1//===- InstCombineAddSub.cpp ------------------------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the visit functions for add, fadd, sub, and fsub.
10//
11//===----------------------------------------------------------------------===//
12
13#include "InstCombineInternal.h"
14#include "llvm/ADT/APFloat.h"
15#include "llvm/ADT/APInt.h"
16#include "llvm/ADT/STLExtras.h"
17#include "llvm/ADT/SmallVector.h"
18#include "llvm/Analysis/InstructionSimplify.h"
19#include "llvm/Analysis/ValueTracking.h"
20#include "llvm/IR/Constant.h"
21#include "llvm/IR/Constants.h"
22#include "llvm/IR/InstrTypes.h"
23#include "llvm/IR/Instruction.h"
24#include "llvm/IR/Instructions.h"
25#include "llvm/IR/Operator.h"
26#include "llvm/IR/PatternMatch.h"
27#include "llvm/IR/Type.h"
28#include "llvm/IR/Value.h"
29#include "llvm/Support/AlignOf.h"
30#include "llvm/Support/Casting.h"
31#include "llvm/Support/KnownBits.h"
32#include "llvm/Transforms/InstCombine/InstCombiner.h"
33#include <cassert>
34#include <utility>
35
36using namespace llvm;
37using namespace PatternMatch;
38
39#define DEBUG_TYPE "instcombine"
40
41namespace {
42
43  /// Class representing coefficient of floating-point addend.
44  /// This class needs to be highly efficient, which is especially true for
45  /// the constructor. As of I write this comment, the cost of the default
46  /// constructor is merely 4-byte-store-zero (Assuming compiler is able to
47  /// perform write-merging).
48  ///
49  class FAddendCoef {
50  public:
51    // The constructor has to initialize a APFloat, which is unnecessary for
52    // most addends which have coefficient either 1 or -1. So, the constructor
53    // is expensive. In order to avoid the cost of the constructor, we should
54    // reuse some instances whenever possible. The pre-created instances
55    // FAddCombine::Add[0-5] embodies this idea.
56    FAddendCoef() = default;
57    ~FAddendCoef();
58
59    // If possible, don't define operator+/operator- etc because these
60    // operators inevitably call FAddendCoef's constructor which is not cheap.
61    void operator=(const FAddendCoef &A);
62    void operator+=(const FAddendCoef &A);
63    void operator*=(const FAddendCoef &S);
64
65    void set(short C) {
66      assert(!insaneIntVal(C) && "Insane coefficient");
67      IsFp = false; IntVal = C;
68    }
69
70    void set(const APFloat& C);
71
72    void negate();
73
74    bool isZero() const { return isInt() ? !IntVal : getFpVal().isZero(); }
75    Value *getValue(Type *) const;
76
77    bool isOne() const { return isInt() && IntVal == 1; }
78    bool isTwo() const { return isInt() && IntVal == 2; }
79    bool isMinusOne() const { return isInt() && IntVal == -1; }
80    bool isMinusTwo() const { return isInt() && IntVal == -2; }
81
82  private:
83    bool insaneIntVal(int V) { return V > 4 || V < -4; }
84
85    APFloat *getFpValPtr() { return reinterpret_cast<APFloat *>(&FpValBuf); }
86
87    const APFloat *getFpValPtr() const {
88      return reinterpret_cast<const APFloat *>(&FpValBuf);
89    }
90
91    const APFloat &getFpVal() const {
92      assert(IsFp && BufHasFpVal && "Incorret state");
93      return *getFpValPtr();
94    }
95
96    APFloat &getFpVal() {
97      assert(IsFp && BufHasFpVal && "Incorret state");
98      return *getFpValPtr();
99    }
100
101    bool isInt() const { return !IsFp; }
102
103    // If the coefficient is represented by an integer, promote it to a
104    // floating point.
105    void convertToFpType(const fltSemantics &Sem);
106
107    // Construct an APFloat from a signed integer.
108    // TODO: We should get rid of this function when APFloat can be constructed
109    //       from an *SIGNED* integer.
110    APFloat createAPFloatFromInt(const fltSemantics &Sem, int Val);
111
112    bool IsFp = false;
113
114    // True iff FpValBuf contains an instance of APFloat.
115    bool BufHasFpVal = false;
116
117    // The integer coefficient of an individual addend is either 1 or -1,
118    // and we try to simplify at most 4 addends from neighboring at most
119    // two instructions. So the range of <IntVal> falls in [-4, 4]. APInt
120    // is overkill of this end.
121    short IntVal = 0;
122
123    AlignedCharArrayUnion<APFloat> FpValBuf;
124  };
125
126  /// FAddend is used to represent floating-point addend. An addend is
127  /// represented as <C, V>, where the V is a symbolic value, and C is a
128  /// constant coefficient. A constant addend is represented as <C, 0>.
129  class FAddend {
130  public:
131    FAddend() = default;
132
133    void operator+=(const FAddend &T) {
134      assert((Val == T.Val) && "Symbolic-values disagree");
135      Coeff += T.Coeff;
136    }
137
138    Value *getSymVal() const { return Val; }
139    const FAddendCoef &getCoef() const { return Coeff; }
140
141    bool isConstant() const { return Val == nullptr; }
142    bool isZero() const { return Coeff.isZero(); }
143
144    void set(short Coefficient, Value *V) {
145      Coeff.set(Coefficient);
146      Val = V;
147    }
148    void set(const APFloat &Coefficient, Value *V) {
149      Coeff.set(Coefficient);
150      Val = V;
151    }
152    void set(const ConstantFP *Coefficient, Value *V) {
153      Coeff.set(Coefficient->getValueAPF());
154      Val = V;
155    }
156
157    void negate() { Coeff.negate(); }
158
159    /// Drill down the U-D chain one step to find the definition of V, and
160    /// try to break the definition into one or two addends.
161    static unsigned drillValueDownOneStep(Value* V, FAddend &A0, FAddend &A1);
162
163    /// Similar to FAddend::drillDownOneStep() except that the value being
164    /// splitted is the addend itself.
165    unsigned drillAddendDownOneStep(FAddend &Addend0, FAddend &Addend1) const;
166
167  private:
168    void Scale(const FAddendCoef& ScaleAmt) { Coeff *= ScaleAmt; }
169
170    // This addend has the value of "Coeff * Val".
171    Value *Val = nullptr;
172    FAddendCoef Coeff;
173  };
174
175  /// FAddCombine is the class for optimizing an unsafe fadd/fsub along
176  /// with its neighboring at most two instructions.
177  ///
178  class FAddCombine {
179  public:
180    FAddCombine(InstCombiner::BuilderTy &B) : Builder(B) {}
181
182    Value *simplify(Instruction *FAdd);
183
184  private:
185    using AddendVect = SmallVector<const FAddend *, 4>;
186
187    Value *simplifyFAdd(AddendVect& V, unsigned InstrQuota);
188
189    /// Convert given addend to a Value
190    Value *createAddendVal(const FAddend &A, bool& NeedNeg);
191
192    /// Return the number of instructions needed to emit the N-ary addition.
193    unsigned calcInstrNumber(const AddendVect& Vect);
194
195    Value *createFSub(Value *Opnd0, Value *Opnd1);
196    Value *createFAdd(Value *Opnd0, Value *Opnd1);
197    Value *createFMul(Value *Opnd0, Value *Opnd1);
198    Value *createFNeg(Value *V);
199    Value *createNaryFAdd(const AddendVect& Opnds, unsigned InstrQuota);
200    void createInstPostProc(Instruction *NewInst, bool NoNumber = false);
201
202     // Debugging stuff are clustered here.
203    #ifndef NDEBUG
204      unsigned CreateInstrNum;
205      void initCreateInstNum() { CreateInstrNum = 0; }
206      void incCreateInstNum() { CreateInstrNum++; }
207    #else
208      void initCreateInstNum() {}
209      void incCreateInstNum() {}
210    #endif
211
212    InstCombiner::BuilderTy &Builder;
213    Instruction *Instr = nullptr;
214  };
215
216} // end anonymous namespace
217
218//===----------------------------------------------------------------------===//
219//
220// Implementation of
221//    {FAddendCoef, FAddend, FAddition, FAddCombine}.
222//
223//===----------------------------------------------------------------------===//
224FAddendCoef::~FAddendCoef() {
225  if (BufHasFpVal)
226    getFpValPtr()->~APFloat();
227}
228
229void FAddendCoef::set(const APFloat& C) {
230  APFloat *P = getFpValPtr();
231
232  if (isInt()) {
233    // As the buffer is meanless byte stream, we cannot call
234    // APFloat::operator=().
235    new(P) APFloat(C);
236  } else
237    *P = C;
238
239  IsFp = BufHasFpVal = true;
240}
241
242void FAddendCoef::convertToFpType(const fltSemantics &Sem) {
243  if (!isInt())
244    return;
245
246  APFloat *P = getFpValPtr();
247  if (IntVal > 0)
248    new(P) APFloat(Sem, IntVal);
249  else {
250    new(P) APFloat(Sem, 0 - IntVal);
251    P->changeSign();
252  }
253  IsFp = BufHasFpVal = true;
254}
255
256APFloat FAddendCoef::createAPFloatFromInt(const fltSemantics &Sem, int Val) {
257  if (Val >= 0)
258    return APFloat(Sem, Val);
259
260  APFloat T(Sem, 0 - Val);
261  T.changeSign();
262
263  return T;
264}
265
266void FAddendCoef::operator=(const FAddendCoef &That) {
267  if (That.isInt())
268    set(That.IntVal);
269  else
270    set(That.getFpVal());
271}
272
273void FAddendCoef::operator+=(const FAddendCoef &That) {
274  RoundingMode RndMode = RoundingMode::NearestTiesToEven;
275  if (isInt() == That.isInt()) {
276    if (isInt())
277      IntVal += That.IntVal;
278    else
279      getFpVal().add(That.getFpVal(), RndMode);
280    return;
281  }
282
283  if (isInt()) {
284    const APFloat &T = That.getFpVal();
285    convertToFpType(T.getSemantics());
286    getFpVal().add(T, RndMode);
287    return;
288  }
289
290  APFloat &T = getFpVal();
291  T.add(createAPFloatFromInt(T.getSemantics(), That.IntVal), RndMode);
292}
293
294void FAddendCoef::operator*=(const FAddendCoef &That) {
295  if (That.isOne())
296    return;
297
298  if (That.isMinusOne()) {
299    negate();
300    return;
301  }
302
303  if (isInt() && That.isInt()) {
304    int Res = IntVal * (int)That.IntVal;
305    assert(!insaneIntVal(Res) && "Insane int value");
306    IntVal = Res;
307    return;
308  }
309
310  const fltSemantics &Semantic =
311    isInt() ? That.getFpVal().getSemantics() : getFpVal().getSemantics();
312
313  if (isInt())
314    convertToFpType(Semantic);
315  APFloat &F0 = getFpVal();
316
317  if (That.isInt())
318    F0.multiply(createAPFloatFromInt(Semantic, That.IntVal),
319                APFloat::rmNearestTiesToEven);
320  else
321    F0.multiply(That.getFpVal(), APFloat::rmNearestTiesToEven);
322}
323
324void FAddendCoef::negate() {
325  if (isInt())
326    IntVal = 0 - IntVal;
327  else
328    getFpVal().changeSign();
329}
330
331Value *FAddendCoef::getValue(Type *Ty) const {
332  return isInt() ?
333    ConstantFP::get(Ty, float(IntVal)) :
334    ConstantFP::get(Ty->getContext(), getFpVal());
335}
336
337// The definition of <Val>     Addends
338// =========================================
339//  A + B                     <1, A>, <1,B>
340//  A - B                     <1, A>, <1,B>
341//  0 - B                     <-1, B>
342//  C * A,                    <C, A>
343//  A + C                     <1, A> <C, NULL>
344//  0 +/- 0                   <0, NULL> (corner case)
345//
346// Legend: A and B are not constant, C is constant
347unsigned FAddend::drillValueDownOneStep
348  (Value *Val, FAddend &Addend0, FAddend &Addend1) {
349  Instruction *I = nullptr;
350  if (!Val || !(I = dyn_cast<Instruction>(Val)))
351    return 0;
352
353  unsigned Opcode = I->getOpcode();
354
355  if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub) {
356    ConstantFP *C0, *C1;
357    Value *Opnd0 = I->getOperand(0);
358    Value *Opnd1 = I->getOperand(1);
359    if ((C0 = dyn_cast<ConstantFP>(Opnd0)) && C0->isZero())
360      Opnd0 = nullptr;
361
362    if ((C1 = dyn_cast<ConstantFP>(Opnd1)) && C1->isZero())
363      Opnd1 = nullptr;
364
365    if (Opnd0) {
366      if (!C0)
367        Addend0.set(1, Opnd0);
368      else
369        Addend0.set(C0, nullptr);
370    }
371
372    if (Opnd1) {
373      FAddend &Addend = Opnd0 ? Addend1 : Addend0;
374      if (!C1)
375        Addend.set(1, Opnd1);
376      else
377        Addend.set(C1, nullptr);
378      if (Opcode == Instruction::FSub)
379        Addend.negate();
380    }
381
382    if (Opnd0 || Opnd1)
383      return Opnd0 && Opnd1 ? 2 : 1;
384
385    // Both operands are zero. Weird!
386    Addend0.set(APFloat(C0->getValueAPF().getSemantics()), nullptr);
387    return 1;
388  }
389
390  if (I->getOpcode() == Instruction::FMul) {
391    Value *V0 = I->getOperand(0);
392    Value *V1 = I->getOperand(1);
393    if (ConstantFP *C = dyn_cast<ConstantFP>(V0)) {
394      Addend0.set(C, V1);
395      return 1;
396    }
397
398    if (ConstantFP *C = dyn_cast<ConstantFP>(V1)) {
399      Addend0.set(C, V0);
400      return 1;
401    }
402  }
403
404  return 0;
405}
406
407// Try to break *this* addend into two addends. e.g. Suppose this addend is
408// <2.3, V>, and V = X + Y, by calling this function, we obtain two addends,
409// i.e. <2.3, X> and <2.3, Y>.
410unsigned FAddend::drillAddendDownOneStep
411  (FAddend &Addend0, FAddend &Addend1) const {
412  if (isConstant())
413    return 0;
414
415  unsigned BreakNum = FAddend::drillValueDownOneStep(Val, Addend0, Addend1);
416  if (!BreakNum || Coeff.isOne())
417    return BreakNum;
418
419  Addend0.Scale(Coeff);
420
421  if (BreakNum == 2)
422    Addend1.Scale(Coeff);
423
424  return BreakNum;
425}
426
427Value *FAddCombine::simplify(Instruction *I) {
428  assert(I->hasAllowReassoc() && I->hasNoSignedZeros() &&
429         "Expected 'reassoc'+'nsz' instruction");
430
431  // Currently we are not able to handle vector type.
432  if (I->getType()->isVectorTy())
433    return nullptr;
434
435  assert((I->getOpcode() == Instruction::FAdd ||
436          I->getOpcode() == Instruction::FSub) && "Expect add/sub");
437
438  // Save the instruction before calling other member-functions.
439  Instr = I;
440
441  FAddend Opnd0, Opnd1, Opnd0_0, Opnd0_1, Opnd1_0, Opnd1_1;
442
443  unsigned OpndNum = FAddend::drillValueDownOneStep(I, Opnd0, Opnd1);
444
445  // Step 1: Expand the 1st addend into Opnd0_0 and Opnd0_1.
446  unsigned Opnd0_ExpNum = 0;
447  unsigned Opnd1_ExpNum = 0;
448
449  if (!Opnd0.isConstant())
450    Opnd0_ExpNum = Opnd0.drillAddendDownOneStep(Opnd0_0, Opnd0_1);
451
452  // Step 2: Expand the 2nd addend into Opnd1_0 and Opnd1_1.
