552  for (auto *B : FI.OuterLoop->getBlocks()) {
553    if (FI.InnerLoop->contains(B))
554      continue;
555
556    for (auto &I : *B) {
557      if (!isa<PHINode>(&I) && !I.isTerminator() &&
558          !isSafeToSpeculativelyExecute(&I)) {
559        LLVM_DEBUG(dbgs() << "Cannot flatten because instruction may have "
560                             "side effects: ";
561                   I.dump());
562        return false;
563      }
564      // The execution count of the outer loop's iteration instructions
565      // (increment, compare and branch) will be increased, but the
566      // equivalent instructions will be removed from the inner loop, so
567      // they make a net difference of zero.
568      if (IterationInstructions.count(&I))
569        continue;
570      // The unconditional branch to the inner loop's header will turn into
571      // a fall-through, so adds no cost.
572      BranchInst *Br = dyn_cast<BranchInst>(&I);
573      if (Br && Br->isUnconditional() &&
574          Br->getSuccessor(0) == FI.InnerLoop->getHeader())
575        continue;
576      // Multiplies of the outer iteration variable and inner iteration
577      // count will be optimised out.
578      if (match(&I, m_c_Mul(m_Specific(FI.OuterInductionPHI),
579                            m_Specific(FI.InnerTripCount))))
580        continue;
581      InstructionCost Cost =
582          TTI->getInstructionCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
583      LLVM_DEBUG(dbgs() << "Cost " << Cost << ": "; I.dump());
584      RepeatedInstrCost += Cost;
585    }
586  }
587
588  LLVM_DEBUG(dbgs() << "Cost of instructions that will be repeated: "
589                    << RepeatedInstrCost << "\n");
590  // Bail out if flattening the loops would cause instructions in the outer
591  // loop but not in the inner loop to be executed extra times.
592  if (RepeatedInstrCost > RepeatedInstructionThreshold) {
593    LLVM_DEBUG(dbgs() << "checkOuterLoopInsts: not profitable, bailing.\n");
594    return false;
595  }
596
597  LLVM_DEBUG(dbgs() << "checkOuterLoopInsts: OK\n");
598  return true;
599}
600
601
602
603// We require all uses of both induction variables to match this pattern:
604//
605//   (OuterPHI * InnerTripCount) + InnerPHI
606//
607// Any uses of the induction variables not matching that pattern would
608// require a div/mod to reconstruct in the flattened loop, so the
609// transformation wouldn't be profitable.
610static bool checkIVUsers(FlattenInfo &FI) {
611  // Check that all uses of the inner loop's induction variable match the
612  // expected pattern, recording the uses of the outer IV.
613  SmallPtrSet<Value *, 4> ValidOuterPHIUses;
614  if (!FI.checkInnerInductionPhiUsers(ValidOuterPHIUses))
615    return false;
616
617  // Check that there are no uses of the outer IV other than the ones found
618  // as part of the pattern above.
619  if (!FI.checkOuterInductionPhiUsers(ValidOuterPHIUses))
620    return false;
621
622  LLVM_DEBUG(dbgs() << "checkIVUsers: OK\n";
623             dbgs() << "Found " << FI.LinearIVUses.size()
624                    << " value(s) that can be replaced:\n";
625             for (Value *V : FI.LinearIVUses) {
626               dbgs() << "  ";
627               V->dump();
628             });
629  return true;
630}
631
632// Return an OverflowResult dependant on if overflow of the multiplication of
633// InnerTripCount and OuterTripCount can be assumed not to happen.
634static OverflowResult checkOverflow(FlattenInfo &FI, DominatorTree *DT,
635                                    AssumptionCache *AC) {
636  Function *F = FI.OuterLoop->getHeader()->getParent();
637  const DataLayout &DL = F->getParent()->getDataLayout();
638
639  // For debugging/testing.
640  if (AssumeNoOverflow)
641    return OverflowResult::NeverOverflows;
642
643  // Check if the multiply could not overflow due to known ranges of the
644  // input values.
