1//=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// This file implements the WebAssemblyTargetLowering class.
11///
12//===----------------------------------------------------------------------===//
13
14#include "WebAssemblyISelLowering.h"
15#include "MCTargetDesc/WebAssemblyMCTargetDesc.h"
16#include "Utils/WebAssemblyTypeUtilities.h"
17#include "Utils/WebAssemblyUtilities.h"
18#include "WebAssemblyMachineFunctionInfo.h"
19#include "WebAssemblySubtarget.h"
20#include "WebAssemblyTargetMachine.h"
21#include "llvm/CodeGen/CallingConvLower.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineFunctionPass.h"
24#include "llvm/CodeGen/MachineInstrBuilder.h"
25#include "llvm/CodeGen/MachineJumpTableInfo.h"
26#include "llvm/CodeGen/MachineModuleInfo.h"
27#include "llvm/CodeGen/MachineRegisterInfo.h"
28#include "llvm/CodeGen/SelectionDAG.h"
29#include "llvm/CodeGen/SelectionDAGNodes.h"
30#include "llvm/IR/DiagnosticInfo.h"
31#include "llvm/IR/DiagnosticPrinter.h"
32#include "llvm/IR/Function.h"
33#include "llvm/IR/Intrinsics.h"
34#include "llvm/IR/IntrinsicsWebAssembly.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/KnownBits.h"
38#include "llvm/Support/MathExtras.h"
39#include "llvm/Support/raw_ostream.h"
40#include "llvm/Target/TargetOptions.h"
41using namespace llvm;
42
43#define DEBUG_TYPE "wasm-lower"
44
45WebAssemblyTargetLowering::WebAssemblyTargetLowering(
46    const TargetMachine &TM, const WebAssemblySubtarget &STI)
47    : TargetLowering(TM), Subtarget(&STI) {
48  auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32;
49
50  // Booleans always contain 0 or 1.
51  setBooleanContents(ZeroOrOneBooleanContent);
52  // Except in SIMD vectors
53  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
54  // We don't know the microarchitecture here, so just reduce register pressure.
55  setSchedulingPreference(Sched::RegPressure);
56  // Tell ISel that we have a stack pointer.
57  setStackPointerRegisterToSaveRestore(
58      Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32);
59  // Set up the register classes.
60  addRegisterClass(MVT::i32, &WebAssembly::I32RegClass);
61  addRegisterClass(MVT::i64, &WebAssembly::I64RegClass);
62  addRegisterClass(MVT::f32, &WebAssembly::F32RegClass);
63  addRegisterClass(MVT::f64, &WebAssembly::F64RegClass);
64  if (Subtarget->hasSIMD128()) {
65    addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass);
66    addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass);
67    addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass);
68    addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass);
69    addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass);
70    addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass);
71  }
72  if (Subtarget->hasReferenceTypes()) {
73    addRegisterClass(MVT::externref, &WebAssembly::EXTERNREFRegClass);
74    addRegisterClass(MVT::funcref, &WebAssembly::FUNCREFRegClass);
75  }
76  // Compute derived properties from the register classes.
77  computeRegisterProperties(Subtarget->getRegisterInfo());
78
79  // Transform loads and stores to pointers in address space 1 to loads and
80  // stores to WebAssembly global variables, outside linear memory.
81  for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) {
82    setOperationAction(ISD::LOAD, T, Custom);
83    setOperationAction(ISD::STORE, T, Custom);
84  }
85  if (Subtarget->hasSIMD128()) {
86    for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
87                   MVT::v2f64}) {
88      setOperationAction(ISD::LOAD, T, Custom);
89      setOperationAction(ISD::STORE, T, Custom);
90    }
91  }
92  if (Subtarget->hasReferenceTypes()) {
93    // We need custom load and store lowering for both externref, funcref and
94    // Other. The MVT::Other here represents tables of reference types.
95    for (auto T : {MVT::externref, MVT::funcref, MVT::Other}) {
96      setOperationAction(ISD::LOAD, T, Custom);
97      setOperationAction(ISD::STORE, T, Custom);
98    }
99  }
100
101  setOperationAction(ISD::GlobalAddress, MVTPtr, Custom);
102  setOperationAction(ISD::GlobalTLSAddress, MVTPtr, Custom);
103  setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom);
104  setOperationAction(ISD::JumpTable, MVTPtr, Custom);
105  setOperationAction(ISD::BlockAddress, MVTPtr, Custom);
106  setOperationAction(ISD::BRIND, MVT::Other, Custom);
107
108  // Take the default expansion for va_arg, va_copy, and va_end. There is no
109  // default action for va_start, so we do that custom.
110  setOperationAction(ISD::VASTART, MVT::Other, Custom);
111  setOperationAction(ISD::VAARG, MVT::Other, Expand);
112  setOperationAction(ISD::VACOPY, MVT::Other, Expand);
113  setOperationAction(ISD::VAEND, MVT::Other, Expand);
114
115  for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) {
116    // Don't expand the floating-point types to constant pools.
117    setOperationAction(ISD::ConstantFP, T, Legal);
118    // Expand floating-point comparisons.
119    for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE,
120                    ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE})
121      setCondCodeAction(CC, T, Expand);
122    // Expand floating-point library function operators.
123    for (auto Op :
124         {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA})
125      setOperationAction(Op, T, Expand);
126    // Note supported floating-point library function operators that otherwise
127    // default to expand.
128    for (auto Op :
129         {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, ISD::FRINT})
130      setOperationAction(Op, T, Legal);
131    // Support minimum and maximum, which otherwise default to expand.
132    setOperationAction(ISD::FMINIMUM, T, Legal);
133    setOperationAction(ISD::FMAXIMUM, T, Legal);
134    // WebAssembly currently has no builtin f16 support.
135    setOperationAction(ISD::FP16_TO_FP, T, Expand);
136    setOperationAction(ISD::FP_TO_FP16, T, Expand);
137    setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand);
138    setTruncStoreAction(T, MVT::f16, Expand);
139  }
140
141  // Expand unavailable integer operations.
142  for (auto Op :
143       {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU,
144        ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS,
145        ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) {
146    for (auto T : {MVT::i32, MVT::i64})
147      setOperationAction(Op, T, Expand);
148    if (Subtarget->hasSIMD128())
149      for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
150        setOperationAction(Op, T, Expand);
151  }
152
153  if (Subtarget->hasNontrappingFPToInt())
154    for (auto Op : {ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT})
155      for (auto T : {MVT::i32, MVT::i64})
156        setOperationAction(Op, T, Custom);
157
158  // SIMD-specific configuration
159  if (Subtarget->hasSIMD128()) {
160    // Hoist bitcasts out of shuffles
161    setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
162
163    // Combine extends of extract_subvectors into widening ops
164    setTargetDAGCombine({ISD::SIGN_EXTEND, ISD::ZERO_EXTEND});
165
166    // Combine int_to_fp or fp_extend of extract_vectors and vice versa into
167    // conversions ops
168    setTargetDAGCombine({ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_EXTEND,
169                         ISD::EXTRACT_SUBVECTOR});
170
171    // Combine fp_to_{s,u}int_sat or fp_round of concat_vectors or vice versa
172    // into conversion ops
173    setTargetDAGCombine({ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT,
174                         ISD::FP_ROUND, ISD::CONCAT_VECTORS});
175
176    setTargetDAGCombine(ISD::TRUNCATE);
177
178    // Support saturating add for i8x16 and i16x8
179    for (auto Op : {ISD::SADDSAT, ISD::UADDSAT})
180      for (auto T : {MVT::v16i8, MVT::v8i16})
181        setOperationAction(Op, T, Legal);
182
183    // Support integer abs
184    for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
185      setOperationAction(ISD::ABS, T, Legal);
186
187    // Custom lower BUILD_VECTORs to minimize number of replace_lanes
188    for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
189                   MVT::v2f64})
190      setOperationAction(ISD::BUILD_VECTOR, T, Custom);
191
192    // We have custom shuffle lowering to expose the shuffle mask
193    for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
194                   MVT::v2f64})
195      setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom);
196
197    // Support splatting
198    for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
199		   MVT::v2f64})
200      setOperationAction(ISD::SPLAT_VECTOR, T, Legal);
201
202    // Custom lowering since wasm shifts must have a scalar shift amount
203    for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL})
204      for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
205        setOperationAction(Op, T, Custom);
206
207    // Custom lower lane accesses to expand out variable indices
208    for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT})
209      for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
210                     MVT::v2f64})
211        setOperationAction(Op, T, Custom);
212
213    // There is no i8x16.mul instruction
214    setOperationAction(ISD::MUL, MVT::v16i8, Expand);
215
216    // There is no vector conditional select instruction
217    for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
218                   MVT::v2f64})
219      setOperationAction(ISD::SELECT_CC, T, Expand);
220
221    // Expand integer operations supported for scalars but not SIMD
222    for (auto Op :
223         {ISD::SDIV, ISD::UDIV, ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR})
224      for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
225        setOperationAction(Op, T, Expand);
226
227    // But we do have integer min and max operations
228    for (auto Op : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX})
229      for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32})
230        setOperationAction(Op, T, Legal);
231
232    // And we have popcnt for i8x16. It can be used to expand ctlz/cttz.
233    setOperationAction(ISD::CTPOP, MVT::v16i8, Legal);
234    setOperationAction(ISD::CTLZ, MVT::v16i8, Expand);
235    setOperationAction(ISD::CTTZ, MVT::v16i8, Expand);
236
237    // Custom lower bit counting operations for other types to scalarize them.
238    for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP})
239      for (auto T : {MVT::v8i16, MVT::v4i32, MVT::v2i64})
240        setOperationAction(Op, T, Custom);
241
242    // Expand float operations supported for scalars but not SIMD
243    for (auto Op : {ISD::FCOPYSIGN, ISD::FLOG, ISD::FLOG2, ISD::FLOG10,
244                    ISD::FEXP, ISD::FEXP2, ISD::FRINT})
245      for (auto T : {MVT::v4f32, MVT::v2f64})
246        setOperationAction(Op, T, Expand);
247
248    // Unsigned comparison operations are unavailable for i64x2 vectors.
249    for (auto CC : {ISD::SETUGT, ISD::SETUGE, ISD::SETULT, ISD::SETULE})
250      setCondCodeAction(CC, MVT::v2i64, Custom);
251
252    // 64x2 conversions are not in the spec
253    for (auto Op :
254         {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT})
255      for (auto T : {MVT::v2i64, MVT::v2f64})
256        setOperationAction(Op, T, Expand);
257
258    // But saturating fp_to_int converstions are
259    for (auto Op : {ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT})
260      setOperationAction(Op, MVT::v4i32, Custom);
261  }
262
263  // As a special case, these operators use the type to mean the type to
264  // sign-extend from.
265  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
266  if (!Subtarget->hasSignExt()) {
267    // Sign extends are legal only when extending a vector extract
268    auto Action = Subtarget->hasSIMD128() ? Custom : Expand;
269    for (auto T : {MVT::i8, MVT::i16, MVT::i32})
270      setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action);
271  }
272  for (auto T : MVT::integer_fixedlen_vector_valuetypes())
273    setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand);
274
275  // Dynamic stack allocation: use the default expansion.
276  setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
277  setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
278  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand);
279
280  setOperationAction(ISD::FrameIndex, MVT::i32, Custom);
281  setOperationAction(ISD::FrameIndex, MVT::i64, Custom);
282  setOperationAction(ISD::CopyToReg, MVT::Other, Custom);
283
284  // Expand these forms; we pattern-match the forms that we can handle in isel.
285  for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64})
286    for (auto Op : {ISD::BR_CC, ISD::SELECT_CC})
287      setOperationAction(Op, T, Expand);
288
289  // We have custom switch handling.
290  setOperationAction(ISD::BR_JT, MVT::Other, Custom);
291
292  // WebAssembly doesn't have:
293  //  - Floating-point extending loads.
294  //  - Floating-point truncating stores.
295  //  - i1 extending loads.