453  if (OpndNum == 2 && !Opnd1.isConstant())
454    Opnd1_ExpNum = Opnd1.drillAddendDownOneStep(Opnd1_0, Opnd1_1);
455
456  // Step 3: Try to optimize Opnd0_0 + Opnd0_1 + Opnd1_0 + Opnd1_1
457  if (Opnd0_ExpNum && Opnd1_ExpNum) {
458    AddendVect AllOpnds;
459    AllOpnds.push_back(&Opnd0_0);
460    AllOpnds.push_back(&Opnd1_0);
461    if (Opnd0_ExpNum == 2)
462      AllOpnds.push_back(&Opnd0_1);
463    if (Opnd1_ExpNum == 2)
464      AllOpnds.push_back(&Opnd1_1);
465
466    // Compute instruction quota. We should save at least one instruction.
467    unsigned InstQuota = 0;
468
469    Value *V0 = I->getOperand(0);
470    Value *V1 = I->getOperand(1);
471    InstQuota = ((!isa<Constant>(V0) && V0->hasOneUse()) &&
472                 (!isa<Constant>(V1) && V1->hasOneUse())) ? 2 : 1;
473
474    if (Value *R = simplifyFAdd(AllOpnds, InstQuota))
475      return R;
476  }
477
478  if (OpndNum != 2) {
479    // The input instruction is : "I=0.0 +/- V". If the "V" were able to be
480    // splitted into two addends, say "V = X - Y", the instruction would have
481    // been optimized into "I = Y - X" in the previous steps.
482    //
483    const FAddendCoef &CE = Opnd0.getCoef();
484    return CE.isOne() ? Opnd0.getSymVal() : nullptr;
485  }
486
487  // step 4: Try to optimize Opnd0 + Opnd1_0 [+ Opnd1_1]
488  if (Opnd1_ExpNum) {
489    AddendVect AllOpnds;
490    AllOpnds.push_back(&Opnd0);
491    AllOpnds.push_back(&Opnd1_0);
492    if (Opnd1_ExpNum == 2)
493      AllOpnds.push_back(&Opnd1_1);
494
495    if (Value *R = simplifyFAdd(AllOpnds, 1))
496      return R;
497  }
498
499  // step 5: Try to optimize Opnd1 + Opnd0_0 [+ Opnd0_1]
500  if (Opnd0_ExpNum) {
501    AddendVect AllOpnds;
502    AllOpnds.push_back(&Opnd1);
503    AllOpnds.push_back(&Opnd0_0);
504    if (Opnd0_ExpNum == 2)
505      AllOpnds.push_back(&Opnd0_1);
506
507    if (Value *R = simplifyFAdd(AllOpnds, 1))
508      return R;
509  }
510
511  return nullptr;
512}
513
514Value *FAddCombine::simplifyFAdd(AddendVect& Addends, unsigned InstrQuota) {
515  unsigned AddendNum = Addends.size();
516  assert(AddendNum <= 4 && "Too many addends");
517
518  // For saving intermediate results;
519  unsigned NextTmpIdx = 0;
520  FAddend TmpResult[3];
521
522  // Simplified addends are placed <SimpVect>.
523  AddendVect SimpVect;
524
525  // The outer loop works on one symbolic-value at a time. Suppose the input
526  // addends are : <a1, x>, <b1, y>, <a2, x>, <c1, z>, <b2, y>, ...
527  // The symbolic-values will be processed in this order: x, y, z.
528  for (unsigned SymIdx = 0; SymIdx < AddendNum; SymIdx++) {
529
530    const FAddend *ThisAddend = Addends[SymIdx];
531    if (!ThisAddend) {
532      // This addend was processed before.
533      continue;
534    }
535
536    Value *Val = ThisAddend->getSymVal();
537
538    // If the resulting expr has constant-addend, this constant-addend is
539    // desirable to reside at the top of the resulting expression tree. Placing
540    // constant close to super-expr(s) will potentially reveal some
541    // optimization opportunities in super-expr(s). Here we do not implement
542    // this logic intentionally and rely on SimplifyAssociativeOrCommutative
543    // call later.
544
545    unsigned StartIdx = SimpVect.size();
546    SimpVect.push_back(ThisAddend);
547
548    // The inner loop collects addends sharing same symbolic-value, and these
549    // addends will be later on folded into a single addend. Following above
550    // example, if the symbolic value "y" is being processed, the inner loop
551    // will collect two addends "<b1,y>" and "<b2,Y>". These two addends will
552    // be later on folded into "<b1+b2, y>".
553    for (unsigned SameSymIdx = SymIdx + 1;
554         SameSymIdx < AddendNum; SameSymIdx++) {
555      const FAddend *T = Addends[SameSymIdx];
556      if (T && T->getSymVal() == Val) {
557        // Set null such that next iteration of the outer loop will not process
558        // this addend again.
559        Addends[SameSymIdx] = nullptr;
560        SimpVect.push_back(T);
561      }
562    }
563
564    // If multiple addends share same symbolic value, fold them together.
565    if (StartIdx + 1 != SimpVect.size()) {
566      FAddend &R = TmpResult[NextTmpIdx ++];
567      R = *SimpVect[StartIdx];
568      for (unsigned Idx = StartIdx + 1; Idx < SimpVect.size(); Idx++)
569        R += *SimpVect[Idx];
570
571      // Pop all addends being folded and push the resulting folded addend.
572      SimpVect.resize(StartIdx);
573      if (!R.isZero()) {
574        SimpVect.push_back(&R);
575      }
576    }
577  }
578
579  assert((NextTmpIdx <= std::size(TmpResult) + 1) && "out-of-bound access");
580
581  Value *Result;
582  if (!SimpVect.empty())
583    Result = createNaryFAdd(SimpVect, InstrQuota);
584  else {
585    // The addition is folded to 0.0.
586    Result = ConstantFP::get(Instr->getType(), 0.0);
587  }
588
589  return Result;
590}
591
592Value *FAddCombine::createNaryFAdd
593  (const AddendVect &Opnds, unsigned InstrQuota) {
594  assert(!Opnds.empty() && "Expect at least one addend");
595
596  // Step 1: Check if the # of instructions needed exceeds the quota.
597
598  unsigned InstrNeeded = calcInstrNumber(Opnds);
599  if (InstrNeeded > InstrQuota)
600    return nullptr;
601
602  initCreateInstNum();
603
604  // step 2: Emit the N-ary addition.
605  // Note that at most three instructions are involved in Fadd-InstCombine: the
606  // addition in question, and at most two neighboring instructions.
607  // The resulting optimized addition should have at least one less instruction
608  // than the original addition expression tree. This implies that the resulting
609  // N-ary addition has at most two instructions, and we don't need to worry
610  // about tree-height when constructing the N-ary addition.
611
612  Value *LastVal = nullptr;
613  bool LastValNeedNeg = false;
614
615  // Iterate the addends, creating fadd/fsub using adjacent two addends.
616  for (const FAddend *Opnd : Opnds) {
617    bool NeedNeg;
618    Value *V = createAddendVal(*Opnd, NeedNeg);
619    if (!LastVal) {
620      LastVal = V;
621      LastValNeedNeg = NeedNeg;
622      continue;
623    }
624
625    if (LastValNeedNeg == NeedNeg) {
626      LastVal = createFAdd(LastVal, V);
627      continue;
628    }
629
630    if (LastValNeedNeg)
631      LastVal = createFSub(V, LastVal);
632    else
633      LastVal = createFSub(LastVal, V);
634
635    LastValNeedNeg = false;
636  }
637
638  if (LastValNeedNeg) {
639    LastVal = createFNeg(LastVal);
640  }
641
642#ifndef NDEBUG
643  assert(CreateInstrNum == InstrNeeded &&
644         "Inconsistent in instruction numbers");
645#endif
646
647  return LastVal;
648}
649
650Value *FAddCombine::createFSub(Value *Opnd0, Value *Opnd1) {
651  Value *V = Builder.CreateFSub(Opnd0, Opnd1);
652  if (Instruction *I = dyn_cast<Instruction>(V))
653    createInstPostProc(I);
654  return V;
655}
656
657Value *FAddCombine::createFNeg(Value *V) {
658  Value *NewV = Builder.CreateFNeg(V);
659  if (Instruction *I = dyn_cast<Instruction>(NewV))
660    createInstPostProc(I, true); // fneg's don't receive instruction numbers.
661  return NewV;
662}
663
664Value *FAddCombine::createFAdd(Value *Opnd0, Value *Opnd1) {
665  Value *V = Builder.CreateFAdd(Opnd0, Opnd1);
666  if (Instruction *I = dyn_cast<Instruction>(V))
667    createInstPostProc(I);
668  return V;
669}
670
671Value *FAddCombine::createFMul(Value *Opnd0, Value *Opnd1) {
672  Value *V = Builder.CreateFMul(Opnd0, Opnd1);
673  if (Instruction *I = dyn_cast<Instruction>(V))
674    createInstPostProc(I);
675  return V;
676}
677
678void FAddCombine::createInstPostProc(Instruction *NewInstr, bool NoNumber) {
679  NewInstr->setDebugLoc(Instr->getDebugLoc());
680
681  // Keep track of the number of instruction created.
682  if (!NoNumber)
683    incCreateInstNum();
684
685  // Propagate fast-math flags
686  NewInstr->setFastMathFlags(Instr->getFastMathFlags());
687}
688
689// Return the number of instruction needed to emit the N-ary addition.
690// NOTE: Keep this function in sync with createAddendVal().
691unsigned FAddCombine::calcInstrNumber(const AddendVect &Opnds) {
692  unsigned OpndNum = Opnds.size();
693  unsigned InstrNeeded = OpndNum - 1;
694
695  // Adjust the number of instructions needed to emit the N-ary add.
696  for (const FAddend *Opnd : Opnds) {
697    if (Opnd->isConstant())
698      continue;
699
700    // The constant check above is really for a few special constant
701    // coefficients.
702    if (isa<UndefValue>(Opnd->getSymVal()))
703      continue;
704
705    const FAddendCoef &CE = Opnd->getCoef();
706    // Let the addend be "c * x". If "c == +/-1", the value of the addend
707    // is immediately available; otherwise, it needs exactly one instruction
708    // to evaluate the value.
709    if (!CE.isMinusOne() && !CE.isOne())
710      InstrNeeded++;
711  }
712  return InstrNeeded;
713}
714
715// Input Addend        Value           NeedNeg(output)
716// ================================================================
717// Constant C          C               false
718// <+/-1, V>           V               coefficient is -1
719// <2/-2, V>          "fadd V, V"      coefficient is -2
720// <C, V>             "fmul V, C"      false
721//
722// NOTE: Keep this function in sync with FAddCombine::calcInstrNumber.
723Value *FAddCombine::createAddendVal(const FAddend &Opnd, bool &NeedNeg) {
724  const FAddendCoef &Coeff = Opnd.getCoef();
725
726  if (Opnd.isConstant()) {
727    NeedNeg = false;
728    return Coeff.getValue(Instr->getType());
729  }
730
731  Value *OpndVal = Opnd.getSymVal();
732
733  if (Coeff.isMinusOne() || Coeff.isOne()) {
734    NeedNeg = Coeff.isMinusOne();
735    return OpndVal;
736  }
737
738  if (Coeff.isTwo() || Coeff.isMinusTwo()) {
739    NeedNeg = Coeff.isMinusTwo();
740    return createFAdd(OpndVal, OpndVal);
741  }
742
743  NeedNeg = false;
744  return createFMul(OpndVal, Coeff.getValue(Instr->getType()));
745}
746
747// Checks if any operand is negative and we can convert add to sub.
748// This function checks for following negative patterns
749//   ADD(XOR(OR(Z, NOT(C)), C)), 1) == NEG(AND(Z, C))
750//   ADD(XOR(AND(Z, C), C), 1) == NEG(OR(Z, ~C))
751//   XOR(AND(Z, C), (C + 1)) == NEG(OR(Z, ~C)) if C is even
752static Value *checkForNegativeOperand(BinaryOperator &I,
753                                      InstCombiner::BuilderTy &Builder) {
754  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
755
756  // This function creates 2 instructions to replace ADD, we need at least one
757  // of LHS or RHS to have one use to ensure benefit in transform.
758  if (!LHS->hasOneUse() && !RHS->hasOneUse())
759    return nullptr;
760
761  Value *X = nullptr, *Y = nullptr, *Z = nullptr;
762  const APInt *C1 = nullptr, *C2 = nullptr;
763
764  // if ONE is on other side, swap
765  if (match(RHS, m_Add(m_Value(X), m_One())))
766    std::swap(LHS, RHS);
767
768  if (match(LHS, m_Add(m_Value(X), m_One()))) {
769    // if XOR on other side, swap
770    if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
771      std::swap(X, RHS);
772
773    if (match(X, m_Xor(m_Value(Y), m_APInt(C1)))) {
774      // X = XOR(Y, C1), Y = OR(Z, C2), C2 = NOT(C1) ==> X == NOT(AND(Z, C1))
775      // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, AND(Z, C1))
776      if (match(Y, m_Or(m_Value(Z), m_APInt(C2))) && (*C2 == ~(*C1))) {
777        Value *NewAnd = Builder.CreateAnd(Z, *C1);
778        return Builder.CreateSub(RHS, NewAnd, "sub");
779      } else if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && (*C1 == *C2)) {
780        // X = XOR(Y, C1), Y = AND(Z, C2), C2 == C1 ==> X == NOT(OR(Z, ~C1))
781        // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, OR(Z, ~C1))
782        Value *NewOr = Builder.CreateOr(Z, ~(*C1));
783        return Builder.CreateSub(RHS, NewOr, "sub");
784      }
785    }
786  }
787
788  // Restore LHS and RHS
789  LHS = I.getOperand(0);
790  RHS = I.getOperand(1);
791
792  // if XOR is on other side, swap
793  if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
794    std::swap(LHS, RHS);
795
796  // C2 is ODD
797  // LHS = XOR(Y, C1), Y = AND(Z, C2), C1 == (C2 + 1) => LHS == NEG(OR(Z, ~C2))
798  // ADD(LHS, RHS) == SUB(RHS, OR(Z, ~C2))
799  if (match(LHS, m_Xor(m_Value(Y), m_APInt(C1))))
800    if (C1->countTrailingZeros() == 0)
801      if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && *C1 == (*C2 + 1)) {
802        Value *NewOr = Builder.CreateOr(Z, ~(*C2));
803        return Builder.CreateSub(RHS, NewOr, "sub");
804      }
805  return nullptr;
806}
807
808/// Wrapping flags may allow combining constants separated by an extend.
809static Instruction *foldNoWrapAdd(BinaryOperator &Add,
810                                  InstCombiner::BuilderTy &Builder) {
811  Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1);
812  Type *Ty = Add.getType();
813  Constant *Op1C;
814  if (!match(Op1, m_Constant(Op1C)))
815    return nullptr;
816
817  // Try this match first because it results in an add in the narrow type.
818  // (zext (X +nuw C2)) + C1 --> zext (X + (C2 + trunc(C1)))
819  Value *X;
820  const APInt *C1, *C2;
821  if (match(Op1, m_APInt(C1)) &&
822      match(Op0, m_OneUse(m_ZExt(m_NUWAdd(m_Value(X), m_APInt(C2))))) &&
823      C1->isNegative() && C1->sge(-C2->sext(C1->getBitWidth()))) {
824    Constant *NewC =
825        ConstantInt::get(X->getType(), *C2 + C1->trunc(C2->getBitWidth()));
826    return new ZExtInst(Builder.CreateNUWAdd(X, NewC), Ty);
827  }
828
829  // More general combining of constants in the wide type.