645  OverflowResult OR = computeOverflowForUnsignedMul(
646      FI.InnerTripCount, FI.OuterTripCount, DL, AC,
647      FI.OuterLoop->getLoopPreheader()->getTerminator(), DT);
648  if (OR != OverflowResult::MayOverflow)
649    return OR;
650
651  for (Value *V : FI.LinearIVUses) {
652    for (Value *U : V->users()) {
653      if (auto *GEP = dyn_cast<GetElementPtrInst>(U)) {
654        for (Value *GEPUser : U->users()) {
655          auto *GEPUserInst = cast<Instruction>(GEPUser);
656          if (!isa<LoadInst>(GEPUserInst) &&
657              !(isa<StoreInst>(GEPUserInst) &&
658                GEP == GEPUserInst->getOperand(1)))
659            continue;
660          if (!isGuaranteedToExecuteForEveryIteration(GEPUserInst,
661                                                      FI.InnerLoop))
662            continue;
663          // The IV is used as the operand of a GEP which dominates the loop
664          // latch, and the IV is at least as wide as the address space of the
665          // GEP. In this case, the GEP would wrap around the address space
666          // before the IV increment wraps, which would be UB.
667          if (GEP->isInBounds() &&
668              V->getType()->getIntegerBitWidth() >=
669                  DL.getPointerTypeSizeInBits(GEP->getType())) {
670            LLVM_DEBUG(
671                dbgs() << "use of linear IV would be UB if overflow occurred: ";
672                GEP->dump());
673            return OverflowResult::NeverOverflows;
674          }
675        }
676      }
677    }
678  }
679
680  return OverflowResult::MayOverflow;
681}
682
683static bool CanFlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI,
684                               ScalarEvolution *SE, AssumptionCache *AC,
685                               const TargetTransformInfo *TTI) {
686  SmallPtrSet<Instruction *, 8> IterationInstructions;
687  if (!findLoopComponents(FI.InnerLoop, IterationInstructions,
688                          FI.InnerInductionPHI, FI.InnerTripCount,
689                          FI.InnerIncrement, FI.InnerBranch, SE, FI.Widened))
690    return false;
691  if (!findLoopComponents(FI.OuterLoop, IterationInstructions,
692                          FI.OuterInductionPHI, FI.OuterTripCount,
693                          FI.OuterIncrement, FI.OuterBranch, SE, FI.Widened))
694    return false;
695
696  // Both of the loop trip count values must be invariant in the outer loop
697  // (non-instructions are all inherently invariant).
698  if (!FI.OuterLoop->isLoopInvariant(FI.InnerTripCount)) {
699    LLVM_DEBUG(dbgs() << "inner loop trip count not invariant\n");
700    return false;
701  }
702  if (!FI.OuterLoop->isLoopInvariant(FI.OuterTripCount)) {
703    LLVM_DEBUG(dbgs() << "outer loop trip count not invariant\n");
704    return false;
705  }
706
707  if (!checkPHIs(FI, TTI))
708    return false;
709
710  // FIXME: it should be possible to handle different types correctly.
711  if (FI.InnerInductionPHI->getType() != FI.OuterInductionPHI->getType())
712    return false;
713
714  if (!checkOuterLoopInsts(FI, IterationInstructions, TTI))
715    return false;
716
717  // Find the values in the loop that can be replaced with the linearized
718  // induction variable, and check that there are no other uses of the inner
719  // or outer induction variable. If there were, we could still do this
720  // transformation, but we'd have to insert a div/mod to calculate the
721  // original IVs, so it wouldn't be profitable.
722  if (!checkIVUsers(FI))
723    return false;
724
725  LLVM_DEBUG(dbgs() << "CanFlattenLoopPair: OK\n");
726  return true;
727}
728
729static bool DoFlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI,
730                              ScalarEvolution *SE, AssumptionCache *AC,
731                              const TargetTransformInfo *TTI, LPMUpdater *U,
732                              MemorySSAUpdater *MSSAU) {
733  Function *F = FI.OuterLoop->getHeader()->getParent();
734  LLVM_DEBUG(dbgs() << "Checks all passed, doing the transformation\n");
735  {
736    using namespace ore;
737    OptimizationRemark Remark(DEBUG_TYPE, "Flattened", FI.InnerLoop->getStartLoc(),
738                              FI.InnerLoop->getHeader());
739    OptimizationRemarkEmitter ORE(F);
740    Remark << "Flattened into outer loop";
741    ORE.emit(Remark);
742  }
743
744  Value *NewTripCount = BinaryOperator::CreateMul(
745      FI.InnerTripCount, FI.OuterTripCount, "flatten.tripcount",
746      FI.OuterLoop->getLoopPreheader()->getTerminator());
747  LLVM_DEBUG(dbgs() << "Created new trip count in preheader: ";
748             NewTripCount->dump());
749
750  // Fix up PHI nodes that take values from the inner loop back-edge, which
751  // we are about to remove.