296  //  - truncating SIMD stores and most extending loads
297  setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
298  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
299  for (auto T : MVT::integer_valuetypes())
300    for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD})
301      setLoadExtAction(Ext, T, MVT::i1, Promote);
302  if (Subtarget->hasSIMD128()) {
303    for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32,
304                   MVT::v2f64}) {
305      for (auto MemT : MVT::fixedlen_vector_valuetypes()) {
306        if (MVT(T) != MemT) {
307          setTruncStoreAction(T, MemT, Expand);
308          for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD})
309            setLoadExtAction(Ext, T, MemT, Expand);
310        }
311      }
312    }
313    // But some vector extending loads are legal
314    for (auto Ext : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) {
315      setLoadExtAction(Ext, MVT::v8i16, MVT::v8i8, Legal);
316      setLoadExtAction(Ext, MVT::v4i32, MVT::v4i16, Legal);
317      setLoadExtAction(Ext, MVT::v2i64, MVT::v2i32, Legal);
318    }
319    setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Legal);
320  }
321
322  // Don't do anything clever with build_pairs
323  setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
324
325  // Trap lowers to wasm unreachable
326  setOperationAction(ISD::TRAP, MVT::Other, Legal);
327  setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
328
329  // Exception handling intrinsics
330  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
331  setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
332  setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
333
334  setMaxAtomicSizeInBitsSupported(64);
335
336  // Override the __gnu_f2h_ieee/__gnu_h2f_ieee names so that the f32 name is
337  // consistent with the f64 and f128 names.
338  setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
339  setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
340
341  // Define the emscripten name for return address helper.
342  // TODO: when implementing other Wasm backends, make this generic or only do
343  // this on emscripten depending on what they end up doing.
344  setLibcallName(RTLIB::RETURN_ADDRESS, "emscripten_return_address");
345
346  // Always convert switches to br_tables unless there is only one case, which
347  // is equivalent to a simple branch. This reduces code size for wasm, and we
348  // defer possible jump table optimizations to the VM.
349  setMinimumJumpTableEntries(2);
350}
351
352MVT WebAssemblyTargetLowering::getPointerTy(const DataLayout &DL,
353                                            uint32_t AS) const {
354  if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_EXTERNREF)
355    return MVT::externref;
356  if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_FUNCREF)
357    return MVT::funcref;
358  return TargetLowering::getPointerTy(DL, AS);
359}
360
361MVT WebAssemblyTargetLowering::getPointerMemTy(const DataLayout &DL,
362                                               uint32_t AS) const {
363  if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_EXTERNREF)
364    return MVT::externref;
365  if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_FUNCREF)
366    return MVT::funcref;
367  return TargetLowering::getPointerMemTy(DL, AS);
368}
369
370TargetLowering::AtomicExpansionKind
371WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
372  // We have wasm instructions for these
373  switch (AI->getOperation()) {
374  case AtomicRMWInst::Add:
375  case AtomicRMWInst::Sub:
376  case AtomicRMWInst::And:
377  case AtomicRMWInst::Or:
378  case AtomicRMWInst::Xor:
379  case AtomicRMWInst::Xchg:
380    return AtomicExpansionKind::None;
381  default:
382    break;
383  }
384  return AtomicExpansionKind::CmpXChg;
385}
386
387bool WebAssemblyTargetLowering::shouldScalarizeBinop(SDValue VecOp) const {
388  // Implementation copied from X86TargetLowering.
389  unsigned Opc = VecOp.getOpcode();
390
391  // Assume target opcodes can't be scalarized.
392  // TODO - do we have any exceptions?
393  if (Opc >= ISD::BUILTIN_OP_END)
394    return false;
395
396  // If the vector op is not supported, try to convert to scalar.
397  EVT VecVT = VecOp.getValueType();
398  if (!isOperationLegalOrCustomOrPromote(Opc, VecVT))
399    return true;
400
401  // If the vector op is supported, but the scalar op is not, the transform may
402  // not be worthwhile.
403  EVT ScalarVT = VecVT.getScalarType();
404  return isOperationLegalOrCustomOrPromote(Opc, ScalarVT);
405}
406
407FastISel *WebAssemblyTargetLowering::createFastISel(
408    FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const {
409  return WebAssembly::createFastISel(FuncInfo, LibInfo);
410}
411
412MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/,
413                                                      EVT VT) const {
414  unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1);
415  if (BitWidth > 1 && BitWidth < 8)
416    BitWidth = 8;
417
418  if (BitWidth > 64) {
419    // The shift will be lowered to a libcall, and compiler-rt libcalls expect
420    // the count to be an i32.
421    BitWidth = 32;
422    assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) &&
423           "32-bit shift counts ought to be enough for anyone");
424  }
425
426  MVT Result = MVT::getIntegerVT(BitWidth);
427  assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE &&
428         "Unable to represent scalar shift amount type");
429  return Result;
430}
431
432// Lower an fp-to-int conversion operator from the LLVM opcode, which has an
433// undefined result on invalid/overflow, to the WebAssembly opcode, which
434// traps on invalid/overflow.
435static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL,
436                                       MachineBasicBlock *BB,
437                                       const TargetInstrInfo &TII,
438                                       bool IsUnsigned, bool Int64,
439                                       bool Float64, unsigned LoweredOpcode) {
440  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
441
442  Register OutReg = MI.getOperand(0).getReg();
443  Register InReg = MI.getOperand(1).getReg();
444
445  unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32;
446  unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32;
447  unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32;
448  unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32;
449  unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32;
450  unsigned Eqz = WebAssembly::EQZ_I32;
451  unsigned And = WebAssembly::AND_I32;
452  int64_t Limit = Int64 ? INT64_MIN : INT32_MIN;
453  int64_t Substitute = IsUnsigned ? 0 : Limit;
454  double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit;
455  auto &Context = BB->getParent()->getFunction().getContext();
456  Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context);
457
458  const BasicBlock *LLVMBB = BB->getBasicBlock();
459  MachineFunction *F = BB->getParent();
460  MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB);
461  MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB);
462  MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB);
463
464  MachineFunction::iterator It = ++BB->getIterator();
465  F->insert(It, FalseMBB);
466  F->insert(It, TrueMBB);
467  F->insert(It, DoneMBB);
468
469  // Transfer the remainder of BB and its successor edges to DoneMBB.
470  DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end());
471  DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
472
473  BB->addSuccessor(TrueMBB);
474  BB->addSuccessor(FalseMBB);
475  TrueMBB->addSuccessor(DoneMBB);
476  FalseMBB->addSuccessor(DoneMBB);
477
478  unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg;
479  Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
480  Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
481  CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
482  EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
483  FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg));
484  TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg));
485
486  MI.eraseFromParent();
487  // For signed numbers, we can do a single comparison to determine whether
488  // fabs(x) is within range.
489  if (IsUnsigned) {
490    Tmp0 = InReg;
491  } else {
492    BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg);
493  }
494  BuildMI(BB, DL, TII.get(FConst), Tmp1)
495      .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal)));
496  BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1);
497
498  // For unsigned numbers, we have to do a separate comparison with zero.
499  if (IsUnsigned) {
500    Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
501    Register SecondCmpReg =
502        MRI.createVirtualRegister(&WebAssembly::I32RegClass);
503    Register AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
504    BuildMI(BB, DL, TII.get(FConst), Tmp1)
505        .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0)));
506    BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1);
507    BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg);
508    CmpReg = AndReg;
509  }
510
511  BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg);
512
513  // Create the CFG diamond to select between doing the conversion or using
514  // the substitute value.
515  BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg);
516  BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg);
517  BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB);
518  BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute);
519  BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg)
520      .addReg(FalseReg)
521      .addMBB(FalseMBB)
522      .addReg(TrueReg)
523      .addMBB(TrueMBB);
524
525  return DoneMBB;
526}
527
528static MachineBasicBlock *
529LowerCallResults(MachineInstr &CallResults, DebugLoc DL, MachineBasicBlock *BB,
530                 const WebAssemblySubtarget *Subtarget,
531                 const TargetInstrInfo &TII) {
532  MachineInstr &CallParams = *CallResults.getPrevNode();
533  assert(CallParams.getOpcode() == WebAssembly::CALL_PARAMS);
534  assert(CallResults.getOpcode() == WebAssembly::CALL_RESULTS ||
535         CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS);
536
537  bool IsIndirect = CallParams.getOperand(0).isReg();
538  bool IsRetCall = CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS;
539
540  bool IsFuncrefCall = false;
541  if (IsIndirect) {
542    Register Reg = CallParams.getOperand(0).getReg();
543    const MachineFunction *MF = BB->getParent();
544    const MachineRegisterInfo &MRI = MF->getRegInfo();
545    const TargetRegisterClass *TRC = MRI.getRegClass(Reg);
546    IsFuncrefCall = (TRC == &WebAssembly::FUNCREFRegClass);
547    assert(!IsFuncrefCall || Subtarget->hasReferenceTypes());
548  }
549
550  unsigned CallOp;
551  if (IsIndirect && IsRetCall) {
552    CallOp = WebAssembly::RET_CALL_INDIRECT;
553  } else if (IsIndirect) {
554    CallOp = WebAssembly::CALL_INDIRECT;
555  } else if (IsRetCall) {
556    CallOp = WebAssembly::RET_CALL;
557  } else {
558    CallOp = WebAssembly::CALL;
559  }
560
561  MachineFunction &MF = *BB->getParent();
562  const MCInstrDesc &MCID = TII.get(CallOp);
563  MachineInstrBuilder MIB(MF, MF.CreateMachineInstr(MCID, DL));
564
565  // See if we must truncate the function pointer.
566  // CALL_INDIRECT takes an i32, but in wasm64 we represent function pointers
567  // as 64-bit for uniformity with other pointer types.
568  // See also: WebAssemblyFastISel::selectCall
569  if (IsIndirect && MF.getSubtarget<WebAssemblySubtarget>().hasAddr64()) {
570    Register Reg32 =
571        MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass);
572    auto &FnPtr = CallParams.getOperand(0);
573    BuildMI(*BB, CallResults.getIterator(), DL,
574            TII.get(WebAssembly::I32_WRAP_I64), Reg32)
575        .addReg(FnPtr.getReg());
576    FnPtr.setReg(Reg32);
577  }
578
579  // Move the function pointer to the end of the arguments for indirect calls
580  if (IsIndirect) {
581    auto FnPtr = CallParams.getOperand(0);
582    CallParams.removeOperand(0);
583
584    // For funcrefs, call_indirect is done through __funcref_call_table and the
585    // funcref is always installed in slot 0 of the table, therefore instead of
586    // having the function pointer added at the end of the params list, a zero
587    // (the index in
588    // __funcref_call_table is added).
589    if (IsFuncrefCall) {
590      Register RegZero =
591          MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass);
592      MachineInstrBuilder MIBC0 =
593          BuildMI(MF, DL, TII.get(WebAssembly::CONST_I32), RegZero).addImm(0);
594
595      BB->insert(CallResults.getIterator(), MIBC0);
596      MachineInstrBuilder(MF, CallParams).addReg(RegZero);
597    } else
598      CallParams.addOperand(FnPtr);
599  }
600
601  for (auto Def : CallResults.defs())
602    MIB.add(Def);
603
604  if (IsIndirect) {
605    // Placeholder for the type index.
606    MIB.addImm(0);
607    // The table into which this call_indirect indexes.
608    MCSymbolWasm *Table = IsFuncrefCall
609                              ? WebAssembly::getOrCreateFuncrefCallTableSymbol(
610                                    MF.getContext(), Subtarget)
611                              : WebAssembly::getOrCreateFunctionTableSymbol(
612                                    MF.getContext(), Subtarget);
613    if (Subtarget->hasReferenceTypes()) {
614      MIB.addSym(Table);
615    } else {
616      // For the MVP there is at most one table whose number is 0, but we can't
617      // write a table symbol or issue relocations.  Instead we just ensure the
618      // table is live and write a zero.
619      Table->setNoStrip();
620      MIB.addImm(0);
621    }
622  }
623
624  for (auto Use : CallParams.uses())
625    MIB.add(Use);
626
627  BB->insert(CallResults.getIterator(), MIB);
628  CallParams.eraseFromParent();
629  CallResults.eraseFromParent();
630
631  // If this is a funcref call, to avoid hidden GC roots, we need to clear the
632  // table slot with ref.null upon call_indirect return.