830  // (sext (X +nsw NarrowC)) + C --> (sext X) + (sext(NarrowC) + C)
831  Constant *NarrowC;
832  if (match(Op0, m_OneUse(m_SExt(m_NSWAdd(m_Value(X), m_Constant(NarrowC)))))) {
833    Constant *WideC = ConstantExpr::getSExt(NarrowC, Ty);
834    Constant *NewC = ConstantExpr::getAdd(WideC, Op1C);
835    Value *WideX = Builder.CreateSExt(X, Ty);
836    return BinaryOperator::CreateAdd(WideX, NewC);
837  }
838  // (zext (X +nuw NarrowC)) + C --> (zext X) + (zext(NarrowC) + C)
839  if (match(Op0, m_OneUse(m_ZExt(m_NUWAdd(m_Value(X), m_Constant(NarrowC)))))) {
840    Constant *WideC = ConstantExpr::getZExt(NarrowC, Ty);
841    Constant *NewC = ConstantExpr::getAdd(WideC, Op1C);
842    Value *WideX = Builder.CreateZExt(X, Ty);
843    return BinaryOperator::CreateAdd(WideX, NewC);
844  }
845
846  return nullptr;
847}
848
849Instruction *InstCombinerImpl::foldAddWithConstant(BinaryOperator &Add) {
850  Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1);
851  Type *Ty = Add.getType();
852  Constant *Op1C;
853  if (!match(Op1, m_ImmConstant(Op1C)))
854    return nullptr;
855
856  if (Instruction *NV = foldBinOpIntoSelectOrPhi(Add))
857    return NV;
858
859  Value *X;
860  Constant *Op00C;
861
862  // add (sub C1, X), C2 --> sub (add C1, C2), X
863  if (match(Op0, m_Sub(m_Constant(Op00C), m_Value(X))))
864    return BinaryOperator::CreateSub(ConstantExpr::getAdd(Op00C, Op1C), X);
865
866  Value *Y;
867
868  // add (sub X, Y), -1 --> add (not Y), X
869  if (match(Op0, m_OneUse(m_Sub(m_Value(X), m_Value(Y)))) &&
870      match(Op1, m_AllOnes()))
871    return BinaryOperator::CreateAdd(Builder.CreateNot(Y), X);
872
873  // zext(bool) + C -> bool ? C + 1 : C
874  if (match(Op0, m_ZExt(m_Value(X))) &&
875      X->getType()->getScalarSizeInBits() == 1)
876    return SelectInst::Create(X, InstCombiner::AddOne(Op1C), Op1);
877  // sext(bool) + C -> bool ? C - 1 : C
878  if (match(Op0, m_SExt(m_Value(X))) &&
879      X->getType()->getScalarSizeInBits() == 1)
880    return SelectInst::Create(X, InstCombiner::SubOne(Op1C), Op1);
881
882  // ~X + C --> (C-1) - X
883  if (match(Op0, m_Not(m_Value(X))))
884    return BinaryOperator::CreateSub(InstCombiner::SubOne(Op1C), X);
885
886  // (iN X s>> (N - 1)) + 1 --> zext (X > -1)
887  const APInt *C;
888  unsigned BitWidth = Ty->getScalarSizeInBits();
889  if (match(Op0, m_OneUse(m_AShr(m_Value(X),
890                                 m_SpecificIntAllowUndef(BitWidth - 1)))) &&
891      match(Op1, m_One()))
892    return new ZExtInst(Builder.CreateIsNotNeg(X, "isnotneg"), Ty);
893
894  if (!match(Op1, m_APInt(C)))
895    return nullptr;
896
897  // (X | Op01C) + Op1C --> X + (Op01C + Op1C) iff the `or` is actually an `add`
898  Constant *Op01C;
899  if (match(Op0, m_Or(m_Value(X), m_ImmConstant(Op01C))) &&
900      haveNoCommonBitsSet(X, Op01C, DL, &AC, &Add, &DT))
901    return BinaryOperator::CreateAdd(X, ConstantExpr::getAdd(Op01C, Op1C));
902
903  // (X | C2) + C --> (X | C2) ^ C2 iff (C2 == -C)
904  const APInt *C2;
905  if (match(Op0, m_Or(m_Value(), m_APInt(C2))) && *C2 == -*C)
906    return BinaryOperator::CreateXor(Op0, ConstantInt::get(Add.getType(), *C2));
907
908  if (C->isSignMask()) {
909    // If wrapping is not allowed, then the addition must set the sign bit:
910    // X + (signmask) --> X | signmask
911    if (Add.hasNoSignedWrap() || Add.hasNoUnsignedWrap())
912      return BinaryOperator::CreateOr(Op0, Op1);
913
914    // If wrapping is allowed, then the addition flips the sign bit of LHS:
915    // X + (signmask) --> X ^ signmask
916    return BinaryOperator::CreateXor(Op0, Op1);
917  }
918
919  // Is this add the last step in a convoluted sext?
920  // add(zext(xor i16 X, -32768), -32768) --> sext X
921  if (match(Op0, m_ZExt(m_Xor(m_Value(X), m_APInt(C2)))) &&
922      C2->isMinSignedValue() && C2->sext(Ty->getScalarSizeInBits()) == *C)
923    return CastInst::Create(Instruction::SExt, X, Ty);
924
925  if (match(Op0, m_Xor(m_Value(X), m_APInt(C2)))) {
926    // (X ^ signmask) + C --> (X + (signmask ^ C))
927    if (C2->isSignMask())
928      return BinaryOperator::CreateAdd(X, ConstantInt::get(Ty, *C2 ^ *C));
929
930    // If X has no high-bits set above an xor mask:
931    // add (xor X, LowMaskC), C --> sub (LowMaskC + C), X
932    if (C2->isMask()) {
933      KnownBits LHSKnown = computeKnownBits(X, 0, &Add);
934      if ((*C2 | LHSKnown.Zero).isAllOnes())
935        return BinaryOperator::CreateSub(ConstantInt::get(Ty, *C2 + *C), X);
936    }
937
938    // Look for a math+logic pattern that corresponds to sext-in-register of a
939    // value with cleared high bits. Convert that into a pair of shifts:
940    // add (xor X, 0x80), 0xF..F80 --> (X << ShAmtC) >>s ShAmtC
941    // add (xor X, 0xF..F80), 0x80 --> (X << ShAmtC) >>s ShAmtC
942    if (Op0->hasOneUse() && *C2 == -(*C)) {
943      unsigned BitWidth = Ty->getScalarSizeInBits();
944      unsigned ShAmt = 0;
945      if (C->isPowerOf2())
946        ShAmt = BitWidth - C->logBase2() - 1;
947      else if (C2->isPowerOf2())
948        ShAmt = BitWidth - C2->logBase2() - 1;
949      if (ShAmt && MaskedValueIsZero(X, APInt::getHighBitsSet(BitWidth, ShAmt),
950                                     0, &Add)) {
951        Constant *ShAmtC = ConstantInt::get(Ty, ShAmt);
952        Value *NewShl = Builder.CreateShl(X, ShAmtC, "sext");
953        return BinaryOperator::CreateAShr(NewShl, ShAmtC);
954      }
955    }
956  }
957
958  if (C->isOne() && Op0->hasOneUse()) {
959    // add (sext i1 X), 1 --> zext (not X)
960    // TODO: The smallest IR representation is (select X, 0, 1), and that would
961    // not require the one-use check. But we need to remove a transform in
962    // visitSelect and make sure that IR value tracking for select is equal or
963    // better than for these ops.
964    if (match(Op0, m_SExt(m_Value(X))) &&
965        X->getType()->getScalarSizeInBits() == 1)
966      return new ZExtInst(Builder.CreateNot(X), Ty);
967
968    // Shifts and add used to flip and mask off the low bit:
969    // add (ashr (shl i32 X, 31), 31), 1 --> and (not X), 1
970    const APInt *C3;
971    if (match(Op0, m_AShr(m_Shl(m_Value(X), m_APInt(C2)), m_APInt(C3))) &&
972        C2 == C3 && *C2 == Ty->getScalarSizeInBits() - 1) {
973      Value *NotX = Builder.CreateNot(X);
974      return BinaryOperator::CreateAnd(NotX, ConstantInt::get(Ty, 1));
975    }
976  }
977
978  return nullptr;
979}
980
981// Matches multiplication expression Op * C where C is a constant. Returns the
982// constant value in C and the other operand in Op. Returns true if such a
983// match is found.
984static bool MatchMul(Value *E, Value *&Op, APInt &C) {
985  const APInt *AI;
986  if (match(E, m_Mul(m_Value(Op), m_APInt(AI)))) {
987    C = *AI;
988    return true;
989  }
990  if (match(E, m_Shl(m_Value(Op), m_APInt(AI)))) {
991    C = APInt(AI->getBitWidth(), 1);
992    C <<= *AI;
993    return true;
994  }
995  return false;
996}
997
998// Matches remainder expression Op % C where C is a constant. Returns the
999// constant value in C and the other operand in Op. Returns the signedness of
1000// the remainder operation in IsSigned. Returns true if such a match is
1001// found.
1002static bool MatchRem(Value *E, Value *&Op, APInt &C, bool &IsSigned) {
1003  const APInt *AI;
1004  IsSigned = false;
1005  if (match(E, m_SRem(m_Value(Op), m_APInt(AI)))) {
1006    IsSigned = true;
1007    C = *AI;
1008    return true;
1009  }
1010  if (match(E, m_URem(m_Value(Op), m_APInt(AI)))) {
1011    C = *AI;
1012    return true;
1013  }
1014  if (match(E, m_And(m_Value(Op), m_APInt(AI))) && (*AI + 1).isPowerOf2()) {
1015    C = *AI + 1;
1016    return true;
1017  }
1018  return false;
1019}
1020
1021// Matches division expression Op / C with the given signedness as indicated
1022// by IsSigned, where C is a constant. Returns the constant value in C and the
1023// other operand in Op. Returns true if such a match is found.
1024static bool MatchDiv(Value *E, Value *&Op, APInt &C, bool IsSigned) {
1025  const APInt *AI;
1026  if (IsSigned && match(E, m_SDiv(m_Value(Op), m_APInt(AI)))) {
1027    C = *AI;
1028    return true;
1029  }
1030  if (!IsSigned) {
1031    if (match(E, m_UDiv(m_Value(Op), m_APInt(AI)))) {
1032      C = *AI;
1033      return true;
1034    }
1035    if (match(E, m_LShr(m_Value(Op), m_APInt(AI)))) {
1036      C = APInt(AI->getBitWidth(), 1);
1037      C <<= *AI;
1038      return true;
1039    }
1040  }
1041  return false;
1042}
1043
1044// Returns whether C0 * C1 with the given signedness overflows.
1045static bool MulWillOverflow(APInt &C0, APInt &C1, bool IsSigned) {
1046  bool overflow;
1047  if (IsSigned)
1048    (void)C0.smul_ov(C1, overflow);
1049  else
1050    (void)C0.umul_ov(C1, overflow);
1051  return overflow;
1052}
1053
1054// Simplifies X % C0 + (( X / C0 ) % C1) * C0 to X % (C0 * C1), where (C0 * C1)
1055// does not overflow.
1056Value *InstCombinerImpl::SimplifyAddWithRemainder(BinaryOperator &I) {
1057  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1058  Value *X, *MulOpV;
1059  APInt C0, MulOpC;
1060  bool IsSigned;
1061  // Match I = X % C0 + MulOpV * C0
1062  if (((MatchRem(LHS, X, C0, IsSigned) && MatchMul(RHS, MulOpV, MulOpC)) ||
1063       (MatchRem(RHS, X, C0, IsSigned) && MatchMul(LHS, MulOpV, MulOpC))) &&
1064      C0 == MulOpC) {
1065    Value *RemOpV;
1066    APInt C1;
1067    bool Rem2IsSigned;
1068    // Match MulOpC = RemOpV % C1
1069    if (MatchRem(MulOpV, RemOpV, C1, Rem2IsSigned) &&
1070        IsSigned == Rem2IsSigned) {
1071      Value *DivOpV;
1072      APInt DivOpC;
1073      // Match RemOpV = X / C0
1074      if (MatchDiv(RemOpV, DivOpV, DivOpC, IsSigned) && X == DivOpV &&
1075          C0 == DivOpC && !MulWillOverflow(C0, C1, IsSigned)) {
1076        Value *NewDivisor = ConstantInt::get(X->getType(), C0 * C1);
1077        return IsSigned ? Builder.CreateSRem(X, NewDivisor, "srem")
1078                        : Builder.CreateURem(X, NewDivisor, "urem");
1079      }
1080    }
1081  }
1082
1083  return nullptr;
1084}
1085
1086/// Fold
1087///   (1 << NBits) - 1
1088/// Into:
1089///   ~(-(1 << NBits))
1090/// Because a 'not' is better for bit-tracking analysis and other transforms
1091/// than an 'add'. The new shl is always nsw, and is nuw if old `and` was.
1092static Instruction *canonicalizeLowbitMask(BinaryOperator &I,
1093                                           InstCombiner::BuilderTy &Builder) {
1094  Value *NBits;
1095  if (!match(&I, m_Add(m_OneUse(m_Shl(m_One(), m_Value(NBits))), m_AllOnes())))
1096    return nullptr;
1097
1098  Constant *MinusOne = Constant::getAllOnesValue(NBits->getType());
1099  Value *NotMask = Builder.CreateShl(MinusOne, NBits, "notmask");
1100  // Be wary of constant folding.
1101  if (auto *BOp = dyn_cast<BinaryOperator>(NotMask)) {
1102    // Always NSW. But NUW propagates from `add`.
1103    BOp->setHasNoSignedWrap();
1104    BOp->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
1105  }
1106
1107  return BinaryOperator::CreateNot(NotMask, I.getName());
1108}
1109
1110static Instruction *foldToUnsignedSaturatedAdd(BinaryOperator &I) {
1111  assert(I.getOpcode() == Instruction::Add && "Expecting add instruction");
1112  Type *Ty = I.getType();
1113  auto getUAddSat = [&]() {
1114    return Intrinsic::getDeclaration(I.getModule(), Intrinsic::uadd_sat, Ty);
1115  };
1116
1117  // add (umin X, ~Y), Y --> uaddsat X, Y
1118  Value *X, *Y;
1119  if (match(&I, m_c_Add(m_c_UMin(m_Value(X), m_Not(m_Value(Y))),
1120                        m_Deferred(Y))))
1121    return CallInst::Create(getUAddSat(), { X, Y });
1122
1123  // add (umin X, ~C), C --> uaddsat X, C
1124  const APInt *C, *NotC;
1125  if (match(&I, m_Add(m_UMin(m_Value(X), m_APInt(NotC)), m_APInt(C))) &&
1126      *C == ~*NotC)
1127    return CallInst::Create(getUAddSat(), { X, ConstantInt::get(Ty, *C) });
1128
1129  return nullptr;
1130}
1131
1132/// Try to reduce signed division by power-of-2 to an arithmetic shift right.
1133static Instruction *foldAddToAshr(BinaryOperator &Add) {
1134  // Division must be by power-of-2, but not the minimum signed value.
1135  Value *X;
1136  const APInt *DivC;
1137  if (!match(Add.getOperand(0), m_SDiv(m_Value(X), m_Power2(DivC))) ||
1138      DivC->isNegative())
1139    return nullptr;
1140
1141  // Rounding is done by adding -1 if the dividend (X) is negative and has any
1142  // low bits set. The canonical pattern for that is an "ugt" compare with SMIN:
1143  // sext (icmp ugt (X & (DivC - 1)), SMIN)
1144  const APInt *MaskC;
1145  ICmpInst::Predicate Pred;
1146  if (!match(Add.getOperand(1),
1147             m_SExt(m_ICmp(Pred, m_And(m_Specific(X), m_APInt(MaskC)),
1148                           m_SignMask()))) ||
1149      Pred != ICmpInst::ICMP_UGT)
1150    return nullptr;
1151
1152  APInt SMin = APInt::getSignedMinValue(Add.getType()->getScalarSizeInBits());
1153  if (*MaskC != (SMin | (*DivC - 1)))
1154    return nullptr;
1155
1156  // (X / DivC) + sext ((X & (SMin | (DivC - 1)) >u SMin) --> X >>s log2(DivC)
1157  return BinaryOperator::CreateAShr(
1158      X, ConstantInt::get(Add.getType(), DivC->exactLogBase2()));
1159}
1160
1161Instruction *InstCombinerImpl::
1162    canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(
1163        BinaryOperator &I) {
1164  assert((I.getOpcode() == Instruction::Add ||
1165          I.getOpcode() == Instruction::Or ||
1166          I.getOpcode() == Instruction::Sub) &&
1167         "Expecting add/or/sub instruction");
1168
1169  // We have a subtraction/addition between a (potentially truncated) *logical*
1170  // right-shift of X and a "select".
