1//===-- X86BaseInfo.h - Top level definitions for X86 -------- --*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains small standalone helper functions and enum definitions for
10// the X86 target useful for the compiler back-end and the MC libraries.
11// As such, it deliberately does not include references to LLVM core
12// code gen types, passes, etc..
13//
14//===----------------------------------------------------------------------===//
15
16#ifndef LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H
17#define LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H
18
19#include "X86MCTargetDesc.h"
20#include "llvm/MC/MCInstrDesc.h"
21#include "llvm/Support/DataTypes.h"
22#include "llvm/Support/ErrorHandling.h"
23
24namespace llvm {
25
26namespace X86 {
27  // Enums for memory operand decoding.  Each memory operand is represented with
28  // a 5 operand sequence in the form:
29  //   [BaseReg, ScaleAmt, IndexReg, Disp, Segment]
30  // These enums help decode this.
31  enum {
32    AddrBaseReg = 0,
33    AddrScaleAmt = 1,
34    AddrIndexReg = 2,
35    AddrDisp = 3,
36
37    /// AddrSegmentReg - The operand # of the segment in the memory operand.
38    AddrSegmentReg = 4,
39
40    /// AddrNumOperands - Total number of operands in a memory reference.
41    AddrNumOperands = 5
42  };
43
44  /// AVX512 static rounding constants.  These need to match the values in
45  /// avx512fintrin.h.
46  enum STATIC_ROUNDING {
47    TO_NEAREST_INT = 0,
48    TO_NEG_INF = 1,
49    TO_POS_INF = 2,
50    TO_ZERO = 3,
51    CUR_DIRECTION = 4,
52    NO_EXC = 8
53  };
54
55  /// The constants to describe instr prefixes if there are
56  enum IPREFIXES {
57    IP_NO_PREFIX = 0,
58    IP_HAS_OP_SIZE =   1U << 0,
59    IP_HAS_AD_SIZE =   1U << 1,
60    IP_HAS_REPEAT_NE = 1U << 2,
61    IP_HAS_REPEAT =    1U << 3,
62    IP_HAS_LOCK =      1U << 4,
63    IP_HAS_NOTRACK =   1U << 5,
64    IP_USE_VEX =       1U << 6,
65    IP_USE_VEX2 =      1U << 7,
66    IP_USE_VEX3 =      1U << 8,
67    IP_USE_EVEX =      1U << 9,
68    IP_USE_DISP8 =     1U << 10,
69    IP_USE_DISP32 =    1U << 11,
70  };
71
72  enum OperandType : unsigned {
73    /// AVX512 embedded rounding control. This should only have values 0-3.
74    OPERAND_ROUNDING_CONTROL = MCOI::OPERAND_FIRST_TARGET,
75    OPERAND_COND_CODE,
76  };
77
78  // X86 specific condition code. These correspond to X86_*_COND in
79  // X86InstrInfo.td. They must be kept in synch.
80  enum CondCode {
81    COND_O = 0,
82    COND_NO = 1,
83    COND_B = 2,
84    COND_AE = 3,
85    COND_E = 4,
86    COND_NE = 5,
87    COND_BE = 6,
88    COND_A = 7,
89    COND_S = 8,
90    COND_NS = 9,
91    COND_P = 10,
92    COND_NP = 11,
93    COND_L = 12,
94    COND_GE = 13,
95    COND_LE = 14,
96    COND_G = 15,
97    LAST_VALID_COND = COND_G,
98
99    // Artificial condition codes. These are used by analyzeBranch
100    // to indicate a block terminated with two conditional branches that together
101    // form a compound condition. They occur in code using FCMP_OEQ or FCMP_UNE,
102    // which can't be represented on x86 with a single condition. These
103    // are never used in MachineInstrs and are inverses of one another.
104    COND_NE_OR_P,
105    COND_E_AND_NP,
106
107    COND_INVALID
108  };
109
110  // The classification for the first instruction in macro fusion.
111  enum class FirstMacroFusionInstKind {
112    // TEST
113    Test,
114    // CMP
115    Cmp,
116    // AND
117    And,
118    // FIXME: Zen 3 support branch fusion for OR/XOR.
119    // ADD, SUB
120    AddSub,
121    // INC, DEC
122    IncDec,
123    // Not valid as a first macro fusion instruction
124    Invalid
125  };
126
127  enum class SecondMacroFusionInstKind {
128    // JA, JB and variants.
129    AB,
130    // JE, JL, JG and variants.
131    ELG,
132    // JS, JP, JO and variants
133    SPO,
134    // Not a fusible jump.
135    Invalid,
136  };
137
138  /// \returns the type of the first instruction in macro-fusion.
139  inline FirstMacroFusionInstKind
140  classifyFirstOpcodeInMacroFusion(unsigned Opcode) {
141    switch (Opcode) {
142    default:
143      return FirstMacroFusionInstKind::Invalid;
144    // TEST
145    case X86::TEST16i16:
146    case X86::TEST16mr:
147    case X86::TEST16ri:
148    case X86::TEST16rr:
149    case X86::TEST32i32:
150    case X86::TEST32mr:
151    case X86::TEST32ri:
152    case X86::TEST32rr:
153    case X86::TEST64i32:
154    case X86::TEST64mr:
155    case X86::TEST64ri32:
156    case X86::TEST64rr:
157    case X86::TEST8i8:
158    case X86::TEST8mr:
159    case X86::TEST8ri:
160    case X86::TEST8rr:
161      return FirstMacroFusionInstKind::Test;
162    case X86::AND16i16:
163    case X86::AND16ri:
164    case X86::AND16ri8:
165    case X86::AND16rm:
166    case X86::AND16rr:
167    case X86::AND16rr_REV:
168    case X86::AND32i32:
169    case X86::AND32ri:
170    case X86::AND32ri8:
171    case X86::AND32rm:
172    case X86::AND32rr:
173    case X86::AND32rr_REV:
174    case X86::AND64i32:
175    case X86::AND64ri32:
176    case X86::AND64ri8:
177    case X86::AND64rm:
178    case X86::AND64rr:
179    case X86::AND64rr_REV:
180    case X86::AND8i8:
181    case X86::AND8ri:
182    case X86::AND8ri8:
183    case X86::AND8rm:
184    case X86::AND8rr:
185    case X86::AND8rr_REV:
186      return FirstMacroFusionInstKind::And;
187    // FIXME: Zen 3 support branch fusion for OR/XOR.