633  //
634  // This generates the following code, which comes right after a call_indirect
635  // of a funcref:
636  //
637  //    i32.const 0
638  //    ref.null func
639  //    table.set __funcref_call_table
640  if (IsIndirect && IsFuncrefCall) {
641    MCSymbolWasm *Table = WebAssembly::getOrCreateFuncrefCallTableSymbol(
642        MF.getContext(), Subtarget);
643    Register RegZero =
644        MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass);
645    MachineInstr *Const0 =
646        BuildMI(MF, DL, TII.get(WebAssembly::CONST_I32), RegZero).addImm(0);
647    BB->insertAfter(MIB.getInstr()->getIterator(), Const0);
648
649    Register RegFuncref =
650        MF.getRegInfo().createVirtualRegister(&WebAssembly::FUNCREFRegClass);
651    MachineInstr *RefNull =
652        BuildMI(MF, DL, TII.get(WebAssembly::REF_NULL_FUNCREF), RegFuncref);
653    BB->insertAfter(Const0->getIterator(), RefNull);
654
655    MachineInstr *TableSet =
656        BuildMI(MF, DL, TII.get(WebAssembly::TABLE_SET_FUNCREF))
657            .addSym(Table)
658            .addReg(RegZero)
659            .addReg(RegFuncref);
660    BB->insertAfter(RefNull->getIterator(), TableSet);
661  }
662
663  return BB;
664}
665
666MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter(
667    MachineInstr &MI, MachineBasicBlock *BB) const {
668  const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
669  DebugLoc DL = MI.getDebugLoc();
670
671  switch (MI.getOpcode()) {
672  default:
673    llvm_unreachable("Unexpected instr type to insert");
674  case WebAssembly::FP_TO_SINT_I32_F32:
675    return LowerFPToInt(MI, DL, BB, TII, false, false, false,
676                        WebAssembly::I32_TRUNC_S_F32);
677  case WebAssembly::FP_TO_UINT_I32_F32:
678    return LowerFPToInt(MI, DL, BB, TII, true, false, false,
679                        WebAssembly::I32_TRUNC_U_F32);
680  case WebAssembly::FP_TO_SINT_I64_F32:
681    return LowerFPToInt(MI, DL, BB, TII, false, true, false,
682                        WebAssembly::I64_TRUNC_S_F32);
683  case WebAssembly::FP_TO_UINT_I64_F32:
684    return LowerFPToInt(MI, DL, BB, TII, true, true, false,
685                        WebAssembly::I64_TRUNC_U_F32);
686  case WebAssembly::FP_TO_SINT_I32_F64:
687    return LowerFPToInt(MI, DL, BB, TII, false, false, true,
688                        WebAssembly::I32_TRUNC_S_F64);
689  case WebAssembly::FP_TO_UINT_I32_F64:
690    return LowerFPToInt(MI, DL, BB, TII, true, false, true,
691                        WebAssembly::I32_TRUNC_U_F64);
692  case WebAssembly::FP_TO_SINT_I64_F64:
693    return LowerFPToInt(MI, DL, BB, TII, false, true, true,
694                        WebAssembly::I64_TRUNC_S_F64);
695  case WebAssembly::FP_TO_UINT_I64_F64:
696    return LowerFPToInt(MI, DL, BB, TII, true, true, true,
697                        WebAssembly::I64_TRUNC_U_F64);
698  case WebAssembly::CALL_RESULTS:
699  case WebAssembly::RET_CALL_RESULTS:
700    return LowerCallResults(MI, DL, BB, Subtarget, TII);
701  }
702}
703
704const char *
705WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const {
706  switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) {
707  case WebAssemblyISD::FIRST_NUMBER:
708  case WebAssemblyISD::FIRST_MEM_OPCODE:
709    break;
710#define HANDLE_NODETYPE(NODE)                                                  \
711  case WebAssemblyISD::NODE:                                                   \
712    return "WebAssemblyISD::" #NODE;
713#define HANDLE_MEM_NODETYPE(NODE) HANDLE_NODETYPE(NODE)
714#include "WebAssemblyISD.def"
715#undef HANDLE_MEM_NODETYPE
716#undef HANDLE_NODETYPE
717  }
718  return nullptr;
719}
720
721std::pair<unsigned, const TargetRegisterClass *>
722WebAssemblyTargetLowering::getRegForInlineAsmConstraint(
723    const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
724  // First, see if this is a constraint that directly corresponds to a
725  // WebAssembly register class.
726  if (Constraint.size() == 1) {
727    switch (Constraint[0]) {
728    case 'r':
729      assert(VT != MVT::iPTR && "Pointer MVT not expected here");
730      if (Subtarget->hasSIMD128() && VT.isVector()) {
731        if (VT.getSizeInBits() == 128)
732          return std::make_pair(0U, &WebAssembly::V128RegClass);
733      }
734      if (VT.isInteger() && !VT.isVector()) {
735        if (VT.getSizeInBits() <= 32)
736          return std::make_pair(0U, &WebAssembly::I32RegClass);
737        if (VT.getSizeInBits() <= 64)
738          return std::make_pair(0U, &WebAssembly::I64RegClass);
739      }
740      if (VT.isFloatingPoint() && !VT.isVector()) {
741        switch (VT.getSizeInBits()) {
742        case 32:
743          return std::make_pair(0U, &WebAssembly::F32RegClass);
744        case 64:
745          return std::make_pair(0U, &WebAssembly::F64RegClass);
746        default:
747          break;
748        }
749      }
750      break;
751    default:
752      break;
753    }
754  }
755
756  return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
757}
758
759bool WebAssemblyTargetLowering::isCheapToSpeculateCttz(Type *Ty) const {
760  // Assume ctz is a relatively cheap operation.
761  return true;
762}
763
764bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz(Type *Ty) const {
765  // Assume clz is a relatively cheap operation.
766  return true;
767}
768
769bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL,
770                                                      const AddrMode &AM,
771                                                      Type *Ty, unsigned AS,
772                                                      Instruction *I) const {
773  // WebAssembly offsets are added as unsigned without wrapping. The
774  // isLegalAddressingMode gives us no way to determine if wrapping could be
775  // happening, so we approximate this by accepting only non-negative offsets.
776  if (AM.BaseOffs < 0)
777    return false;
778
779  // WebAssembly has no scale register operands.
780  if (AM.Scale != 0)
781    return false;
782
783  // Everything else is legal.
784  return true;
785}
786
787bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses(
788    EVT /*VT*/, unsigned /*AddrSpace*/, Align /*Align*/,
789    MachineMemOperand::Flags /*Flags*/, unsigned *Fast) const {
790  // WebAssembly supports unaligned accesses, though it should be declared
791  // with the p2align attribute on loads and stores which do so, and there
792  // may be a performance impact. We tell LLVM they're "fast" because
793  // for the kinds of things that LLVM uses this for (merging adjacent stores
794  // of constants, etc.), WebAssembly implementations will either want the
795  // unaligned access or they'll split anyway.
796  if (Fast)
797    *Fast = 1;
798  return true;
799}
800
801bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT,
802                                              AttributeList Attr) const {
803  // The current thinking is that wasm engines will perform this optimization,
804  // so we can save on code size.
805  return true;
806}
807
808bool WebAssemblyTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const {
809  EVT ExtT = ExtVal.getValueType();
810  EVT MemT = cast<LoadSDNode>(ExtVal->getOperand(0))->getValueType(0);
811  return (ExtT == MVT::v8i16 && MemT == MVT::v8i8) ||
812         (ExtT == MVT::v4i32 && MemT == MVT::v4i16) ||
813         (ExtT == MVT::v2i64 && MemT == MVT::v2i32);
814}
815
816bool WebAssemblyTargetLowering::isOffsetFoldingLegal(
817    const GlobalAddressSDNode *GA) const {
818  // Wasm doesn't support function addresses with offsets
819  const GlobalValue *GV = GA->getGlobal();
820  return isa<Function>(GV) ? false : TargetLowering::isOffsetFoldingLegal(GA);
821}
822
823EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL,
824                                                  LLVMContext &C,
825                                                  EVT VT) const {
826  if (VT.isVector())
827    return VT.changeVectorElementTypeToInteger();
828
829  // So far, all branch instructions in Wasm take an I32 condition.
830  // The default TargetLowering::getSetCCResultType returns the pointer size,
831  // which would be useful to reduce instruction counts when testing
832  // against 64-bit pointers/values if at some point Wasm supports that.
833  return EVT::getIntegerVT(C, 32);
834}
835
836bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
837                                                   const CallInst &I,
838                                                   MachineFunction &MF,
839                                                   unsigned Intrinsic) const {
840  switch (Intrinsic) {
841  case Intrinsic::wasm_memory_atomic_notify:
842    Info.opc = ISD::INTRINSIC_W_CHAIN;
843    Info.memVT = MVT::i32;
844    Info.ptrVal = I.getArgOperand(0);
845    Info.offset = 0;
846    Info.align = Align(4);
847    // atomic.notify instruction does not really load the memory specified with
848    // this argument, but MachineMemOperand should either be load or store, so
849    // we set this to a load.
850    // FIXME Volatile isn't really correct, but currently all LLVM atomic
851    // instructions are treated as volatiles in the backend, so we should be
852    // consistent. The same applies for wasm_atomic_wait intrinsics too.
853    Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
854    return true;
855  case Intrinsic::wasm_memory_atomic_wait32:
856    Info.opc = ISD::INTRINSIC_W_CHAIN;
857    Info.memVT = MVT::i32;
858    Info.ptrVal = I.getArgOperand(0);
859    Info.offset = 0;
860    Info.align = Align(4);
861    Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
862    return true;
863  case Intrinsic::wasm_memory_atomic_wait64:
864    Info.opc = ISD::INTRINSIC_W_CHAIN;
865    Info.memVT = MVT::i64;
866    Info.ptrVal = I.getArgOperand(0);
867    Info.offset = 0;
868    Info.align = Align(8);
869    Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
870    return true;
871  default:
872    return false;
873  }
874}
875
876void WebAssemblyTargetLowering::computeKnownBitsForTargetNode(
877    const SDValue Op, KnownBits &Known, const APInt &DemandedElts,
878    const SelectionDAG &DAG, unsigned Depth) const {
879  switch (Op.getOpcode()) {
880  default:
881    break;
882  case ISD::INTRINSIC_WO_CHAIN: {
883    unsigned IntNo = Op.getConstantOperandVal(0);
884    switch (IntNo) {
885    default:
886      break;
887    case Intrinsic::wasm_bitmask: {
888      unsigned BitWidth = Known.getBitWidth();
889      EVT VT = Op.getOperand(1).getSimpleValueType();
890      unsigned PossibleBits = VT.getVectorNumElements();
891      APInt ZeroMask = APInt::getHighBitsSet(BitWidth, BitWidth - PossibleBits);
892      Known.Zero |= ZeroMask;
893      break;
894    }
895    }
896  }
897  }
898}
899
900TargetLoweringBase::LegalizeTypeAction
901WebAssemblyTargetLowering::getPreferredVectorAction(MVT VT) const {
902  if (VT.isFixedLengthVector()) {
903    MVT EltVT = VT.getVectorElementType();
904    // We have legal vector types with these lane types, so widening the
905    // vector would let us use some of the lanes directly without having to
906    // extend or truncate values.
907    if (EltVT == MVT::i8 || EltVT == MVT::i16 || EltVT == MVT::i32 ||
908        EltVT == MVT::i64 || EltVT == MVT::f32 || EltVT == MVT::f64)
909      return TypeWidenVector;
910  }
911
912  return TargetLoweringBase::getPreferredVectorAction(VT);
913}
914
915bool WebAssemblyTargetLowering::shouldSimplifyDemandedVectorElts(
916    SDValue Op, const TargetLoweringOpt &TLO) const {
917  // ISel process runs DAGCombiner after legalization; this step is called
918  // SelectionDAG optimization phase. This post-legalization combining process
919  // runs DAGCombiner on each node, and if there was a change to be made,
920  // re-runs legalization again on it and its user nodes to make sure
921  // everythiing is in a legalized state.
922  //
923  // The legalization calls lowering routines, and we do our custom lowering for
924  // build_vectors (LowerBUILD_VECTOR), which converts undef vector elements
925  // into zeros. But there is a set of routines in DAGCombiner that turns unused
926  // (= not demanded) nodes into undef, among which SimplifyDemandedVectorElts
927  // turns unused vector elements into undefs. But this routine does not work
928  // with our custom LowerBUILD_VECTOR, which turns undefs into zeros. This
929  // combination can result in a infinite loop, in which undefs are converted to
930  // zeros in legalization and back to undefs in combining.
931  //
932  // So after DAG is legalized, we prevent SimplifyDemandedVectorElts from
933  // running for build_vectors.
934  if (Op.getOpcode() == ISD::BUILD_VECTOR && TLO.LegalOps && TLO.LegalTys)
935    return false;
936  return true;
937}
938
939//===----------------------------------------------------------------------===//
940// WebAssembly Lowering private implementation.
941//===----------------------------------------------------------------------===//
942
943//===----------------------------------------------------------------------===//
944// Lowering Code
945//===----------------------------------------------------------------------===//
946
947static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) {
948  MachineFunction &MF = DAG.getMachineFunction();
949  DAG.getContext()->diagnose(
950      DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc()));
951}
952
953// Test whether the given calling convention is supported.