1171  Value *X, *Select;
1172  Instruction *LowBitsToSkip, *Extract;
1173  if (!match(&I, m_c_BinOp(m_TruncOrSelf(m_CombineAnd(
1174                               m_LShr(m_Value(X), m_Instruction(LowBitsToSkip)),
1175                               m_Instruction(Extract))),
1176                           m_Value(Select))))
1177    return nullptr;
1178
1179  // `add`/`or` is commutative; but for `sub`, "select" *must* be on RHS.
1180  if (I.getOpcode() == Instruction::Sub && I.getOperand(1) != Select)
1181    return nullptr;
1182
1183  Type *XTy = X->getType();
1184  bool HadTrunc = I.getType() != XTy;
1185
1186  // If there was a truncation of extracted value, then we'll need to produce
1187  // one extra instruction, so we need to ensure one instruction will go away.
1188  if (HadTrunc && !match(&I, m_c_BinOp(m_OneUse(m_Value()), m_Value())))
1189    return nullptr;
1190
1191  // Extraction should extract high NBits bits, with shift amount calculated as:
1192  //   low bits to skip = shift bitwidth - high bits to extract
1193  // The shift amount itself may be extended, and we need to look past zero-ext
1194  // when matching NBits, that will matter for matching later.
1195  Constant *C;
1196  Value *NBits;
1197  if (!match(
1198          LowBitsToSkip,
1199          m_ZExtOrSelf(m_Sub(m_Constant(C), m_ZExtOrSelf(m_Value(NBits))))) ||
1200      !match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
1201                                   APInt(C->getType()->getScalarSizeInBits(),
1202                                         X->getType()->getScalarSizeInBits()))))
1203    return nullptr;
1204
1205  // Sign-extending value can be zero-extended if we `sub`tract it,
1206  // or sign-extended otherwise.
1207  auto SkipExtInMagic = [&I](Value *&V) {
1208    if (I.getOpcode() == Instruction::Sub)
1209      match(V, m_ZExtOrSelf(m_Value(V)));
1210    else
1211      match(V, m_SExtOrSelf(m_Value(V)));
1212  };
1213
1214  // Now, finally validate the sign-extending magic.
1215  // `select` itself may be appropriately extended, look past that.
1216  SkipExtInMagic(Select);
1217
1218  ICmpInst::Predicate Pred;
1219  const APInt *Thr;
1220  Value *SignExtendingValue, *Zero;
1221  bool ShouldSignext;
1222  // It must be a select between two values we will later establish to be a
1223  // sign-extending value and a zero constant. The condition guarding the
1224  // sign-extension must be based on a sign bit of the same X we had in `lshr`.
1225  if (!match(Select, m_Select(m_ICmp(Pred, m_Specific(X), m_APInt(Thr)),
1226                              m_Value(SignExtendingValue), m_Value(Zero))) ||
1227      !isSignBitCheck(Pred, *Thr, ShouldSignext))
1228    return nullptr;
1229
1230  // icmp-select pair is commutative.
1231  if (!ShouldSignext)
1232    std::swap(SignExtendingValue, Zero);
1233
1234  // If we should not perform sign-extension then we must add/or/subtract zero.
1235  if (!match(Zero, m_Zero()))
1236    return nullptr;
1237  // Otherwise, it should be some constant, left-shifted by the same NBits we
1238  // had in `lshr`. Said left-shift can also be appropriately extended.
1239  // Again, we must look past zero-ext when looking for NBits.
1240  SkipExtInMagic(SignExtendingValue);
1241  Constant *SignExtendingValueBaseConstant;
1242  if (!match(SignExtendingValue,
1243             m_Shl(m_Constant(SignExtendingValueBaseConstant),
1244                   m_ZExtOrSelf(m_Specific(NBits)))))
1245    return nullptr;
1246  // If we `sub`, then the constant should be one, else it should be all-ones.
1247  if (I.getOpcode() == Instruction::Sub
1248          ? !match(SignExtendingValueBaseConstant, m_One())
1249          : !match(SignExtendingValueBaseConstant, m_AllOnes()))
1250    return nullptr;
1251
1252  auto *NewAShr = BinaryOperator::CreateAShr(X, LowBitsToSkip,
1253                                             Extract->getName() + ".sext");
1254  NewAShr->copyIRFlags(Extract); // Preserve `exact`-ness.
1255  if (!HadTrunc)
1256    return NewAShr;
1257
1258  Builder.Insert(NewAShr);
1259  return TruncInst::CreateTruncOrBitCast(NewAShr, I.getType());
1260}
1261
1262/// This is a specialization of a more general transform from
1263/// foldUsingDistributiveLaws. If that code can be made to work optimally
1264/// for multi-use cases or propagating nsw/nuw, then we would not need this.
1265static Instruction *factorizeMathWithShlOps(BinaryOperator &I,
1266                                            InstCombiner::BuilderTy &Builder) {
1267  // TODO: Also handle mul by doubling the shift amount?
1268  assert((I.getOpcode() == Instruction::Add ||
1269          I.getOpcode() == Instruction::Sub) &&
1270         "Expected add/sub");
1271  auto *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
1272  auto *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
1273  if (!Op0 || !Op1 || !(Op0->hasOneUse() || Op1->hasOneUse()))
1274    return nullptr;
1275
1276  Value *X, *Y, *ShAmt;
1277  if (!match(Op0, m_Shl(m_Value(X), m_Value(ShAmt))) ||
1278      !match(Op1, m_Shl(m_Value(Y), m_Specific(ShAmt))))
1279    return nullptr;
1280
1281  // No-wrap propagates only when all ops have no-wrap.
1282  bool HasNSW = I.hasNoSignedWrap() && Op0->hasNoSignedWrap() &&
1283                Op1->hasNoSignedWrap();
1284  bool HasNUW = I.hasNoUnsignedWrap() && Op0->hasNoUnsignedWrap() &&
1285                Op1->hasNoUnsignedWrap();
1286
1287  // add/sub (X << ShAmt), (Y << ShAmt) --> (add/sub X, Y) << ShAmt
1288  Value *NewMath = Builder.CreateBinOp(I.getOpcode(), X, Y);
1289  if (auto *NewI = dyn_cast<BinaryOperator>(NewMath)) {
1290    NewI->setHasNoSignedWrap(HasNSW);
1291    NewI->setHasNoUnsignedWrap(HasNUW);
1292  }
1293  auto *NewShl = BinaryOperator::CreateShl(NewMath, ShAmt);
1294  NewShl->setHasNoSignedWrap(HasNSW);
1295  NewShl->setHasNoUnsignedWrap(HasNUW);
1296  return NewShl;
1297}
1298
1299/// Reduce a sequence of masked half-width multiplies to a single multiply.
1300/// ((XLow * YHigh) + (YLow * XHigh)) << HalfBits) + (XLow * YLow) --> X * Y
1301static Instruction *foldBoxMultiply(BinaryOperator &I) {
1302  unsigned BitWidth = I.getType()->getScalarSizeInBits();
1303  // Skip the odd bitwidth types.
1304  if ((BitWidth & 0x1))
1305    return nullptr;
1306
1307  unsigned HalfBits = BitWidth >> 1;
1308  APInt HalfMask = APInt::getMaxValue(HalfBits);
1309
1310  // ResLo = (CrossSum << HalfBits) + (YLo * XLo)
1311  Value *XLo, *YLo;
1312  Value *CrossSum;
1313  if (!match(&I, m_c_Add(m_Shl(m_Value(CrossSum), m_SpecificInt(HalfBits)),
1314                         m_Mul(m_Value(YLo), m_Value(XLo)))))
1315    return nullptr;
1316
1317  // XLo = X & HalfMask
1318  // YLo = Y & HalfMask
1319  // TODO: Refactor with SimplifyDemandedBits or KnownBits known leading zeros
1320  // to enhance robustness
1321  Value *X, *Y;
1322  if (!match(XLo, m_And(m_Value(X), m_SpecificInt(HalfMask))) ||
1323      !match(YLo, m_And(m_Value(Y), m_SpecificInt(HalfMask))))
1324    return nullptr;
1325
1326  // CrossSum = (X' * (Y >> Halfbits)) + (Y' * (X >> HalfBits))
1327  // X' can be either X or XLo in the pattern (and the same for Y')
1328  if (match(CrossSum,
1329            m_c_Add(m_c_Mul(m_LShr(m_Specific(Y), m_SpecificInt(HalfBits)),
1330                            m_CombineOr(m_Specific(X), m_Specific(XLo))),
1331                    m_c_Mul(m_LShr(m_Specific(X), m_SpecificInt(HalfBits)),
1332                            m_CombineOr(m_Specific(Y), m_Specific(YLo))))))
1333    return BinaryOperator::CreateMul(X, Y);
1334
1335  return nullptr;
1336}
1337
1338Instruction *InstCombinerImpl::visitAdd(BinaryOperator &I) {
1339  if (Value *V = simplifyAddInst(I.getOperand(0), I.getOperand(1),
1340                                 I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
1341                                 SQ.getWithInstruction(&I)))
1342    return replaceInstUsesWith(I, V);
1343
1344  if (SimplifyAssociativeOrCommutative(I))
1345    return &I;
1346
1347  if (Instruction *X = foldVectorBinop(I))
1348    return X;
1349
1350  if (Instruction *Phi = foldBinopWithPhiOperands(I))
1351    return Phi;
1352
1353  // (A*B)+(A*C) -> A*(B+C) etc
1354  if (Value *V = foldUsingDistributiveLaws(I))
1355    return replaceInstUsesWith(I, V);
1356
1357  if (Instruction *R = foldBoxMultiply(I))
1358    return R;
1359
1360  if (Instruction *R = factorizeMathWithShlOps(I, Builder))
1361    return R;
1362
1363  if (Instruction *X = foldAddWithConstant(I))
1364    return X;
1365
1366  if (Instruction *X = foldNoWrapAdd(I, Builder))
1367    return X;
1368
1369  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1370  Type *Ty = I.getType();
1371  if (Ty->isIntOrIntVectorTy(1))
1372    return BinaryOperator::CreateXor(LHS, RHS);
1373
1374  // X + X --> X << 1
1375  if (LHS == RHS) {
1376    auto *Shl = BinaryOperator::CreateShl(LHS, ConstantInt::get(Ty, 1));
1377    Shl->setHasNoSignedWrap(I.hasNoSignedWrap());
1378    Shl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
1379    return Shl;
1380  }
1381
1382  Value *A, *B;
1383  if (match(LHS, m_Neg(m_Value(A)))) {
1384    // -A + -B --> -(A + B)
1385    if (match(RHS, m_Neg(m_Value(B))))
1386      return BinaryOperator::CreateNeg(Builder.CreateAdd(A, B));
1387
1388    // -A + B --> B - A
1389    return BinaryOperator::CreateSub(RHS, A);
1390  }
1391
1392  // A + -B  -->  A - B
1393  if (match(RHS, m_Neg(m_Value(B))))
1394    return BinaryOperator::CreateSub(LHS, B);
1395
1396  if (Value *V = checkForNegativeOperand(I, Builder))
1397    return replaceInstUsesWith(I, V);
1398
1399  // (A + 1) + ~B --> A - B
1400  // ~B + (A + 1) --> A - B
1401  // (~B + A) + 1 --> A - B
1402  // (A + ~B) + 1 --> A - B
1403  if (match(&I, m_c_BinOp(m_Add(m_Value(A), m_One()), m_Not(m_Value(B)))) ||
1404      match(&I, m_BinOp(m_c_Add(m_Not(m_Value(B)), m_Value(A)), m_One())))
1405    return BinaryOperator::CreateSub(A, B);
1406
1407  // (A + RHS) + RHS --> A + (RHS << 1)
1408  if (match(LHS, m_OneUse(m_c_Add(m_Value(A), m_Specific(RHS)))))
1409    return BinaryOperator::CreateAdd(A, Builder.CreateShl(RHS, 1, "reass.add"));
1410
1411  // LHS + (A + LHS) --> A + (LHS << 1)
1412  if (match(RHS, m_OneUse(m_c_Add(m_Value(A), m_Specific(LHS)))))
1413    return BinaryOperator::CreateAdd(A, Builder.CreateShl(LHS, 1, "reass.add"));
1414
1415  {
1416    // (A + C1) + (C2 - B) --> (A - B) + (C1 + C2)
1417    Constant *C1, *C2;
1418    if (match(&I, m_c_Add(m_Add(m_Value(A), m_ImmConstant(C1)),
1419                          m_Sub(m_ImmConstant(C2), m_Value(B)))) &&
1420        (LHS->hasOneUse() || RHS->hasOneUse())) {
1421      Value *Sub = Builder.CreateSub(A, B);
1422      return BinaryOperator::CreateAdd(Sub, ConstantExpr::getAdd(C1, C2));
1423    }
1424  }
1425
1426  // X % C0 + (( X / C0 ) % C1) * C0 => X % (C0 * C1)
1427  if (Value *V = SimplifyAddWithRemainder(I)) return replaceInstUsesWith(I, V);
1428
1429  // ((X s/ C1) << C2) + X => X s% -C1 where -C1 is 1 << C2
1430  const APInt *C1, *C2;
1431  if (match(LHS, m_Shl(m_SDiv(m_Specific(RHS), m_APInt(C1)), m_APInt(C2)))) {
1432    APInt one(C2->getBitWidth(), 1);
1433    APInt minusC1 = -(*C1);
1434    if (minusC1 == (one << *C2)) {
1435      Constant *NewRHS = ConstantInt::get(RHS->getType(), minusC1);
1436      return BinaryOperator::CreateSRem(RHS, NewRHS);
1437    }
1438  }
1439
1440  // (A & 2^C1) + A => A & (2^C1 - 1) iff bit C1 in A is a sign bit
1441  if (match(&I, m_c_Add(m_And(m_Value(A), m_APInt(C1)), m_Deferred(A))) &&
1442      C1->isPowerOf2() && (ComputeNumSignBits(A) > C1->countLeadingZeros())) {
1443    Constant *NewMask = ConstantInt::get(RHS->getType(), *C1 - 1);
1444    return BinaryOperator::CreateAnd(A, NewMask);
1445  }
1446
1447  // ZExt (B - A) + ZExt(A) --> ZExt(B)
1448  if ((match(RHS, m_ZExt(m_Value(A))) &&
1449       match(LHS, m_ZExt(m_NUWSub(m_Value(B), m_Specific(A))))) ||
1450      (match(LHS, m_ZExt(m_Value(A))) &&
1451       match(RHS, m_ZExt(m_NUWSub(m_Value(B), m_Specific(A))))))
1452    return new ZExtInst(B, LHS->getType());
1453
1454  // A+B --> A|B iff A and B have no bits set in common.
1455  if (haveNoCommonBitsSet(LHS, RHS, DL, &AC, &I, &DT))
1456    return BinaryOperator::CreateOr(LHS, RHS);
1457
1458  if (Instruction *Ext = narrowMathIfNoOverflow(I))
1459    return Ext;
1460
1461  // (add (xor A, B) (and A, B)) --> (or A, B)
1462  // (add (and A, B) (xor A, B)) --> (or A, B)
1463  if (match(&I, m_c_BinOp(m_Xor(m_Value(A), m_Value(B)),
1464                          m_c_And(m_Deferred(A), m_Deferred(B)))))
1465    return BinaryOperator::CreateOr(A, B);
1466
1467  // (add (or A, B) (and A, B)) --> (add A, B)
1468  // (add (and A, B) (or A, B)) --> (add A, B)
1469  if (match(&I, m_c_BinOp(m_Or(m_Value(A), m_Value(B)),
1470                          m_c_And(m_Deferred(A), m_Deferred(B))))) {
1471    // Replacing operands in-place to preserve nuw/nsw flags.