188    // CMP
189    case X86::CMP16i16:
190    case X86::CMP16mr:
191    case X86::CMP16ri:
192    case X86::CMP16ri8:
193    case X86::CMP16rm:
194    case X86::CMP16rr:
195    case X86::CMP16rr_REV:
196    case X86::CMP32i32:
197    case X86::CMP32mr:
198    case X86::CMP32ri:
199    case X86::CMP32ri8:
200    case X86::CMP32rm:
201    case X86::CMP32rr:
202    case X86::CMP32rr_REV:
203    case X86::CMP64i32:
204    case X86::CMP64mr:
205    case X86::CMP64ri32:
206    case X86::CMP64ri8:
207    case X86::CMP64rm:
208    case X86::CMP64rr:
209    case X86::CMP64rr_REV:
210    case X86::CMP8i8:
211    case X86::CMP8mr:
212    case X86::CMP8ri:
213    case X86::CMP8ri8:
214    case X86::CMP8rm:
215    case X86::CMP8rr:
216    case X86::CMP8rr_REV:
217      return FirstMacroFusionInstKind::Cmp;
218    // ADD
219    case X86::ADD16i16:
220    case X86::ADD16ri:
221    case X86::ADD16ri8:
222    case X86::ADD16rm:
223    case X86::ADD16rr:
224    case X86::ADD16rr_REV:
225    case X86::ADD32i32:
226    case X86::ADD32ri:
227    case X86::ADD32ri8:
228    case X86::ADD32rm:
229    case X86::ADD32rr:
230    case X86::ADD32rr_REV:
231    case X86::ADD64i32:
232    case X86::ADD64ri32:
233    case X86::ADD64ri8:
234    case X86::ADD64rm:
235    case X86::ADD64rr:
236    case X86::ADD64rr_REV:
237    case X86::ADD8i8:
238    case X86::ADD8ri:
239    case X86::ADD8ri8:
240    case X86::ADD8rm:
241    case X86::ADD8rr:
242    case X86::ADD8rr_REV:
243    // SUB
244    case X86::SUB16i16:
245    case X86::SUB16ri:
246    case X86::SUB16ri8:
247    case X86::SUB16rm:
248    case X86::SUB16rr:
249    case X86::SUB16rr_REV:
250    case X86::SUB32i32:
251    case X86::SUB32ri:
252    case X86::SUB32ri8:
253    case X86::SUB32rm:
254    case X86::SUB32rr:
255    case X86::SUB32rr_REV:
256    case X86::SUB64i32:
257    case X86::SUB64ri32:
258    case X86::SUB64ri8:
259    case X86::SUB64rm:
260    case X86::SUB64rr:
261    case X86::SUB64rr_REV:
262    case X86::SUB8i8:
263    case X86::SUB8ri:
264    case X86::SUB8ri8:
265    case X86::SUB8rm:
266    case X86::SUB8rr:
267    case X86::SUB8rr_REV:
268      return FirstMacroFusionInstKind::AddSub;
269    // INC
270    case X86::INC16r:
271    case X86::INC16r_alt:
272    case X86::INC32r:
273    case X86::INC32r_alt:
274    case X86::INC64r:
275    case X86::INC8r:
276    // DEC
277    case X86::DEC16r:
278    case X86::DEC16r_alt:
279    case X86::DEC32r:
280    case X86::DEC32r_alt:
281    case X86::DEC64r:
282    case X86::DEC8r:
283      return FirstMacroFusionInstKind::IncDec;
284    }
285  }
286
287  /// \returns the type of the second instruction in macro-fusion.
288  inline SecondMacroFusionInstKind
289  classifySecondCondCodeInMacroFusion(X86::CondCode CC) {
290    if (CC == X86::COND_INVALID)
291      return SecondMacroFusionInstKind::Invalid;
292
293    switch (CC) {
294    default:
295      return SecondMacroFusionInstKind::Invalid;
296    // JE,JZ
297    case X86::COND_E:
298    // JNE,JNZ
299    case X86::COND_NE:
300    // JL,JNGE
301    case X86::COND_L:
302    // JLE,JNG
303    case X86::COND_LE:
304    // JG,JNLE
305    case X86::COND_G:
306    // JGE,JNL
307    case X86::COND_GE:
308      return SecondMacroFusionInstKind::ELG;
309    // JB,JC
310    case X86::COND_B:
311    // JNA,JBE
312    case X86::COND_BE:
313    // JA,JNBE
314    case X86::COND_A:
315    // JAE,JNC,JNB
316    case X86::COND_AE:
317      return SecondMacroFusionInstKind::AB;
318    // JS
319    case X86::COND_S:
320    // JNS
321    case X86::COND_NS:
322    // JP,JPE
323    case X86::COND_P:
324    // JNP,JPO
325    case X86::COND_NP:
326    // JO
327    case X86::COND_O:
328    // JNO
329    case X86::COND_NO:
330      return SecondMacroFusionInstKind::SPO;
331    }
332  }
333
334  /// \param FirstKind kind of the first instruction in macro fusion.
335  /// \param SecondKind kind of the second instruction in macro fusion.
336  ///
337  /// \returns true if the two instruction can be macro fused.
338  inline bool isMacroFused(FirstMacroFusionInstKind FirstKind,
339                           SecondMacroFusionInstKind SecondKind) {
340    switch (FirstKind) {
341    case X86::FirstMacroFusionInstKind::Test:
342    case X86::FirstMacroFusionInstKind::And:
343      return true;
344    case X86::FirstMacroFusionInstKind::Cmp:
345    case X86::FirstMacroFusionInstKind::AddSub:
346      return SecondKind == X86::SecondMacroFusionInstKind::AB ||
347             SecondKind == X86::SecondMacroFusionInstKind::ELG;
348    case X86::FirstMacroFusionInstKind::IncDec:
349      return SecondKind == X86::SecondMacroFusionInstKind::ELG;
350    case X86::FirstMacroFusionInstKind::Invalid:
351      return false;
352    }
353    llvm_unreachable("unknown fusion type");
354  }
355
356  /// Defines the possible values of the branch boundary alignment mask.
357  enum AlignBranchBoundaryKind : uint8_t {
358    AlignBranchNone = 0,
359    AlignBranchFused = 1U << 0,
360    AlignBranchJcc = 1U << 1,
361    AlignBranchJmp = 1U << 2,
362    AlignBranchCall = 1U << 3,
363    AlignBranchRet = 1U << 4,
364    AlignBranchIndirect = 1U << 5
365  };
366
367  /// Defines the encoding values for segment override prefix.
368  enum EncodingOfSegmentOverridePrefix : uint8_t {
369    CS_Encoding = 0x2E,
370    DS_Encoding = 0x3E,
371    ES_Encoding = 0x26,
372    FS_Encoding = 0x64,
373    GS_Encoding = 0x65,
374    SS_Encoding = 0x36
375  };
376
377  /// Given a segment register, return the encoding of the segment override
378  /// prefix for it.