954static bool callingConvSupported(CallingConv::ID CallConv) {
955  // We currently support the language-independent target-independent
956  // conventions. We don't yet have a way to annotate calls with properties like
957  // "cold", and we don't have any call-clobbered registers, so these are mostly
958  // all handled the same.
959  return CallConv == CallingConv::C || CallConv == CallingConv::Fast ||
960         CallConv == CallingConv::Cold ||
961         CallConv == CallingConv::PreserveMost ||
962         CallConv == CallingConv::PreserveAll ||
963         CallConv == CallingConv::CXX_FAST_TLS ||
964         CallConv == CallingConv::WASM_EmscriptenInvoke ||
965         CallConv == CallingConv::Swift;
966}
967
968SDValue
969WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI,
970                                     SmallVectorImpl<SDValue> &InVals) const {
971  SelectionDAG &DAG = CLI.DAG;
972  SDLoc DL = CLI.DL;
973  SDValue Chain = CLI.Chain;
974  SDValue Callee = CLI.Callee;
975  MachineFunction &MF = DAG.getMachineFunction();
976  auto Layout = MF.getDataLayout();
977
978  CallingConv::ID CallConv = CLI.CallConv;
979  if (!callingConvSupported(CallConv))
980    fail(DL, DAG,
981         "WebAssembly doesn't support language-specific or target-specific "
982         "calling conventions yet");
983  if (CLI.IsPatchPoint)
984    fail(DL, DAG, "WebAssembly doesn't support patch point yet");
985
986  if (CLI.IsTailCall) {
987    auto NoTail = [&](const char *Msg) {
988      if (CLI.CB && CLI.CB->isMustTailCall())
989        fail(DL, DAG, Msg);
990      CLI.IsTailCall = false;
991    };
992
993    if (!Subtarget->hasTailCall())
994      NoTail("WebAssembly 'tail-call' feature not enabled");
995
996    // Varargs calls cannot be tail calls because the buffer is on the stack
997    if (CLI.IsVarArg)
998      NoTail("WebAssembly does not support varargs tail calls");
999
1000    // Do not tail call unless caller and callee return types match
1001    const Function &F = MF.getFunction();
1002    const TargetMachine &TM = getTargetMachine();
1003    Type *RetTy = F.getReturnType();
1004    SmallVector<MVT, 4> CallerRetTys;
1005    SmallVector<MVT, 4> CalleeRetTys;
1006    computeLegalValueVTs(F, TM, RetTy, CallerRetTys);
1007    computeLegalValueVTs(F, TM, CLI.RetTy, CalleeRetTys);
1008    bool TypesMatch = CallerRetTys.size() == CalleeRetTys.size() &&
1009                      std::equal(CallerRetTys.begin(), CallerRetTys.end(),
1010                                 CalleeRetTys.begin());
1011    if (!TypesMatch)
1012      NoTail("WebAssembly tail call requires caller and callee return types to "
1013             "match");
1014
1015    // If pointers to local stack values are passed, we cannot tail call
1016    if (CLI.CB) {
1017      for (auto &Arg : CLI.CB->args()) {
1018        Value *Val = Arg.get();
1019        // Trace the value back through pointer operations
1020        while (true) {
1021          Value *Src = Val->stripPointerCastsAndAliases();
1022          if (auto *GEP = dyn_cast<GetElementPtrInst>(Src))
1023            Src = GEP->getPointerOperand();
1024          if (Val == Src)
1025            break;
1026          Val = Src;
1027        }
1028        if (isa<AllocaInst>(Val)) {
1029          NoTail(
1030              "WebAssembly does not support tail calling with stack arguments");
1031          break;
1032        }
1033      }
1034    }
1035  }
1036
1037  SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1038  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1039  SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1040
1041  // The generic code may have added an sret argument. If we're lowering an
1042  // invoke function, the ABI requires that the function pointer be the first
1043  // argument, so we may have to swap the arguments.
1044  if (CallConv == CallingConv::WASM_EmscriptenInvoke && Outs.size() >= 2 &&
1045      Outs[0].Flags.isSRet()) {
1046    std::swap(Outs[0], Outs[1]);
1047    std::swap(OutVals[0], OutVals[1]);
1048  }
1049
1050  bool HasSwiftSelfArg = false;
1051  bool HasSwiftErrorArg = false;
1052  unsigned NumFixedArgs = 0;
1053  for (unsigned I = 0; I < Outs.size(); ++I) {
1054    const ISD::OutputArg &Out = Outs[I];
1055    SDValue &OutVal = OutVals[I];
1056    HasSwiftSelfArg |= Out.Flags.isSwiftSelf();
1057    HasSwiftErrorArg |= Out.Flags.isSwiftError();
1058    if (Out.Flags.isNest())
1059      fail(DL, DAG, "WebAssembly hasn't implemented nest arguments");
1060    if (Out.Flags.isInAlloca())
1061      fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments");
1062    if (Out.Flags.isInConsecutiveRegs())
1063      fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments");
1064    if (Out.Flags.isInConsecutiveRegsLast())
1065      fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments");
1066    if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) {
1067      auto &MFI = MF.getFrameInfo();
1068      int FI = MFI.CreateStackObject(Out.Flags.getByValSize(),
1069                                     Out.Flags.getNonZeroByValAlign(),
1070                                     /*isSS=*/false);
1071      SDValue SizeNode =
1072          DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32);
1073      SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout));
1074      Chain = DAG.getMemcpy(
1075          Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getNonZeroByValAlign(),
1076          /*isVolatile*/ false, /*AlwaysInline=*/false,
1077          /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo());
1078      OutVal = FINode;
1079    }
1080    // Count the number of fixed args *after* legalization.
1081    NumFixedArgs += Out.IsFixed;
1082  }
1083
1084  bool IsVarArg = CLI.IsVarArg;
1085  auto PtrVT = getPointerTy(Layout);
1086
1087  // For swiftcc, emit additional swiftself and swifterror arguments
1088  // if there aren't. These additional arguments are also added for callee
1089  // signature They are necessary to match callee and caller signature for
1090  // indirect call.
1091  if (CallConv == CallingConv::Swift) {
1092    if (!HasSwiftSelfArg) {
1093      NumFixedArgs++;
1094      ISD::OutputArg Arg;
1095      Arg.Flags.setSwiftSelf();
1096      CLI.Outs.push_back(Arg);
1097      SDValue ArgVal = DAG.getUNDEF(PtrVT);
1098      CLI.OutVals.push_back(ArgVal);
1099    }
1100    if (!HasSwiftErrorArg) {
1101      NumFixedArgs++;
1102      ISD::OutputArg Arg;
1103      Arg.Flags.setSwiftError();
1104      CLI.Outs.push_back(Arg);
1105      SDValue ArgVal = DAG.getUNDEF(PtrVT);
1106      CLI.OutVals.push_back(ArgVal);
1107    }
1108  }
1109
1110  // Analyze operands of the call, assigning locations to each operand.
1111  SmallVector<CCValAssign, 16> ArgLocs;
1112  CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1113
1114  if (IsVarArg) {
1115    // Outgoing non-fixed arguments are placed in a buffer. First
1116    // compute their offsets and the total amount of buffer space needed.
1117    for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) {
1118      const ISD::OutputArg &Out = Outs[I];
1119      SDValue &Arg = OutVals[I];
1120      EVT VT = Arg.getValueType();
1121      assert(VT != MVT::iPTR && "Legalized args should be concrete");
1122      Type *Ty = VT.getTypeForEVT(*DAG.getContext());
1123      Align Alignment =
1124          std::max(Out.Flags.getNonZeroOrigAlign(), Layout.getABITypeAlign(Ty));
1125      unsigned Offset =
1126          CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty), Alignment);
1127      CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(),
1128                                        Offset, VT.getSimpleVT(),
1129                                        CCValAssign::Full));
1130    }
1131  }
1132
1133  unsigned NumBytes = CCInfo.getAlignedCallFrameSize();
1134
1135  SDValue FINode;
1136  if (IsVarArg && NumBytes) {
1137    // For non-fixed arguments, next emit stores to store the argument values
1138    // to the stack buffer at the offsets computed above.
1139    int FI = MF.getFrameInfo().CreateStackObject(NumBytes,
1140                                                 Layout.getStackAlignment(),
1141                                                 /*isSS=*/false);
1142    unsigned ValNo = 0;
1143    SmallVector<SDValue, 8> Chains;
1144    for (SDValue Arg : drop_begin(OutVals, NumFixedArgs)) {
1145      assert(ArgLocs[ValNo].getValNo() == ValNo &&
1146             "ArgLocs should remain in order and only hold varargs args");
1147      unsigned Offset = ArgLocs[ValNo++].getLocMemOffset();
1148      FINode = DAG.getFrameIndex(FI, getPointerTy(Layout));
1149      SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode,
1150                                DAG.getConstant(Offset, DL, PtrVT));
1151      Chains.push_back(
1152          DAG.getStore(Chain, DL, Arg, Add,
1153                       MachinePointerInfo::getFixedStack(MF, FI, Offset)));
1154    }
1155    if (!Chains.empty())
1156      Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
1157  } else if (IsVarArg) {
1158    FINode = DAG.getIntPtrConstant(0, DL);
1159  }
1160
1161  if (Callee->getOpcode() == ISD::GlobalAddress) {
1162    // If the callee is a GlobalAddress node (quite common, every direct call
1163    // is) turn it into a TargetGlobalAddress node so that LowerGlobalAddress
1164    // doesn't at MO_GOT which is not needed for direct calls.
1165    GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Callee);
1166    Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
1167                                        getPointerTy(DAG.getDataLayout()),
1168                                        GA->getOffset());
1169    Callee = DAG.getNode(WebAssemblyISD::Wrapper, DL,
1170                         getPointerTy(DAG.getDataLayout()), Callee);
1171  }
1172
1173  // Compute the operands for the CALLn node.
1174  SmallVector<SDValue, 16> Ops;
1175  Ops.push_back(Chain);
1176  Ops.push_back(Callee);
1177
1178  // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs
1179  // isn't reliable.
1180  Ops.append(OutVals.begin(),
1181             IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end());
1182  // Add a pointer to the vararg buffer.
1183  if (IsVarArg)
1184    Ops.push_back(FINode);
1185
1186  SmallVector<EVT, 8> InTys;
1187  for (const auto &In : Ins) {
1188    assert(!In.Flags.isByVal() && "byval is not valid for return values");
1189    assert(!In.Flags.isNest() && "nest is not valid for return values");
1190    if (In.Flags.isInAlloca())
1191      fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values");
1192    if (In.Flags.isInConsecutiveRegs())
1193      fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values");
1194    if (In.Flags.isInConsecutiveRegsLast())
1195      fail(DL, DAG,
1196           "WebAssembly hasn't implemented cons regs last return values");
1197    // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in
1198    // registers.
1199    InTys.push_back(In.VT);
1200  }
1201
1202  // Lastly, if this is a call to a funcref we need to add an instruction
1203  // table.set to the chain and transform the call.
1204  if (CLI.CB &&
1205      WebAssembly::isFuncrefType(CLI.CB->getCalledOperand()->getType())) {
1206    // In the absence of function references proposal where a funcref call is
1207    // lowered to call_ref, using reference types we generate a table.set to set
1208    // the funcref to a special table used solely for this purpose, followed by
1209    // a call_indirect. Here we just generate the table set, and return the
1210    // SDValue of the table.set so that LowerCall can finalize the lowering by
1211    // generating the call_indirect.