1472    replaceOperand(I, 0, A);
1473    replaceOperand(I, 1, B);
1474    return &I;
1475  }
1476
1477  // (add A (or A, -A)) --> (and (add A, -1) A)
1478  // (add A (or -A, A)) --> (and (add A, -1) A)
1479  // (add (or A, -A) A) --> (and (add A, -1) A)
1480  // (add (or -A, A) A) --> (and (add A, -1) A)
1481  if (match(&I, m_c_BinOp(m_Value(A), m_OneUse(m_c_Or(m_Neg(m_Deferred(A)),
1482                                                      m_Deferred(A)))))) {
1483    Value *Add =
1484        Builder.CreateAdd(A, Constant::getAllOnesValue(A->getType()), "",
1485                          I.hasNoUnsignedWrap(), I.hasNoSignedWrap());
1486    return BinaryOperator::CreateAnd(Add, A);
1487  }
1488
1489  // Canonicalize ((A & -A) - 1) --> ((A - 1) & ~A)
1490  // Forms all commutable operations, and simplifies ctpop -> cttz folds.
1491  if (match(&I,
1492            m_Add(m_OneUse(m_c_And(m_Value(A), m_OneUse(m_Neg(m_Deferred(A))))),
1493                  m_AllOnes()))) {
1494    Constant *AllOnes = ConstantInt::getAllOnesValue(RHS->getType());
1495    Value *Dec = Builder.CreateAdd(A, AllOnes);
1496    Value *Not = Builder.CreateXor(A, AllOnes);
1497    return BinaryOperator::CreateAnd(Dec, Not);
1498  }
1499
1500  // Disguised reassociation/factorization:
1501  // ~(A * C1) + A
1502  // ((A * -C1) - 1) + A
1503  // ((A * -C1) + A) - 1
1504  // (A * (1 - C1)) - 1
1505  if (match(&I,
1506            m_c_Add(m_OneUse(m_Not(m_OneUse(m_Mul(m_Value(A), m_APInt(C1))))),
1507                    m_Deferred(A)))) {
1508    Type *Ty = I.getType();
1509    Constant *NewMulC = ConstantInt::get(Ty, 1 - *C1);
1510    Value *NewMul = Builder.CreateMul(A, NewMulC);
1511    return BinaryOperator::CreateAdd(NewMul, ConstantInt::getAllOnesValue(Ty));
1512  }
1513
1514  // (A * -2**C) + B --> B - (A << C)
1515  const APInt *NegPow2C;
1516  if (match(&I, m_c_Add(m_OneUse(m_Mul(m_Value(A), m_NegatedPower2(NegPow2C))),
1517                        m_Value(B)))) {
1518    Constant *ShiftAmtC = ConstantInt::get(Ty, NegPow2C->countTrailingZeros());
1519    Value *Shl = Builder.CreateShl(A, ShiftAmtC);
1520    return BinaryOperator::CreateSub(B, Shl);
1521  }
1522
1523  // Canonicalize signum variant that ends in add:
1524  // (A s>> (BW - 1)) + (zext (A s> 0)) --> (A s>> (BW - 1)) | (zext (A != 0))
1525  ICmpInst::Predicate Pred;
1526  uint64_t BitWidth = Ty->getScalarSizeInBits();
1527  if (match(LHS, m_AShr(m_Value(A), m_SpecificIntAllowUndef(BitWidth - 1))) &&
1528      match(RHS, m_OneUse(m_ZExt(
1529                     m_OneUse(m_ICmp(Pred, m_Specific(A), m_ZeroInt()))))) &&
1530      Pred == CmpInst::ICMP_SGT) {
1531    Value *NotZero = Builder.CreateIsNotNull(A, "isnotnull");
1532    Value *Zext = Builder.CreateZExt(NotZero, Ty, "isnotnull.zext");
1533    return BinaryOperator::CreateOr(LHS, Zext);
1534  }
1535
1536  if (Instruction *Ashr = foldAddToAshr(I))
1537    return Ashr;
1538
1539  // TODO(jingyue): Consider willNotOverflowSignedAdd and
1540  // willNotOverflowUnsignedAdd to reduce the number of invocations of
1541  // computeKnownBits.
1542  bool Changed = false;
1543  if (!I.hasNoSignedWrap() && willNotOverflowSignedAdd(LHS, RHS, I)) {
1544    Changed = true;
1545    I.setHasNoSignedWrap(true);
1546  }
1547  if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedAdd(LHS, RHS, I)) {
1548    Changed = true;
1549    I.setHasNoUnsignedWrap(true);
1550  }
1551
1552  if (Instruction *V = canonicalizeLowbitMask(I, Builder))
1553    return V;
1554
1555  if (Instruction *V =
1556          canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I))
1557    return V;
1558
1559  if (Instruction *SatAdd = foldToUnsignedSaturatedAdd(I))
1560    return SatAdd;
1561
1562  // usub.sat(A, B) + B => umax(A, B)
1563  if (match(&I, m_c_BinOp(
1564          m_OneUse(m_Intrinsic<Intrinsic::usub_sat>(m_Value(A), m_Value(B))),
1565          m_Deferred(B)))) {
1566    return replaceInstUsesWith(I,
1567        Builder.CreateIntrinsic(Intrinsic::umax, {I.getType()}, {A, B}));
1568  }
1569
1570  // ctpop(A) + ctpop(B) => ctpop(A | B) if A and B have no bits set in common.
1571  if (match(LHS, m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(A)))) &&
1572      match(RHS, m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(B)))) &&
1573      haveNoCommonBitsSet(A, B, DL, &AC, &I, &DT))
1574    return replaceInstUsesWith(
1575        I, Builder.CreateIntrinsic(Intrinsic::ctpop, {I.getType()},
1576                                   {Builder.CreateOr(A, B)}));
1577
1578  return Changed ? &I : nullptr;
1579}
1580
1581/// Eliminate an op from a linear interpolation (lerp) pattern.
1582static Instruction *factorizeLerp(BinaryOperator &I,
1583                                  InstCombiner::BuilderTy &Builder) {
1584  Value *X, *Y, *Z;
1585  if (!match(&I, m_c_FAdd(m_OneUse(m_c_FMul(m_Value(Y),
1586                                            m_OneUse(m_FSub(m_FPOne(),
1587                                                            m_Value(Z))))),
1588                          m_OneUse(m_c_FMul(m_Value(X), m_Deferred(Z))))))
1589    return nullptr;
1590
1591  // (Y * (1.0 - Z)) + (X * Z) --> Y + Z * (X - Y) [8 commuted variants]
1592  Value *XY = Builder.CreateFSubFMF(X, Y, &I);
1593  Value *MulZ = Builder.CreateFMulFMF(Z, XY, &I);
1594  return BinaryOperator::CreateFAddFMF(Y, MulZ, &I);
1595}
1596
1597/// Factor a common operand out of fadd/fsub of fmul/fdiv.
1598static Instruction *factorizeFAddFSub(BinaryOperator &I,
1599                                      InstCombiner::BuilderTy &Builder) {
1600  assert((I.getOpcode() == Instruction::FAdd ||
1601          I.getOpcode() == Instruction::FSub) && "Expecting fadd/fsub");
1602  assert(I.hasAllowReassoc() && I.hasNoSignedZeros() &&
1603         "FP factorization requires FMF");
1604
1605  if (Instruction *Lerp = factorizeLerp(I, Builder))
1606    return Lerp;
1607
1608  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1609  if (!Op0->hasOneUse() || !Op1->hasOneUse())
1610    return nullptr;
1611
1612  Value *X, *Y, *Z;
1613  bool IsFMul;
1614  if ((match(Op0, m_FMul(m_Value(X), m_Value(Z))) &&
1615       match(Op1, m_c_FMul(m_Value(Y), m_Specific(Z)))) ||
1616      (match(Op0, m_FMul(m_Value(Z), m_Value(X))) &&
1617       match(Op1, m_c_FMul(m_Value(Y), m_Specific(Z)))))
1618    IsFMul = true;
1619  else if (match(Op0, m_FDiv(m_Value(X), m_Value(Z))) &&
1620           match(Op1, m_FDiv(m_Value(Y), m_Specific(Z))))
1621    IsFMul = false;
1622  else
1623    return nullptr;
1624
1625  // (X * Z) + (Y * Z) --> (X + Y) * Z
1626  // (X * Z) - (Y * Z) --> (X - Y) * Z
1627  // (X / Z) + (Y / Z) --> (X + Y) / Z
1628  // (X / Z) - (Y / Z) --> (X - Y) / Z
1629  bool IsFAdd = I.getOpcode() == Instruction::FAdd;
1630  Value *XY = IsFAdd ? Builder.CreateFAddFMF(X, Y, &I)
1631                     : Builder.CreateFSubFMF(X, Y, &I);
1632
1633  // Bail out if we just created a denormal constant.
1634  // TODO: This is copied from a previous implementation. Is it necessary?
1635  const APFloat *C;
1636  if (match(XY, m_APFloat(C)) && !C->isNormal())
1637    return nullptr;
1638
1639  return IsFMul ? BinaryOperator::CreateFMulFMF(XY, Z, &I)
1640                : BinaryOperator::CreateFDivFMF(XY, Z, &I);
1641}
1642
1643Instruction *InstCombinerImpl::visitFAdd(BinaryOperator &I) {
1644  if (Value *V = simplifyFAddInst(I.getOperand(0), I.getOperand(1),
1645                                  I.getFastMathFlags(),
1646                                  SQ.getWithInstruction(&I)))
1647    return replaceInstUsesWith(I, V);
1648
1649  if (SimplifyAssociativeOrCommutative(I))
1650    return &I;
1651
1652  if (Instruction *X = foldVectorBinop(I))
1653    return X;
1654
1655  if (Instruction *Phi = foldBinopWithPhiOperands(I))
1656    return Phi;
1657
1658  if (Instruction *FoldedFAdd = foldBinOpIntoSelectOrPhi(I))
1659    return FoldedFAdd;
1660
1661  // (-X) + Y --> Y - X
1662  Value *X, *Y;
1663  if (match(&I, m_c_FAdd(m_FNeg(m_Value(X)), m_Value(Y))))
1664    return BinaryOperator::CreateFSubFMF(Y, X, &I);
1665
1666  // Similar to above, but look through fmul/fdiv for the negated term.
1667  // (-X * Y) + Z --> Z - (X * Y) [4 commuted variants]
1668  Value *Z;
1669  if (match(&I, m_c_FAdd(m_OneUse(m_c_FMul(m_FNeg(m_Value(X)), m_Value(Y))),
1670                         m_Value(Z)))) {
1671    Value *XY = Builder.CreateFMulFMF(X, Y, &I);
1672    return BinaryOperator::CreateFSubFMF(Z, XY, &I);
1673  }
1674  // (-X / Y) + Z --> Z - (X / Y) [2 commuted variants]
1675  // (X / -Y) + Z --> Z - (X / Y) [2 commuted variants]
1676  if (match(&I, m_c_FAdd(m_OneUse(m_FDiv(m_FNeg(m_Value(X)), m_Value(Y))),
1677                         m_Value(Z))) ||
1678      match(&I, m_c_FAdd(m_OneUse(m_FDiv(m_Value(X), m_FNeg(m_Value(Y)))),
1679                         m_Value(Z)))) {
1680    Value *XY = Builder.CreateFDivFMF(X, Y, &I);
1681    return BinaryOperator::CreateFSubFMF(Z, XY, &I);
1682  }
1683
1684  // Check for (fadd double (sitofp x), y), see if we can merge this into an
1685  // integer add followed by a promotion.
1686  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1687  if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) {
1688    Value *LHSIntVal = LHSConv->getOperand(0);
1689    Type *FPType = LHSConv->getType();
1690
1691    // TODO: This check is overly conservative. In many cases known bits
1692    // analysis can tell us that the result of the addition has less significant
1693    // bits than the integer type can hold.
1694    auto IsValidPromotion = [](Type *FTy, Type *ITy) {
1695      Type *FScalarTy = FTy->getScalarType();
1696      Type *IScalarTy = ITy->getScalarType();
1697
1698      // Do we have enough bits in the significand to represent the result of
1699      // the integer addition?
1700      unsigned MaxRepresentableBits =
1701          APFloat::semanticsPrecision(FScalarTy->getFltSemantics());
1702      return IScalarTy->getIntegerBitWidth() <= MaxRepresentableBits;
1703    };
1704
1705    // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst))
1706    // ... if the constant fits in the integer value.  This is useful for things
1707    // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer
1708    // requires a constant pool load, and generally allows the add to be better
1709    // instcombined.
1710    if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS))
1711      if (IsValidPromotion(FPType, LHSIntVal->getType())) {
1712        Constant *CI =
1713          ConstantExpr::getFPToSI(CFP, LHSIntVal->getType());
1714        if (LHSConv->hasOneUse() &&
1715            ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
1716            willNotOverflowSignedAdd(LHSIntVal, CI, I)) {
1717          // Insert the new integer add.
1718          Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, CI, "addconv");
1719          return new SIToFPInst(NewAdd, I.getType());
1720        }
1721      }
1722
1723    // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
1724    if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) {
1725      Value *RHSIntVal = RHSConv->getOperand(0);
1726      // It's enough to check LHS types only because we require int types to
1727      // be the same for this transform.
1728      if (IsValidPromotion(FPType, LHSIntVal->getType())) {
1729        // Only do this if x/y have the same type, if at least one of them has a
1730        // single use (so we don't increase the number of int->fp conversions),
1731        // and if the integer add will not overflow.
1732        if (LHSIntVal->getType() == RHSIntVal->getType() &&
1733            (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
1734            willNotOverflowSignedAdd(LHSIntVal, RHSIntVal, I)) {
1735          // Insert the new integer add.
1736          Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, RHSIntVal, "addconv");
1737          return new SIToFPInst(NewAdd, I.getType());
1738        }
1739      }
1740    }
1741  }
1742
1743  // Handle specials cases for FAdd with selects feeding the operation
1744  if (Value *V = SimplifySelectsFeedingBinaryOp(I, LHS, RHS))
1745    return replaceInstUsesWith(I, V);
1746
1747  if (I.hasAllowReassoc() && I.hasNoSignedZeros()) {
1748    if (Instruction *F = factorizeFAddFSub(I, Builder))
1749      return F;
1750
1751    // Try to fold fadd into start value of reduction intrinsic.
1752    if (match(&I, m_c_FAdd(m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_fadd>(
1753                               m_AnyZeroFP(), m_Value(X))),
1754                           m_Value(Y)))) {
1755      // fadd (rdx 0.0, X), Y --> rdx Y, X
1756      return replaceInstUsesWith(
1757          I, Builder.CreateIntrinsic(Intrinsic::vector_reduce_fadd,
1758                                     {X->getType()}, {Y, X}, &I));
1759    }
1760    const APFloat *StartC, *C;
1761    if (match(LHS, m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_fadd>(
1762                       m_APFloat(StartC), m_Value(X)))) &&
1763        match(RHS, m_APFloat(C))) {
1764      // fadd (rdx StartC, X), C --> rdx (C + StartC), X
1765      Constant *NewStartC = ConstantFP::get(I.getType(), *C + *StartC);
1766      return replaceInstUsesWith(
1767          I, Builder.CreateIntrinsic(Intrinsic::vector_reduce_fadd,
1768                                     {X->getType()}, {NewStartC, X}, &I));
1769    }
1770
1771    // (X * MulC) + X --> X * (MulC + 1.0)
1772    Constant *MulC;
1773    if (match(&I, m_c_FAdd(m_FMul(m_Value(X), m_ImmConstant(MulC)),
1774                           m_Deferred(X)))) {
1775      if (Constant *NewMulC = ConstantFoldBinaryOpOperands(
1776              Instruction::FAdd, MulC, ConstantFP::get(I.getType(), 1.0), DL))
1777        return BinaryOperator::CreateFMulFMF(X, NewMulC, &I);
1778    }
1779
1780    // (-X - Y) + (X + Z) --> Z - Y
1781    if (match(&I, m_c_FAdd(m_FSub(m_FNeg(m_Value(X)), m_Value(Y)),
1782                           m_c_FAdd(m_Deferred(X), m_Value(Z)))))
1783      return BinaryOperator::CreateFSubFMF(Z, Y, &I);
1784
1785    if (Value *V = FAddCombine(Builder).simplify(&I))
1786      return replaceInstUsesWith(I, V);
1787  }
1788
1789  return nullptr;
1790}
1791
1792/// Optimize pointer differences into the same array into a size.  Consider:
1793///  &A[10] - &A[0]: we should compile this to "10".  LHS/RHS are the pointer
1794/// operands to the ptrtoint instructions for the LHS/RHS of the subtract.
