1//===-- XCoreISelLowering.cpp - XCore DAG Lowering Implementation ---------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the XCoreTargetLowering class.
10//
11//===----------------------------------------------------------------------===//
12
13#include "XCoreISelLowering.h"
14#include "XCore.h"
15#include "XCoreMachineFunctionInfo.h"
16#include "XCoreSubtarget.h"
17#include "XCoreTargetMachine.h"
18#include "XCoreTargetObjectFile.h"
19#include "llvm/CodeGen/CallingConvLower.h"
20#include "llvm/CodeGen/MachineFrameInfo.h"
21#include "llvm/CodeGen/MachineFunction.h"
22#include "llvm/CodeGen/MachineInstrBuilder.h"
23#include "llvm/CodeGen/MachineJumpTableInfo.h"
24#include "llvm/CodeGen/MachineRegisterInfo.h"
25#include "llvm/CodeGen/ValueTypes.h"
26#include "llvm/IR/CallingConv.h"
27#include "llvm/IR/Constants.h"
28#include "llvm/IR/DerivedTypes.h"
29#include "llvm/IR/Function.h"
30#include "llvm/IR/GlobalAlias.h"
31#include "llvm/IR/GlobalVariable.h"
32#include "llvm/IR/Intrinsics.h"
33#include "llvm/IR/IntrinsicsXCore.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Support/ErrorHandling.h"
36#include "llvm/Support/KnownBits.h"
37#include "llvm/Support/raw_ostream.h"
38#include <algorithm>
39
40using namespace llvm;
41
42#define DEBUG_TYPE "xcore-lower"
43
44const char *XCoreTargetLowering::
45getTargetNodeName(unsigned Opcode) const
46{
47  switch ((XCoreISD::NodeType)Opcode)
48  {
49    case XCoreISD::FIRST_NUMBER      : break;
50    case XCoreISD::BL                : return "XCoreISD::BL";
51    case XCoreISD::PCRelativeWrapper : return "XCoreISD::PCRelativeWrapper";
52    case XCoreISD::DPRelativeWrapper : return "XCoreISD::DPRelativeWrapper";
53    case XCoreISD::CPRelativeWrapper : return "XCoreISD::CPRelativeWrapper";
54    case XCoreISD::LDWSP             : return "XCoreISD::LDWSP";
55    case XCoreISD::STWSP             : return "XCoreISD::STWSP";
56    case XCoreISD::RETSP             : return "XCoreISD::RETSP";
57    case XCoreISD::LADD              : return "XCoreISD::LADD";
58    case XCoreISD::LSUB              : return "XCoreISD::LSUB";
59    case XCoreISD::LMUL              : return "XCoreISD::LMUL";
60    case XCoreISD::MACCU             : return "XCoreISD::MACCU";
61    case XCoreISD::MACCS             : return "XCoreISD::MACCS";
62    case XCoreISD::CRC8              : return "XCoreISD::CRC8";
63    case XCoreISD::BR_JT             : return "XCoreISD::BR_JT";
64    case XCoreISD::BR_JT32           : return "XCoreISD::BR_JT32";
65    case XCoreISD::FRAME_TO_ARGS_OFFSET : return "XCoreISD::FRAME_TO_ARGS_OFFSET";
66    case XCoreISD::EH_RETURN         : return "XCoreISD::EH_RETURN";
67  }
68  return nullptr;
69}
70
71XCoreTargetLowering::XCoreTargetLowering(const TargetMachine &TM,
72                                         const XCoreSubtarget &Subtarget)
73    : TargetLowering(TM), TM(TM), Subtarget(Subtarget) {
74
75  // Set up the register classes.
76  addRegisterClass(MVT::i32, &XCore::GRRegsRegClass);
77
78  // Compute derived properties from the register classes
79  computeRegisterProperties(Subtarget.getRegisterInfo());
80
81  setStackPointerRegisterToSaveRestore(XCore::SP);
82
83  setSchedulingPreference(Sched::Source);
84
85  // Use i32 for setcc operations results (slt, sgt, ...).
86  setBooleanContents(ZeroOrOneBooleanContent);
87  setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
88
89  // XCore does not have the NodeTypes below.
90  setOperationAction(ISD::BR_CC,     MVT::i32,   Expand);
91  setOperationAction(ISD::SELECT_CC, MVT::i32,   Expand);
92
93  // 64bit
94  setOperationAction(ISD::ADD, MVT::i64, Custom);
95  setOperationAction(ISD::SUB, MVT::i64, Custom);
96  setOperationAction(ISD::SMUL_LOHI, MVT::i32, Custom);
97  setOperationAction(ISD::UMUL_LOHI, MVT::i32, Custom);
98  setOperationAction(ISD::MULHS, MVT::i32, Expand);
99  setOperationAction(ISD::MULHU, MVT::i32, Expand);
100  setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
101  setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
102  setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
103
104  // Bit Manipulation
105  setOperationAction(ISD::CTPOP, MVT::i32, Expand);
106  setOperationAction(ISD::ROTL , MVT::i32, Expand);
107  setOperationAction(ISD::ROTR , MVT::i32, Expand);
108  setOperationAction(ISD::BITREVERSE , MVT::i32, Legal);
109
110  setOperationAction(ISD::TRAP, MVT::Other, Legal);
111
112  // Jump tables.
113  setOperationAction(ISD::BR_JT, MVT::Other, Custom);
114
115  setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
116  setOperationAction(ISD::BlockAddress, MVT::i32 , Custom);
117
118  // Conversion of i64 -> double produces constantpool nodes
119  setOperationAction(ISD::ConstantPool, MVT::i32,   Custom);
120
121  // Loads
122  for (MVT VT : MVT::integer_valuetypes()) {
123    setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
124    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
125    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
126
127    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
128    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Expand);
129  }
130
131  // Custom expand misaligned loads / stores.
132  setOperationAction(ISD::LOAD, MVT::i32, Custom);
133  setOperationAction(ISD::STORE, MVT::i32, Custom);
134
135  // Varargs
136  setOperationAction(ISD::VAEND, MVT::Other, Expand);
137  setOperationAction(ISD::VACOPY, MVT::Other, Expand);
138  setOperationAction(ISD::VAARG, MVT::Other, Custom);
139  setOperationAction(ISD::VASTART, MVT::Other, Custom);
140
141  // Dynamic stack
142  setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
143  setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
144  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
145
146  // Exception handling
147  setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
148  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
149
150  // Atomic operations
151  // We request a fence for ATOMIC_* instructions, to reduce them to Monotonic.
152  // As we are always Sequential Consistent, an ATOMIC_FENCE becomes a no OP.
153  setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
154  setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
155  setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
156
157  // TRAMPOLINE is custom lowered.
158  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
159  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
160
161  // We want to custom lower some of our intrinsics.
162  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
163
164  MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 4;
165  MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize
166    = MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 2;
167
168  // We have target-specific dag combine patterns for the following nodes:
169  setTargetDAGCombine(
170      {ISD::STORE, ISD::ADD, ISD::INTRINSIC_VOID, ISD::INTRINSIC_W_CHAIN});
171
172  setMinFunctionAlignment(Align(2));
173  setPrefFunctionAlignment(Align(4));
174}
175
176bool XCoreTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
177  if (Val.getOpcode() != ISD::LOAD)
178    return false;
179
180  EVT VT1 = Val.getValueType();
181  if (!VT1.isSimple() || !VT1.isInteger() ||
182      !VT2.isSimple() || !VT2.isInteger())
183    return false;
184
185  switch (VT1.getSimpleVT().SimpleTy) {
186  default: break;
187  case MVT::i8:
188    return true;
189  }
190
191  return false;
192}
193
194SDValue XCoreTargetLowering::
195LowerOperation(SDValue Op, SelectionDAG &DAG) const {
196  switch (Op.getOpcode())
197  {
198  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
199  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
200  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
201  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
202  case ISD::BR_JT:              return LowerBR_JT(Op, DAG);
203  case ISD::LOAD:               return LowerLOAD(Op, DAG);
204  case ISD::STORE:              return LowerSTORE(Op, DAG);
205  case ISD::VAARG:              return LowerVAARG(Op, DAG);
206  case ISD::VASTART:            return LowerVASTART(Op, DAG);
207  case ISD::SMUL_LOHI:          return LowerSMUL_LOHI(Op, DAG);
208  case ISD::UMUL_LOHI:          return LowerUMUL_LOHI(Op, DAG);
209  // FIXME: Remove these when LegalizeDAGTypes lands.
210  case ISD::ADD:
211  case ISD::SUB:                return ExpandADDSUB(Op.getNode(), DAG);
212  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
213  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
214  case ISD::FRAME_TO_ARGS_OFFSET: return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
215  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
216  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
217  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
218  case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op, DAG);
219  case ISD::ATOMIC_LOAD:        return LowerATOMIC_LOAD(Op, DAG);
220  case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op, DAG);
221  default:
222    llvm_unreachable("unimplemented operand");
223  }
224}
225
226/// ReplaceNodeResults - Replace the results of node with an illegal result
227/// type with new values built out of custom code.
228void XCoreTargetLowering::ReplaceNodeResults(SDNode *N,
229                                             SmallVectorImpl<SDValue>&Results,
230                                             SelectionDAG &DAG) const {
231  switch (N->getOpcode()) {
232  default:
233    llvm_unreachable("Don't know how to custom expand this!");
234  case ISD::ADD:
235  case ISD::SUB:
236    Results.push_back(ExpandADDSUB(N, DAG));
237    return;
238  }
239}
240
241//===----------------------------------------------------------------------===//
242//  Misc Lower Operation implementation
243//===----------------------------------------------------------------------===//
244
245SDValue XCoreTargetLowering::getGlobalAddressWrapper(SDValue GA,
246                                                     const GlobalValue *GV,
247                                                     SelectionDAG &DAG) const {
248  // FIXME there is no actual debug info here
249  SDLoc dl(GA);
250
251  if (GV->getValueType()->isFunctionTy())
252    return DAG.getNode(XCoreISD::PCRelativeWrapper, dl, MVT::i32, GA);
253
254  const auto *GVar = dyn_cast<GlobalVariable>(GV);
255  if ((GV->hasSection() && GV->getSection().startswith(".cp.")) ||
256      (GVar && GVar->isConstant() && GV->hasLocalLinkage()))
257    return DAG.getNode(XCoreISD::CPRelativeWrapper, dl, MVT::i32, GA);
258
259  return DAG.getNode(XCoreISD::DPRelativeWrapper, dl, MVT::i32, GA);
260}
261
262static bool IsSmallObject(const GlobalValue *GV, const XCoreTargetLowering &XTL) {
263  if (XTL.getTargetMachine().getCodeModel() == CodeModel::Small)
264    return true;
265
266  Type *ObjType = GV->getValueType();
267  if (!ObjType->isSized())
268    return false;
269
270  auto &DL = GV->getParent()->getDataLayout();
271  unsigned ObjSize = DL.getTypeAllocSize(ObjType);
272  return ObjSize < CodeModelLargeSize && ObjSize != 0;
273}
274
275SDValue XCoreTargetLowering::
276LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const
277{
278  const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
279  const GlobalValue *GV = GN->getGlobal();
280  SDLoc DL(GN);
281  int64_t Offset = GN->getOffset();
282  if (IsSmallObject(GV, *this)) {
283    // We can only fold positive offsets that are a multiple of the word size.