1212    SDValue Chain = Ops[0];
1213
1214    MCSymbolWasm *Table = WebAssembly::getOrCreateFuncrefCallTableSymbol(
1215        MF.getContext(), Subtarget);
1216    SDValue Sym = DAG.getMCSymbol(Table, PtrVT);
1217    SDValue TableSlot = DAG.getConstant(0, DL, MVT::i32);
1218    SDValue TableSetOps[] = {Chain, Sym, TableSlot, Callee};
1219    SDValue TableSet = DAG.getMemIntrinsicNode(
1220        WebAssemblyISD::TABLE_SET, DL, DAG.getVTList(MVT::Other), TableSetOps,
1221        MVT::funcref,
1222        // Machine Mem Operand args
1223        MachinePointerInfo(
1224            WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_FUNCREF),
1225        CLI.CB->getCalledOperand()->getPointerAlignment(DAG.getDataLayout()),
1226        MachineMemOperand::MOStore);
1227
1228    Ops[0] = TableSet; // The new chain is the TableSet itself
1229  }
1230
1231  if (CLI.IsTailCall) {
1232    // ret_calls do not return values to the current frame
1233    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1234    return DAG.getNode(WebAssemblyISD::RET_CALL, DL, NodeTys, Ops);
1235  }
1236
1237  InTys.push_back(MVT::Other);
1238  SDVTList InTyList = DAG.getVTList(InTys);
1239  SDValue Res = DAG.getNode(WebAssemblyISD::CALL, DL, InTyList, Ops);
1240
1241  for (size_t I = 0; I < Ins.size(); ++I)
1242    InVals.push_back(Res.getValue(I));
1243
1244  // Return the chain
1245  return Res.getValue(Ins.size());
1246}
1247
1248bool WebAssemblyTargetLowering::CanLowerReturn(
1249    CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/,
1250    const SmallVectorImpl<ISD::OutputArg> &Outs,
1251    LLVMContext & /*Context*/) const {
1252  // WebAssembly can only handle returning tuples with multivalue enabled
1253  return Subtarget->hasMultivalue() || Outs.size() <= 1;
1254}
1255
1256SDValue WebAssemblyTargetLowering::LowerReturn(
1257    SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/,
1258    const SmallVectorImpl<ISD::OutputArg> &Outs,
1259    const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL,
1260    SelectionDAG &DAG) const {
1261  assert((Subtarget->hasMultivalue() || Outs.size() <= 1) &&
1262         "MVP WebAssembly can only return up to one value");
1263  if (!callingConvSupported(CallConv))
1264    fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions");
1265
1266  SmallVector<SDValue, 4> RetOps(1, Chain);
1267  RetOps.append(OutVals.begin(), OutVals.end());
1268  Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps);
1269
1270  // Record the number and types of the return values.
1271  for (const ISD::OutputArg &Out : Outs) {
1272    assert(!Out.Flags.isByVal() && "byval is not valid for return values");
1273    assert(!Out.Flags.isNest() && "nest is not valid for return values");
1274    assert(Out.IsFixed && "non-fixed return value is not valid");
1275    if (Out.Flags.isInAlloca())
1276      fail(DL, DAG, "WebAssembly hasn't implemented inalloca results");
1277    if (Out.Flags.isInConsecutiveRegs())
1278      fail(DL, DAG, "WebAssembly hasn't implemented cons regs results");
1279    if (Out.Flags.isInConsecutiveRegsLast())
1280      fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results");
1281  }
1282
1283  return Chain;
1284}
1285
1286SDValue WebAssemblyTargetLowering::LowerFormalArguments(
1287    SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
1288    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1289    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1290  if (!callingConvSupported(CallConv))
1291    fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions");
1292
1293  MachineFunction &MF = DAG.getMachineFunction();
1294  auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>();
1295
1296  // Set up the incoming ARGUMENTS value, which serves to represent the liveness
1297  // of the incoming values before they're represented by virtual registers.
1298  MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS);
1299
1300  bool HasSwiftErrorArg = false;
1301  bool HasSwiftSelfArg = false;
1302  for (const ISD::InputArg &In : Ins) {
1303    HasSwiftSelfArg |= In.Flags.isSwiftSelf();
1304    HasSwiftErrorArg |= In.Flags.isSwiftError();
1305    if (In.Flags.isInAlloca())
1306      fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments");
1307    if (In.Flags.isNest())
1308      fail(DL, DAG, "WebAssembly hasn't implemented nest arguments");
1309    if (In.Flags.isInConsecutiveRegs())
1310      fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments");
1311    if (In.Flags.isInConsecutiveRegsLast())
1312      fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments");
1313    // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in
1314    // registers.
1315    InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT,
1316                                           DAG.getTargetConstant(InVals.size(),
1317                                                                 DL, MVT::i32))
1318                             : DAG.getUNDEF(In.VT));
1319
1320    // Record the number and types of arguments.
1321    MFI->addParam(In.VT);
1322  }
1323
1324  // For swiftcc, emit additional swiftself and swifterror arguments
1325  // if there aren't. These additional arguments are also added for callee
1326  // signature They are necessary to match callee and caller signature for
1327  // indirect call.
1328  auto PtrVT = getPointerTy(MF.getDataLayout());
1329  if (CallConv == CallingConv::Swift) {
1330    if (!HasSwiftSelfArg) {
1331      MFI->addParam(PtrVT);
1332    }
1333    if (!HasSwiftErrorArg) {
1334      MFI->addParam(PtrVT);
1335    }
1336  }
1337  // Varargs are copied into a buffer allocated by the caller, and a pointer to
1338  // the buffer is passed as an argument.
1339  if (IsVarArg) {
1340    MVT PtrVT = getPointerTy(MF.getDataLayout());
1341    Register VarargVreg =
1342        MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT));
1343    MFI->setVarargBufferVreg(VarargVreg);
1344    Chain = DAG.getCopyToReg(
1345        Chain, DL, VarargVreg,
1346        DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT,
1347                    DAG.getTargetConstant(Ins.size(), DL, MVT::i32)));
1348    MFI->addParam(PtrVT);
1349  }
1350
1351  // Record the number and types of arguments and results.
1352  SmallVector<MVT, 4> Params;
1353  SmallVector<MVT, 4> Results;
1354  computeSignatureVTs(MF.getFunction().getFunctionType(), &MF.getFunction(),
1355                      MF.getFunction(), DAG.getTarget(), Params, Results);
1356  for (MVT VT : Results)
1357    MFI->addResult(VT);
1358  // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify
1359  // the param logic here with ComputeSignatureVTs
1360  assert(MFI->getParams().size() == Params.size() &&
1361         std::equal(MFI->getParams().begin(), MFI->getParams().end(),
1362                    Params.begin()));
1363
1364  return Chain;
1365}
1366
1367void WebAssemblyTargetLowering::ReplaceNodeResults(
1368    SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
1369  switch (N->getOpcode()) {
1370  case ISD::SIGN_EXTEND_INREG:
1371    // Do not add any results, signifying that N should not be custom lowered
1372    // after all. This happens because simd128 turns on custom lowering for
1373    // SIGN_EXTEND_INREG, but for non-vector sign extends the result might be an
1374    // illegal type.
1375    break;
1376  default:
1377    llvm_unreachable(
1378        "ReplaceNodeResults not implemented for this op for WebAssembly!");
1379  }
1380}
1381
1382//===----------------------------------------------------------------------===//
1383//  Custom lowering hooks.
1384//===----------------------------------------------------------------------===//
1385
1386SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op,
1387                                                  SelectionDAG &DAG) const {
1388  SDLoc DL(Op);
1389  switch (Op.getOpcode()) {
1390  default:
1391    llvm_unreachable("unimplemented operation lowering");
1392    return SDValue();
1393  case ISD::FrameIndex:
1394    return LowerFrameIndex(Op, DAG);
1395  case ISD::GlobalAddress:
1396    return LowerGlobalAddress(Op, DAG);
1397  case ISD::GlobalTLSAddress:
1398    return LowerGlobalTLSAddress(Op, DAG);
1399  case ISD::ExternalSymbol:
1400    return LowerExternalSymbol(Op, DAG);
1401  case ISD::JumpTable:
1402    return LowerJumpTable(Op, DAG);
1403  case ISD::BR_JT:
1404    return LowerBR_JT(Op, DAG);
1405  case ISD::VASTART:
1406    return LowerVASTART(Op, DAG);
1407  case ISD::BlockAddress:
1408  case ISD::BRIND:
1409    fail(DL, DAG, "WebAssembly hasn't implemented computed gotos");
1410    return SDValue();
1411  case ISD::RETURNADDR:
1412    return LowerRETURNADDR(Op, DAG);
1413  case ISD::FRAMEADDR:
1414    return LowerFRAMEADDR(Op, DAG);
1415  case ISD::CopyToReg:
1416    return LowerCopyToReg(Op, DAG);
1417  case ISD::EXTRACT_VECTOR_ELT:
1418  case ISD::INSERT_VECTOR_ELT:
1419    return LowerAccessVectorElement(Op, DAG);
1420  case ISD::INTRINSIC_VOID:
1421  case ISD::INTRINSIC_WO_CHAIN:
1422  case ISD::INTRINSIC_W_CHAIN:
1423    return LowerIntrinsic(Op, DAG);
1424  case ISD::SIGN_EXTEND_INREG:
1425    return LowerSIGN_EXTEND_INREG(Op, DAG);
1426  case ISD::BUILD_VECTOR:
1427    return LowerBUILD_VECTOR(Op, DAG);
1428  case ISD::VECTOR_SHUFFLE:
1429    return LowerVECTOR_SHUFFLE(Op, DAG);
1430  case ISD::SETCC:
1431    return LowerSETCC(Op, DAG);
1432  case ISD::SHL:
1433  case ISD::SRA:
1434  case ISD::SRL:
1435    return LowerShift(Op, DAG);
1436  case ISD::FP_TO_SINT_SAT:
1437  case ISD::FP_TO_UINT_SAT:
1438    return LowerFP_TO_INT_SAT(Op, DAG);
1439  case ISD::LOAD:
1440    return LowerLoad(Op, DAG);
1441  case ISD::STORE:
1442    return LowerStore(Op, DAG);
1443  case ISD::CTPOP:
1444  case ISD::CTLZ:
1445  case ISD::CTTZ:
1446    return DAG.UnrollVectorOp(Op.getNode());
1447  }
1448}
1449
1450static bool IsWebAssemblyGlobal(SDValue Op) {
1451  if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op))
1452    return WebAssembly::isWasmVarAddressSpace(GA->getAddressSpace());
1453
1454  return false;
1455}
1456
1457static std::optional<unsigned> IsWebAssemblyLocal(SDValue Op,
1458                                                  SelectionDAG &DAG) {
1459  const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op);
1460  if (!FI)
1461    return std::nullopt;
1462
1463  auto &MF = DAG.getMachineFunction();
1464  return WebAssemblyFrameLowering::getLocalForStackObject(MF, FI->getIndex());
1465}
1466
1467SDValue WebAssemblyTargetLowering::LowerStore(SDValue Op,
1468                                              SelectionDAG &DAG) const {
1469  SDLoc DL(Op);
1470  StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
1471  const SDValue &Value = SN->getValue();
1472  const SDValue &Base = SN->getBasePtr();
1473  const SDValue &Offset = SN->getOffset();
1474
1475  if (IsWebAssemblyGlobal(Base)) {
1476    if (!Offset->isUndef())
1477      report_fatal_error("unexpected offset when storing to webassembly global",
1478                         false);
1479
1480    SDVTList Tys = DAG.getVTList(MVT::Other);
1481    SDValue Ops[] = {SN->getChain(), Value, Base};
1482    return DAG.getMemIntrinsicNode(WebAssemblyISD::GLOBAL_SET, DL, Tys, Ops,
1483                                   SN->getMemoryVT(), SN->getMemOperand());
1484  }
1485
1486  if (std::optional<unsigned> Local = IsWebAssemblyLocal(Base, DAG)) {
1487    if (!Offset->isUndef())
1488      report_fatal_error("unexpected offset when storing to webassembly local",
1489                         false);
1490
1491    SDValue Idx = DAG.getTargetConstant(*Local, Base, MVT::i32);
1492    SDVTList Tys = DAG.getVTList(MVT::Other); // The chain.
1493    SDValue Ops[] = {SN->getChain(), Idx, Value};
1494    return DAG.getNode(WebAssemblyISD::LOCAL_SET, DL, Tys, Ops);
1495  }
1496
1497  if (WebAssembly::isWasmVarAddressSpace(SN->getAddressSpace()))
1498    report_fatal_error(
1499        "Encountered an unlowerable store to the wasm_var address space",
1500        false);
1501
1502  return Op;
1503}
1504
1505SDValue WebAssemblyTargetLowering::LowerLoad(SDValue Op,
1506                                             SelectionDAG &DAG) const {
1507  SDLoc DL(Op);
1508  LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
1509  const SDValue &Base = LN->getBasePtr();
1510  const SDValue &Offset = LN->getOffset();
1511
1512  if (IsWebAssemblyGlobal(Base)) {
1513    if (!Offset->isUndef())
1514      report_fatal_error(
1515          "unexpected offset when loading from webassembly global", false);
1516
1517    SDVTList Tys = DAG.getVTList(LN->getValueType(0), MVT::Other);
1518    SDValue Ops[] = {LN->getChain(), Base};
1519    return DAG.getMemIntrinsicNode(WebAssemblyISD::GLOBAL_GET, DL, Tys, Ops,
1520                                   LN->getMemoryVT(), LN->getMemOperand());
1521  }
1522
1523  if (std::optional<unsigned> Local = IsWebAssemblyLocal(Base, DAG)) {
1524    if (!Offset->isUndef())
1525      report_fatal_error(
1526          "unexpected offset when loading from webassembly local", false);
1527
1528    SDValue Idx = DAG.getTargetConstant(*Local, Base, MVT::i32);
1529    EVT LocalVT = LN->getValueType(0);
1530    SDValue LocalGet = DAG.getNode(WebAssemblyISD::LOCAL_GET, DL, LocalVT,
1531                                   {LN->getChain(), Idx});
1532    SDValue Result = DAG.getMergeValues({LocalGet, LN->getChain()}, DL);
1533    assert(Result->getNumValues() == 2 && "Loads must carry a chain!");
1534    return Result;
1535  }
1536
1537  if (WebAssembly::isWasmVarAddressSpace(LN->getAddressSpace()))
1538    report_fatal_error(
1539        "Encountered an unlowerable load from the wasm_var address space",
1540        false);
1541
1542  return Op;
1543}
1544
1545SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op,
1546                                                  SelectionDAG &DAG) const {
1547  SDValue Src = Op.getOperand(2);
1548  if (isa<FrameIndexSDNode>(Src.getNode())) {
1549    // CopyToReg nodes don't support FrameIndex operands. Other targets select
1550    // the FI to some LEA-like instruction, but since we don't have that, we
1551    // need to insert some kind of instruction that can take an FI operand and
1552    // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy
1553    // local.copy between Op and its FI operand.