1795Value *InstCombinerImpl::OptimizePointerDifference(Value *LHS, Value *RHS,
1796                                                   Type *Ty, bool IsNUW) {
1797  // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize
1798  // this.
1799  bool Swapped = false;
1800  GEPOperator *GEP1 = nullptr, *GEP2 = nullptr;
1801  if (!isa<GEPOperator>(LHS) && isa<GEPOperator>(RHS)) {
1802    std::swap(LHS, RHS);
1803    Swapped = true;
1804  }
1805
1806  // Require at least one GEP with a common base pointer on both sides.
1807  if (auto *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
1808    // (gep X, ...) - X
1809    if (LHSGEP->getOperand(0)->stripPointerCasts() ==
1810        RHS->stripPointerCasts()) {
1811      GEP1 = LHSGEP;
1812    } else if (auto *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
1813      // (gep X, ...) - (gep X, ...)
1814      if (LHSGEP->getOperand(0)->stripPointerCasts() ==
1815          RHSGEP->getOperand(0)->stripPointerCasts()) {
1816        GEP1 = LHSGEP;
1817        GEP2 = RHSGEP;
1818      }
1819    }
1820  }
1821
1822  if (!GEP1)
1823    return nullptr;
1824
1825  if (GEP2) {
1826    // (gep X, ...) - (gep X, ...)
1827    //
1828    // Avoid duplicating the arithmetic if there are more than one non-constant
1829    // indices between the two GEPs and either GEP has a non-constant index and
1830    // multiple users. If zero non-constant index, the result is a constant and
1831    // there is no duplication. If one non-constant index, the result is an add
1832    // or sub with a constant, which is no larger than the original code, and
1833    // there's no duplicated arithmetic, even if either GEP has multiple
1834    // users. If more than one non-constant indices combined, as long as the GEP
1835    // with at least one non-constant index doesn't have multiple users, there
1836    // is no duplication.
1837    unsigned NumNonConstantIndices1 = GEP1->countNonConstantIndices();
1838    unsigned NumNonConstantIndices2 = GEP2->countNonConstantIndices();
1839    if (NumNonConstantIndices1 + NumNonConstantIndices2 > 1 &&
1840        ((NumNonConstantIndices1 > 0 && !GEP1->hasOneUse()) ||
1841         (NumNonConstantIndices2 > 0 && !GEP2->hasOneUse()))) {
1842      return nullptr;
1843    }
1844  }
1845
1846  // Emit the offset of the GEP and an intptr_t.
1847  Value *Result = EmitGEPOffset(GEP1);
1848
1849  // If this is a single inbounds GEP and the original sub was nuw,
1850  // then the final multiplication is also nuw.
1851  if (auto *I = dyn_cast<Instruction>(Result))
1852    if (IsNUW && !GEP2 && !Swapped && GEP1->isInBounds() &&
1853        I->getOpcode() == Instruction::Mul)
1854      I->setHasNoUnsignedWrap();
1855
1856  // If we have a 2nd GEP of the same base pointer, subtract the offsets.
1857  // If both GEPs are inbounds, then the subtract does not have signed overflow.
1858  if (GEP2) {
1859    Value *Offset = EmitGEPOffset(GEP2);
1860    Result = Builder.CreateSub(Result, Offset, "gepdiff", /* NUW */ false,
1861                               GEP1->isInBounds() && GEP2->isInBounds());
1862  }
1863
1864  // If we have p - gep(p, ...)  then we have to negate the result.
1865  if (Swapped)
1866    Result = Builder.CreateNeg(Result, "diff.neg");
1867
1868  return Builder.CreateIntCast(Result, Ty, true);
1869}
1870
1871static Instruction *foldSubOfMinMax(BinaryOperator &I,
1872                                    InstCombiner::BuilderTy &Builder) {
1873  Value *Op0 = I.getOperand(0);
1874  Value *Op1 = I.getOperand(1);
1875  Type *Ty = I.getType();
1876  auto *MinMax = dyn_cast<MinMaxIntrinsic>(Op1);
1877  if (!MinMax)
1878    return nullptr;
1879
1880  // sub(add(X,Y), s/umin(X,Y)) --> s/umax(X,Y)
1881  // sub(add(X,Y), s/umax(X,Y)) --> s/umin(X,Y)
1882  Value *X = MinMax->getLHS();
1883  Value *Y = MinMax->getRHS();
1884  if (match(Op0, m_c_Add(m_Specific(X), m_Specific(Y))) &&
1885      (Op0->hasOneUse() || Op1->hasOneUse())) {
1886    Intrinsic::ID InvID = getInverseMinMaxIntrinsic(MinMax->getIntrinsicID());
1887    Function *F = Intrinsic::getDeclaration(I.getModule(), InvID, Ty);
1888    return CallInst::Create(F, {X, Y});
1889  }
1890
1891  // sub(add(X,Y),umin(Y,Z)) --> add(X,usub.sat(Y,Z))
1892  // sub(add(X,Z),umin(Y,Z)) --> add(X,usub.sat(Z,Y))
1893  Value *Z;
1894  if (match(Op1, m_OneUse(m_UMin(m_Value(Y), m_Value(Z))))) {
1895    if (match(Op0, m_OneUse(m_c_Add(m_Specific(Y), m_Value(X))))) {
1896      Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, Ty, {Y, Z});
1897      return BinaryOperator::CreateAdd(X, USub);
1898    }
1899    if (match(Op0, m_OneUse(m_c_Add(m_Specific(Z), m_Value(X))))) {
1900      Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, Ty, {Z, Y});
1901      return BinaryOperator::CreateAdd(X, USub);
1902    }
1903  }
1904
1905  // sub Op0, smin((sub nsw Op0, Z), 0) --> smax Op0, Z
1906  // sub Op0, smax((sub nsw Op0, Z), 0) --> smin Op0, Z
1907  if (MinMax->isSigned() && match(Y, m_ZeroInt()) &&
1908      match(X, m_NSWSub(m_Specific(Op0), m_Value(Z)))) {
1909    Intrinsic::ID InvID = getInverseMinMaxIntrinsic(MinMax->getIntrinsicID());
1910    Function *F = Intrinsic::getDeclaration(I.getModule(), InvID, Ty);
1911    return CallInst::Create(F, {Op0, Z});
1912  }
1913
1914  return nullptr;
1915}
1916
1917Instruction *InstCombinerImpl::visitSub(BinaryOperator &I) {
1918  if (Value *V = simplifySubInst(I.getOperand(0), I.getOperand(1),
1919                                 I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
1920                                 SQ.getWithInstruction(&I)))
1921    return replaceInstUsesWith(I, V);
1922
1923  if (Instruction *X = foldVectorBinop(I))
1924    return X;
1925
1926  if (Instruction *Phi = foldBinopWithPhiOperands(I))
1927    return Phi;
1928
1929  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1930
1931  // If this is a 'B = x-(-A)', change to B = x+A.
1932  // We deal with this without involving Negator to preserve NSW flag.
1933  if (Value *V = dyn_castNegVal(Op1)) {
1934    BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V);
1935
1936    if (const auto *BO = dyn_cast<BinaryOperator>(Op1)) {
1937      assert(BO->getOpcode() == Instruction::Sub &&
1938             "Expected a subtraction operator!");
1939      if (BO->hasNoSignedWrap() && I.hasNoSignedWrap())
1940        Res->setHasNoSignedWrap(true);
1941    } else {
1942      if (cast<Constant>(Op1)->isNotMinSignedValue() && I.hasNoSignedWrap())
1943        Res->setHasNoSignedWrap(true);
1944    }
1945
1946    return Res;
1947  }
1948
1949  // Try this before Negator to preserve NSW flag.
1950  if (Instruction *R = factorizeMathWithShlOps(I, Builder))
1951    return R;
1952
1953  Constant *C;
1954  if (match(Op0, m_ImmConstant(C))) {
1955    Value *X;
1956    Constant *C2;
1957
1958    // C-(X+C2) --> (C-C2)-X
1959    if (match(Op1, m_Add(m_Value(X), m_ImmConstant(C2))))
1960      return BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X);
1961  }
1962
1963  auto TryToNarrowDeduceFlags = [this, &I, &Op0, &Op1]() -> Instruction * {
1964    if (Instruction *Ext = narrowMathIfNoOverflow(I))
1965      return Ext;
1966
1967    bool Changed = false;
1968    if (!I.hasNoSignedWrap() && willNotOverflowSignedSub(Op0, Op1, I)) {
1969      Changed = true;
1970      I.setHasNoSignedWrap(true);
1971    }
1972    if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedSub(Op0, Op1, I)) {
1973      Changed = true;
1974      I.setHasNoUnsignedWrap(true);
1975    }
1976
1977    return Changed ? &I : nullptr;
1978  };
1979
1980  // First, let's try to interpret `sub a, b` as `add a, (sub 0, b)`,
1981  // and let's try to sink `(sub 0, b)` into `b` itself. But only if this isn't
1982  // a pure negation used by a select that looks like abs/nabs.
1983  bool IsNegation = match(Op0, m_ZeroInt());
1984  if (!IsNegation || none_of(I.users(), [&I, Op1](const User *U) {
1985        const Instruction *UI = dyn_cast<Instruction>(U);
1986        if (!UI)
1987          return false;
1988        return match(UI,
1989                     m_Select(m_Value(), m_Specific(Op1), m_Specific(&I))) ||
1990               match(UI, m_Select(m_Value(), m_Specific(&I), m_Specific(Op1)));
1991      })) {
1992    if (Value *NegOp1 = Negator::Negate(IsNegation, Op1, *this))
1993      return BinaryOperator::CreateAdd(NegOp1, Op0);
1994  }
1995  if (IsNegation)
1996    return TryToNarrowDeduceFlags(); // Should have been handled in Negator!
1997
1998  // (A*B)-(A*C) -> A*(B-C) etc
1999  if (Value *V = foldUsingDistributiveLaws(I))
2000    return replaceInstUsesWith(I, V);
2001
2002  if (I.getType()->isIntOrIntVectorTy(1))
2003    return BinaryOperator::CreateXor(Op0, Op1);
2004
2005  // Replace (-1 - A) with (~A).
2006  if (match(Op0, m_AllOnes()))
2007    return BinaryOperator::CreateNot(Op1);
2008
2009  // (X + -1) - Y --> ~Y + X
2010  Value *X, *Y;
2011  if (match(Op0, m_OneUse(m_Add(m_Value(X), m_AllOnes()))))
2012    return BinaryOperator::CreateAdd(Builder.CreateNot(Op1), X);
2013
2014  // Reassociate sub/add sequences to create more add instructions and
2015  // reduce dependency chains:
2016  // ((X - Y) + Z) - Op1 --> (X + Z) - (Y + Op1)
2017  Value *Z;
2018  if (match(Op0, m_OneUse(m_c_Add(m_OneUse(m_Sub(m_Value(X), m_Value(Y))),
2019                                  m_Value(Z))))) {
2020    Value *XZ = Builder.CreateAdd(X, Z);
2021    Value *YW = Builder.CreateAdd(Y, Op1);
2022    return BinaryOperator::CreateSub(XZ, YW);
2023  }
2024
2025  // ((X - Y) - Op1)  -->  X - (Y + Op1)
2026  if (match(Op0, m_OneUse(m_Sub(m_Value(X), m_Value(Y))))) {
2027    Value *Add = Builder.CreateAdd(Y, Op1);
2028    return BinaryOperator::CreateSub(X, Add);
2029  }
2030
2031  // (~X) - (~Y) --> Y - X
2032  // This is placed after the other reassociations and explicitly excludes a
2033  // sub-of-sub pattern to avoid infinite looping.
2034  if (isFreeToInvert(Op0, Op0->hasOneUse()) &&
2035      isFreeToInvert(Op1, Op1->hasOneUse()) &&
2036      !match(Op0, m_Sub(m_ImmConstant(), m_Value()))) {
2037    Value *NotOp0 = Builder.CreateNot(Op0);
2038    Value *NotOp1 = Builder.CreateNot(Op1);
2039    return BinaryOperator::CreateSub(NotOp1, NotOp0);
2040  }
2041
2042  auto m_AddRdx = [](Value *&Vec) {
2043    return m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_add>(m_Value(Vec)));
2044  };
2045  Value *V0, *V1;
2046  if (match(Op0, m_AddRdx(V0)) && match(Op1, m_AddRdx(V1)) &&
2047      V0->getType() == V1->getType()) {
2048    // Difference of sums is sum of differences:
2049    // add_rdx(V0) - add_rdx(V1) --> add_rdx(V0 - V1)
2050    Value *Sub = Builder.CreateSub(V0, V1);
2051    Value *Rdx = Builder.CreateIntrinsic(Intrinsic::vector_reduce_add,
2052                                         {Sub->getType()}, {Sub});
2053    return replaceInstUsesWith(I, Rdx);
2054  }
2055
2056  if (Constant *C = dyn_cast<Constant>(Op0)) {
2057    Value *X;
2058    if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
2059      // C - (zext bool) --> bool ? C - 1 : C
2060      return SelectInst::Create(X, InstCombiner::SubOne(C), C);
2061    if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
2062      // C - (sext bool) --> bool ? C + 1 : C
2063      return SelectInst::Create(X, InstCombiner::AddOne(C), C);
2064
2065    // C - ~X == X + (1+C)
2066    if (match(Op1, m_Not(m_Value(X))))
2067      return BinaryOperator::CreateAdd(X, InstCombiner::AddOne(C));
2068
2069    // Try to fold constant sub into select arguments.
2070    if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
2071      if (Instruction *R = FoldOpIntoSelect(I, SI))
2072        return R;
2073
2074    // Try to fold constant sub into PHI values.
2075    if (PHINode *PN = dyn_cast<PHINode>(Op1))
2076      if (Instruction *R = foldOpIntoPhi(I, PN))
2077        return R;
2078
2079    Constant *C2;
2080
2081    // C-(C2-X) --> X+(C-C2)
2082    if (match(Op1, m_Sub(m_ImmConstant(C2), m_Value(X))))
2083      return BinaryOperator::CreateAdd(X, ConstantExpr::getSub(C, C2));
2084  }
2085
2086  const APInt *Op0C;
2087  if (match(Op0, m_APInt(Op0C))) {
2088    if (Op0C->isMask()) {
2089      // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known
2090      // zero.