379  inline EncodingOfSegmentOverridePrefix
380  getSegmentOverridePrefixForReg(unsigned Reg) {
381    switch (Reg) {
382    default:
383      llvm_unreachable("Unknown segment register!");
384    case X86::CS:
385      return CS_Encoding;
386    case X86::DS:
387      return DS_Encoding;
388    case X86::ES:
389      return ES_Encoding;
390    case X86::FS:
391      return FS_Encoding;
392    case X86::GS:
393      return GS_Encoding;
394    case X86::SS:
395      return SS_Encoding;
396    }
397  }
398
399} // end namespace X86;
400
401/// X86II - This namespace holds all of the target specific flags that
402/// instruction info tracks.
403///
404namespace X86II {
405  /// Target Operand Flag enum.
406  enum TOF {
407    //===------------------------------------------------------------------===//
408    // X86 Specific MachineOperand flags.
409
410    MO_NO_FLAG,
411
412    /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
413    /// relocation of:
414    ///    SYMBOL_LABEL + [. - PICBASELABEL]
415    MO_GOT_ABSOLUTE_ADDRESS,
416
417    /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the
418    /// immediate should get the value of the symbol minus the PIC base label:
419    ///    SYMBOL_LABEL - PICBASELABEL
420    MO_PIC_BASE_OFFSET,
421
422    /// MO_GOT - On a symbol operand this indicates that the immediate is the
423    /// offset to the GOT entry for the symbol name from the base of the GOT.
424    ///
425    /// See the X86-64 ELF ABI supplement for more details.
426    ///    SYMBOL_LABEL @GOT
427    MO_GOT,
428
429    /// MO_GOTOFF - On a symbol operand this indicates that the immediate is
430    /// the offset to the location of the symbol name from the base of the GOT.
431    ///
432    /// See the X86-64 ELF ABI supplement for more details.
433    ///    SYMBOL_LABEL @GOTOFF
434    MO_GOTOFF,
435
436    /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is
437    /// offset to the GOT entry for the symbol name from the current code
438    /// location.
439    ///
440    /// See the X86-64 ELF ABI supplement for more details.
441    ///    SYMBOL_LABEL @GOTPCREL
442    MO_GOTPCREL,
443
444    /// MO_GOTPCREL_NORELAX - Same as MO_GOTPCREL except that R_X86_64_GOTPCREL
445    /// relocations are guaranteed to be emitted by the integrated assembler
446    /// instead of the relaxable R_X86_64[_REX]_GOTPCRELX relocations.
447    MO_GOTPCREL_NORELAX,
448
449    /// MO_PLT - On a symbol operand this indicates that the immediate is
450    /// offset to the PLT entry of symbol name from the current code location.
451    ///
452    /// See the X86-64 ELF ABI supplement for more details.
453    ///    SYMBOL_LABEL @PLT
454    MO_PLT,
455
456    /// MO_TLSGD - On a symbol operand this indicates that the immediate is
457    /// the offset of the GOT entry with the TLS index structure that contains
458    /// the module number and variable offset for the symbol. Used in the
459    /// general dynamic TLS access model.
460    ///
461    /// See 'ELF Handling for Thread-Local Storage' for more details.
462    ///    SYMBOL_LABEL @TLSGD
463    MO_TLSGD,
464
465    /// MO_TLSLD - On a symbol operand this indicates that the immediate is
466    /// the offset of the GOT entry with the TLS index for the module that
467    /// contains the symbol. When this index is passed to a call to
468    /// __tls_get_addr, the function will return the base address of the TLS
469    /// block for the symbol. Used in the x86-64 local dynamic TLS access model.
470    ///
471    /// See 'ELF Handling for Thread-Local Storage' for more details.
472    ///    SYMBOL_LABEL @TLSLD
473    MO_TLSLD,
474
475    /// MO_TLSLDM - On a symbol operand this indicates that the immediate is
476    /// the offset of the GOT entry with the TLS index for the module that
477    /// contains the symbol. When this index is passed to a call to
478    /// ___tls_get_addr, the function will return the base address of the TLS
479    /// block for the symbol. Used in the IA32 local dynamic TLS access model.
480    ///
481    /// See 'ELF Handling for Thread-Local Storage' for more details.
482    ///    SYMBOL_LABEL @TLSLDM
483    MO_TLSLDM,
484
485    /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is
486    /// the offset of the GOT entry with the thread-pointer offset for the
487    /// symbol. Used in the x86-64 initial exec TLS access model.
488    ///
489    /// See 'ELF Handling for Thread-Local Storage' for more details.
490    ///    SYMBOL_LABEL @GOTTPOFF
491    MO_GOTTPOFF,
492
493    /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is
494    /// the absolute address of the GOT entry with the negative thread-pointer
495    /// offset for the symbol. Used in the non-PIC IA32 initial exec TLS access
496    /// model.
497    ///
498    /// See 'ELF Handling for Thread-Local Storage' for more details.
499    ///    SYMBOL_LABEL @INDNTPOFF
500    MO_INDNTPOFF,
501
502    /// MO_TPOFF - On a symbol operand this indicates that the immediate is
503    /// the thread-pointer offset for the symbol. Used in the x86-64 local
504    /// exec TLS access model.
505    ///
506    /// See 'ELF Handling for Thread-Local Storage' for more details.
507    ///    SYMBOL_LABEL @TPOFF
508    MO_TPOFF,
509
510    /// MO_DTPOFF - On a symbol operand this indicates that the immediate is
511    /// the offset of the GOT entry with the TLS offset of the symbol. Used
512    /// in the local dynamic TLS access model.
513    ///
514    /// See 'ELF Handling for Thread-Local Storage' for more details.
515    ///    SYMBOL_LABEL @DTPOFF
516    MO_DTPOFF,
517
518    /// MO_NTPOFF - On a symbol operand this indicates that the immediate is
519    /// the negative thread-pointer offset for the symbol. Used in the IA32
520    /// local exec TLS access model.
521    ///
522    /// See 'ELF Handling for Thread-Local Storage' for more details.
523    ///    SYMBOL_LABEL @NTPOFF
524    MO_NTPOFF,
525
526    /// MO_GOTNTPOFF - On a symbol operand this indicates that the immediate is
527    /// the offset of the GOT entry with the negative thread-pointer offset for
528    /// the symbol. Used in the PIC IA32 initial exec TLS access model.
529    ///
530    /// See 'ELF Handling for Thread-Local Storage' for more details.
531    ///    SYMBOL_LABEL @GOTNTPOFF
532    MO_GOTNTPOFF,
533
534    /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the
535    /// reference is actually to the "__imp_FOO" symbol.  This is used for
536    /// dllimport linkage on windows.