284    int64_t FoldedOffset = std::max(Offset & ~3, (int64_t)0);
285    SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, FoldedOffset);
286    GA = getGlobalAddressWrapper(GA, GV, DAG);
287    // Handle the rest of the offset.
288    if (Offset != FoldedOffset) {
289      SDValue Remaining = DAG.getConstant(Offset - FoldedOffset, DL, MVT::i32);
290      GA = DAG.getNode(ISD::ADD, DL, MVT::i32, GA, Remaining);
291    }
292    return GA;
293  } else {
294    // Ideally we would not fold in offset with an index <= 11.
295    Type *Ty = Type::getInt8PtrTy(*DAG.getContext());
296    Constant *GA = ConstantExpr::getBitCast(const_cast<GlobalValue*>(GV), Ty);
297    Ty = Type::getInt32Ty(*DAG.getContext());
298    Constant *Idx = ConstantInt::get(Ty, Offset);
299    Constant *GAI = ConstantExpr::getGetElementPtr(
300        Type::getInt8Ty(*DAG.getContext()), GA, Idx);
301    SDValue CP = DAG.getConstantPool(GAI, MVT::i32);
302    return DAG.getLoad(getPointerTy(DAG.getDataLayout()), DL,
303                       DAG.getEntryNode(), CP, MachinePointerInfo());
304  }
305}
306
307SDValue XCoreTargetLowering::
308LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const
309{
310  SDLoc DL(Op);
311  auto PtrVT = getPointerTy(DAG.getDataLayout());
312  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
313  SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT);
314
315  return DAG.getNode(XCoreISD::PCRelativeWrapper, DL, PtrVT, Result);
316}
317
318SDValue XCoreTargetLowering::
319LowerConstantPool(SDValue Op, SelectionDAG &DAG) const
320{
321  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
322  // FIXME there isn't really debug info here
323  SDLoc dl(CP);
324  EVT PtrVT = Op.getValueType();
325  SDValue Res;
326  if (CP->isMachineConstantPoolEntry()) {
327    Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
328                                    CP->getAlign(), CP->getOffset());
329  } else {
330    Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlign(),
331                                    CP->getOffset());
332  }
333  return DAG.getNode(XCoreISD::CPRelativeWrapper, dl, MVT::i32, Res);
334}
335
336unsigned XCoreTargetLowering::getJumpTableEncoding() const {
337  return MachineJumpTableInfo::EK_Inline;
338}
339
340SDValue XCoreTargetLowering::
341LowerBR_JT(SDValue Op, SelectionDAG &DAG) const
342{
343  SDValue Chain = Op.getOperand(0);
344  SDValue Table = Op.getOperand(1);
345  SDValue Index = Op.getOperand(2);
346  SDLoc dl(Op);
347  JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
348  unsigned JTI = JT->getIndex();
349  MachineFunction &MF = DAG.getMachineFunction();
350  const MachineJumpTableInfo *MJTI = MF.getJumpTableInfo();
351  SDValue TargetJT = DAG.getTargetJumpTable(JT->getIndex(), MVT::i32);
352
353  unsigned NumEntries = MJTI->getJumpTables()[JTI].MBBs.size();
354  if (NumEntries <= 32) {
355    return DAG.getNode(XCoreISD::BR_JT, dl, MVT::Other, Chain, TargetJT, Index);
356  }
357  assert((NumEntries >> 31) == 0);
358  SDValue ScaledIndex = DAG.getNode(ISD::SHL, dl, MVT::i32, Index,
359                                    DAG.getConstant(1, dl, MVT::i32));
360  return DAG.getNode(XCoreISD::BR_JT32, dl, MVT::Other, Chain, TargetJT,
361                     ScaledIndex);
362}
363
364SDValue XCoreTargetLowering::lowerLoadWordFromAlignedBasePlusOffset(
365    const SDLoc &DL, SDValue Chain, SDValue Base, int64_t Offset,
366    SelectionDAG &DAG) const {
367  auto PtrVT = getPointerTy(DAG.getDataLayout());
368  if ((Offset & 0x3) == 0) {
369    return DAG.getLoad(PtrVT, DL, Chain, Base, MachinePointerInfo());
370  }
371  // Lower to pair of consecutive word aligned loads plus some bit shifting.
372  int32_t HighOffset = alignTo(Offset, 4);
373  int32_t LowOffset = HighOffset - 4;
374  SDValue LowAddr, HighAddr;
375  if (GlobalAddressSDNode *GASD =
376        dyn_cast<GlobalAddressSDNode>(Base.getNode())) {
377    LowAddr = DAG.getGlobalAddress(GASD->getGlobal(), DL, Base.getValueType(),
378                                   LowOffset);
379    HighAddr = DAG.getGlobalAddress(GASD->getGlobal(), DL, Base.getValueType(),
380                                    HighOffset);
381  } else {
382    LowAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, Base,
383                          DAG.getConstant(LowOffset, DL, MVT::i32));
384    HighAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, Base,
385                           DAG.getConstant(HighOffset, DL, MVT::i32));
386  }
387  SDValue LowShift = DAG.getConstant((Offset - LowOffset) * 8, DL, MVT::i32);
388  SDValue HighShift = DAG.getConstant((HighOffset - Offset) * 8, DL, MVT::i32);
389
390  SDValue Low = DAG.getLoad(PtrVT, DL, Chain, LowAddr, MachinePointerInfo());
391  SDValue High = DAG.getLoad(PtrVT, DL, Chain, HighAddr, MachinePointerInfo());
392  SDValue LowShifted = DAG.getNode(ISD::SRL, DL, MVT::i32, Low, LowShift);
393  SDValue HighShifted = DAG.getNode(ISD::SHL, DL, MVT::i32, High, HighShift);
394  SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, LowShifted, HighShifted);
395  Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Low.getValue(1),
396                      High.getValue(1));
397  SDValue Ops[] = { Result, Chain };
398  return DAG.getMergeValues(Ops, DL);
399}
400
401static bool isWordAligned(SDValue Value, SelectionDAG &DAG)
402{
403  KnownBits Known = DAG.computeKnownBits(Value);
404  return Known.countMinTrailingZeros() >= 2;
405}
406
407SDValue XCoreTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
408  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
409  LLVMContext &Context = *DAG.getContext();
410  LoadSDNode *LD = cast<LoadSDNode>(Op);
411  assert(LD->getExtensionType() == ISD::NON_EXTLOAD &&
412         "Unexpected extension type");
413  assert(LD->getMemoryVT() == MVT::i32 && "Unexpected load EVT");
414
415  if (allowsMemoryAccessForAlignment(Context, DAG.getDataLayout(),
416                                     LD->getMemoryVT(), *LD->getMemOperand()))
417    return SDValue();
418
419  SDValue Chain = LD->getChain();
420  SDValue BasePtr = LD->getBasePtr();
421  SDLoc DL(Op);
422
423  if (!LD->isVolatile()) {
424    const GlobalValue *GV;
425    int64_t Offset = 0;
426    if (DAG.isBaseWithConstantOffset(BasePtr) &&
427        isWordAligned(BasePtr->getOperand(0), DAG)) {
428      SDValue NewBasePtr = BasePtr->getOperand(0);
429      Offset = cast<ConstantSDNode>(BasePtr->getOperand(1))->getSExtValue();
430      return lowerLoadWordFromAlignedBasePlusOffset(DL, Chain, NewBasePtr,
431                                                    Offset, DAG);
432    }
433    if (TLI.isGAPlusOffset(BasePtr.getNode(), GV, Offset) &&
434        GV->getPointerAlignment(DAG.getDataLayout()) >= 4) {
435      SDValue NewBasePtr = DAG.getGlobalAddress(GV, DL,
436                                                BasePtr->getValueType(0));
437      return lowerLoadWordFromAlignedBasePlusOffset(DL, Chain, NewBasePtr,
438                                                    Offset, DAG);
439    }
440  }
441
442  if (LD->getAlign() == Align(2)) {
443    SDValue Low = DAG.getExtLoad(ISD::ZEXTLOAD, DL, MVT::i32, Chain, BasePtr,
444                                 LD->getPointerInfo(), MVT::i16, Align(2),
445                                 LD->getMemOperand()->getFlags());
446    SDValue HighAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
447                                   DAG.getConstant(2, DL, MVT::i32));
448    SDValue High =
449        DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain, HighAddr,
450                       LD->getPointerInfo().getWithOffset(2), MVT::i16,
451                       Align(2), LD->getMemOperand()->getFlags());
452    SDValue HighShifted = DAG.getNode(ISD::SHL, DL, MVT::i32, High,
453                                      DAG.getConstant(16, DL, MVT::i32));
454    SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Low, HighShifted);
455    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Low.getValue(1),
456                             High.getValue(1));
457    SDValue Ops[] = { Result, Chain };
458    return DAG.getMergeValues(Ops, DL);
459  }
460
461  // Lower to a call to __misaligned_load(BasePtr).