752  FI.InnerInductionPHI->removeIncomingValue(FI.InnerLoop->getLoopLatch());
753
754  // The old Phi will be optimised away later, but for now we can't leave
755  // leave it in an invalid state, so are updating them too.
756  for (PHINode *PHI : FI.InnerPHIsToTransform)
757    PHI->removeIncomingValue(FI.InnerLoop->getLoopLatch());
758
759  // Modify the trip count of the outer loop to be the product of the two
760  // trip counts.
761  cast<User>(FI.OuterBranch->getCondition())->setOperand(1, NewTripCount);
762
763  // Replace the inner loop backedge with an unconditional branch to the exit.
764  BasicBlock *InnerExitBlock = FI.InnerLoop->getExitBlock();
765  BasicBlock *InnerExitingBlock = FI.InnerLoop->getExitingBlock();
766  InnerExitingBlock->getTerminator()->eraseFromParent();
767  BranchInst::Create(InnerExitBlock, InnerExitingBlock);
768
769  // Update the DomTree and MemorySSA.
770  DT->deleteEdge(InnerExitingBlock, FI.InnerLoop->getHeader());
771  if (MSSAU)
772    MSSAU->removeEdge(InnerExitingBlock, FI.InnerLoop->getHeader());
773
774  // Replace all uses of the polynomial calculated from the two induction
775  // variables with the one new one.
776  IRBuilder<> Builder(FI.OuterInductionPHI->getParent()->getTerminator());
777  for (Value *V : FI.LinearIVUses) {
778    Value *OuterValue = FI.OuterInductionPHI;
779    if (FI.Widened)
780      OuterValue = Builder.CreateTrunc(FI.OuterInductionPHI, V->getType(),
781                                       "flatten.trunciv");
782
783    LLVM_DEBUG(dbgs() << "Replacing: "; V->dump(); dbgs() << "with:      ";
784               OuterValue->dump());
785    V->replaceAllUsesWith(OuterValue);
786  }
787
788  // Tell LoopInfo, SCEV and the pass manager that the inner loop has been
789  // deleted, and invalidate any outer loop information.
790  SE->forgetLoop(FI.OuterLoop);
791  SE->forgetBlockAndLoopDispositions();
792  if (U)
793    U->markLoopAsDeleted(*FI.InnerLoop, FI.InnerLoop->getName());
794  LI->erase(FI.InnerLoop);
795
796  // Increment statistic value.
797  NumFlattened++;
798
799  return true;
800}
801
802static bool CanWidenIV(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI,
803                       ScalarEvolution *SE, AssumptionCache *AC,
804                       const TargetTransformInfo *TTI) {
805  if (!WidenIV) {
806    LLVM_DEBUG(dbgs() << "Widening the IVs is disabled\n");
807    return false;
808  }
809
810  LLVM_DEBUG(dbgs() << "Try widening the IVs\n");
811  Module *M = FI.InnerLoop->getHeader()->getParent()->getParent();
812  auto &DL = M->getDataLayout();
813  auto *InnerType = FI.InnerInductionPHI->getType();
814  auto *OuterType = FI.OuterInductionPHI->getType();
815  unsigned MaxLegalSize = DL.getLargestLegalIntTypeSizeInBits();
816  auto *MaxLegalType = DL.getLargestLegalIntType(M->getContext());
817
818  // If both induction types are less than the maximum legal integer width,
819  // promote both to the widest type available so we know calculating
820  // (OuterTripCount * InnerTripCount) as the new trip count is safe.