537    MO_DLLIMPORT,
538
539    /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the
540    /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a
541    /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
542    MO_DARWIN_NONLAZY,
543
544    /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates
545    /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is
546    /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
547    MO_DARWIN_NONLAZY_PIC_BASE,
548
549    /// MO_TLVP - On a symbol operand this indicates that the immediate is
550    /// some TLS offset.
551    ///
552    /// This is the TLS offset for the Darwin TLS mechanism.
553    MO_TLVP,
554
555    /// MO_TLVP_PIC_BASE - On a symbol operand this indicates that the immediate
556    /// is some TLS offset from the picbase.
557    ///
558    /// This is the 32-bit TLS offset for Darwin TLS in PIC mode.
559    MO_TLVP_PIC_BASE,
560
561    /// MO_SECREL - On a symbol operand this indicates that the immediate is
562    /// the offset from beginning of section.
563    ///
564    /// This is the TLS offset for the COFF/Windows TLS mechanism.
565    MO_SECREL,
566
567    /// MO_ABS8 - On a symbol operand this indicates that the symbol is known
568    /// to be an absolute symbol in range [0,128), so we can use the @ABS8
569    /// symbol modifier.
570    MO_ABS8,
571
572    /// MO_COFFSTUB - On a symbol operand "FOO", this indicates that the
573    /// reference is actually to the ".refptr.FOO" symbol.  This is used for
574    /// stub symbols on windows.
575    MO_COFFSTUB,
576  };
577
578  enum : uint64_t {
579    //===------------------------------------------------------------------===//
580    // Instruction encodings.  These are the standard/most common forms for X86
581    // instructions.
582    //
583
584    // PseudoFrm - This represents an instruction that is a pseudo instruction
585    // or one that has not been implemented yet.  It is illegal to code generate
586    // it, but tolerated for intermediate implementation stages.
587    Pseudo         = 0,
588
589    /// Raw - This form is for instructions that don't have any operands, so
590    /// they are just a fixed opcode value, like 'leave'.
591    RawFrm         = 1,
592
593    /// AddRegFrm - This form is used for instructions like 'push r32' that have
594    /// their one register operand added to their opcode.
595    AddRegFrm      = 2,
596
597    /// RawFrmMemOffs - This form is for instructions that store an absolute
598    /// memory offset as an immediate with a possible segment override.
599    RawFrmMemOffs  = 3,
600
601    /// RawFrmSrc - This form is for instructions that use the source index
602    /// register SI/ESI/RSI with a possible segment override.
603    RawFrmSrc      = 4,
604
605    /// RawFrmDst - This form is for instructions that use the destination index
606    /// register DI/EDI/RDI.
607    RawFrmDst      = 5,
608
609    /// RawFrmDstSrc - This form is for instructions that use the source index
610    /// register SI/ESI/RSI with a possible segment override, and also the
611    /// destination index register DI/EDI/RDI.
612    RawFrmDstSrc   = 6,
613
614    /// RawFrmImm8 - This is used for the ENTER instruction, which has two
615    /// immediates, the first of which is a 16-bit immediate (specified by
616    /// the imm encoding) and the second is a 8-bit fixed value.
617    RawFrmImm8 = 7,
618
619    /// RawFrmImm16 - This is used for CALL FAR instructions, which have two
620    /// immediates, the first of which is a 16 or 32-bit immediate (specified by
621    /// the imm encoding) and the second is a 16-bit fixed value.  In the AMD
622    /// manual, this operand is described as pntr16:32 and pntr16:16
623    RawFrmImm16 = 8,
624
625    /// AddCCFrm - This form is used for Jcc that encode the condition code
626    /// in the lower 4 bits of the opcode.
627    AddCCFrm = 9,
628
629    /// PrefixByte - This form is used for instructions that represent a prefix
630    /// byte like data16 or rep.
631    PrefixByte = 10,
632
633    /// MRMDestMem4VOp3CC - This form is used for instructions that use the Mod/RM
634    /// byte to specify a destination which in this case is memory and operand 3
635    /// with VEX.VVVV, and also encodes a condition code.
636    MRMDestMem4VOp3CC = 20,
637
638    /// MRM[0-7][rm] - These forms are used to represent instructions that use
639    /// a Mod/RM byte, and use the middle field to hold extended opcode
640    /// information.  In the intel manual these are represented as /0, /1, ...
641    ///
642
643    // Instructions operate on a register Reg/Opcode operand not the r/m field.
644    MRMr0 = 21,
645
646    /// MRMSrcMem - But force to use the SIB field.
647    MRMSrcMemFSIB  = 22,
648
649    /// MRMDestMem - But force to use the SIB field.
650    MRMDestMemFSIB = 23,
651
652    /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
653    /// to specify a destination, which in this case is memory.
654    ///
655    MRMDestMem     = 24,
656
657    /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
658    /// to specify a source, which in this case is memory.
659    ///
660    MRMSrcMem      = 25,
661
662    /// MRMSrcMem4VOp3 - This form is used for instructions that encode
663    /// operand 3 with VEX.VVVV and load from memory.
664    ///
665    MRMSrcMem4VOp3 = 26,
666
667    /// MRMSrcMemOp4 - This form is used for instructions that use the Mod/RM
668    /// byte to specify the fourth source, which in this case is memory.
669    ///
670    MRMSrcMemOp4   = 27,
671
672    /// MRMSrcMemCC - This form is used for instructions that use the Mod/RM
673    /// byte to specify the operands and also encodes a condition code.
674    ///
675    MRMSrcMemCC    = 28,
676
677    /// MRMXm - This form is used for instructions that use the Mod/RM byte
678    /// to specify a memory source, but doesn't use the middle field. And has
679    /// a condition code.
680    ///
681    MRMXmCC = 30,
682
683    /// MRMXm - This form is used for instructions that use the Mod/RM byte
684    /// to specify a memory source, but doesn't use the middle field.
685    ///
686    MRMXm = 31,
687
688    // Next, instructions that operate on a memory r/m operand...
689    MRM0m = 32,  MRM1m = 33,  MRM2m = 34,  MRM3m = 35, // Format /0 /1 /2 /3
690    MRM4m = 36,  MRM5m = 37,  MRM6m = 38,  MRM7m = 39, // Format /4 /5 /6 /7
691
692    /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
693    /// to specify a destination, which in this case is a register.
694    ///
695    MRMDestReg     = 40,
696
697    /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
698    /// to specify a source, which in this case is a register.
699    ///
700    MRMSrcReg      = 41,
701
702    /// MRMSrcReg4VOp3 - This form is used for instructions that encode
703    /// operand 3 with VEX.VVVV and do not load from memory.
704    ///
705    MRMSrcReg4VOp3 = 42,
706
707    /// MRMSrcRegOp4 - This form is used for instructions that use the Mod/RM
708    /// byte to specify the fourth source, which in this case is a register.