462  Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(Context);
463  TargetLowering::ArgListTy Args;
464  TargetLowering::ArgListEntry Entry;
465
466  Entry.Ty = IntPtrTy;
467  Entry.Node = BasePtr;
468  Args.push_back(Entry);
469
470  TargetLowering::CallLoweringInfo CLI(DAG);
471  CLI.setDebugLoc(DL).setChain(Chain).setLibCallee(
472      CallingConv::C, IntPtrTy,
473      DAG.getExternalSymbol("__misaligned_load",
474                            getPointerTy(DAG.getDataLayout())),
475      std::move(Args));
476
477  std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
478  SDValue Ops[] = { CallResult.first, CallResult.second };
479  return DAG.getMergeValues(Ops, DL);
480}
481
482SDValue XCoreTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
483  LLVMContext &Context = *DAG.getContext();
484  StoreSDNode *ST = cast<StoreSDNode>(Op);
485  assert(!ST->isTruncatingStore() && "Unexpected store type");
486  assert(ST->getMemoryVT() == MVT::i32 && "Unexpected store EVT");
487
488  if (allowsMemoryAccessForAlignment(Context, DAG.getDataLayout(),
489                                     ST->getMemoryVT(), *ST->getMemOperand()))
490    return SDValue();
491
492  SDValue Chain = ST->getChain();
493  SDValue BasePtr = ST->getBasePtr();
494  SDValue Value = ST->getValue();
495  SDLoc dl(Op);
496
497  if (ST->getAlign() == Align(2)) {
498    SDValue Low = Value;
499    SDValue High = DAG.getNode(ISD::SRL, dl, MVT::i32, Value,
500                               DAG.getConstant(16, dl, MVT::i32));
501    SDValue StoreLow =
502        DAG.getTruncStore(Chain, dl, Low, BasePtr, ST->getPointerInfo(),
503                          MVT::i16, Align(2), ST->getMemOperand()->getFlags());
504    SDValue HighAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, BasePtr,
505                                   DAG.getConstant(2, dl, MVT::i32));
506    SDValue StoreHigh = DAG.getTruncStore(
507        Chain, dl, High, HighAddr, ST->getPointerInfo().getWithOffset(2),
508        MVT::i16, Align(2), ST->getMemOperand()->getFlags());
509    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, StoreLow, StoreHigh);
510  }
511
512  // Lower to a call to __misaligned_store(BasePtr, Value).
513  Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(Context);
514  TargetLowering::ArgListTy Args;
515  TargetLowering::ArgListEntry Entry;
516
517  Entry.Ty = IntPtrTy;
518  Entry.Node = BasePtr;
519  Args.push_back(Entry);
520
521  Entry.Node = Value;
522  Args.push_back(Entry);
523
524  TargetLowering::CallLoweringInfo CLI(DAG);
525  CLI.setDebugLoc(dl).setChain(Chain).setCallee(
526      CallingConv::C, Type::getVoidTy(Context),
527      DAG.getExternalSymbol("__misaligned_store",
528                            getPointerTy(DAG.getDataLayout())),
529      std::move(Args));
530
531  std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
532  return CallResult.second;
533}
534
535SDValue XCoreTargetLowering::
536LowerSMUL_LOHI(SDValue Op, SelectionDAG &DAG) const
537{
538  assert(Op.getValueType() == MVT::i32 && Op.getOpcode() == ISD::SMUL_LOHI &&
539         "Unexpected operand to lower!");
540  SDLoc dl(Op);
541  SDValue LHS = Op.getOperand(0);
542  SDValue RHS = Op.getOperand(1);
543  SDValue Zero = DAG.getConstant(0, dl, MVT::i32);
544  SDValue Hi = DAG.getNode(XCoreISD::MACCS, dl,
545                           DAG.getVTList(MVT::i32, MVT::i32), Zero, Zero,
546                           LHS, RHS);
547  SDValue Lo(Hi.getNode(), 1);
548  SDValue Ops[] = { Lo, Hi };
549  return DAG.getMergeValues(Ops, dl);
550}
551
552SDValue XCoreTargetLowering::
553LowerUMUL_LOHI(SDValue Op, SelectionDAG &DAG) const
554{
555  assert(Op.getValueType() == MVT::i32 && Op.getOpcode() == ISD::UMUL_LOHI &&
556         "Unexpected operand to lower!");
557  SDLoc dl(Op);
558  SDValue LHS = Op.getOperand(0);
559  SDValue RHS = Op.getOperand(1);
560  SDValue Zero = DAG.getConstant(0, dl, MVT::i32);
561  SDValue Hi = DAG.getNode(XCoreISD::LMUL, dl,
562                           DAG.getVTList(MVT::i32, MVT::i32), LHS, RHS,
563                           Zero, Zero);
564  SDValue Lo(Hi.getNode(), 1);
565  SDValue Ops[] = { Lo, Hi };
566  return DAG.getMergeValues(Ops, dl);
567}
568
569/// isADDADDMUL - Return whether Op is in a form that is equivalent to
570/// add(add(mul(x,y),a),b). If requireIntermediatesHaveOneUse is true then
571/// each intermediate result in the calculation must also have a single use.
572/// If the Op is in the correct form the constituent parts are written to Mul0,
573/// Mul1, Addend0 and Addend1.
574static bool
575isADDADDMUL(SDValue Op, SDValue &Mul0, SDValue &Mul1, SDValue &Addend0,
576            SDValue &Addend1, bool requireIntermediatesHaveOneUse)
577{
578  if (Op.getOpcode() != ISD::ADD)
579    return false;
580  SDValue N0 = Op.getOperand(0);
581  SDValue N1 = Op.getOperand(1);
582  SDValue AddOp;
583  SDValue OtherOp;
584  if (N0.getOpcode() == ISD::ADD) {
585    AddOp = N0;
586    OtherOp = N1;
587  } else if (N1.getOpcode() == ISD::ADD) {
588    AddOp = N1;
589    OtherOp = N0;
590  } else {
591    return false;
592  }
593  if (requireIntermediatesHaveOneUse && !AddOp.hasOneUse())
594    return false;
595  if (OtherOp.getOpcode() == ISD::MUL) {
596    // add(add(a,b),mul(x,y))
597    if (requireIntermediatesHaveOneUse && !OtherOp.hasOneUse())
598      return false;
599    Mul0 = OtherOp.getOperand(0);
600    Mul1 = OtherOp.getOperand(1);
601    Addend0 = AddOp.getOperand(0);
602    Addend1 = AddOp.getOperand(1);
603    return true;
604  }
605  if (AddOp.getOperand(0).getOpcode() == ISD::MUL) {
606    // add(add(mul(x,y),a),b)
607    if (requireIntermediatesHaveOneUse && !AddOp.getOperand(0).hasOneUse())
608      return false;
609    Mul0 = AddOp.getOperand(0).getOperand(0);
610    Mul1 = AddOp.getOperand(0).getOperand(1);
611    Addend0 = AddOp.getOperand(1);
612    Addend1 = OtherOp;
613    return true;
614  }
615  if (AddOp.getOperand(1).getOpcode() == ISD::MUL) {
616    // add(add(a,mul(x,y)),b)
617    if (requireIntermediatesHaveOneUse && !AddOp.getOperand(1).hasOneUse())
618      return false;
619    Mul0 = AddOp.getOperand(1).getOperand(0);
620    Mul1 = AddOp.getOperand(1).getOperand(1);
621    Addend0 = AddOp.getOperand(0);
622    Addend1 = OtherOp;
623    return true;
624  }
625  return false;
626}
627
628SDValue XCoreTargetLowering::
629TryExpandADDWithMul(SDNode *N, SelectionDAG &DAG) const
630{
631  SDValue Mul;
632  SDValue Other;
633  if (N->getOperand(0).getOpcode() == ISD::MUL) {
634    Mul = N->getOperand(0);
635    Other = N->getOperand(1);
636  } else if (N->getOperand(1).getOpcode() == ISD::MUL) {
637    Mul = N->getOperand(1);
638    Other = N->getOperand(0);
639  } else {
640    return SDValue();
641  }
642  SDLoc dl(N);
643  SDValue LL, RL, AddendL, AddendH;
644  LL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
645                   Mul.getOperand(0), DAG.getConstant(0, dl, MVT::i32));
646  RL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
647                   Mul.getOperand(1), DAG.getConstant(0, dl, MVT::i32));
648  AddendL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
649                        Other, DAG.getConstant(0, dl, MVT::i32));
650  AddendH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
651                        Other, DAG.getConstant(1, dl, MVT::i32));
652  APInt HighMask = APInt::getHighBitsSet(64, 32);
653  unsigned LHSSB = DAG.ComputeNumSignBits(Mul.getOperand(0));
654  unsigned RHSSB = DAG.ComputeNumSignBits(Mul.getOperand(1));
655  if (DAG.MaskedValueIsZero(Mul.getOperand(0), HighMask) &&
656      DAG.MaskedValueIsZero(Mul.getOperand(1), HighMask)) {
657    // The inputs are both zero-extended.
658    SDValue Hi = DAG.getNode(XCoreISD::MACCU, dl,
659                             DAG.getVTList(MVT::i32, MVT::i32), AddendH,
660                             AddendL, LL, RL);
661    SDValue Lo(Hi.getNode(), 1);
662    return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
663  }
664  if (LHSSB > 32 && RHSSB > 32) {
665    // The inputs are both sign-extended.