2091      KnownBits RHSKnown = computeKnownBits(Op1, 0, &I);
2092      if ((*Op0C | RHSKnown.Zero).isAllOnes())
2093        return BinaryOperator::CreateXor(Op1, Op0);
2094    }
2095
2096    // C - ((C3 -nuw X) & C2) --> (C - (C2 & C3)) + (X & C2) when:
2097    // (C3 - ((C2 & C3) - 1)) is pow2
2098    // ((C2 + C3) & ((C2 & C3) - 1)) == ((C2 & C3) - 1)
2099    // C2 is negative pow2 || sub nuw
2100    const APInt *C2, *C3;
2101    BinaryOperator *InnerSub;
2102    if (match(Op1, m_OneUse(m_And(m_BinOp(InnerSub), m_APInt(C2)))) &&
2103        match(InnerSub, m_Sub(m_APInt(C3), m_Value(X))) &&
2104        (InnerSub->hasNoUnsignedWrap() || C2->isNegatedPowerOf2())) {
2105      APInt C2AndC3 = *C2 & *C3;
2106      APInt C2AndC3Minus1 = C2AndC3 - 1;
2107      APInt C2AddC3 = *C2 + *C3;
2108      if ((*C3 - C2AndC3Minus1).isPowerOf2() &&
2109          C2AndC3Minus1.isSubsetOf(C2AddC3)) {
2110        Value *And = Builder.CreateAnd(X, ConstantInt::get(I.getType(), *C2));
2111        return BinaryOperator::CreateAdd(
2112            And, ConstantInt::get(I.getType(), *Op0C - C2AndC3));
2113      }
2114    }
2115  }
2116
2117  {
2118    Value *Y;
2119    // X-(X+Y) == -Y    X-(Y+X) == -Y
2120    if (match(Op1, m_c_Add(m_Specific(Op0), m_Value(Y))))
2121      return BinaryOperator::CreateNeg(Y);
2122
2123    // (X-Y)-X == -Y
2124    if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y))))
2125      return BinaryOperator::CreateNeg(Y);
2126  }
2127
2128  // (sub (or A, B) (and A, B)) --> (xor A, B)
2129  {
2130    Value *A, *B;
2131    if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
2132        match(Op0, m_c_Or(m_Specific(A), m_Specific(B))))
2133      return BinaryOperator::CreateXor(A, B);
2134  }
2135
2136  // (sub (add A, B) (or A, B)) --> (and A, B)
2137  {
2138    Value *A, *B;
2139    if (match(Op0, m_Add(m_Value(A), m_Value(B))) &&
2140        match(Op1, m_c_Or(m_Specific(A), m_Specific(B))))
2141      return BinaryOperator::CreateAnd(A, B);
2142  }
2143
2144  // (sub (add A, B) (and A, B)) --> (or A, B)
2145  {
2146    Value *A, *B;
2147    if (match(Op0, m_Add(m_Value(A), m_Value(B))) &&
2148        match(Op1, m_c_And(m_Specific(A), m_Specific(B))))
2149      return BinaryOperator::CreateOr(A, B);
2150  }
2151
2152  // (sub (and A, B) (or A, B)) --> neg (xor A, B)
2153  {
2154    Value *A, *B;
2155    if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
2156        match(Op1, m_c_Or(m_Specific(A), m_Specific(B))) &&
2157        (Op0->hasOneUse() || Op1->hasOneUse()))
2158      return BinaryOperator::CreateNeg(Builder.CreateXor(A, B));
2159  }
2160
2161  // (sub (or A, B), (xor A, B)) --> (and A, B)
2162  {
2163    Value *A, *B;
2164    if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
2165        match(Op0, m_c_Or(m_Specific(A), m_Specific(B))))
2166      return BinaryOperator::CreateAnd(A, B);
2167  }
2168
2169  // (sub (xor A, B) (or A, B)) --> neg (and A, B)
2170  {
2171    Value *A, *B;
2172    if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
2173        match(Op1, m_c_Or(m_Specific(A), m_Specific(B))) &&
2174        (Op0->hasOneUse() || Op1->hasOneUse()))
2175      return BinaryOperator::CreateNeg(Builder.CreateAnd(A, B));
2176  }
2177
2178  {
2179    Value *Y;
2180    // ((X | Y) - X) --> (~X & Y)
2181    if (match(Op0, m_OneUse(m_c_Or(m_Value(Y), m_Specific(Op1)))))
2182      return BinaryOperator::CreateAnd(
2183          Y, Builder.CreateNot(Op1, Op1->getName() + ".not"));
2184  }
2185
2186  {
2187    // (sub (and Op1, (neg X)), Op1) --> neg (and Op1, (add X, -1))
2188    Value *X;
2189    if (match(Op0, m_OneUse(m_c_And(m_Specific(Op1),
2190                                    m_OneUse(m_Neg(m_Value(X))))))) {
2191      return BinaryOperator::CreateNeg(Builder.CreateAnd(
2192          Op1, Builder.CreateAdd(X, Constant::getAllOnesValue(I.getType()))));
2193    }
2194  }
2195
2196  {
2197    // (sub (and Op1, C), Op1) --> neg (and Op1, ~C)
2198    Constant *C;
2199    if (match(Op0, m_OneUse(m_And(m_Specific(Op1), m_Constant(C))))) {
2200      return BinaryOperator::CreateNeg(
2201          Builder.CreateAnd(Op1, Builder.CreateNot(C)));
2202    }
2203  }
2204
2205  if (Instruction *R = foldSubOfMinMax(I, Builder))
2206    return R;
2207
2208  {
2209    // If we have a subtraction between some value and a select between
2210    // said value and something else, sink subtraction into select hands, i.e.:
2211    //   sub (select %Cond, %TrueVal, %FalseVal), %Op1
2212    //     ->
2213    //   select %Cond, (sub %TrueVal, %Op1), (sub %FalseVal, %Op1)
2214    //  or
2215    //   sub %Op0, (select %Cond, %TrueVal, %FalseVal)
2216    //     ->
2217    //   select %Cond, (sub %Op0, %TrueVal), (sub %Op0, %FalseVal)
2218    // This will result in select between new subtraction and 0.
2219    auto SinkSubIntoSelect =
2220        [Ty = I.getType()](Value *Select, Value *OtherHandOfSub,
2221                           auto SubBuilder) -> Instruction * {
2222      Value *Cond, *TrueVal, *FalseVal;
2223      if (!match(Select, m_OneUse(m_Select(m_Value(Cond), m_Value(TrueVal),
2224                                           m_Value(FalseVal)))))
2225        return nullptr;
2226      if (OtherHandOfSub != TrueVal && OtherHandOfSub != FalseVal)
2227        return nullptr;
2228      // While it is really tempting to just create two subtractions and let
2229      // InstCombine fold one of those to 0, it isn't possible to do so
2230      // because of worklist visitation order. So ugly it is.
2231      bool OtherHandOfSubIsTrueVal = OtherHandOfSub == TrueVal;
2232      Value *NewSub = SubBuilder(OtherHandOfSubIsTrueVal ? FalseVal : TrueVal);
2233      Constant *Zero = Constant::getNullValue(Ty);
2234      SelectInst *NewSel =
2235          SelectInst::Create(Cond, OtherHandOfSubIsTrueVal ? Zero : NewSub,
2236                             OtherHandOfSubIsTrueVal ? NewSub : Zero);
2237      // Preserve prof metadata if any.
2238      NewSel->copyMetadata(cast<Instruction>(*Select));
2239      return NewSel;
2240    };
2241    if (Instruction *NewSel = SinkSubIntoSelect(
2242            /*Select=*/Op0, /*OtherHandOfSub=*/Op1,
2243            [Builder = &Builder, Op1](Value *OtherHandOfSelect) {
2244              return Builder->CreateSub(OtherHandOfSelect,
2245                                        /*OtherHandOfSub=*/Op1);
2246            }))
2247      return NewSel;
2248    if (Instruction *NewSel = SinkSubIntoSelect(
2249            /*Select=*/Op1, /*OtherHandOfSub=*/Op0,
2250            [Builder = &Builder, Op0](Value *OtherHandOfSelect) {
2251              return Builder->CreateSub(/*OtherHandOfSub=*/Op0,
2252                                        OtherHandOfSelect);
2253            }))
2254      return NewSel;
2255  }
2256
2257  // (X - (X & Y))   -->   (X & ~Y)
2258  if (match(Op1, m_c_And(m_Specific(Op0), m_Value(Y))) &&
2259      (Op1->hasOneUse() || isa<Constant>(Y)))
2260    return BinaryOperator::CreateAnd(
2261        Op0, Builder.CreateNot(Y, Y->getName() + ".not"));
2262
2263  // ~X - Min/Max(~X, Y) -> ~Min/Max(X, ~Y) - X
2264  // ~X - Min/Max(Y, ~X) -> ~Min/Max(X, ~Y) - X
2265  // Min/Max(~X, Y) - ~X -> X - ~Min/Max(X, ~Y)
2266  // Min/Max(Y, ~X) - ~X -> X - ~Min/Max(X, ~Y)
2267  // As long as Y is freely invertible, this will be neutral or a win.
2268  // Note: We don't generate the inverse max/min, just create the 'not' of
2269  // it and let other folds do the rest.
2270  if (match(Op0, m_Not(m_Value(X))) &&
2271      match(Op1, m_c_MaxOrMin(m_Specific(Op0), m_Value(Y))) &&
2272      !Op0->hasNUsesOrMore(3) && isFreeToInvert(Y, Y->hasOneUse())) {
2273    Value *Not = Builder.CreateNot(Op1);
2274    return BinaryOperator::CreateSub(Not, X);
2275  }
2276  if (match(Op1, m_Not(m_Value(X))) &&
2277      match(Op0, m_c_MaxOrMin(m_Specific(Op1), m_Value(Y))) &&
2278      !Op1->hasNUsesOrMore(3) && isFreeToInvert(Y, Y->hasOneUse())) {
2279    Value *Not = Builder.CreateNot(Op0);
2280    return BinaryOperator::CreateSub(X, Not);
2281  }
2282
2283  // Optimize pointer differences into the same array into a size.  Consider:
2284  //  &A[10] - &A[0]: we should compile this to "10".
2285  Value *LHSOp, *RHSOp;
2286  if (match(Op0, m_PtrToInt(m_Value(LHSOp))) &&
2287      match(Op1, m_PtrToInt(m_Value(RHSOp))))
2288    if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType(),
2289                                               I.hasNoUnsignedWrap()))
2290      return replaceInstUsesWith(I, Res);
2291
2292  // trunc(p)-trunc(q) -> trunc(p-q)
2293  if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) &&
2294      match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp)))))
2295    if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType(),
2296                                               /* IsNUW */ false))
2297      return replaceInstUsesWith(I, Res);
2298
2299  // Canonicalize a shifty way to code absolute value to the common pattern.
2300  // There are 2 potential commuted variants.
2301  // We're relying on the fact that we only do this transform when the shift has
2302  // exactly 2 uses and the xor has exactly 1 use (otherwise, we might increase
2303  // instructions).
2304  Value *A;
2305  const APInt *ShAmt;
2306  Type *Ty = I.getType();
2307  unsigned BitWidth = Ty->getScalarSizeInBits();
2308  if (match(Op1, m_AShr(m_Value(A), m_APInt(ShAmt))) &&
2309      Op1->hasNUses(2) && *ShAmt == BitWidth - 1 &&
2310      match(Op0, m_OneUse(m_c_Xor(m_Specific(A), m_Specific(Op1))))) {
2311    // B = ashr i32 A, 31 ; smear the sign bit
2312    // sub (xor A, B), B  ; flip bits if negative and subtract -1 (add 1)
2313    // --> (A < 0) ? -A : A
2314    Value *IsNeg = Builder.CreateIsNeg(A);
2315    // Copy the nuw/nsw flags from the sub to the negate.
2316    Value *NegA = Builder.CreateNeg(A, "", I.hasNoUnsignedWrap(),
2317                                    I.hasNoSignedWrap());
2318    return SelectInst::Create(IsNeg, NegA, A);
2319  }
2320
2321  // If we are subtracting a low-bit masked subset of some value from an add
2322  // of that same value with no low bits changed, that is clearing some low bits
2323  // of the sum:
2324  // sub (X + AddC), (X & AndC) --> and (X + AddC), ~AndC
2325  const APInt *AddC, *AndC;
2326  if (match(Op0, m_Add(m_Value(X), m_APInt(AddC))) &&
2327      match(Op1, m_And(m_Specific(X), m_APInt(AndC)))) {
2328    unsigned Cttz = AddC->countTrailingZeros();
2329    APInt HighMask(APInt::getHighBitsSet(BitWidth, BitWidth - Cttz));
2330    if ((HighMask & *AndC).isZero())
2331      return BinaryOperator::CreateAnd(Op0, ConstantInt::get(Ty, ~(*AndC)));
2332  }
2333
2334  if (Instruction *V =
2335          canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I))
2336    return V;
2337
2338  // X - usub.sat(X, Y) => umin(X, Y)
2339  if (match(Op1, m_OneUse(m_Intrinsic<Intrinsic::usub_sat>(m_Specific(Op0),
2340                                                           m_Value(Y)))))
2341    return replaceInstUsesWith(
2342        I, Builder.CreateIntrinsic(Intrinsic::umin, {I.getType()}, {Op0, Y}));
2343
2344  // umax(X, Op1) - Op1 --> usub.sat(X, Op1)
2345  // TODO: The one-use restriction is not strictly necessary, but it may
2346  //       require improving other pattern matching and/or codegen.
2347  if (match(Op0, m_OneUse(m_c_UMax(m_Value(X), m_Specific(Op1)))))
2348    return replaceInstUsesWith(
2349        I, Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {X, Op1}));
2350
2351  // Op0 - umin(X, Op0) --> usub.sat(Op0, X)
2352  if (match(Op1, m_OneUse(m_c_UMin(m_Value(X), m_Specific(Op0)))))
2353    return replaceInstUsesWith(
2354        I, Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {Op0, X}));
2355
2356  // Op0 - umax(X, Op0) --> 0 - usub.sat(X, Op0)
2357  if (match(Op1, m_OneUse(m_c_UMax(m_Value(X), m_Specific(Op0))))) {
2358    Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {X, Op0});
2359    return BinaryOperator::CreateNeg(USub);
2360  }
2361
2362  // umin(X, Op1) - Op1 --> 0 - usub.sat(Op1, X)
2363  if (match(Op0, m_OneUse(m_c_UMin(m_Value(X), m_Specific(Op1))))) {
2364    Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {Op1, X});
2365    return BinaryOperator::CreateNeg(USub);
2366  }
2367
2368  // C - ctpop(X) => ctpop(~X) if C is bitwidth
2369  if (match(Op0, m_SpecificInt(BitWidth)) &&
2370      match(Op1, m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(X)))))
2371    return replaceInstUsesWith(
2372        I, Builder.CreateIntrinsic(Intrinsic::ctpop, {I.getType()},
2373                                   {Builder.CreateNot(X)}));
2374
2375  // Reduce multiplies for difference-of-squares by factoring:
2376  // (X * X) - (Y * Y) --> (X + Y) * (X - Y)
2377  if (match(Op0, m_OneUse(m_Mul(m_Value(X), m_Deferred(X)))) &&
2378      match(Op1, m_OneUse(m_Mul(m_Value(Y), m_Deferred(Y))))) {
2379    auto *OBO0 = cast<OverflowingBinaryOperator>(Op0);
2380    auto *OBO1 = cast<OverflowingBinaryOperator>(Op1);
2381    bool PropagateNSW = I.hasNoSignedWrap() && OBO0->hasNoSignedWrap() &&
2382                        OBO1->hasNoSignedWrap() && BitWidth > 2;
2383    bool PropagateNUW = I.hasNoUnsignedWrap() && OBO0->hasNoUnsignedWrap() &&
2384                        OBO1->hasNoUnsignedWrap() && BitWidth > 1;
2385    Value *Add = Builder.CreateAdd(X, Y, "add", PropagateNUW, PropagateNSW);
2386    Value *Sub = Builder.CreateSub(X, Y, "sub", PropagateNUW, PropagateNSW);
2387    Value *Mul = Builder.CreateMul(Add, Sub, "", PropagateNUW, PropagateNSW);
2388    return replaceInstUsesWith(I, Mul);
2389  }
2390
2391  return TryToNarrowDeduceFlags();
2392}
2393
2394/// This eliminates floating-point negation in either 'fneg(X)' or
2395/// 'fsub(-0.0, X)' form by combining into a constant operand.