821  if (InnerType != OuterType ||
822      InnerType->getScalarSizeInBits() >= MaxLegalSize ||
823      MaxLegalType->getScalarSizeInBits() <
824          InnerType->getScalarSizeInBits() * 2) {
825    LLVM_DEBUG(dbgs() << "Can't widen the IV\n");
826    return false;
827  }
828
829  SCEVExpander Rewriter(*SE, DL, "loopflatten");
830  SmallVector<WeakTrackingVH, 4> DeadInsts;
831  unsigned ElimExt = 0;
832  unsigned Widened = 0;
833
834  auto CreateWideIV = [&](WideIVInfo WideIV, bool &Deleted) -> bool {
835    PHINode *WidePhi =
836        createWideIV(WideIV, LI, SE, Rewriter, DT, DeadInsts, ElimExt, Widened,
837                     true /* HasGuards */, true /* UsePostIncrementRanges */);
838    if (!WidePhi)
839      return false;
840    LLVM_DEBUG(dbgs() << "Created wide phi: "; WidePhi->dump());
841    LLVM_DEBUG(dbgs() << "Deleting old phi: "; WideIV.NarrowIV->dump());
842    Deleted = RecursivelyDeleteDeadPHINode(WideIV.NarrowIV);
843    return true;
844  };
845
846  bool Deleted;
847  if (!CreateWideIV({FI.InnerInductionPHI, MaxLegalType, false}, Deleted))
848    return false;
849  // Add the narrow phi to list, so that it will be adjusted later when the
850  // the transformation is performed.
851  if (!Deleted)
852    FI.InnerPHIsToTransform.insert(FI.InnerInductionPHI);
853
854  if (!CreateWideIV({FI.OuterInductionPHI, MaxLegalType, false}, Deleted))
855    return false;
856
857  assert(Widened && "Widened IV expected");
858  FI.Widened = true;
859
860  // Save the old/narrow induction phis, which we need to ignore in CheckPHIs.
861  FI.NarrowInnerInductionPHI = FI.InnerInductionPHI;
862  FI.NarrowOuterInductionPHI = FI.OuterInductionPHI;
863
864  // After widening, rediscover all the loop components.
865  return CanFlattenLoopPair(FI, DT, LI, SE, AC, TTI);
866}
867
868static bool FlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI,
869                            ScalarEvolution *SE, AssumptionCache *AC,
870                            const TargetTransformInfo *TTI, LPMUpdater *U,
871                            MemorySSAUpdater *MSSAU) {
872  LLVM_DEBUG(
873      dbgs() << "Loop flattening running on outer loop "
874             << FI.OuterLoop->getHeader()->getName() << " and inner loop "
875             << FI.InnerLoop->getHeader()->getName() << " in "
876             << FI.OuterLoop->getHeader()->getParent()->getName() << "\n");
877
878  if (!CanFlattenLoopPair(FI, DT, LI, SE, AC, TTI))
879    return false;
880
881  // Check if we can widen the induction variables to avoid overflow checks.
882  bool CanFlatten = CanWidenIV(FI, DT, LI, SE, AC, TTI);
883
884  // It can happen that after widening of the IV, flattening may not be
885  // possible/happening, e.g. when it is deemed unprofitable. So bail here if
886  // that is the case.
887  // TODO: IV widening without performing the actual flattening transformation
888  // is not ideal. While this codegen change should not matter much, it is an
889  // unnecessary change which is better to avoid. It's unlikely this happens
890  // often, because if it's unprofitibale after widening, it should be
891  // unprofitabe before widening as checked in the first round of checks. But
892  // 'RepeatedInstructionThreshold' is set to only 2, which can probably be
893  // relaxed. Because this is making a code change (the IV widening, but not
894  // the flattening), we return true here.
895  if (FI.Widened && !CanFlatten)
896    return true;
897
898  // If we have widened and can perform the transformation, do that here.
899  if (CanFlatten)
900    return DoFlattenLoopPair(FI, DT, LI, SE, AC, TTI, U, MSSAU);
901
902  // Otherwise, if we haven't widened the IV, check if the new iteration
903  // variable might overflow. In this case, we need to version the loop, and
904  // select the original version at runtime if the iteration space is too
905  // large.
906  // TODO: We currently don't version the loop.