666    SDValue Hi = DAG.getNode(XCoreISD::MACCS, dl,
667                             DAG.getVTList(MVT::i32, MVT::i32), AddendH,
668                             AddendL, LL, RL);
669    SDValue Lo(Hi.getNode(), 1);
670    return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
671  }
672  SDValue LH, RH;
673  LH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
674                   Mul.getOperand(0), DAG.getConstant(1, dl, MVT::i32));
675  RH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
676                   Mul.getOperand(1), DAG.getConstant(1, dl, MVT::i32));
677  SDValue Hi = DAG.getNode(XCoreISD::MACCU, dl,
678                           DAG.getVTList(MVT::i32, MVT::i32), AddendH,
679                           AddendL, LL, RL);
680  SDValue Lo(Hi.getNode(), 1);
681  RH = DAG.getNode(ISD::MUL, dl, MVT::i32, LL, RH);
682  LH = DAG.getNode(ISD::MUL, dl, MVT::i32, LH, RL);
683  Hi = DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, RH);
684  Hi = DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, LH);
685  return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
686}
687
688SDValue XCoreTargetLowering::
689ExpandADDSUB(SDNode *N, SelectionDAG &DAG) const
690{
691  assert(N->getValueType(0) == MVT::i64 &&
692         (N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) &&
693        "Unknown operand to lower!");
694
695  if (N->getOpcode() == ISD::ADD)
696    if (SDValue Result = TryExpandADDWithMul(N, DAG))
697      return Result;
698
699  SDLoc dl(N);
700
701  // Extract components
702  SDValue LHSL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
703                             N->getOperand(0),
704                             DAG.getConstant(0, dl, MVT::i32));
705  SDValue LHSH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
706                             N->getOperand(0),
707                             DAG.getConstant(1, dl, MVT::i32));
708  SDValue RHSL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
709                             N->getOperand(1),
710                             DAG.getConstant(0, dl, MVT::i32));
711  SDValue RHSH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
712                             N->getOperand(1),
713                             DAG.getConstant(1, dl, MVT::i32));
714
715  // Expand
716  unsigned Opcode = (N->getOpcode() == ISD::ADD) ? XCoreISD::LADD :
717                                                   XCoreISD::LSUB;
718  SDValue Zero = DAG.getConstant(0, dl, MVT::i32);
719  SDValue Lo = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
720                           LHSL, RHSL, Zero);
721  SDValue Carry(Lo.getNode(), 1);
722
723  SDValue Hi = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
724                           LHSH, RHSH, Carry);
725  SDValue Ignored(Hi.getNode(), 1);
726  // Merge the pieces
727  return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
728}
729
730SDValue XCoreTargetLowering::
731LowerVAARG(SDValue Op, SelectionDAG &DAG) const
732{
733  // Whist llvm does not support aggregate varargs we can ignore
734  // the possibility of the ValueType being an implicit byVal vararg.
735  SDNode *Node = Op.getNode();
736  EVT VT = Node->getValueType(0); // not an aggregate
737  SDValue InChain = Node->getOperand(0);
738  SDValue VAListPtr = Node->getOperand(1);
739  EVT PtrVT = VAListPtr.getValueType();
740  const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
741  SDLoc dl(Node);
742  SDValue VAList =
743      DAG.getLoad(PtrVT, dl, InChain, VAListPtr, MachinePointerInfo(SV));
744  // Increment the pointer, VAList, to the next vararg
745  SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAList,
746                                DAG.getIntPtrConstant(VT.getSizeInBits() / 8,
747                                                      dl));
748  // Store the incremented VAList to the legalized pointer
749  InChain = DAG.getStore(VAList.getValue(1), dl, nextPtr, VAListPtr,
750                         MachinePointerInfo(SV));
751  // Load the actual argument out of the pointer VAList
752  return DAG.getLoad(VT, dl, InChain, VAList, MachinePointerInfo());
753}
754
755SDValue XCoreTargetLowering::
756LowerVASTART(SDValue Op, SelectionDAG &DAG) const
757{
758  SDLoc dl(Op);
759  // vastart stores the address of the VarArgsFrameIndex slot into the
760  // memory location argument
761  MachineFunction &MF = DAG.getMachineFunction();
762  XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
763  SDValue Addr = DAG.getFrameIndex(XFI->getVarArgsFrameIndex(), MVT::i32);
764  return DAG.getStore(Op.getOperand(0), dl, Addr, Op.getOperand(1),
765                      MachinePointerInfo());
766}
767
768SDValue XCoreTargetLowering::LowerFRAMEADDR(SDValue Op,
769                                            SelectionDAG &DAG) const {
770  // This nodes represent llvm.frameaddress on the DAG.
771  // It takes one operand, the index of the frame address to return.
772  // An index of zero corresponds to the current function's frame address.
773  // An index of one to the parent's frame address, and so on.
774  // Depths > 0 not supported yet!
775  if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
776    return SDValue();
777
778  MachineFunction &MF = DAG.getMachineFunction();
779  const TargetRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
780  return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op),
781                            RegInfo->getFrameRegister(MF), MVT::i32);
782}
783
784SDValue XCoreTargetLowering::
785LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const {
786  // This nodes represent llvm.returnaddress on the DAG.
787  // It takes one operand, the index of the return address to return.
788  // An index of zero corresponds to the current function's return address.
789  // An index of one to the parent's return address, and so on.
790  // Depths > 0 not supported yet!
791  if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
792    return SDValue();
793
794  MachineFunction &MF = DAG.getMachineFunction();
795  XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
796  int FI = XFI->createLRSpillSlot(MF);
797  SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
798  return DAG.getLoad(getPointerTy(DAG.getDataLayout()), SDLoc(Op),
799                     DAG.getEntryNode(), FIN,
800                     MachinePointerInfo::getFixedStack(MF, FI));
801}
802
803SDValue XCoreTargetLowering::
804LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const {
805  // This node represents offset from frame pointer to first on-stack argument.
806  // This is needed for correct stack adjustment during unwind.
807  // However, we don't know the offset until after the frame has be finalised.
808  // This is done during the XCoreFTAOElim pass.
809  return DAG.getNode(XCoreISD::FRAME_TO_ARGS_OFFSET, SDLoc(Op), MVT::i32);
810}
811
812SDValue XCoreTargetLowering::
813LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
814  // OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER)
815  // This node represents 'eh_return' gcc dwarf builtin, which is used to
816  // return from exception. The general meaning is: adjust stack by OFFSET and
817  // pass execution to HANDLER.
818  MachineFunction &MF = DAG.getMachineFunction();
819  SDValue Chain     = Op.getOperand(0);
820  SDValue Offset    = Op.getOperand(1);
821  SDValue Handler   = Op.getOperand(2);
822  SDLoc dl(Op);
823
824  // Absolute SP = (FP + FrameToArgs) + Offset
825  const TargetRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
826  SDValue Stack = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
827                            RegInfo->getFrameRegister(MF), MVT::i32);
828  SDValue FrameToArgs = DAG.getNode(XCoreISD::FRAME_TO_ARGS_OFFSET, dl,
829                                    MVT::i32);
830  Stack = DAG.getNode(ISD::ADD, dl, MVT::i32, Stack, FrameToArgs);
831  Stack = DAG.getNode(ISD::ADD, dl, MVT::i32, Stack, Offset);
832
833  // R0=ExceptionPointerRegister R1=ExceptionSelectorRegister
834  // which leaves 2 caller saved registers, R2 & R3 for us to use.
835  unsigned StackReg = XCore::R2;
836  unsigned HandlerReg = XCore::R3;
837
838  SDValue OutChains[] = {
839    DAG.getCopyToReg(Chain, dl, StackReg, Stack),
840    DAG.getCopyToReg(Chain, dl, HandlerReg, Handler)
841  };
842
843  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
844
845  return DAG.getNode(XCoreISD::EH_RETURN, dl, MVT::Other, Chain,
846                     DAG.getRegister(StackReg, MVT::i32),
847                     DAG.getRegister(HandlerReg, MVT::i32));
848
849}
850
851SDValue XCoreTargetLowering::
852LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const {
853  return Op.getOperand(0);
854}
855
856SDValue XCoreTargetLowering::
857LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const {
858  SDValue Chain = Op.getOperand(0);
859  SDValue Trmp = Op.getOperand(1); // trampoline
860  SDValue FPtr = Op.getOperand(2); // nested function
861  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
862
863  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
864
865  // .align 4
866  // LDAPF_u10 r11, nest
867  // LDW_2rus r11, r11[0]
868  // STWSP_ru6 r11, sp[0]
869  // LDAPF_u10 r11, fptr
870  // LDW_2rus r11, r11[0]
871  // BAU_1r r11
872  // nest:
873  // .word nest
874  // fptr:
875  // .word fptr
876  SDValue OutChains[5];
877
878  SDValue Addr = Trmp;
879
880  SDLoc dl(Op);
881  OutChains[0] =
882      DAG.getStore(Chain, dl, DAG.getConstant(0x0a3cd805, dl, MVT::i32), Addr,
883                   MachinePointerInfo(TrmpAddr));
884
885  Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
886                     DAG.getConstant(4, dl, MVT::i32));
887  OutChains[1] =
888      DAG.getStore(Chain, dl, DAG.getConstant(0xd80456c0, dl, MVT::i32), Addr,
889                   MachinePointerInfo(TrmpAddr, 4));
890
891  Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
892                     DAG.getConstant(8, dl, MVT::i32));
893  OutChains[2] =
894      DAG.getStore(Chain, dl, DAG.getConstant(0x27fb0a3c, dl, MVT::i32), Addr,
895                   MachinePointerInfo(TrmpAddr, 8));
896
897  Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
898                     DAG.getConstant(12, dl, MVT::i32));
899  OutChains[3] =
900      DAG.getStore(Chain, dl, Nest, Addr, MachinePointerInfo(TrmpAddr, 12));
901
902  Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
903                     DAG.getConstant(16, dl, MVT::i32));
904  OutChains[4] =
905      DAG.getStore(Chain, dl, FPtr, Addr, MachinePointerInfo(TrmpAddr, 16));
906
907  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
908}
909
910SDValue XCoreTargetLowering::
911LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
912  SDLoc DL(Op);
913  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
914  switch (IntNo) {
915    case Intrinsic::xcore_crc8:
916      EVT VT = Op.getValueType();
917      SDValue Data =
918        DAG.getNode(XCoreISD::CRC8, DL, DAG.getVTList(VT, VT),
919                    Op.getOperand(1), Op.getOperand(2) , Op.getOperand(3));
920      SDValue Crc(Data.getNode(), 1);
921      SDValue Results[] = { Crc, Data };
922      return DAG.getMergeValues(Results, DL);
923  }
924  return SDValue();
925}
926
927SDValue XCoreTargetLowering::
928LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG) const {
929  SDLoc DL(Op);
930  return DAG.getNode(ISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
931}
932
933SDValue XCoreTargetLowering::
934LowerATOMIC_LOAD(SDValue Op, SelectionDAG &DAG) const {
935  AtomicSDNode *N = cast<AtomicSDNode>(Op);
936  assert(N->getOpcode() == ISD::ATOMIC_LOAD && "Bad Atomic OP");