1554    SDValue Chain = Op.getOperand(0);
1555    SDLoc DL(Op);
1556    Register Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg();
1557    EVT VT = Src.getValueType();
1558    SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32
1559                                                   : WebAssembly::COPY_I64,
1560                                    DL, VT, Src),
1561                 0);
1562    return Op.getNode()->getNumValues() == 1
1563               ? DAG.getCopyToReg(Chain, DL, Reg, Copy)
1564               : DAG.getCopyToReg(Chain, DL, Reg, Copy,
1565                                  Op.getNumOperands() == 4 ? Op.getOperand(3)
1566                                                           : SDValue());
1567  }
1568  return SDValue();
1569}
1570
1571SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op,
1572                                                   SelectionDAG &DAG) const {
1573  int FI = cast<FrameIndexSDNode>(Op)->getIndex();
1574  return DAG.getTargetFrameIndex(FI, Op.getValueType());
1575}
1576
1577SDValue WebAssemblyTargetLowering::LowerRETURNADDR(SDValue Op,
1578                                                   SelectionDAG &DAG) const {
1579  SDLoc DL(Op);
1580
1581  if (!Subtarget->getTargetTriple().isOSEmscripten()) {
1582    fail(DL, DAG,
1583         "Non-Emscripten WebAssembly hasn't implemented "
1584         "__builtin_return_address");
1585    return SDValue();
1586  }
1587
1588  if (verifyReturnAddressArgumentIsConstant(Op, DAG))
1589    return SDValue();
1590
1591  unsigned Depth = Op.getConstantOperandVal(0);
1592  MakeLibCallOptions CallOptions;
1593  return makeLibCall(DAG, RTLIB::RETURN_ADDRESS, Op.getValueType(),
1594                     {DAG.getConstant(Depth, DL, MVT::i32)}, CallOptions, DL)
1595      .first;
1596}
1597
1598SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op,
1599                                                  SelectionDAG &DAG) const {
1600  // Non-zero depths are not supported by WebAssembly currently. Use the
1601  // legalizer's default expansion, which is to return 0 (what this function is
1602  // documented to do).
1603  if (Op.getConstantOperandVal(0) > 0)
1604    return SDValue();
1605
1606  DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true);
1607  EVT VT = Op.getValueType();
1608  Register FP =
1609      Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction());
1610  return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT);
1611}
1612
1613SDValue
1614WebAssemblyTargetLowering::LowerGlobalTLSAddress(SDValue Op,
1615                                                 SelectionDAG &DAG) const {
1616  SDLoc DL(Op);
1617  const auto *GA = cast<GlobalAddressSDNode>(Op);
1618
1619  MachineFunction &MF = DAG.getMachineFunction();
1620  if (!MF.getSubtarget<WebAssemblySubtarget>().hasBulkMemory())
1621    report_fatal_error("cannot use thread-local storage without bulk memory",
1622                       false);
1623
1624  const GlobalValue *GV = GA->getGlobal();
1625
1626  // Currently only Emscripten supports dynamic linking with threads. Therefore,
1627  // on other targets, if we have thread-local storage, only the local-exec
1628  // model is possible.
1629  auto model = Subtarget->getTargetTriple().isOSEmscripten()
1630                   ? GV->getThreadLocalMode()
1631                   : GlobalValue::LocalExecTLSModel;
1632
1633  // Unsupported TLS modes
1634  assert(model != GlobalValue::NotThreadLocal);
1635  assert(model != GlobalValue::InitialExecTLSModel);
1636
1637  if (model == GlobalValue::LocalExecTLSModel ||
1638      model == GlobalValue::LocalDynamicTLSModel ||
1639      (model == GlobalValue::GeneralDynamicTLSModel &&
1640       getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))) {
1641    // For DSO-local TLS variables we use offset from __tls_base
1642
1643    MVT PtrVT = getPointerTy(DAG.getDataLayout());
1644    auto GlobalGet = PtrVT == MVT::i64 ? WebAssembly::GLOBAL_GET_I64
1645                                       : WebAssembly::GLOBAL_GET_I32;
1646    const char *BaseName = MF.createExternalSymbolName("__tls_base");
1647
1648    SDValue BaseAddr(
1649        DAG.getMachineNode(GlobalGet, DL, PtrVT,
1650                           DAG.getTargetExternalSymbol(BaseName, PtrVT)),
1651        0);
1652
1653    SDValue TLSOffset = DAG.getTargetGlobalAddress(
1654        GV, DL, PtrVT, GA->getOffset(), WebAssemblyII::MO_TLS_BASE_REL);
1655    SDValue SymOffset =
1656        DAG.getNode(WebAssemblyISD::WrapperREL, DL, PtrVT, TLSOffset);
1657
1658    return DAG.getNode(ISD::ADD, DL, PtrVT, BaseAddr, SymOffset);
1659  }
1660
1661  assert(model == GlobalValue::GeneralDynamicTLSModel);
1662
1663  EVT VT = Op.getValueType();
1664  return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1665                     DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT,
1666                                                GA->getOffset(),
1667                                                WebAssemblyII::MO_GOT_TLS));
1668}
1669
1670SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op,
1671                                                      SelectionDAG &DAG) const {
1672  SDLoc DL(Op);
1673  const auto *GA = cast<GlobalAddressSDNode>(Op);
1674  EVT VT = Op.getValueType();
1675  assert(GA->getTargetFlags() == 0 &&
1676         "Unexpected target flags on generic GlobalAddressSDNode");
1677  if (!WebAssembly::isValidAddressSpace(GA->getAddressSpace()))
1678    fail(DL, DAG, "Invalid address space for WebAssembly target");
1679
1680  unsigned OperandFlags = 0;
1681  if (isPositionIndependent()) {
1682    const GlobalValue *GV = GA->getGlobal();
1683    if (getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) {
1684      MachineFunction &MF = DAG.getMachineFunction();
1685      MVT PtrVT = getPointerTy(MF.getDataLayout());
1686      const char *BaseName;
1687      if (GV->getValueType()->isFunctionTy()) {
1688        BaseName = MF.createExternalSymbolName("__table_base");
1689        OperandFlags = WebAssemblyII::MO_TABLE_BASE_REL;
1690      } else {
1691        BaseName = MF.createExternalSymbolName("__memory_base");
1692        OperandFlags = WebAssemblyII::MO_MEMORY_BASE_REL;
1693      }
1694      SDValue BaseAddr =
1695          DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT,
1696                      DAG.getTargetExternalSymbol(BaseName, PtrVT));
1697
1698      SDValue SymAddr = DAG.getNode(
1699          WebAssemblyISD::WrapperREL, DL, VT,
1700          DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset(),
1701                                     OperandFlags));
1702
1703      return DAG.getNode(ISD::ADD, DL, VT, BaseAddr, SymAddr);
1704    }
1705    OperandFlags = WebAssemblyII::MO_GOT;
1706  }
1707
1708  return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1709                     DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT,
1710                                                GA->getOffset(), OperandFlags));
1711}
1712
1713SDValue
1714WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op,
1715                                               SelectionDAG &DAG) const {
1716  SDLoc DL(Op);
1717  const auto *ES = cast<ExternalSymbolSDNode>(Op);
1718  EVT VT = Op.getValueType();
1719  assert(ES->getTargetFlags() == 0 &&
1720         "Unexpected target flags on generic ExternalSymbolSDNode");
1721  return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1722                     DAG.getTargetExternalSymbol(ES->getSymbol(), VT));
1723}
1724
1725SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op,
1726                                                  SelectionDAG &DAG) const {
1727  // There's no need for a Wrapper node because we always incorporate a jump
1728  // table operand into a BR_TABLE instruction, rather than ever
1729  // materializing it in a register.
1730  const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1731  return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(),
1732                                JT->getTargetFlags());
1733}
1734
1735SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op,
1736                                              SelectionDAG &DAG) const {
1737  SDLoc DL(Op);
1738  SDValue Chain = Op.getOperand(0);
1739  const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1));
1740  SDValue Index = Op.getOperand(2);
1741  assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags");
1742
1743  SmallVector<SDValue, 8> Ops;
1744  Ops.push_back(Chain);
1745  Ops.push_back(Index);
1746
1747  MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo();
1748  const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs;
1749
1750  // Add an operand for each case.
1751  for (auto *MBB : MBBs)
1752    Ops.push_back(DAG.getBasicBlock(MBB));
1753
1754  // Add the first MBB as a dummy default target for now. This will be replaced
1755  // with the proper default target (and the preceding range check eliminated)
1756  // if possible by WebAssemblyFixBrTableDefaults.
1757  Ops.push_back(DAG.getBasicBlock(*MBBs.begin()));
1758  return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops);
1759}
1760
1761SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op,
1762                                                SelectionDAG &DAG) const {
1763  SDLoc DL(Op);
1764  EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout());
1765
1766  auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>();
1767  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1768
1769  SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL,
1770                                    MFI->getVarargBufferVreg(), PtrVT);
1771  return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1),
1772                      MachinePointerInfo(SV));
1773}
1774
1775SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op,
1776                                                  SelectionDAG &DAG) const {
1777  MachineFunction &MF = DAG.getMachineFunction();
1778  unsigned IntNo;
1779  switch (Op.getOpcode()) {
1780  case ISD::INTRINSIC_VOID:
1781  case ISD::INTRINSIC_W_CHAIN:
1782    IntNo = Op.getConstantOperandVal(1);
1783    break;
1784  case ISD::INTRINSIC_WO_CHAIN:
1785    IntNo = Op.getConstantOperandVal(0);
1786    break;
1787  default:
1788    llvm_unreachable("Invalid intrinsic");
1789  }
1790  SDLoc DL(Op);
1791
1792  switch (IntNo) {
1793  default:
1794    return SDValue(); // Don't custom lower most intrinsics.
1795
1796  case Intrinsic::wasm_lsda: {
1797    auto PtrVT = getPointerTy(MF.getDataLayout());
1798    const char *SymName = MF.createExternalSymbolName(
1799        "GCC_except_table" + std::to_string(MF.getFunctionNumber()));
1800    if (isPositionIndependent()) {
1801      SDValue Node = DAG.getTargetExternalSymbol(
1802          SymName, PtrVT, WebAssemblyII::MO_MEMORY_BASE_REL);
1803      const char *BaseName = MF.createExternalSymbolName("__memory_base");
1804      SDValue BaseAddr =
1805          DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT,
1806                      DAG.getTargetExternalSymbol(BaseName, PtrVT));
1807      SDValue SymAddr =
1808          DAG.getNode(WebAssemblyISD::WrapperREL, DL, PtrVT, Node);
1809      return DAG.getNode(ISD::ADD, DL, PtrVT, BaseAddr, SymAddr);
1810    }
1811    SDValue Node = DAG.getTargetExternalSymbol(SymName, PtrVT);
1812    return DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, Node);
1813  }
1814
1815  case Intrinsic::wasm_shuffle: {
1816    // Drop in-chain and replace undefs, but otherwise pass through unchanged
1817    SDValue Ops[18];
1818    size_t OpIdx = 0;
1819    Ops[OpIdx++] = Op.getOperand(1);
1820    Ops[OpIdx++] = Op.getOperand(2);
1821    while (OpIdx < 18) {
1822      const SDValue &MaskIdx = Op.getOperand(OpIdx + 1);
1823      if (MaskIdx.isUndef() ||
1824          cast<ConstantSDNode>(MaskIdx.getNode())->getZExtValue() >= 32) {
1825        Ops[OpIdx++] = DAG.getConstant(0, DL, MVT::i32);
1826      } else {
1827        Ops[OpIdx++] = MaskIdx;
1828      }
1829    }
1830    return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops);
1831  }
1832  }
1833}
1834
1835SDValue
1836WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
1837                                                  SelectionDAG &DAG) const {
1838  SDLoc DL(Op);
1839  // If sign extension operations are disabled, allow sext_inreg only if operand
1840  // is a vector extract of an i8 or i16 lane. SIMD does not depend on sign
1841  // extension operations, but allowing sext_inreg in this context lets us have
1842  // simple patterns to select extract_lane_s instructions. Expanding sext_inreg
1843  // everywhere would be simpler in this file, but would necessitate large and
1844  // brittle patterns to undo the expansion and select extract_lane_s
1845  // instructions.