709    ///
710    MRMSrcRegOp4   = 43,
711
712    /// MRMSrcRegCC - This form is used for instructions that use the Mod/RM
713    /// byte to specify the operands and also encodes a condition code
714    ///
715    MRMSrcRegCC    = 44,
716
717    /// MRMXCCr - This form is used for instructions that use the Mod/RM byte
718    /// to specify a register source, but doesn't use the middle field. And has
719    /// a condition code.
720    ///
721    MRMXrCC = 46,
722
723    /// MRMXr - This form is used for instructions that use the Mod/RM byte
724    /// to specify a register source, but doesn't use the middle field.
725    ///
726    MRMXr = 47,
727
728    // Instructions that operate on a register r/m operand...
729    MRM0r = 48,  MRM1r = 49,  MRM2r = 50,  MRM3r = 51, // Format /0 /1 /2 /3
730    MRM4r = 52,  MRM5r = 53,  MRM6r = 54,  MRM7r = 55, // Format /4 /5 /6 /7
731
732    // Instructions that operate that have mod=11 and an opcode but ignore r/m.
733    MRM0X = 56,  MRM1X = 57,  MRM2X = 58,  MRM3X = 59, // Format /0 /1 /2 /3
734    MRM4X = 60,  MRM5X = 61,  MRM6X = 62,  MRM7X = 63, // Format /4 /5 /6 /7
735
736    /// MRM_XX - A mod/rm byte of exactly 0xXX.
737    MRM_C0 = 64,  MRM_C1 = 65,  MRM_C2 = 66,  MRM_C3 = 67,
738    MRM_C4 = 68,  MRM_C5 = 69,  MRM_C6 = 70,  MRM_C7 = 71,
739    MRM_C8 = 72,  MRM_C9 = 73,  MRM_CA = 74,  MRM_CB = 75,
740    MRM_CC = 76,  MRM_CD = 77,  MRM_CE = 78,  MRM_CF = 79,
741    MRM_D0 = 80,  MRM_D1 = 81,  MRM_D2 = 82,  MRM_D3 = 83,
742    MRM_D4 = 84,  MRM_D5 = 85,  MRM_D6 = 86,  MRM_D7 = 87,
743    MRM_D8 = 88,  MRM_D9 = 89,  MRM_DA = 90,  MRM_DB = 91,
744    MRM_DC = 92,  MRM_DD = 93,  MRM_DE = 94,  MRM_DF = 95,
745    MRM_E0 = 96,  MRM_E1 = 97,  MRM_E2 = 98,  MRM_E3 = 99,
746    MRM_E4 = 100, MRM_E5 = 101, MRM_E6 = 102, MRM_E7 = 103,
747    MRM_E8 = 104, MRM_E9 = 105, MRM_EA = 106, MRM_EB = 107,
748    MRM_EC = 108, MRM_ED = 109, MRM_EE = 110, MRM_EF = 111,
749    MRM_F0 = 112, MRM_F1 = 113, MRM_F2 = 114, MRM_F3 = 115,
750    MRM_F4 = 116, MRM_F5 = 117, MRM_F6 = 118, MRM_F7 = 119,
751    MRM_F8 = 120, MRM_F9 = 121, MRM_FA = 122, MRM_FB = 123,
752    MRM_FC = 124, MRM_FD = 125, MRM_FE = 126, MRM_FF = 127,
753
754    FormMask       = 127,
755
756    //===------------------------------------------------------------------===//
757    // Actual flags...
758
759    // OpSize - OpSizeFixed implies instruction never needs a 0x66 prefix.
760    // OpSize16 means this is a 16-bit instruction and needs 0x66 prefix in
761    // 32-bit mode. OpSize32 means this is a 32-bit instruction needs a 0x66
762    // prefix in 16-bit mode.
763    OpSizeShift = 7,
764    OpSizeMask = 0x3 << OpSizeShift,
765
766    OpSizeFixed  = 0 << OpSizeShift,
767    OpSize16     = 1 << OpSizeShift,
768    OpSize32     = 2 << OpSizeShift,
769
770    // AsSize - AdSizeX implies this instruction determines its need of 0x67
771    // prefix from a normal ModRM memory operand. The other types indicate that
772    // an operand is encoded with a specific width and a prefix is needed if
773    // it differs from the current mode.
774    AdSizeShift = OpSizeShift + 2,
775    AdSizeMask  = 0x3 << AdSizeShift,
776
777    AdSizeX  = 0 << AdSizeShift,
778    AdSize16 = 1 << AdSizeShift,
779    AdSize32 = 2 << AdSizeShift,
780    AdSize64 = 3 << AdSizeShift,
781
782    //===------------------------------------------------------------------===//
783    // OpPrefix - There are several prefix bytes that are used as opcode
784    // extensions. These are 0x66, 0xF3, and 0xF2. If this field is 0 there is
785    // no prefix.
786    //
787    OpPrefixShift = AdSizeShift + 2,
788    OpPrefixMask  = 0x3 << OpPrefixShift,
789
790    // PD - Prefix code for packed double precision vector floating point
791    // operations performed in the SSE registers.
792    PD = 1 << OpPrefixShift,
793
794    // XS, XD - These prefix codes are for single and double precision scalar
795    // floating point operations performed in the SSE registers.
796    XS = 2 << OpPrefixShift,  XD = 3 << OpPrefixShift,
797
798    //===------------------------------------------------------------------===//
799    // OpMap - This field determines which opcode map this instruction
800    // belongs to. i.e. one-byte, two-byte, 0x0f 0x38, 0x0f 0x3a, etc.
801    //
802    OpMapShift = OpPrefixShift + 2,
803    OpMapMask  = 0xF << OpMapShift,
804
805    // OB - OneByte - Set if this instruction has a one byte opcode.
806    OB = 0 << OpMapShift,
807
808    // TB - TwoByte - Set if this instruction has a two byte opcode, which
809    // starts with a 0x0F byte before the real opcode.
810    TB = 1 << OpMapShift,
811
812    // T8, TA - Prefix after the 0x0F prefix.
813    T8 = 2 << OpMapShift,  TA = 3 << OpMapShift,
814
815    // XOP8 - Prefix to include use of imm byte.
816    XOP8 = 4 << OpMapShift,
817
818    // XOP9 - Prefix to exclude use of imm byte.
819    XOP9 = 5 << OpMapShift,
820
821    // XOPA - Prefix to encode 0xA in VEX.MMMM of XOP instructions.