937  assert((N->getSuccessOrdering() == AtomicOrdering::Unordered ||
938          N->getSuccessOrdering() == AtomicOrdering::Monotonic) &&
939         "setInsertFencesForAtomic(true) expects unordered / monotonic");
940  if (N->getMemoryVT() == MVT::i32) {
941    if (N->getAlign() < Align(4))
942      report_fatal_error("atomic load must be aligned");
943    return DAG.getLoad(getPointerTy(DAG.getDataLayout()), SDLoc(Op),
944                       N->getChain(), N->getBasePtr(), N->getPointerInfo(),
945                       N->getAlign(), N->getMemOperand()->getFlags(),
946                       N->getAAInfo(), N->getRanges());
947  }
948  if (N->getMemoryVT() == MVT::i16) {
949    if (N->getAlign() < Align(2))
950      report_fatal_error("atomic load must be aligned");
951    return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), MVT::i32, N->getChain(),
952                          N->getBasePtr(), N->getPointerInfo(), MVT::i16,
953                          N->getAlign(), N->getMemOperand()->getFlags(),
954                          N->getAAInfo());
955  }
956  if (N->getMemoryVT() == MVT::i8)
957    return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), MVT::i32, N->getChain(),
958                          N->getBasePtr(), N->getPointerInfo(), MVT::i8,
959                          N->getAlign(), N->getMemOperand()->getFlags(),
960                          N->getAAInfo());
961  return SDValue();
962}
963
964SDValue XCoreTargetLowering::
965LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) const {
966  AtomicSDNode *N = cast<AtomicSDNode>(Op);
967  assert(N->getOpcode() == ISD::ATOMIC_STORE && "Bad Atomic OP");
968  assert((N->getSuccessOrdering() == AtomicOrdering::Unordered ||
969          N->getSuccessOrdering() == AtomicOrdering::Monotonic) &&
970         "setInsertFencesForAtomic(true) expects unordered / monotonic");
971  if (N->getMemoryVT() == MVT::i32) {
972    if (N->getAlign() < Align(4))
973      report_fatal_error("atomic store must be aligned");
974    return DAG.getStore(N->getChain(), SDLoc(Op), N->getVal(), N->getBasePtr(),
975                        N->getPointerInfo(), N->getAlign(),
976                        N->getMemOperand()->getFlags(), N->getAAInfo());
977  }
978  if (N->getMemoryVT() == MVT::i16) {
979    if (N->getAlign() < Align(2))
980      report_fatal_error("atomic store must be aligned");
981    return DAG.getTruncStore(N->getChain(), SDLoc(Op), N->getVal(),
982                             N->getBasePtr(), N->getPointerInfo(), MVT::i16,
983                             N->getAlign(), N->getMemOperand()->getFlags(),
984                             N->getAAInfo());
985  }
986  if (N->getMemoryVT() == MVT::i8)
987    return DAG.getTruncStore(N->getChain(), SDLoc(Op), N->getVal(),
988                             N->getBasePtr(), N->getPointerInfo(), MVT::i8,
989                             N->getAlign(), N->getMemOperand()->getFlags(),
990                             N->getAAInfo());
991  return SDValue();
992}
993
994MachineMemOperand::Flags
995XCoreTargetLowering::getTargetMMOFlags(const Instruction &I) const {
996  // Because of how we convert atomic_load and atomic_store to normal loads and
997  // stores in the DAG, we need to ensure that the MMOs are marked volatile
998  // since DAGCombine hasn't been updated to account for atomic, but non
999  // volatile loads.  (See D57601)
1000  if (auto *SI = dyn_cast<StoreInst>(&I))
1001    if (SI->isAtomic())
1002      return MachineMemOperand::MOVolatile;
1003  if (auto *LI = dyn_cast<LoadInst>(&I))
1004    if (LI->isAtomic())
1005      return MachineMemOperand::MOVolatile;
1006  if (auto *AI = dyn_cast<AtomicRMWInst>(&I))
1007    if (AI->isAtomic())
1008      return MachineMemOperand::MOVolatile;
1009  if (auto *AI = dyn_cast<AtomicCmpXchgInst>(&I))
1010    if (AI->isAtomic())
1011      return MachineMemOperand::MOVolatile;
1012  return MachineMemOperand::MONone;
1013}
1014
1015//===----------------------------------------------------------------------===//
1016//                      Calling Convention Implementation
1017//===----------------------------------------------------------------------===//
1018
1019#include "XCoreGenCallingConv.inc"
1020
1021//===----------------------------------------------------------------------===//
1022//                  Call Calling Convention Implementation
1023//===----------------------------------------------------------------------===//
1024
1025/// XCore call implementation
1026SDValue
1027XCoreTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
1028                               SmallVectorImpl<SDValue> &InVals) const {
1029  SelectionDAG &DAG                     = CLI.DAG;
1030  SDLoc &dl                             = CLI.DL;
1031  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1032  SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
1033  SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
1034  SDValue Chain                         = CLI.Chain;
1035  SDValue Callee                        = CLI.Callee;
1036  bool &isTailCall                      = CLI.IsTailCall;
1037  CallingConv::ID CallConv              = CLI.CallConv;
1038  bool isVarArg                         = CLI.IsVarArg;
1039
1040  // XCore target does not yet support tail call optimization.
1041  isTailCall = false;
1042
1043  // For now, only CallingConv::C implemented
1044  switch (CallConv)
1045  {
1046    default:
1047      report_fatal_error("Unsupported calling convention");
1048    case CallingConv::Fast:
1049    case CallingConv::C:
1050      return LowerCCCCallTo(Chain, Callee, CallConv, isVarArg, isTailCall,
1051                            Outs, OutVals, Ins, dl, DAG, InVals);
1052  }
1053}
1054
1055/// LowerCallResult - Lower the result values of a call into the
1056/// appropriate copies out of appropriate physical registers / memory locations.
1057static SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
1058                               const SmallVectorImpl<CCValAssign> &RVLocs,
1059                               const SDLoc &dl, SelectionDAG &DAG,
1060                               SmallVectorImpl<SDValue> &InVals) {
1061  SmallVector<std::pair<int, unsigned>, 4> ResultMemLocs;
1062  // Copy results out of physical registers.
1063  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1064    const CCValAssign &VA = RVLocs[i];
1065    if (VA.isRegLoc()) {
1066      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getValVT(),
1067                                 InFlag).getValue(1);
1068      InFlag = Chain.getValue(2);
1069      InVals.push_back(Chain.getValue(0));
1070    } else {
1071      assert(VA.isMemLoc());
1072      ResultMemLocs.push_back(std::make_pair(VA.getLocMemOffset(),
1073                                             InVals.size()));
1074      // Reserve space for this result.
1075      InVals.push_back(SDValue());
1076    }
1077  }
1078
1079  // Copy results out of memory.
1080  SmallVector<SDValue, 4> MemOpChains;
1081  for (unsigned i = 0, e = ResultMemLocs.size(); i != e; ++i) {
1082    int offset = ResultMemLocs[i].first;
1083    unsigned index = ResultMemLocs[i].second;
1084    SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
1085    SDValue Ops[] = { Chain, DAG.getConstant(offset / 4, dl, MVT::i32) };
1086    SDValue load = DAG.getNode(XCoreISD::LDWSP, dl, VTs, Ops);
1087    InVals[index] = load;
1088    MemOpChains.push_back(load.getValue(1));
1089  }
1090
1091  // Transform all loads nodes into one single node because
1092  // all load nodes are independent of each other.
1093  if (!MemOpChains.empty())
1094    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
1095
1096  return Chain;
1097}
1098
1099/// LowerCCCCallTo - functions arguments are copied from virtual
1100/// regs to (physical regs)/(stack frame), CALLSEQ_START and
1101/// CALLSEQ_END are emitted.
1102/// TODO: isTailCall, sret.
1103SDValue XCoreTargetLowering::LowerCCCCallTo(
1104    SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
1105    bool isTailCall, const SmallVectorImpl<ISD::OutputArg> &Outs,
1106    const SmallVectorImpl<SDValue> &OutVals,
1107    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1108    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1109
1110  // Analyze operands of the call, assigning locations to each operand.
1111  SmallVector<CCValAssign, 16> ArgLocs;
1112  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1113                 *DAG.getContext());
1114
1115  // The ABI dictates there should be one stack slot available to the callee
1116  // on function entry (for saving lr).
1117  CCInfo.AllocateStack(4, Align(4));
1118
1119  CCInfo.AnalyzeCallOperands(Outs, CC_XCore);
1120
1121  SmallVector<CCValAssign, 16> RVLocs;
1122  // Analyze return values to determine the number of bytes of stack required.
1123  CCState RetCCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1124                    *DAG.getContext());
1125  RetCCInfo.AllocateStack(CCInfo.getNextStackOffset(), Align(4));
1126  RetCCInfo.AnalyzeCallResult(Ins, RetCC_XCore);
1127
1128  // Get a count of how many bytes are to be pushed on the stack.
1129  unsigned NumBytes = RetCCInfo.getNextStackOffset();
1130
1131  Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
1132
1133  SmallVector<std::pair<unsigned, SDValue>, 4> RegsToPass;
1134  SmallVector<SDValue, 12> MemOpChains;
1135
1136  // Walk the register/memloc assignments, inserting copies/loads.
1137  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1138    CCValAssign &VA = ArgLocs[i];
1139    SDValue Arg = OutVals[i];
1140
1141    // Promote the value if needed.
1142    switch (VA.getLocInfo()) {
1143      default: llvm_unreachable("Unknown loc info!");
1144      case CCValAssign::Full: break;
1145      case CCValAssign::SExt:
1146        Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
1147        break;
1148      case CCValAssign::ZExt:
1149        Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
1150        break;
1151      case CCValAssign::AExt:
1152        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1153        break;
1154    }
1155
1156    // Arguments that can be passed on register must be kept at
1157    // RegsToPass vector
1158    if (VA.isRegLoc()) {
1159      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1160    } else {
1161      assert(VA.isMemLoc());
1162
1163      int Offset = VA.getLocMemOffset();
1164
1165      MemOpChains.push_back(DAG.getNode(XCoreISD::STWSP, dl, MVT::Other,
1166                                        Chain, Arg,
1167                                        DAG.getConstant(Offset/4, dl,
1168                                                        MVT::i32)));
1169    }
1170  }
1171
1172  // Transform all store nodes into one single node because
1173  // all store nodes are independent of each other.
1174  if (!MemOpChains.empty())
1175    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
1176
1177  // Build a sequence of copy-to-reg nodes chained together with token
1178  // chain and flag operands which copy the outgoing args into registers.
1179  // The InFlag in necessary since all emitted instructions must be
1180  // stuck together.
1181  SDValue InFlag;
1182  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1183    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1184                             RegsToPass[i].second, InFlag);
1185    InFlag = Chain.getValue(1);
1186  }
1187
1188  // If the callee is a GlobalAddress node (quite common, every direct call is)
1189  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1190  // Likewise ExternalSymbol -> TargetExternalSymbol.