1846  assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128());
1847  if (Op.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1848    return SDValue();
1849
1850  const SDValue &Extract = Op.getOperand(0);
1851  MVT VecT = Extract.getOperand(0).getSimpleValueType();
1852  if (VecT.getVectorElementType().getSizeInBits() > 32)
1853    return SDValue();
1854  MVT ExtractedLaneT =
1855      cast<VTSDNode>(Op.getOperand(1).getNode())->getVT().getSimpleVT();
1856  MVT ExtractedVecT =
1857      MVT::getVectorVT(ExtractedLaneT, 128 / ExtractedLaneT.getSizeInBits());
1858  if (ExtractedVecT == VecT)
1859    return Op;
1860
1861  // Bitcast vector to appropriate type to ensure ISel pattern coverage
1862  const SDNode *Index = Extract.getOperand(1).getNode();
1863  if (!isa<ConstantSDNode>(Index))
1864    return SDValue();
1865  unsigned IndexVal = cast<ConstantSDNode>(Index)->getZExtValue();
1866  unsigned Scale =
1867      ExtractedVecT.getVectorNumElements() / VecT.getVectorNumElements();
1868  assert(Scale > 1);
1869  SDValue NewIndex =
1870      DAG.getConstant(IndexVal * Scale, DL, Index->getValueType(0));
1871  SDValue NewExtract = DAG.getNode(
1872      ISD::EXTRACT_VECTOR_ELT, DL, Extract.getValueType(),
1873      DAG.getBitcast(ExtractedVecT, Extract.getOperand(0)), NewIndex);
1874  return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(), NewExtract,
1875                     Op.getOperand(1));
1876}
1877
1878static SDValue LowerConvertLow(SDValue Op, SelectionDAG &DAG) {
1879  SDLoc DL(Op);
1880  if (Op.getValueType() != MVT::v2f64)
1881    return SDValue();
1882
1883  auto GetConvertedLane = [](SDValue Op, unsigned &Opcode, SDValue &SrcVec,
1884                             unsigned &Index) -> bool {
1885    switch (Op.getOpcode()) {
1886    case ISD::SINT_TO_FP:
1887      Opcode = WebAssemblyISD::CONVERT_LOW_S;
1888      break;
1889    case ISD::UINT_TO_FP:
1890      Opcode = WebAssemblyISD::CONVERT_LOW_U;
1891      break;
1892    case ISD::FP_EXTEND:
1893      Opcode = WebAssemblyISD::PROMOTE_LOW;
1894      break;
1895    default:
1896      return false;
1897    }
1898
1899    auto ExtractVector = Op.getOperand(0);
1900    if (ExtractVector.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1901      return false;
1902
1903    if (!isa<ConstantSDNode>(ExtractVector.getOperand(1).getNode()))
1904      return false;
1905
1906    SrcVec = ExtractVector.getOperand(0);
1907    Index = ExtractVector.getConstantOperandVal(1);
1908    return true;
1909  };
1910
1911  unsigned LHSOpcode, RHSOpcode, LHSIndex, RHSIndex;
1912  SDValue LHSSrcVec, RHSSrcVec;
1913  if (!GetConvertedLane(Op.getOperand(0), LHSOpcode, LHSSrcVec, LHSIndex) ||
1914      !GetConvertedLane(Op.getOperand(1), RHSOpcode, RHSSrcVec, RHSIndex))
1915    return SDValue();
1916
1917  if (LHSOpcode != RHSOpcode)
1918    return SDValue();
1919
1920  MVT ExpectedSrcVT;
1921  switch (LHSOpcode) {
1922  case WebAssemblyISD::CONVERT_LOW_S:
1923  case WebAssemblyISD::CONVERT_LOW_U:
1924    ExpectedSrcVT = MVT::v4i32;
1925    break;
1926  case WebAssemblyISD::PROMOTE_LOW:
1927    ExpectedSrcVT = MVT::v4f32;
1928    break;
1929  }
1930  if (LHSSrcVec.getValueType() != ExpectedSrcVT)
1931    return SDValue();
1932
1933  auto Src = LHSSrcVec;
1934  if (LHSIndex != 0 || RHSIndex != 1 || LHSSrcVec != RHSSrcVec) {
1935    // Shuffle the source vector so that the converted lanes are the low lanes.
1936    Src = DAG.getVectorShuffle(
1937        ExpectedSrcVT, DL, LHSSrcVec, RHSSrcVec,
1938        {static_cast<int>(LHSIndex), static_cast<int>(RHSIndex) + 4, -1, -1});
1939  }
1940  return DAG.getNode(LHSOpcode, DL, MVT::v2f64, Src);
1941}
1942
1943SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op,
1944                                                     SelectionDAG &DAG) const {
1945  if (auto ConvertLow = LowerConvertLow(Op, DAG))
1946    return ConvertLow;
1947
1948  SDLoc DL(Op);
1949  const EVT VecT = Op.getValueType();
1950  const EVT LaneT = Op.getOperand(0).getValueType();
1951  const size_t Lanes = Op.getNumOperands();
1952  bool CanSwizzle = VecT == MVT::v16i8;
1953
1954  // BUILD_VECTORs are lowered to the instruction that initializes the highest
1955  // possible number of lanes at once followed by a sequence of replace_lane
1956  // instructions to individually initialize any remaining lanes.
1957
1958  // TODO: Tune this. For example, lanewise swizzling is very expensive, so
1959  // swizzled lanes should be given greater weight.
1960
1961  // TODO: Investigate looping rather than always extracting/replacing specific
1962  // lanes to fill gaps.
1963
1964  auto IsConstant = [](const SDValue &V) {
1965    return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP;
1966  };
1967
1968  // Returns the source vector and index vector pair if they exist. Checks for:
1969  //   (extract_vector_elt
1970  //     $src,
1971  //     (sign_extend_inreg (extract_vector_elt $indices, $i))
1972  //   )
1973  auto GetSwizzleSrcs = [](size_t I, const SDValue &Lane) {
1974    auto Bail = std::make_pair(SDValue(), SDValue());
1975    if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1976      return Bail;
1977    const SDValue &SwizzleSrc = Lane->getOperand(0);
1978    const SDValue &IndexExt = Lane->getOperand(1);
1979    if (IndexExt->getOpcode() != ISD::SIGN_EXTEND_INREG)
1980      return Bail;
1981    const SDValue &Index = IndexExt->getOperand(0);
1982    if (Index->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1983      return Bail;
1984    const SDValue &SwizzleIndices = Index->getOperand(0);
1985    if (SwizzleSrc.getValueType() != MVT::v16i8 ||
1986        SwizzleIndices.getValueType() != MVT::v16i8 ||
1987        Index->getOperand(1)->getOpcode() != ISD::Constant ||
1988        Index->getConstantOperandVal(1) != I)
1989      return Bail;
1990    return std::make_pair(SwizzleSrc, SwizzleIndices);
1991  };
1992
1993  // If the lane is extracted from another vector at a constant index, return
1994  // that vector. The source vector must not have more lanes than the dest
1995  // because the shufflevector indices are in terms of the destination lanes and
1996  // would not be able to address the smaller individual source lanes.
1997  auto GetShuffleSrc = [&](const SDValue &Lane) {
1998    if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1999      return SDValue();
2000    if (!isa<ConstantSDNode>(Lane->getOperand(1).getNode()))
2001      return SDValue();
2002    if (Lane->getOperand(0).getValueType().getVectorNumElements() >
2003        VecT.getVectorNumElements())
2004      return SDValue();
2005    return Lane->getOperand(0);
2006  };
2007
2008  using ValueEntry = std::pair<SDValue, size_t>;
2009  SmallVector<ValueEntry, 16> SplatValueCounts;
2010
2011  using SwizzleEntry = std::pair<std::pair<SDValue, SDValue>, size_t>;
2012  SmallVector<SwizzleEntry, 16> SwizzleCounts;
2013
2014  using ShuffleEntry = std::pair<SDValue, size_t>;
2015  SmallVector<ShuffleEntry, 16> ShuffleCounts;
2016
2017  auto AddCount = [](auto &Counts, const auto &Val) {
2018    auto CountIt =
2019        llvm::find_if(Counts, [&Val](auto E) { return E.first == Val; });
2020    if (CountIt == Counts.end()) {
2021      Counts.emplace_back(Val, 1);
2022    } else {
2023      CountIt->second++;
2024    }
2025  };
2026
2027  auto GetMostCommon = [](auto &Counts) {
2028    auto CommonIt =
2029        std::max_element(Counts.begin(), Counts.end(), llvm::less_second());
2030    assert(CommonIt != Counts.end() && "Unexpected all-undef build_vector");
2031    return *CommonIt;
2032  };
2033
2034  size_t NumConstantLanes = 0;
2035
2036  // Count eligible lanes for each type of vector creation op
2037  for (size_t I = 0; I < Lanes; ++I) {
2038    const SDValue &Lane = Op->getOperand(I);
2039    if (Lane.isUndef())
2040      continue;
2041
2042    AddCount(SplatValueCounts, Lane);
2043
2044    if (IsConstant(Lane))
2045      NumConstantLanes++;
2046    if (auto ShuffleSrc = GetShuffleSrc(Lane))
2047      AddCount(ShuffleCounts, ShuffleSrc);
2048    if (CanSwizzle) {
2049      auto SwizzleSrcs = GetSwizzleSrcs(I, Lane);
2050      if (SwizzleSrcs.first)
2051        AddCount(SwizzleCounts, SwizzleSrcs);
2052    }
2053  }
2054
2055  SDValue SplatValue;
2056  size_t NumSplatLanes;
2057  std::tie(SplatValue, NumSplatLanes) = GetMostCommon(SplatValueCounts);
2058
2059  SDValue SwizzleSrc;
2060  SDValue SwizzleIndices;
2061  size_t NumSwizzleLanes = 0;
2062  if (SwizzleCounts.size())
2063    std::forward_as_tuple(std::tie(SwizzleSrc, SwizzleIndices),
2064                          NumSwizzleLanes) = GetMostCommon(SwizzleCounts);
2065
2066  // Shuffles can draw from up to two vectors, so find the two most common
2067  // sources.