822    XOPA = 6 << OpMapShift,
823
824    /// ThreeDNow - This indicates that the instruction uses the
825    /// wacky 0x0F 0x0F prefix for 3DNow! instructions.  The manual documents
826    /// this as having a 0x0F prefix with a 0x0F opcode, and each instruction
827    /// storing a classifier in the imm8 field.  To simplify our implementation,
828    /// we handle this by storeing the classifier in the opcode field and using
829    /// this flag to indicate that the encoder should do the wacky 3DNow! thing.
830    ThreeDNow = 7 << OpMapShift,
831
832    // MAP5, MAP6 - Prefix after the 0x0F prefix.
833    T_MAP5 = 8 << OpMapShift,
834    T_MAP6 = 9 << OpMapShift,
835
836    //===------------------------------------------------------------------===//
837    // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
838    // They are used to specify GPRs and SSE registers, 64-bit operand size,
839    // etc. We only cares about REX.W and REX.R bits and only the former is
840    // statically determined.
841    //
842    REXShift    = OpMapShift + 4,
843    REX_W       = 1 << REXShift,
844
845    //===------------------------------------------------------------------===//
846    // This three-bit field describes the size of an immediate operand.  Zero is
847    // unused so that we can tell if we forgot to set a value.
848    ImmShift = REXShift + 1,
849    ImmMask    = 15 << ImmShift,
850    Imm8       = 1 << ImmShift,
851    Imm8PCRel  = 2 << ImmShift,
852    Imm8Reg    = 3 << ImmShift,
853    Imm16      = 4 << ImmShift,
854    Imm16PCRel = 5 << ImmShift,
855    Imm32      = 6 << ImmShift,
856    Imm32PCRel = 7 << ImmShift,
857    Imm32S     = 8 << ImmShift,
858    Imm64      = 9 << ImmShift,
859
860    //===------------------------------------------------------------------===//
861    // FP Instruction Classification...  Zero is non-fp instruction.
862
863    // FPTypeMask - Mask for all of the FP types...
864    FPTypeShift = ImmShift + 4,
865    FPTypeMask  = 7 << FPTypeShift,
866
867    // NotFP - The default, set for instructions that do not use FP registers.
868    NotFP      = 0 << FPTypeShift,
869
870    // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
871    ZeroArgFP  = 1 << FPTypeShift,
872
873    // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
874    OneArgFP   = 2 << FPTypeShift,
875
876    // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
877    // result back to ST(0).  For example, fcos, fsqrt, etc.
878    //
879    OneArgFPRW = 3 << FPTypeShift,
880
881    // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
882    // explicit argument, storing the result to either ST(0) or the implicit
883    // argument.  For example: fadd, fsub, fmul, etc...
884    TwoArgFP   = 4 << FPTypeShift,
885
886    // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
887    // explicit argument, but have no destination.  Example: fucom, fucomi, ...
888    CompareFP  = 5 << FPTypeShift,
889
890    // CondMovFP - "2 operand" floating point conditional move instructions.
891    CondMovFP  = 6 << FPTypeShift,
892
893    // SpecialFP - Special instruction forms.  Dispatch by opcode explicitly.
894    SpecialFP  = 7 << FPTypeShift,
895
896    // Lock prefix
897    LOCKShift = FPTypeShift + 3,
898    LOCK = 1 << LOCKShift,
899
900    // REP prefix
901    REPShift = LOCKShift + 1,
902    REP = 1 << REPShift,
903
904    // Execution domain for SSE instructions.
905    // 0 means normal, non-SSE instruction.
906    SSEDomainShift = REPShift + 1,
907
908    // Encoding
909    EncodingShift = SSEDomainShift + 2,
910    EncodingMask = 0x3 << EncodingShift,
911
912    // VEX - encoding using 0xC4/0xC5
913    VEX = 1 << EncodingShift,
914
915    /// XOP - Opcode prefix used by XOP instructions.
916    XOP = 2 << EncodingShift,
917
918    // VEX_EVEX - Specifies that this instruction use EVEX form which provides
919    // syntax support up to 32 512-bit register operands and up to 7 16-bit
920    // mask operands as well as source operand data swizzling/memory operand
921    // conversion, eviction hint, and rounding mode.
922    EVEX = 3 << EncodingShift,
923
924    // Opcode
925    OpcodeShift   = EncodingShift + 2,
926
927    /// VEX_W - Has a opcode specific functionality, but is used in the same
928    /// way as REX_W is for regular SSE instructions.
929    VEX_WShift  = OpcodeShift + 8,
930    VEX_W       = 1ULL << VEX_WShift,
931
932    /// VEX_4V - Used to specify an additional AVX/SSE register. Several 2
933    /// address instructions in SSE are represented as 3 address ones in AVX
934    /// and the additional register is encoded in VEX_VVVV prefix.
935    VEX_4VShift = VEX_WShift + 1,
936    VEX_4V      = 1ULL << VEX_4VShift,
937
938    /// VEX_L - Stands for a bit in the VEX opcode prefix meaning the current
939    /// instruction uses 256-bit wide registers. This is usually auto detected
940    /// if a VR256 register is used, but some AVX instructions also have this
941    /// field marked when using a f256 memory references.
942    VEX_LShift = VEX_4VShift + 1,
943    VEX_L       = 1ULL << VEX_LShift,
944
945    // EVEX_K - Set if this instruction requires masking
946    EVEX_KShift = VEX_LShift + 1,
947    EVEX_K      = 1ULL << EVEX_KShift,
948
949    // EVEX_Z - Set if this instruction has EVEX.Z field set.
950    EVEX_ZShift = EVEX_KShift + 1,
951    EVEX_Z      = 1ULL << EVEX_ZShift,
952
953    // EVEX_L2 - Set if this instruction has EVEX.L' field set.
954    EVEX_L2Shift = EVEX_ZShift + 1,
955    EVEX_L2     = 1ULL << EVEX_L2Shift,
956
957    // EVEX_B - Set if this instruction has EVEX.B field set.
958    EVEX_BShift = EVEX_L2Shift + 1,
959    EVEX_B      = 1ULL << EVEX_BShift,
960
961    // The scaling factor for the AVX512's 8-bit compressed displacement.
962    CD8_Scale_Shift = EVEX_BShift + 1,
963    CD8_Scale_Mask = 127ULL << CD8_Scale_Shift,
964
965    /// Explicitly specified rounding control
966    EVEX_RCShift = CD8_Scale_Shift + 7,
967    EVEX_RC = 1ULL << EVEX_RCShift,
968
969    // NOTRACK prefix
970    NoTrackShift = EVEX_RCShift + 1,
971    NOTRACK = 1ULL << NoTrackShift,
972
973    // Force VEX encoding
974    ExplicitVEXShift = NoTrackShift + 1,
975    ExplicitVEXPrefix = 1ULL << ExplicitVEXShift
976  };
977
978  /// \returns true if the instruction with given opcode is a prefix.