1191  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1192    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i32);
1193  else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee))
1194    Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i32);
1195
1196  // XCoreBranchLink = #chain, #target_address, #opt_in_flags...
1197  //             = Chain, Callee, Reg#1, Reg#2, ...
1198  //
1199  // Returns a chain & a flag for retval copy to use.
1200  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1201  SmallVector<SDValue, 8> Ops;
1202  Ops.push_back(Chain);
1203  Ops.push_back(Callee);
1204
1205  // Add argument registers to the end of the list so that they are
1206  // known live into the call.
1207  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1208    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1209                                  RegsToPass[i].second.getValueType()));
1210
1211  if (InFlag.getNode())
1212    Ops.push_back(InFlag);
1213
1214  Chain  = DAG.getNode(XCoreISD::BL, dl, NodeTys, Ops);
1215  InFlag = Chain.getValue(1);
1216
1217  // Create the CALLSEQ_END node.
1218  Chain = DAG.getCALLSEQ_END(Chain, NumBytes, 0, InFlag, dl);
1219  InFlag = Chain.getValue(1);
1220
1221  // Handle result values, copying them out of physregs into vregs that we
1222  // return.
1223  return LowerCallResult(Chain, InFlag, RVLocs, dl, DAG, InVals);
1224}
1225
1226//===----------------------------------------------------------------------===//
1227//             Formal Arguments Calling Convention Implementation
1228//===----------------------------------------------------------------------===//
1229
1230namespace {
1231  struct ArgDataPair { SDValue SDV; ISD::ArgFlagsTy Flags; };
1232}
1233
1234/// XCore formal arguments implementation
1235SDValue XCoreTargetLowering::LowerFormalArguments(
1236    SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1237    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1238    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1239  switch (CallConv)
1240  {
1241    default:
1242      report_fatal_error("Unsupported calling convention");
1243    case CallingConv::C:
1244    case CallingConv::Fast:
1245      return LowerCCCArguments(Chain, CallConv, isVarArg,
1246                               Ins, dl, DAG, InVals);
1247  }
1248}
1249
1250/// LowerCCCArguments - transform physical registers into
1251/// virtual registers and generate load operations for
1252/// arguments places on the stack.
1253/// TODO: sret
1254SDValue XCoreTargetLowering::LowerCCCArguments(
1255    SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1256    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1257    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1258  MachineFunction &MF = DAG.getMachineFunction();
1259  MachineFrameInfo &MFI = MF.getFrameInfo();
1260  MachineRegisterInfo &RegInfo = MF.getRegInfo();
1261  XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
1262
1263  // Assign locations to all of the incoming arguments.
1264  SmallVector<CCValAssign, 16> ArgLocs;
1265  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1266                 *DAG.getContext());
1267
1268  CCInfo.AnalyzeFormalArguments(Ins, CC_XCore);
1269
1270  unsigned StackSlotSize = XCoreFrameLowering::stackSlotSize();
1271
1272  unsigned LRSaveSize = StackSlotSize;
1273
1274  if (!isVarArg)
1275    XFI->setReturnStackOffset(CCInfo.getNextStackOffset() + LRSaveSize);
1276
1277  // All getCopyFromReg ops must precede any getMemcpys to prevent the
1278  // scheduler clobbering a register before it has been copied.
1279  // The stages are:
1280  // 1. CopyFromReg (and load) arg & vararg registers.
1281  // 2. Chain CopyFromReg nodes into a TokenFactor.
1282  // 3. Memcpy 'byVal' args & push final InVals.
1283  // 4. Chain mem ops nodes into a TokenFactor.
1284  SmallVector<SDValue, 4> CFRegNode;
1285  SmallVector<ArgDataPair, 4> ArgData;
1286  SmallVector<SDValue, 4> MemOps;
1287
1288  // 1a. CopyFromReg (and load) arg registers.
1289  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1290
1291    CCValAssign &VA = ArgLocs[i];
1292    SDValue ArgIn;
1293
1294    if (VA.isRegLoc()) {
1295      // Arguments passed in registers
1296      EVT RegVT = VA.getLocVT();
1297      switch (RegVT.getSimpleVT().SimpleTy) {
1298      default:
1299        {
1300#ifndef NDEBUG
1301          errs() << "LowerFormalArguments Unhandled argument type: "
1302                 << RegVT.getEVTString() << "\n";
1303#endif
1304          llvm_unreachable(nullptr);
1305        }
1306      case MVT::i32:
1307        Register VReg = RegInfo.createVirtualRegister(&XCore::GRRegsRegClass);
1308        RegInfo.addLiveIn(VA.getLocReg(), VReg);
1309        ArgIn = DAG.getCopyFromReg(Chain, dl, VReg, RegVT);
1310        CFRegNode.push_back(ArgIn.getValue(ArgIn->getNumValues() - 1));
1311      }
1312    } else {
1313      // Only arguments passed on the stack should make it here.
1314      assert(VA.isMemLoc());
1315      // Load the argument to a virtual register
1316      unsigned ObjSize = VA.getLocVT().getSizeInBits()/8;
1317      if (ObjSize > StackSlotSize) {
1318        errs() << "LowerFormalArguments Unhandled argument type: "
1319               << EVT(VA.getLocVT()).getEVTString()
1320               << "\n";
1321      }
1322      // Create the frame index object for this incoming parameter...
1323      int FI = MFI.CreateFixedObject(ObjSize,
1324                                     LRSaveSize + VA.getLocMemOffset(),
1325                                     true);
1326
1327      // Create the SelectionDAG nodes corresponding to a load
1328      //from this parameter
1329      SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1330      ArgIn = DAG.getLoad(VA.getLocVT(), dl, Chain, FIN,
1331                          MachinePointerInfo::getFixedStack(MF, FI));
1332    }
1333    const ArgDataPair ADP = { ArgIn, Ins[i].Flags };
1334    ArgData.push_back(ADP);
1335  }
1336
1337  // 1b. CopyFromReg vararg registers.
1338  if (isVarArg) {
1339    // Argument registers
1340    static const MCPhysReg ArgRegs[] = {
1341      XCore::R0, XCore::R1, XCore::R2, XCore::R3
1342    };
1343    XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
1344    unsigned FirstVAReg = CCInfo.getFirstUnallocated(ArgRegs);
1345    if (FirstVAReg < std::size(ArgRegs)) {
1346      int offset = 0;
1347      // Save remaining registers, storing higher register numbers at a higher
1348      // address
1349      for (int i = std::size(ArgRegs) - 1; i >= (int)FirstVAReg; --i) {
1350        // Create a stack slot
1351        int FI = MFI.CreateFixedObject(4, offset, true);
1352        if (i == (int)FirstVAReg) {
1353          XFI->setVarArgsFrameIndex(FI);
1354        }
1355        offset -= StackSlotSize;
1356        SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1357        // Move argument from phys reg -> virt reg
1358        Register VReg = RegInfo.createVirtualRegister(&XCore::GRRegsRegClass);
1359        RegInfo.addLiveIn(ArgRegs[i], VReg);
1360        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
1361        CFRegNode.push_back(Val.getValue(Val->getNumValues() - 1));
1362        // Move argument from virt reg -> stack
1363        SDValue Store =
1364            DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
1365        MemOps.push_back(Store);
1366      }
1367    } else {
1368      // This will point to the next argument passed via stack.
1369      XFI->setVarArgsFrameIndex(
1370        MFI.CreateFixedObject(4, LRSaveSize + CCInfo.getNextStackOffset(),
1371                              true));
1372    }
1373  }
1374
1375  // 2. chain CopyFromReg nodes into a TokenFactor.
1376  if (!CFRegNode.empty())
1377    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, CFRegNode);
1378
1379  // 3. Memcpy 'byVal' args & push final InVals.
1380  // Aggregates passed "byVal" need to be copied by the callee.
1381  // The callee will use a pointer to this copy, rather than the original
1382  // pointer.
1383  for (const ArgDataPair &ArgDI : ArgData) {
1384    if (ArgDI.Flags.isByVal() && ArgDI.Flags.getByValSize()) {
1385      unsigned Size = ArgDI.Flags.getByValSize();
1386      Align Alignment =
1387          std::max(Align(StackSlotSize), ArgDI.Flags.getNonZeroByValAlign());
1388      // Create a new object on the stack and copy the pointee into it.
1389      int FI = MFI.CreateStackObject(Size, Alignment, false);
1390      SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1391      InVals.push_back(FIN);
1392      MemOps.push_back(DAG.getMemcpy(
1393          Chain, dl, FIN, ArgDI.SDV, DAG.getConstant(Size, dl, MVT::i32),
1394          Alignment, false, false, false, MachinePointerInfo(),
1395          MachinePointerInfo()));
1396    } else {
1397      InVals.push_back(ArgDI.SDV);
1398    }
1399  }
1400
1401  // 4, chain mem ops nodes into a TokenFactor.
1402  if (!MemOps.empty()) {
1403    MemOps.push_back(Chain);
1404    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
1405  }
1406
1407  return Chain;
1408}
1409
1410//===----------------------------------------------------------------------===//
1411//               Return Value Calling Convention Implementation
1412//===----------------------------------------------------------------------===//
1413
1414bool XCoreTargetLowering::
1415CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
1416               bool isVarArg,
1417               const SmallVectorImpl<ISD::OutputArg> &Outs,
1418               LLVMContext &Context) const {
1419  SmallVector<CCValAssign, 16> RVLocs;
1420  CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
1421  if (!CCInfo.CheckReturn(Outs, RetCC_XCore))
1422    return false;
1423  if (CCInfo.getNextStackOffset() != 0 && isVarArg)
1424    return false;
1425  return true;
1426}
1427
1428SDValue
1429XCoreTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
1430                                 bool isVarArg,
1431                                 const SmallVectorImpl<ISD::OutputArg> &Outs,
1432                                 const SmallVectorImpl<SDValue> &OutVals,
1433                                 const SDLoc &dl, SelectionDAG &DAG) const {
1434
1435  XCoreFunctionInfo *XFI =
1436    DAG.getMachineFunction().getInfo<XCoreFunctionInfo>();
1437  MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
1438
1439  // CCValAssign - represent the assignment of
1440  // the return value to a location
1441  SmallVector<CCValAssign, 16> RVLocs;
1442
1443  // CCState - Info about the registers and stack slot.