907  OverflowResult OR = checkOverflow(FI, DT, AC);
908  if (OR == OverflowResult::AlwaysOverflowsHigh ||
909      OR == OverflowResult::AlwaysOverflowsLow) {
910    LLVM_DEBUG(dbgs() << "Multiply would always overflow, so not profitable\n");
911    return false;
912  } else if (OR == OverflowResult::MayOverflow) {
913    LLVM_DEBUG(dbgs() << "Multiply might overflow, not flattening\n");
914    return false;
915  }
916
917  LLVM_DEBUG(dbgs() << "Multiply cannot overflow, modifying loop in-place\n");
918  return DoFlattenLoopPair(FI, DT, LI, SE, AC, TTI, U, MSSAU);
919}
920
921bool Flatten(LoopNest &LN, DominatorTree *DT, LoopInfo *LI, ScalarEvolution *SE,
922             AssumptionCache *AC, TargetTransformInfo *TTI, LPMUpdater *U,
923             MemorySSAUpdater *MSSAU) {
924  bool Changed = false;
925  for (Loop *InnerLoop : LN.getLoops()) {
926    auto *OuterLoop = InnerLoop->getParentLoop();
927    if (!OuterLoop)
928      continue;
929    FlattenInfo FI(OuterLoop, InnerLoop);
930    Changed |= FlattenLoopPair(FI, DT, LI, SE, AC, TTI, U, MSSAU);
931  }
932  return Changed;
933}
934
935PreservedAnalyses LoopFlattenPass::run(LoopNest &LN, LoopAnalysisManager &LAM,
936                                       LoopStandardAnalysisResults &AR,
937                                       LPMUpdater &U) {
938
939  bool Changed = false;
940
941  std::optional<MemorySSAUpdater> MSSAU;
942  if (AR.MSSA) {
943    MSSAU = MemorySSAUpdater(AR.MSSA);
944    if (VerifyMemorySSA)
945      AR.MSSA->verifyMemorySSA();
946  }
947
948  // The loop flattening pass requires loops to be
949  // in simplified form, and also needs LCSSA. Running
950  // this pass will simplify all loops that contain inner loops,
951  // regardless of whether anything ends up being flattened.
952  Changed |= Flatten(LN, &AR.DT, &AR.LI, &AR.SE, &AR.AC, &AR.TTI, &U,
953                     MSSAU ? &*MSSAU : nullptr);
954
955  if (!Changed)
956    return PreservedAnalyses::all();
957
958  if (AR.MSSA && VerifyMemorySSA)
959    AR.MSSA->verifyMemorySSA();
960
961  auto PA = getLoopPassPreservedAnalyses();
962  if (AR.MSSA)
963    PA.preserve<MemorySSAAnalysis>();
964  return PA;
965}
966
967namespace {
968class LoopFlattenLegacyPass : public FunctionPass {
969public:
970  static char ID; // Pass ID, replacement for typeid
971  LoopFlattenLegacyPass() : FunctionPass(ID) {
972    initializeLoopFlattenLegacyPassPass(*PassRegistry::getPassRegistry());
973  }
974
975  // Possibly flatten loop L into its child.
976  bool runOnFunction(Function &F) override;
977
978  void getAnalysisUsage(AnalysisUsage &AU) const override {
979    getLoopAnalysisUsage(AU);
980    AU.addRequired<TargetTransformInfoWrapperPass>();
981    AU.addPreserved<TargetTransformInfoWrapperPass>();
982    AU.addRequired<AssumptionCacheTracker>();
983    AU.addPreserved<AssumptionCacheTracker>();
984    AU.addPreserved<MemorySSAWrapperPass>();
985  }
986};
987} // namespace
988
989char LoopFlattenLegacyPass::ID = 0;
990INITIALIZE_PASS_BEGIN(LoopFlattenLegacyPass, "loop-flatten", "Flattens loops",
991                      false, false)
992INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
993INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
994INITIALIZE_PASS_END(LoopFlattenLegacyPass, "loop-flatten", "Flattens loops",
995                    false, false)
996
997FunctionPass *llvm::createLoopFlattenPass() {
998  return new LoopFlattenLegacyPass();
999}
1000
1001bool LoopFlattenLegacyPass::runOnFunction(Function &F) {
1002  ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1003  LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1004  auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
1005  DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
1006  auto &TTIP = getAnalysis<TargetTransformInfoWrapperPass>();
1007  auto *TTI = &TTIP.getTTI(F);
1008  auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1009  auto *MSSA = getAnalysisIfAvailable<MemorySSAWrapperPass>();
1010
1011  std::optional<MemorySSAUpdater> MSSAU;
1012  if (MSSA)
1013    MSSAU = MemorySSAUpdater(&MSSA->getMSSA());
1014
1015  bool Changed = false;
1016  for (Loop *L : *LI) {
1017    auto LN = LoopNest::getLoopNest(*L, *SE);
1018    Changed |=
1019        Flatten(*LN, DT, LI, SE, AC, TTI, nullptr, MSSAU ? &*MSSAU : nullptr);
1020  }
1021  return Changed;
1022}
1023