2396static Instruction *foldFNegIntoConstant(Instruction &I, const DataLayout &DL) {
2397  // This is limited with one-use because fneg is assumed better for
2398  // reassociation and cheaper in codegen than fmul/fdiv.
2399  // TODO: Should the m_OneUse restriction be removed?
2400  Instruction *FNegOp;
2401  if (!match(&I, m_FNeg(m_OneUse(m_Instruction(FNegOp)))))
2402    return nullptr;
2403
2404  Value *X;
2405  Constant *C;
2406
2407  // Fold negation into constant operand.
2408  // -(X * C) --> X * (-C)
2409  if (match(FNegOp, m_FMul(m_Value(X), m_Constant(C))))
2410    if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL))
2411      return BinaryOperator::CreateFMulFMF(X, NegC, &I);
2412  // -(X / C) --> X / (-C)
2413  if (match(FNegOp, m_FDiv(m_Value(X), m_Constant(C))))
2414    if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL))
2415      return BinaryOperator::CreateFDivFMF(X, NegC, &I);
2416  // -(C / X) --> (-C) / X
2417  if (match(FNegOp, m_FDiv(m_Constant(C), m_Value(X))))
2418    if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL)) {
2419      Instruction *FDiv = BinaryOperator::CreateFDivFMF(NegC, X, &I);
2420
2421      // Intersect 'nsz' and 'ninf' because those special value exceptions may
2422      // not apply to the fdiv. Everything else propagates from the fneg.
2423      // TODO: We could propagate nsz/ninf from fdiv alone?
2424      FastMathFlags FMF = I.getFastMathFlags();
2425      FastMathFlags OpFMF = FNegOp->getFastMathFlags();
2426      FDiv->setHasNoSignedZeros(FMF.noSignedZeros() && OpFMF.noSignedZeros());
2427      FDiv->setHasNoInfs(FMF.noInfs() && OpFMF.noInfs());
2428      return FDiv;
2429    }
2430  // With NSZ [ counter-example with -0.0: -(-0.0 + 0.0) != 0.0 + -0.0 ]:
2431  // -(X + C) --> -X + -C --> -C - X
2432  if (I.hasNoSignedZeros() && match(FNegOp, m_FAdd(m_Value(X), m_Constant(C))))
2433    if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL))
2434      return BinaryOperator::CreateFSubFMF(NegC, X, &I);
2435
2436  return nullptr;
2437}
2438
2439static Instruction *hoistFNegAboveFMulFDiv(Instruction &I,
2440                                           InstCombiner::BuilderTy &Builder) {
2441  Value *FNeg;
2442  if (!match(&I, m_FNeg(m_Value(FNeg))))
2443    return nullptr;
2444
2445  Value *X, *Y;
2446  if (match(FNeg, m_OneUse(m_FMul(m_Value(X), m_Value(Y)))))
2447    return BinaryOperator::CreateFMulFMF(Builder.CreateFNegFMF(X, &I), Y, &I);
2448
2449  if (match(FNeg, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))))
2450    return BinaryOperator::CreateFDivFMF(Builder.CreateFNegFMF(X, &I), Y, &I);
2451
2452  return nullptr;
2453}
2454
2455Instruction *InstCombinerImpl::visitFNeg(UnaryOperator &I) {
2456  Value *Op = I.getOperand(0);
2457
2458  if (Value *V = simplifyFNegInst(Op, I.getFastMathFlags(),
2459                                  getSimplifyQuery().getWithInstruction(&I)))
2460    return replaceInstUsesWith(I, V);
2461
2462  if (Instruction *X = foldFNegIntoConstant(I, DL))
2463    return X;
2464
2465  Value *X, *Y;
2466
2467  // If we can ignore the sign of zeros: -(X - Y) --> (Y - X)
2468  if (I.hasNoSignedZeros() &&
2469      match(Op, m_OneUse(m_FSub(m_Value(X), m_Value(Y)))))
2470    return BinaryOperator::CreateFSubFMF(Y, X, &I);
2471
2472  if (Instruction *R = hoistFNegAboveFMulFDiv(I, Builder))
2473    return R;
2474
2475  Value *OneUse;
2476  if (!match(Op, m_OneUse(m_Value(OneUse))))
2477    return nullptr;
2478
2479  // Try to eliminate fneg if at least 1 arm of the select is negated.
2480  Value *Cond;
2481  if (match(OneUse, m_Select(m_Value(Cond), m_Value(X), m_Value(Y)))) {
2482    // Unlike most transforms, this one is not safe to propagate nsz unless
2483    // it is present on the original select. We union the flags from the select
2484    // and fneg and then remove nsz if needed.
2485    auto propagateSelectFMF = [&](SelectInst *S, bool CommonOperand) {
2486      S->copyFastMathFlags(&I);
2487      if (auto *OldSel = dyn_cast<SelectInst>(Op)) {
2488        FastMathFlags FMF = I.getFastMathFlags();
2489        FMF |= OldSel->getFastMathFlags();
2490        S->setFastMathFlags(FMF);
2491        if (!OldSel->hasNoSignedZeros() && !CommonOperand &&
2492            !isGuaranteedNotToBeUndefOrPoison(OldSel->getCondition()))
2493          S->setHasNoSignedZeros(false);
2494      }
2495    };
2496    // -(Cond ? -P : Y) --> Cond ? P : -Y
2497    Value *P;
2498    if (match(X, m_FNeg(m_Value(P)))) {
2499      Value *NegY = Builder.CreateFNegFMF(Y, &I, Y->getName() + ".neg");
2500      SelectInst *NewSel = SelectInst::Create(Cond, P, NegY);
2501      propagateSelectFMF(NewSel, P == Y);
2502      return NewSel;
2503    }
2504    // -(Cond ? X : -P) --> Cond ? -X : P
2505    if (match(Y, m_FNeg(m_Value(P)))) {
2506      Value *NegX = Builder.CreateFNegFMF(X, &I, X->getName() + ".neg");
2507      SelectInst *NewSel = SelectInst::Create(Cond, NegX, P);
2508      propagateSelectFMF(NewSel, P == X);
2509      return NewSel;
2510    }
2511  }
2512
2513  // fneg (copysign x, y) -> copysign x, (fneg y)
2514  if (match(OneUse, m_CopySign(m_Value(X), m_Value(Y)))) {
2515    // The source copysign has an additional value input, so we can't propagate
2516    // flags the copysign doesn't also have.
2517    FastMathFlags FMF = I.getFastMathFlags();
2518    FMF &= cast<FPMathOperator>(OneUse)->getFastMathFlags();
2519
2520    IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
2521    Builder.setFastMathFlags(FMF);
2522
2523    Value *NegY = Builder.CreateFNeg(Y);
2524    Value *NewCopySign = Builder.CreateCopySign(X, NegY);
2525    return replaceInstUsesWith(I, NewCopySign);
2526  }
2527
2528  return nullptr;
2529}
2530
2531Instruction *InstCombinerImpl::visitFSub(BinaryOperator &I) {
2532  if (Value *V = simplifyFSubInst(I.getOperand(0), I.getOperand(1),
2533                                  I.getFastMathFlags(),
2534                                  getSimplifyQuery().getWithInstruction(&I)))
2535    return replaceInstUsesWith(I, V);
2536
2537  if (Instruction *X = foldVectorBinop(I))
2538    return X;
2539
2540  if (Instruction *Phi = foldBinopWithPhiOperands(I))
2541    return Phi;
2542
2543  // Subtraction from -0.0 is the canonical form of fneg.
2544  // fsub -0.0, X ==> fneg X
2545  // fsub nsz 0.0, X ==> fneg nsz X
2546  //
2547  // FIXME This matcher does not respect FTZ or DAZ yet:
2548  // fsub -0.0, Denorm ==> +-0
2549  // fneg Denorm ==> -Denorm
2550  Value *Op;
2551  if (match(&I, m_FNeg(m_Value(Op))))
2552    return UnaryOperator::CreateFNegFMF(Op, &I);
2553
2554  if (Instruction *X = foldFNegIntoConstant(I, DL))
2555    return X;
2556
2557  if (Instruction *R = hoistFNegAboveFMulFDiv(I, Builder))
2558    return R;
2559
2560  Value *X, *Y;
2561  Constant *C;
2562
2563  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2564  // If Op0 is not -0.0 or we can ignore -0.0: Z - (X - Y) --> Z + (Y - X)
2565  // Canonicalize to fadd to make analysis easier.
2566  // This can also help codegen because fadd is commutative.
2567  // Note that if this fsub was really an fneg, the fadd with -0.0 will get
2568  // killed later. We still limit that particular transform with 'hasOneUse'
2569  // because an fneg is assumed better/cheaper than a generic fsub.
2570  if (I.hasNoSignedZeros() || CannotBeNegativeZero(Op0, SQ.TLI)) {
2571    if (match(Op1, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) {
2572      Value *NewSub = Builder.CreateFSubFMF(Y, X, &I);
2573      return BinaryOperator::CreateFAddFMF(Op0, NewSub, &I);
2574    }
2575  }
2576
2577  // (-X) - Op1 --> -(X + Op1)
2578  if (I.hasNoSignedZeros() && !isa<ConstantExpr>(Op0) &&
2579      match(Op0, m_OneUse(m_FNeg(m_Value(X))))) {
2580    Value *FAdd = Builder.CreateFAddFMF(X, Op1, &I);
2581    return UnaryOperator::CreateFNegFMF(FAdd, &I);
2582  }
2583
2584  if (isa<Constant>(Op0))
2585    if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
2586      if (Instruction *NV = FoldOpIntoSelect(I, SI))
2587        return NV;
2588
2589  // X - C --> X + (-C)
2590  // But don't transform constant expressions because there's an inverse fold
2591  // for X + (-Y) --> X - Y.
2592  if (match(Op1, m_ImmConstant(C)))
2593    if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL))
2594      return BinaryOperator::CreateFAddFMF(Op0, NegC, &I);
2595
2596  // X - (-Y) --> X + Y
2597  if (match(Op1, m_FNeg(m_Value(Y))))
2598    return BinaryOperator::CreateFAddFMF(Op0, Y, &I);
2599
2600  // Similar to above, but look through a cast of the negated value:
2601  // X - (fptrunc(-Y)) --> X + fptrunc(Y)
2602  Type *Ty = I.getType();
2603  if (match(Op1, m_OneUse(m_FPTrunc(m_FNeg(m_Value(Y))))))
2604    return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPTrunc(Y, Ty), &I);
2605
2606  // X - (fpext(-Y)) --> X + fpext(Y)
2607  if (match(Op1, m_OneUse(m_FPExt(m_FNeg(m_Value(Y))))))
2608    return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPExt(Y, Ty), &I);
2609
2610  // Similar to above, but look through fmul/fdiv of the negated value:
2611  // Op0 - (-X * Y) --> Op0 + (X * Y)
2612  // Op0 - (Y * -X) --> Op0 + (X * Y)
2613  if (match(Op1, m_OneUse(m_c_FMul(m_FNeg(m_Value(X)), m_Value(Y))))) {
2614    Value *FMul = Builder.CreateFMulFMF(X, Y, &I);
2615    return BinaryOperator::CreateFAddFMF(Op0, FMul, &I);
2616  }
2617  // Op0 - (-X / Y) --> Op0 + (X / Y)
2618  // Op0 - (X / -Y) --> Op0 + (X / Y)
2619  if (match(Op1, m_OneUse(m_FDiv(m_FNeg(m_Value(X)), m_Value(Y)))) ||
2620      match(Op1, m_OneUse(m_FDiv(m_Value(X), m_FNeg(m_Value(Y)))))) {
2621    Value *FDiv = Builder.CreateFDivFMF(X, Y, &I);
2622    return BinaryOperator::CreateFAddFMF(Op0, FDiv, &I);
2623  }
2624
2625  // Handle special cases for FSub with selects feeding the operation
2626  if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1))
2627    return replaceInstUsesWith(I, V);
2628
2629  if (I.hasAllowReassoc() && I.hasNoSignedZeros()) {
2630    // (Y - X) - Y --> -X
2631    if (match(Op0, m_FSub(m_Specific(Op1), m_Value(X))))
2632      return UnaryOperator::CreateFNegFMF(X, &I);
2633
2634    // Y - (X + Y) --> -X
2635    // Y - (Y + X) --> -X
2636    if (match(Op1, m_c_FAdd(m_Specific(Op0), m_Value(X))))
2637      return UnaryOperator::CreateFNegFMF(X, &I);
2638
2639    // (X * C) - X --> X * (C - 1.0)
2640    if (match(Op0, m_FMul(m_Specific(Op1), m_Constant(C)))) {
2641      if (Constant *CSubOne = ConstantFoldBinaryOpOperands(
2642              Instruction::FSub, C, ConstantFP::get(Ty, 1.0), DL))
2643        return BinaryOperator::CreateFMulFMF(Op1, CSubOne, &I);
2644    }
2645    // X - (X * C) --> X * (1.0 - C)
2646    if (match(Op1, m_FMul(m_Specific(Op0), m_Constant(C)))) {
2647      if (Constant *OneSubC = ConstantFoldBinaryOpOperands(
2648              Instruction::FSub, ConstantFP::get(Ty, 1.0), C, DL))
2649        return BinaryOperator::CreateFMulFMF(Op0, OneSubC, &I);
2650    }
2651
2652    // Reassociate fsub/fadd sequences to create more fadd instructions and
2653    // reduce dependency chains:
2654    // ((X - Y) + Z) - Op1 --> (X + Z) - (Y + Op1)
2655    Value *Z;
2656    if (match(Op0, m_OneUse(m_c_FAdd(m_OneUse(m_FSub(m_Value(X), m_Value(Y))),
2657                                     m_Value(Z))))) {
2658      Value *XZ = Builder.CreateFAddFMF(X, Z, &I);
2659      Value *YW = Builder.CreateFAddFMF(Y, Op1, &I);
2660      return BinaryOperator::CreateFSubFMF(XZ, YW, &I);
2661    }
2662
2663    auto m_FaddRdx = [](Value *&Sum, Value *&Vec) {
2664      return m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_fadd>(m_Value(Sum),
2665                                                                 m_Value(Vec)));
2666    };
2667    Value *A0, *A1, *V0, *V1;
2668    if (match(Op0, m_FaddRdx(A0, V0)) && match(Op1, m_FaddRdx(A1, V1)) &&
2669        V0->getType() == V1->getType()) {
2670      // Difference of sums is sum of differences:
2671      // add_rdx(A0, V0) - add_rdx(A1, V1) --> add_rdx(A0, V0 - V1) - A1
2672      Value *Sub = Builder.CreateFSubFMF(V0, V1, &I);
2673      Value *Rdx = Builder.CreateIntrinsic(Intrinsic::vector_reduce_fadd,
2674                                           {Sub->getType()}, {A0, Sub}, &I);
2675      return BinaryOperator::CreateFSubFMF(Rdx, A1, &I);
2676    }
2677
2678    if (Instruction *F = factorizeFAddFSub(I, Builder))
2679      return F;
2680
2681    // TODO: This performs reassociative folds for FP ops. Some fraction of the
2682    // functionality has been subsumed by simple pattern matching here and in
2683    // InstSimplify. We should let a dedicated reassociation pass handle more
2684    // complex pattern matching and remove this from InstCombine.
2685    if (Value *V = FAddCombine(Builder).simplify(&I))
2686      return replaceInstUsesWith(I, V);
2687
2688    // (X - Y) - Op1 --> X - (Y + Op1)
2689    if (match(Op0, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) {
2690      Value *FAdd = Builder.CreateFAddFMF(Y, Op1, &I);
2691      return BinaryOperator::CreateFSubFMF(X, FAdd, &I);
2692    }
2693  }
2694
2695  return nullptr;
2696}
2697