1444  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1445                 *DAG.getContext());
1446
1447  // Analyze return values.
1448  if (!isVarArg)
1449    CCInfo.AllocateStack(XFI->getReturnStackOffset(), Align(4));
1450
1451  CCInfo.AnalyzeReturn(Outs, RetCC_XCore);
1452
1453  SDValue Flag;
1454  SmallVector<SDValue, 4> RetOps(1, Chain);
1455
1456  // Return on XCore is always a "retsp 0"
1457  RetOps.push_back(DAG.getConstant(0, dl, MVT::i32));
1458
1459  SmallVector<SDValue, 4> MemOpChains;
1460  // Handle return values that must be copied to memory.
1461  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1462    CCValAssign &VA = RVLocs[i];
1463    if (VA.isRegLoc())
1464      continue;
1465    assert(VA.isMemLoc());
1466    if (isVarArg) {
1467      report_fatal_error("Can't return value from vararg function in memory");
1468    }
1469
1470    int Offset = VA.getLocMemOffset();
1471    unsigned ObjSize = VA.getLocVT().getSizeInBits() / 8;
1472    // Create the frame index object for the memory location.
1473    int FI = MFI.CreateFixedObject(ObjSize, Offset, false);
1474
1475    // Create a SelectionDAG node corresponding to a store
1476    // to this memory location.
1477    SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1478    MemOpChains.push_back(DAG.getStore(
1479        Chain, dl, OutVals[i], FIN,
1480        MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
1481  }
1482
1483  // Transform all store nodes into one single node because
1484  // all stores are independent of each other.
1485  if (!MemOpChains.empty())
1486    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
1487
1488  // Now handle return values copied to registers.
1489  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1490    CCValAssign &VA = RVLocs[i];
1491    if (!VA.isRegLoc())
1492      continue;
1493    // Copy the result values into the output registers.
1494    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);
1495
1496    // guarantee that all emitted copies are
1497    // stuck together, avoiding something bad
1498    Flag = Chain.getValue(1);
1499    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
1500  }
1501
1502  RetOps[0] = Chain;  // Update chain.
1503
1504  // Add the flag if we have it.
1505  if (Flag.getNode())
1506    RetOps.push_back(Flag);
1507
1508  return DAG.getNode(XCoreISD::RETSP, dl, MVT::Other, RetOps);
1509}
1510
1511//===----------------------------------------------------------------------===//
1512//  Other Lowering Code
1513//===----------------------------------------------------------------------===//
1514
1515MachineBasicBlock *
1516XCoreTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
1517                                                 MachineBasicBlock *BB) const {
1518  const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1519  DebugLoc dl = MI.getDebugLoc();
1520  assert((MI.getOpcode() == XCore::SELECT_CC) &&
1521         "Unexpected instr type to insert");
1522
1523  // To "insert" a SELECT_CC instruction, we actually have to insert the diamond
1524  // control-flow pattern.  The incoming instruction knows the destination vreg
1525  // to set, the condition code register to branch on, the true/false values to
1526  // select between, and a branch opcode to use.
1527  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1528  MachineFunction::iterator It = ++BB->getIterator();
1529
1530  //  thisMBB:
1531  //  ...
1532  //   TrueVal = ...
1533  //   cmpTY ccX, r1, r2
1534  //   bCC copy1MBB
1535  //   fallthrough --> copy0MBB
1536  MachineBasicBlock *thisMBB = BB;
1537  MachineFunction *F = BB->getParent();
1538  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
1539  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
1540  F->insert(It, copy0MBB);
1541  F->insert(It, sinkMBB);
1542
1543  // Transfer the remainder of BB and its successor edges to sinkMBB.
1544  sinkMBB->splice(sinkMBB->begin(), BB,
1545                  std::next(MachineBasicBlock::iterator(MI)), BB->end());
1546  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
1547
1548  // Next, add the true and fallthrough blocks as its successors.
1549  BB->addSuccessor(copy0MBB);
1550  BB->addSuccessor(sinkMBB);
1551
1552  BuildMI(BB, dl, TII.get(XCore::BRFT_lru6))
1553      .addReg(MI.getOperand(1).getReg())
1554      .addMBB(sinkMBB);
1555
1556  //  copy0MBB:
1557  //   %FalseValue = ...
1558  //   # fallthrough to sinkMBB
1559  BB = copy0MBB;
1560
1561  // Update machine-CFG edges
1562  BB->addSuccessor(sinkMBB);
1563
1564  //  sinkMBB:
1565  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
1566  //  ...
1567  BB = sinkMBB;
1568  BuildMI(*BB, BB->begin(), dl, TII.get(XCore::PHI), MI.getOperand(0).getReg())
1569      .addReg(MI.getOperand(3).getReg())
1570      .addMBB(copy0MBB)
1571      .addReg(MI.getOperand(2).getReg())
1572      .addMBB(thisMBB);
1573
1574  MI.eraseFromParent(); // The pseudo instruction is gone now.
1575  return BB;
1576}
1577
1578//===----------------------------------------------------------------------===//
1579// Target Optimization Hooks
1580//===----------------------------------------------------------------------===//
1581
1582SDValue XCoreTargetLowering::PerformDAGCombine(SDNode *N,
1583                                             DAGCombinerInfo &DCI) const {
1584  SelectionDAG &DAG = DCI.DAG;
1585  SDLoc dl(N);
1586  switch (N->getOpcode()) {
1587  default: break;
1588  case ISD::INTRINSIC_VOID:
1589    switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
1590    case Intrinsic::xcore_outt:
1591    case Intrinsic::xcore_outct:
1592    case Intrinsic::xcore_chkct: {
1593      SDValue OutVal = N->getOperand(3);
1594      // These instructions ignore the high bits.
1595      if (OutVal.hasOneUse()) {
1596        unsigned BitWidth = OutVal.getValueSizeInBits();
1597        APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 8);
1598        KnownBits Known;
1599        TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
1600                                              !DCI.isBeforeLegalizeOps());
1601        const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1602        if (TLI.ShrinkDemandedConstant(OutVal, DemandedMask, TLO) ||
1603            TLI.SimplifyDemandedBits(OutVal, DemandedMask, Known, TLO))
1604          DCI.CommitTargetLoweringOpt(TLO);
1605      }
1606      break;
1607    }
1608    case Intrinsic::xcore_setpt: {
1609      SDValue Time = N->getOperand(3);
1610      // This instruction ignores the high bits.
1611      if (Time.hasOneUse()) {
1612        unsigned BitWidth = Time.getValueSizeInBits();
1613        APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16);
1614        KnownBits Known;
1615        TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
1616                                              !DCI.isBeforeLegalizeOps());
1617        const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1618        if (TLI.ShrinkDemandedConstant(Time, DemandedMask, TLO) ||
1619            TLI.SimplifyDemandedBits(Time, DemandedMask, Known, TLO))
1620          DCI.CommitTargetLoweringOpt(TLO);
1621      }
1622      break;
1623    }
1624    }
1625    break;
1626  case XCoreISD::LADD: {
1627    SDValue N0 = N->getOperand(0);
1628    SDValue N1 = N->getOperand(1);
1629    SDValue N2 = N->getOperand(2);
1630    ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1631    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1632    EVT VT = N0.getValueType();
1633
1634    // canonicalize constant to RHS
1635    if (N0C && !N1C)
1636      return DAG.getNode(XCoreISD::LADD, dl, DAG.getVTList(VT, VT), N1, N0, N2);
1637
1638    // fold (ladd 0, 0, x) -> 0, x & 1
1639    if (N0C && N0C->isZero() && N1C && N1C->isZero()) {
1640      SDValue Carry = DAG.getConstant(0, dl, VT);
1641      SDValue Result = DAG.getNode(ISD::AND, dl, VT, N2,
1642                                   DAG.getConstant(1, dl, VT));
1643      SDValue Ops[] = { Result, Carry };
1644      return DAG.getMergeValues(Ops, dl);
1645    }
1646
1647    // fold (ladd x, 0, y) -> 0, add x, y iff carry is unused and y has only the
1648    // low bit set
1649    if (N1C && N1C->isZero() && N->hasNUsesOfValue(0, 1)) {
1650      APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
1651                                         VT.getSizeInBits() - 1);
1652      KnownBits Known = DAG.computeKnownBits(N2);
1653      if ((Known.Zero & Mask) == Mask) {
1654        SDValue Carry = DAG.getConstant(0, dl, VT);
1655        SDValue Result = DAG.getNode(ISD::ADD, dl, VT, N0, N2);
1656        SDValue Ops[] = { Result, Carry };
1657        return DAG.getMergeValues(Ops, dl);
1658      }
1659    }
1660  }
1661  break;
1662  case XCoreISD::LSUB: {
1663    SDValue N0 = N->getOperand(0);
1664    SDValue N1 = N->getOperand(1);
1665    SDValue N2 = N->getOperand(2);
1666    ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1667    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1668    EVT VT = N0.getValueType();
1669
1670    // fold (lsub 0, 0, x) -> x, -x iff x has only the low bit set
1671    if (N0C && N0C->isZero() && N1C && N1C->isZero()) {
1672      APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
1673                                         VT.getSizeInBits() - 1);
1674      KnownBits Known = DAG.computeKnownBits(N2);
1675      if ((Known.Zero & Mask) == Mask) {
1676        SDValue Borrow = N2;
1677        SDValue Result = DAG.getNode(ISD::SUB, dl, VT,
1678                                     DAG.getConstant(0, dl, VT), N2);
1679        SDValue Ops[] = { Result, Borrow };
1680        return DAG.getMergeValues(Ops, dl);
1681      }
1682    }
1683
1684    // fold (lsub x, 0, y) -> 0, sub x, y iff borrow is unused and y has only the
1685    // low bit set
1686    if (N1C && N1C->isZero() && N->hasNUsesOfValue(0, 1)) {
1687      APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
1688                                         VT.getSizeInBits() - 1);
1689      KnownBits Known = DAG.computeKnownBits(N2);
1690      if ((Known.Zero & Mask) == Mask) {
1691        SDValue Borrow = DAG.getConstant(0, dl, VT);
1692        SDValue Result = DAG.getNode(ISD::SUB, dl, VT, N0, N2);
1693        SDValue Ops[] = { Result, Borrow };
1694        return DAG.getMergeValues(Ops, dl);
1695      }
1696    }
1697  }
1698  break;
1699  case XCoreISD::LMUL: {
1700    SDValue N0 = N->getOperand(0);
1701    SDValue N1 = N->getOperand(1);
1702    SDValue N2 = N->getOperand(2);
1703    SDValue N3 = N->getOperand(3);
1704    ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1705    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1706    EVT VT = N0.getValueType();
1707    // Canonicalize multiplicative constant to RHS. If both multiplicative
1708    // operands are constant canonicalize smallest to RHS.