979  inline bool isPrefix(uint64_t TSFlags) {
980    return (TSFlags & X86II::FormMask) == PrefixByte;
981  }
982
983  /// \returns true if the instruction with given opcode is a pseudo.
984  inline bool isPseudo(uint64_t TSFlags) {
985    return (TSFlags & X86II::FormMask) == Pseudo;
986  }
987
988  /// \returns the "base" X86 opcode for the specified machine
989  /// instruction.
990  inline uint8_t getBaseOpcodeFor(uint64_t TSFlags) {
991    return TSFlags >> X86II::OpcodeShift;
992  }
993
994  inline bool hasImm(uint64_t TSFlags) {
995    return (TSFlags & X86II::ImmMask) != 0;
996  }
997
998  /// Decode the "size of immediate" field from the TSFlags field of the
999  /// specified instruction.
1000  inline unsigned getSizeOfImm(uint64_t TSFlags) {
1001    switch (TSFlags & X86II::ImmMask) {
1002    default: llvm_unreachable("Unknown immediate size");
1003    case X86II::Imm8:
1004    case X86II::Imm8PCRel:
1005    case X86II::Imm8Reg:    return 1;
1006    case X86II::Imm16:
1007    case X86II::Imm16PCRel: return 2;
1008    case X86II::Imm32:
1009    case X86II::Imm32S:
1010    case X86II::Imm32PCRel: return 4;
1011    case X86II::Imm64:      return 8;
1012    }
1013  }
1014
1015  /// \returns true if the immediate of the specified instruction's TSFlags
1016  /// indicates that it is pc relative.
1017  inline bool isImmPCRel(uint64_t TSFlags) {
1018    switch (TSFlags & X86II::ImmMask) {
1019    default: llvm_unreachable("Unknown immediate size");
1020    case X86II::Imm8PCRel:
1021    case X86II::Imm16PCRel:
1022    case X86II::Imm32PCRel:
1023      return true;
1024    case X86II::Imm8:
1025    case X86II::Imm8Reg:
1026    case X86II::Imm16:
1027    case X86II::Imm32:
1028    case X86II::Imm32S:
1029    case X86II::Imm64:
1030      return false;
1031    }
1032  }
1033
1034  /// \returns true if the immediate of the specified instruction's
1035  /// TSFlags indicates that it is signed.
1036  inline bool isImmSigned(uint64_t TSFlags) {
1037    switch (TSFlags & X86II::ImmMask) {
1038    default: llvm_unreachable("Unknown immediate signedness");
1039    case X86II::Imm32S:
1040      return true;
1041    case X86II::Imm8:
1042    case X86II::Imm8PCRel:
1043    case X86II::Imm8Reg:
1044    case X86II::Imm16:
1045    case X86II::Imm16PCRel:
1046    case X86II::Imm32:
1047    case X86II::Imm32PCRel:
1048    case X86II::Imm64:
1049      return false;
1050    }
1051  }
1052
1053  /// Compute whether all of the def operands are repeated in the uses and
1054  /// therefore should be skipped.
1055  /// This determines the start of the unique operand list. We need to determine
1056  /// if all of the defs have a corresponding tied operand in the uses.
1057  /// Unfortunately, the tied operand information is encoded in the uses not
1058  /// the defs so we have to use some heuristics to find which operands to
1059  /// query.
1060  inline unsigned getOperandBias(const MCInstrDesc& Desc) {
1061    unsigned NumDefs = Desc.getNumDefs();
1062    unsigned NumOps = Desc.getNumOperands();
1063    switch (NumDefs) {
1064    default: llvm_unreachable("Unexpected number of defs");
1065    case 0:
1066      return 0;
1067    case 1:
1068      // Common two addr case.
1069      if (NumOps > 1 && Desc.getOperandConstraint(1, MCOI::TIED_TO) == 0)
1070        return 1;
1071      // Check for AVX-512 scatter which has a TIED_TO in the second to last
1072      // operand.
1073      if (NumOps == 8 &&
1074          Desc.getOperandConstraint(6, MCOI::TIED_TO) == 0)
1075        return 1;
1076      return 0;
1077    case 2:
1078      // XCHG/XADD have two destinations and two sources.
1079      if (NumOps >= 4 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
1080          Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1)
1081        return 2;
1082      // Check for gather. AVX-512 has the second tied operand early. AVX2
1083      // has it as the last op.
1084      if (NumOps == 9 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
1085          (Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1 ||
1086           Desc.getOperandConstraint(8, MCOI::TIED_TO) == 1))
1087        return 2;
1088      return 0;
1089    }
1090  }
1091
1092  /// The function returns the MCInst operand # for the first field of the
1093  /// memory operand.  If the instruction doesn't have a
1094  /// memory operand, this returns -1.
1095  ///
1096  /// Note that this ignores tied operands.  If there is a tied register which
1097  /// is duplicated in the MCInst (e.g. "EAX = addl EAX, [mem]") it is only
1098  /// counted as one operand.
1099  ///
1100  inline int getMemoryOperandNo(uint64_t TSFlags) {
1101    bool HasVEX_4V = TSFlags & X86II::VEX_4V;
1102    bool HasEVEX_K = TSFlags & X86II::EVEX_K;
1103
1104    switch (TSFlags & X86II::FormMask) {
1105    default: llvm_unreachable("Unknown FormMask value in getMemoryOperandNo!");
1106    case X86II::Pseudo:
1107    case X86II::RawFrm:
1108    case X86II::AddRegFrm:
1109    case X86II::RawFrmImm8:
1110    case X86II::RawFrmImm16:
1111    case X86II::RawFrmMemOffs:
1112    case X86II::RawFrmSrc:
1113    case X86II::RawFrmDst:
1114    case X86II::RawFrmDstSrc:
1115    case X86II::AddCCFrm:
1116    case X86II::PrefixByte:
1117      return -1;
1118    case X86II::MRMDestMem:
1119    case X86II::MRMDestMemFSIB:
1120      return 0;
1121    case X86II::MRMSrcMem:
1122    case X86II::MRMSrcMemFSIB:
1123      // Start from 1, skip any registers encoded in VEX_VVVV or I8IMM, or a
1124      // mask register.
1125      return 1 + HasVEX_4V + HasEVEX_K;
1126    case X86II::MRMSrcMem4VOp3:
1127      // Skip registers encoded in reg.
1128      return 1 + HasEVEX_K;
1129    case X86II::MRMSrcMemOp4:
1130      // Skip registers encoded in reg, VEX_VVVV, and I8IMM.
1131      return 3;
1132    case X86II::MRMSrcMemCC:
1133    case X86II::MRMDestMem4VOp3CC:
1134      // Start from 1, skip any registers encoded in VEX_VVVV or I8IMM, or a
1135      // mask register.
1136      return 1;
1137    case X86II::MRMDestReg:
1138    case X86II::MRMSrcReg:
1139    case X86II::MRMSrcReg4VOp3:
1140    case X86II::MRMSrcRegOp4:
1141    case X86II::MRMSrcRegCC:
1142    case X86II::MRMXrCC:
1143    case X86II::MRMr0:
1144    case X86II::MRMXr:
1145    case X86II::MRM0r: case X86II::MRM1r:
1146    case X86II::MRM2r: case X86II::MRM3r:
1147    case X86II::MRM4r: case X86II::MRM5r:
1148    case X86II::MRM6r: case X86II::MRM7r:
1149      return -1;
1150    case X86II::MRM0X: case X86II::MRM1X:
1151    case X86II::MRM2X: case X86II::MRM3X:
1152    case X86II::MRM4X: case X86II::MRM5X:
1153    case X86II::MRM6X: case X86II::MRM7X:
1154      return -1;
1155    case X86II::MRMXmCC:
1156    case X86II::MRMXm:
1157    case X86II::MRM0m: case X86II::MRM1m:
1158    case X86II::MRM2m: case X86II::MRM3m:
1159    case X86II::MRM4m: case X86II::MRM5m:
1160    case X86II::MRM6m: case X86II::MRM7m:
1161      // Start from 0, skip registers encoded in VEX_VVVV or a mask register.
1162      return 0 + HasVEX_4V + HasEVEX_K;
1163    case X86II::MRM_C0: case X86II::MRM_C1: case X86II::MRM_C2:
1164    case X86II::MRM_C3: case X86II::MRM_C4: case X86II::MRM_C5:
1165    case X86II::MRM_C6: case X86II::MRM_C7: case X86II::MRM_C8:
1166    case X86II::MRM_C9: case X86II::MRM_CA: case X86II::MRM_CB:
1167    case X86II::MRM_CC: case X86II::MRM_CD: case X86II::MRM_CE:
1168    case X86II::MRM_CF: case X86II::MRM_D0: case X86II::MRM_D1:
1169    case X86II::MRM_D2: case X86II::MRM_D3: case X86II::MRM_D4:
1170    case X86II::MRM_D5: case X86II::MRM_D6: case X86II::MRM_D7:
1171    case X86II::MRM_D8: case X86II::MRM_D9: case X86II::MRM_DA:
1172    case X86II::MRM_DB: case X86II::MRM_DC: case X86II::MRM_DD:
1173    case X86II::MRM_DE: case X86II::MRM_DF: case X86II::MRM_E0:
1174    case X86II::MRM_E1: case X86II::MRM_E2: case X86II::MRM_E3:
1175    case X86II::MRM_E4: case X86II::MRM_E5: case X86II::MRM_E6:
1176    case X86II::MRM_E7: case X86II::MRM_E8: case X86II::MRM_E9:
1177    case X86II::MRM_EA: case X86II::MRM_EB: case X86II::MRM_EC:
1178    case X86II::MRM_ED: case X86II::MRM_EE: case X86II::MRM_EF:
1179    case X86II::MRM_F0: case X86II::MRM_F1: case X86II::MRM_F2:
1180    case X86II::MRM_F3: case X86II::MRM_F4: case X86II::MRM_F5:
1181    case X86II::MRM_F6: case X86II::MRM_F7: case X86II::MRM_F8:
1182    case X86II::MRM_F9: case X86II::MRM_FA: case X86II::MRM_FB:
1183    case X86II::MRM_FC: case X86II::MRM_FD: case X86II::MRM_FE:
1184    case X86II::MRM_FF:
1185      return -1;
1186    }
1187  }
1188
1189  /// \returns true if the MachineOperand is a x86-64 extended (r8 or
1190  /// higher) register,  e.g. r8, xmm8, xmm13, etc.
1191  inline bool isX86_64ExtendedReg(unsigned RegNo) {
1192    if ((RegNo >= X86::XMM8 && RegNo <= X86::XMM31) ||
1193        (RegNo >= X86::YMM8 && RegNo <= X86::YMM31) ||
1194        (RegNo >= X86::ZMM8 && RegNo <= X86::ZMM31))
1195      return true;
1196
1197    switch (RegNo) {
1198    default: break;
1199    case X86::R8:    case X86::R9:    case X86::R10:   case X86::R11:
1200    case X86::R12:   case X86::R13:   case X86::R14:   case X86::R15:
1201    case X86::R8D:   case X86::R9D:   case X86::R10D:  case X86::R11D:
1202    case X86::R12D:  case X86::R13D:  case X86::R14D:  case X86::R15D:
1203    case X86::R8W:   case X86::R9W:   case X86::R10W:  case X86::R11W:
1204    case X86::R12W:  case X86::R13W:  case X86::R14W:  case X86::R15W:
1205    case X86::R8B:   case X86::R9B:   case X86::R10B:  case X86::R11B:
1206    case X86::R12B:  case X86::R13B:  case X86::R14B:  case X86::R15B:
1207    case X86::CR8:   case X86::CR9:   case X86::CR10:  case X86::CR11:
1208    case X86::CR12:  case X86::CR13:  case X86::CR14:  case X86::CR15:
1209    case X86::DR8:   case X86::DR9:   case X86::DR10:  case X86::DR11:
1210    case X86::DR12:  case X86::DR13:  case X86::DR14:  case X86::DR15:
1211      return true;
1212    }
1213    return false;
1214  }
1215
1216  /// \returns true if the MemoryOperand is a 32 extended (zmm16 or higher)
1217  /// registers, e.g. zmm21, etc.
1218  static inline bool is32ExtendedReg(unsigned RegNo) {
1219    return ((RegNo >= X86::XMM16 && RegNo <= X86::XMM31) ||
1220            (RegNo >= X86::YMM16 && RegNo <= X86::YMM31) ||
1221            (RegNo >= X86::ZMM16 && RegNo <= X86::ZMM31));
1222  }
1223
1224
1225  inline bool isX86_64NonExtLowByteReg(unsigned reg) {
1226    return (reg == X86::SPL || reg == X86::BPL ||
1227            reg == X86::SIL || reg == X86::DIL);
1228  }
1229
1230  /// \returns true if this is a masked instruction.
1231  inline bool isKMasked(uint64_t TSFlags) {
1232    return (TSFlags & X86II::EVEX_K) != 0;
1233  }
1234
1235  /// \returns true if this is a merge masked instruction.
1236  inline bool isKMergeMasked(uint64_t TSFlags) {
1237    return isKMasked(TSFlags) && (TSFlags & X86II::EVEX_Z) == 0;
1238  }
1239}
1240
1241} // end namespace llvm;
1242
1243#endif
1244