1709    if ((N0C && !N1C) ||
1710        (N0C && N1C && N0C->getZExtValue() < N1C->getZExtValue()))
1711      return DAG.getNode(XCoreISD::LMUL, dl, DAG.getVTList(VT, VT),
1712                         N1, N0, N2, N3);
1713
1714    // lmul(x, 0, a, b)
1715    if (N1C && N1C->isZero()) {
1716      // If the high result is unused fold to add(a, b)
1717      if (N->hasNUsesOfValue(0, 0)) {
1718        SDValue Lo = DAG.getNode(ISD::ADD, dl, VT, N2, N3);
1719        SDValue Ops[] = { Lo, Lo };
1720        return DAG.getMergeValues(Ops, dl);
1721      }
1722      // Otherwise fold to ladd(a, b, 0)
1723      SDValue Result =
1724        DAG.getNode(XCoreISD::LADD, dl, DAG.getVTList(VT, VT), N2, N3, N1);
1725      SDValue Carry(Result.getNode(), 1);
1726      SDValue Ops[] = { Carry, Result };
1727      return DAG.getMergeValues(Ops, dl);
1728    }
1729  }
1730  break;
1731  case ISD::ADD: {
1732    // Fold 32 bit expressions such as add(add(mul(x,y),a),b) ->
1733    // lmul(x, y, a, b). The high result of lmul will be ignored.
1734    // This is only profitable if the intermediate results are unused
1735    // elsewhere.
1736    SDValue Mul0, Mul1, Addend0, Addend1;
1737    if (N->getValueType(0) == MVT::i32 &&
1738        isADDADDMUL(SDValue(N, 0), Mul0, Mul1, Addend0, Addend1, true)) {
1739      SDValue Ignored = DAG.getNode(XCoreISD::LMUL, dl,
1740                                    DAG.getVTList(MVT::i32, MVT::i32), Mul0,
1741                                    Mul1, Addend0, Addend1);
1742      SDValue Result(Ignored.getNode(), 1);
1743      return Result;
1744    }
1745    APInt HighMask = APInt::getHighBitsSet(64, 32);
1746    // Fold 64 bit expression such as add(add(mul(x,y),a),b) ->
1747    // lmul(x, y, a, b) if all operands are zero-extended. We do this
1748    // before type legalization as it is messy to match the operands after
1749    // that.
1750    if (N->getValueType(0) == MVT::i64 &&
1751        isADDADDMUL(SDValue(N, 0), Mul0, Mul1, Addend0, Addend1, false) &&
1752        DAG.MaskedValueIsZero(Mul0, HighMask) &&
1753        DAG.MaskedValueIsZero(Mul1, HighMask) &&
1754        DAG.MaskedValueIsZero(Addend0, HighMask) &&
1755        DAG.MaskedValueIsZero(Addend1, HighMask)) {
1756      SDValue Mul0L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1757                                  Mul0, DAG.getConstant(0, dl, MVT::i32));
1758      SDValue Mul1L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1759                                  Mul1, DAG.getConstant(0, dl, MVT::i32));
1760      SDValue Addend0L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1761                                     Addend0, DAG.getConstant(0, dl, MVT::i32));
1762      SDValue Addend1L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1763                                     Addend1, DAG.getConstant(0, dl, MVT::i32));
1764      SDValue Hi = DAG.getNode(XCoreISD::LMUL, dl,
1765                               DAG.getVTList(MVT::i32, MVT::i32), Mul0L, Mul1L,
1766                               Addend0L, Addend1L);
1767      SDValue Lo(Hi.getNode(), 1);
1768      return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
1769    }
1770  }
1771  break;
1772  case ISD::STORE: {
1773    // Replace unaligned store of unaligned load with memmove.
1774    StoreSDNode *ST = cast<StoreSDNode>(N);
1775    if (!DCI.isBeforeLegalize() ||
1776        allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
1777                                       ST->getMemoryVT(),
1778                                       *ST->getMemOperand()) ||
1779        ST->isVolatile() || ST->isIndexed()) {
1780      break;
1781    }
1782    SDValue Chain = ST->getChain();
1783
1784    unsigned StoreBits = ST->getMemoryVT().getStoreSizeInBits();
1785    assert((StoreBits % 8) == 0 &&
1786           "Store size in bits must be a multiple of 8");
1787    Align Alignment = ST->getAlign();
1788
1789    if (LoadSDNode *LD = dyn_cast<LoadSDNode>(ST->getValue())) {
1790      if (LD->hasNUsesOfValue(1, 0) && ST->getMemoryVT() == LD->getMemoryVT() &&
1791        LD->getAlign() == Alignment &&
1792        !LD->isVolatile() && !LD->isIndexed() &&
1793        Chain.reachesChainWithoutSideEffects(SDValue(LD, 1))) {
1794        bool isTail = isInTailCallPosition(DAG, ST, Chain);
1795        return DAG.getMemmove(Chain, dl, ST->getBasePtr(), LD->getBasePtr(),
1796                              DAG.getConstant(StoreBits / 8, dl, MVT::i32),
1797                              Alignment, false, isTail,
1798                              ST->getPointerInfo(), LD->getPointerInfo());
1799      }
1800    }
1801    break;
1802  }
1803  }
1804  return SDValue();
1805}
1806
1807void XCoreTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
1808                                                        KnownBits &Known,
1809                                                        const APInt &DemandedElts,
1810                                                        const SelectionDAG &DAG,
1811                                                        unsigned Depth) const {
1812  Known.resetAll();
1813  switch (Op.getOpcode()) {
1814  default: break;
1815  case XCoreISD::LADD:
1816  case XCoreISD::LSUB:
1817    if (Op.getResNo() == 1) {
1818      // Top bits of carry / borrow are clear.
1819      Known.Zero = APInt::getHighBitsSet(Known.getBitWidth(),
1820                                         Known.getBitWidth() - 1);
1821    }
1822    break;
1823  case ISD::INTRINSIC_W_CHAIN:
1824    {
1825      unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1826      switch (IntNo) {
1827      case Intrinsic::xcore_getts:
1828        // High bits are known to be zero.
1829        Known.Zero = APInt::getHighBitsSet(Known.getBitWidth(),
1830                                           Known.getBitWidth() - 16);
1831        break;
1832      case Intrinsic::xcore_int:
1833      case Intrinsic::xcore_inct:
1834        // High bits are known to be zero.
1835        Known.Zero = APInt::getHighBitsSet(Known.getBitWidth(),
1836                                           Known.getBitWidth() - 8);
1837        break;
1838      case Intrinsic::xcore_testct:
1839        // Result is either 0 or 1.
1840        Known.Zero = APInt::getHighBitsSet(Known.getBitWidth(),
1841                                           Known.getBitWidth() - 1);
1842        break;
1843      case Intrinsic::xcore_testwct:
1844        // Result is in the range 0 - 4.
1845        Known.Zero = APInt::getHighBitsSet(Known.getBitWidth(),
1846                                           Known.getBitWidth() - 3);
1847        break;
1848      }
1849    }
1850    break;
1851  }
1852}
1853
1854//===----------------------------------------------------------------------===//
1855//  Addressing mode description hooks
1856//===----------------------------------------------------------------------===//
1857
1858static inline bool isImmUs(int64_t val)
1859{
1860  return (val >= 0 && val <= 11);
1861}
1862
1863static inline bool isImmUs2(int64_t val)
1864{
1865  return (val%2 == 0 && isImmUs(val/2));
1866}
1867
1868static inline bool isImmUs4(int64_t val)
1869{
1870  return (val%4 == 0 && isImmUs(val/4));
1871}
1872
1873/// isLegalAddressingMode - Return true if the addressing mode represented
1874/// by AM is legal for this target, for a load/store of the specified type.
1875bool XCoreTargetLowering::isLegalAddressingMode(const DataLayout &DL,
1876                                                const AddrMode &AM, Type *Ty,
1877                                                unsigned AS,
1878                                                Instruction *I) const {
1879  if (Ty->getTypeID() == Type::VoidTyID)
1880    return AM.Scale == 0 && isImmUs(AM.BaseOffs) && isImmUs4(AM.BaseOffs);
1881
1882  unsigned Size = DL.getTypeAllocSize(Ty);
1883  if (AM.BaseGV) {
1884    return Size >= 4 && !AM.HasBaseReg && AM.Scale == 0 &&
1885                 AM.BaseOffs%4 == 0;
1886  }
1887
1888  switch (Size) {
1889  case 1:
1890    // reg + imm
1891    if (AM.Scale == 0) {
1892      return isImmUs(AM.BaseOffs);
1893    }
1894    // reg + reg
1895    return AM.Scale == 1 && AM.BaseOffs == 0;
1896  case 2:
1897  case 3:
1898    // reg + imm
1899    if (AM.Scale == 0) {
1900      return isImmUs2(AM.BaseOffs);
1901    }
1902    // reg + reg<<1
1903    return AM.Scale == 2 && AM.BaseOffs == 0;
1904  default:
1905    // reg + imm
1906    if (AM.Scale == 0) {
1907      return isImmUs4(AM.BaseOffs);
1908    }
1909    // reg + reg<<2
1910    return AM.Scale == 4 && AM.BaseOffs == 0;
1911  }
1912}
1913
1914//===----------------------------------------------------------------------===//
1915//                           XCore Inline Assembly Support
1916//===----------------------------------------------------------------------===//
1917
1918std::pair<unsigned, const TargetRegisterClass *>
1919XCoreTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
1920                                                  StringRef Constraint,
1921                                                  MVT VT) const {
1922  if (Constraint.size() == 1) {
1923    switch (Constraint[0]) {
1924    default : break;
1925    case 'r':
1926      return std::make_pair(0U, &XCore::GRRegsRegClass);
1927    }
1928  }
1929  // Use the default implementation in TargetLowering to convert the register
1930  // constraint into a member of a register class.
1931  return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
1932}
1933