2068  SDValue ShuffleSrc1, ShuffleSrc2;
2069  size_t NumShuffleLanes = 0;
2070  if (ShuffleCounts.size()) {
2071    std::tie(ShuffleSrc1, NumShuffleLanes) = GetMostCommon(ShuffleCounts);
2072    llvm::erase_if(ShuffleCounts,
2073                   [&](const auto &Pair) { return Pair.first == ShuffleSrc1; });
2074  }
2075  if (ShuffleCounts.size()) {
2076    size_t AdditionalShuffleLanes;
2077    std::tie(ShuffleSrc2, AdditionalShuffleLanes) =
2078        GetMostCommon(ShuffleCounts);
2079    NumShuffleLanes += AdditionalShuffleLanes;
2080  }
2081
2082  // Predicate returning true if the lane is properly initialized by the
2083  // original instruction
2084  std::function<bool(size_t, const SDValue &)> IsLaneConstructed;
2085  SDValue Result;
2086  // Prefer swizzles over shuffles over vector consts over splats
2087  if (NumSwizzleLanes >= NumShuffleLanes &&
2088      NumSwizzleLanes >= NumConstantLanes && NumSwizzleLanes >= NumSplatLanes) {
2089    Result = DAG.getNode(WebAssemblyISD::SWIZZLE, DL, VecT, SwizzleSrc,
2090                         SwizzleIndices);
2091    auto Swizzled = std::make_pair(SwizzleSrc, SwizzleIndices);
2092    IsLaneConstructed = [&, Swizzled](size_t I, const SDValue &Lane) {
2093      return Swizzled == GetSwizzleSrcs(I, Lane);
2094    };
2095  } else if (NumShuffleLanes >= NumConstantLanes &&
2096             NumShuffleLanes >= NumSplatLanes) {
2097    size_t DestLaneSize = VecT.getVectorElementType().getFixedSizeInBits() / 8;
2098    size_t DestLaneCount = VecT.getVectorNumElements();
2099    size_t Scale1 = 1;
2100    size_t Scale2 = 1;
2101    SDValue Src1 = ShuffleSrc1;
2102    SDValue Src2 = ShuffleSrc2 ? ShuffleSrc2 : DAG.getUNDEF(VecT);
2103    if (Src1.getValueType() != VecT) {
2104      size_t LaneSize =
2105          Src1.getValueType().getVectorElementType().getFixedSizeInBits() / 8;
2106      assert(LaneSize > DestLaneSize);
2107      Scale1 = LaneSize / DestLaneSize;
2108      Src1 = DAG.getBitcast(VecT, Src1);
2109    }
2110    if (Src2.getValueType() != VecT) {
2111      size_t LaneSize =
2112          Src2.getValueType().getVectorElementType().getFixedSizeInBits() / 8;
2113      assert(LaneSize > DestLaneSize);
2114      Scale2 = LaneSize / DestLaneSize;
2115      Src2 = DAG.getBitcast(VecT, Src2);
2116    }
2117
2118    int Mask[16];
2119    assert(DestLaneCount <= 16);
2120    for (size_t I = 0; I < DestLaneCount; ++I) {
2121      const SDValue &Lane = Op->getOperand(I);
2122      SDValue Src = GetShuffleSrc(Lane);
2123      if (Src == ShuffleSrc1) {
2124        Mask[I] = Lane->getConstantOperandVal(1) * Scale1;
2125      } else if (Src && Src == ShuffleSrc2) {
2126        Mask[I] = DestLaneCount + Lane->getConstantOperandVal(1) * Scale2;
2127      } else {
2128        Mask[I] = -1;
2129      }
2130    }
2131    ArrayRef<int> MaskRef(Mask, DestLaneCount);
2132    Result = DAG.getVectorShuffle(VecT, DL, Src1, Src2, MaskRef);
2133    IsLaneConstructed = [&](size_t, const SDValue &Lane) {
2134      auto Src = GetShuffleSrc(Lane);
2135      return Src == ShuffleSrc1 || (Src && Src == ShuffleSrc2);
2136    };
2137  } else if (NumConstantLanes >= NumSplatLanes) {
2138    SmallVector<SDValue, 16> ConstLanes;
2139    for (const SDValue &Lane : Op->op_values()) {
2140      if (IsConstant(Lane)) {
2141        // Values may need to be fixed so that they will sign extend to be
2142        // within the expected range during ISel. Check whether the value is in
2143        // bounds based on the lane bit width and if it is out of bounds, lop
2144        // off the extra bits and subtract 2^n to reflect giving the high bit
2145        // value -2^(n-1) rather than +2^(n-1). Skip the i64 case because it
2146        // cannot possibly be out of range.
2147        auto *Const = dyn_cast<ConstantSDNode>(Lane.getNode());
2148        int64_t Val = Const ? Const->getSExtValue() : 0;
2149        uint64_t LaneBits = 128 / Lanes;
2150        assert((LaneBits == 64 || Val >= -(1ll << (LaneBits - 1))) &&
2151               "Unexpected out of bounds negative value");
2152        if (Const && LaneBits != 64 && Val > (1ll << (LaneBits - 1)) - 1) {
2153          auto NewVal = ((uint64_t)Val % (1ll << LaneBits)) - (1ll << LaneBits);
2154          ConstLanes.push_back(DAG.getConstant(NewVal, SDLoc(Lane), LaneT));
2155        } else {
2156          ConstLanes.push_back(Lane);
2157        }
2158      } else if (LaneT.isFloatingPoint()) {
2159        ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT));
2160      } else {
2161        ConstLanes.push_back(DAG.getConstant(0, DL, LaneT));
2162      }
2163    }
2164    Result = DAG.getBuildVector(VecT, DL, ConstLanes);
2165    IsLaneConstructed = [&IsConstant](size_t _, const SDValue &Lane) {
2166      return IsConstant(Lane);
2167    };
2168  } else {
2169    // Use a splat (which might be selected as a load splat)
2170    Result = DAG.getSplatBuildVector(VecT, DL, SplatValue);
2171    IsLaneConstructed = [&SplatValue](size_t _, const SDValue &Lane) {
2172      return Lane == SplatValue;
2173    };
2174  }
2175
2176  assert(Result);
2177  assert(IsLaneConstructed);
2178
2179  // Add replace_lane instructions for any unhandled values
2180  for (size_t I = 0; I < Lanes; ++I) {
2181    const SDValue &Lane = Op->getOperand(I);
2182    if (!Lane.isUndef() && !IsLaneConstructed(I, Lane))
2183      Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane,
2184                           DAG.getConstant(I, DL, MVT::i32));
2185  }
2186
2187  return Result;
2188}
2189
2190SDValue
2191WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
2192                                               SelectionDAG &DAG) const {
2193  SDLoc DL(Op);
2194  ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask();
2195  MVT VecType = Op.getOperand(0).getSimpleValueType();
2196  assert(VecType.is128BitVector() && "Unexpected shuffle vector type");
2197  size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8;
2198
2199  // Space for two vector args and sixteen mask indices
2200  SDValue Ops[18];
2201  size_t OpIdx = 0;
2202  Ops[OpIdx++] = Op.getOperand(0);
2203  Ops[OpIdx++] = Op.getOperand(1);
2204
2205  // Expand mask indices to byte indices and materialize them as operands
2206  for (int M : Mask) {
2207    for (size_t J = 0; J < LaneBytes; ++J) {
2208      // Lower undefs (represented by -1 in mask) to {0..J}, which use a
2209      // whole lane of vector input, to allow further reduction at VM. E.g.
2210      // match an 8x16 byte shuffle to an equivalent cheaper 32x4 shuffle.
2211      uint64_t ByteIndex = M == -1 ? J : (uint64_t)M * LaneBytes + J;
2212      Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32);
2213    }
2214  }
2215
2216  return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops);
2217}
2218
2219SDValue WebAssemblyTargetLowering::LowerSETCC(SDValue Op,
2220                                              SelectionDAG &DAG) const {
2221  SDLoc DL(Op);
2222  // The legalizer does not know how to expand the unsupported comparison modes
2223  // of i64x2 vectors, so we manually unroll them here.
2224  assert(Op->getOperand(0)->getSimpleValueType(0) == MVT::v2i64);
2225  SmallVector<SDValue, 2> LHS, RHS;
2226  DAG.ExtractVectorElements(Op->getOperand(0), LHS);
2227  DAG.ExtractVectorElements(Op->getOperand(1), RHS);
2228  const SDValue &CC = Op->getOperand(2);
2229  auto MakeLane = [&](unsigned I) {
2230    return DAG.getNode(ISD::SELECT_CC, DL, MVT::i64, LHS[I], RHS[I],
2231                       DAG.getConstant(uint64_t(-1), DL, MVT::i64),
2232                       DAG.getConstant(uint64_t(0), DL, MVT::i64), CC);
2233  };
2234  return DAG.getBuildVector(Op->getValueType(0), DL,
2235                            {MakeLane(0), MakeLane(1)});
2236}
2237
2238SDValue
2239WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op,
2240                                                    SelectionDAG &DAG) const {
2241  // Allow constant lane indices, expand variable lane indices
2242  SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode();
2243  if (isa<ConstantSDNode>(IdxNode) || IdxNode->isUndef()) {
2244    // Ensure the index type is i32 to match the tablegen patterns
2245    uint64_t Idx = cast<ConstantSDNode>(IdxNode)->getZExtValue();
2246    SmallVector<SDValue, 3> Ops(Op.getNode()->ops());
2247    Ops[Op.getNumOperands() - 1] =
2248        DAG.getConstant(Idx, SDLoc(IdxNode), MVT::i32);
2249    return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), Ops);
2250  }
2251  // Perform default expansion
2252  return SDValue();
2253}
2254
2255static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) {
2256  EVT LaneT = Op.getSimpleValueType().getVectorElementType();
2257  // 32-bit and 64-bit unrolled shifts will have proper semantics
2258  if (LaneT.bitsGE(MVT::i32))
2259    return DAG.UnrollVectorOp(Op.getNode());
2260  // Otherwise mask the shift value to get proper semantics from 32-bit shift
2261  SDLoc DL(Op);
2262  size_t NumLanes = Op.getSimpleValueType().getVectorNumElements();
2263  SDValue Mask = DAG.getConstant(LaneT.getSizeInBits() - 1, DL, MVT::i32);
2264  unsigned ShiftOpcode = Op.getOpcode();
2265  SmallVector<SDValue, 16> ShiftedElements;
2266  DAG.ExtractVectorElements(Op.getOperand(0), ShiftedElements, 0, 0, MVT::i32);
2267  SmallVector<SDValue, 16> ShiftElements;
2268  DAG.ExtractVectorElements(Op.getOperand(1), ShiftElements, 0, 0, MVT::i32);
2269  SmallVector<SDValue, 16> UnrolledOps;
2270  for (size_t i = 0; i < NumLanes; ++i) {
2271    SDValue MaskedShiftValue =
2272        DAG.getNode(ISD::AND, DL, MVT::i32, ShiftElements[i], Mask);
2273    SDValue ShiftedValue = ShiftedElements[i];
2274    if (ShiftOpcode == ISD::SRA)
2275      ShiftedValue = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32,
2276                                 ShiftedValue, DAG.getValueType(LaneT));
2277    UnrolledOps.push_back(
2278        DAG.getNode(ShiftOpcode, DL, MVT::i32, ShiftedValue, MaskedShiftValue));
2279  }
2280  return DAG.getBuildVector(Op.getValueType(), DL, UnrolledOps);
2281}
2282
2283SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op,
2284                                              SelectionDAG &DAG) const {
2285  SDLoc DL(Op);
2286
2287  // Only manually lower vector shifts
2288  assert(Op.getSimpleValueType().isVector());
2289
2290  auto ShiftVal = DAG.getSplatValue(Op.getOperand(1));
2291  if (!ShiftVal)
2292    return unrollVectorShift(Op, DAG);
2293
2294  // Use anyext because none of the high bits can affect the shift
2295  ShiftVal = DAG.getAnyExtOrTrunc(ShiftVal, DL, MVT::i32);
2296
2297  unsigned Opcode;
2298  switch (Op.getOpcode()) {
2299  case ISD::SHL:
2300    Opcode = WebAssemblyISD::VEC_SHL;
2301    break;
2302  case ISD::SRA:
2303    Opcode = WebAssemblyISD::VEC_SHR_S;
2304    break;
2305  case ISD::SRL:
2306    Opcode = WebAssemblyISD::VEC_SHR_U;
2307    break;
2308  default:
2309    llvm_unreachable("unexpected opcode");
2310  }
2311
2312  return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0), ShiftVal);
2313}
2314
2315SDValue WebAssemblyTargetLowering::LowerFP_TO_INT_SAT(SDValue Op,
2316                                                      SelectionDAG &DAG) const {
2317  SDLoc DL(Op);
2318  EVT ResT = Op.getValueType();
2319  EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2320
2321  if ((ResT == MVT::i32 || ResT == MVT::i64) &&
2322      (SatVT == MVT::i32 || SatVT == MVT::i64))
2323    return Op;
2324
2325  if (ResT == MVT::v4i32 && SatVT == MVT::i32)
2326    return Op;
2327
2328  return SDValue();
2329}
2330
2331//===----------------------------------------------------------------------===//
2332//   Custom DAG combine hooks
2333//===----------------------------------------------------------------------===//
2334static SDValue
2335performVECTOR_SHUFFLECombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
2336  auto &DAG = DCI.DAG;
2337  auto Shuffle = cast<ShuffleVectorSDNode>(N);
2338
2339  // Hoist vector bitcasts that don't change the number of lanes out of unary
2340  // shuffles, where they are less likely to get in the way of other combines.
2341  // (shuffle (vNxT1 (bitcast (vNxT0 x))), undef, mask) ->
2342  //  (vNxT1 (bitcast (vNxT0 (shuffle x, undef, mask))))
2343  SDValue Bitcast = N->getOperand(0);
2344  if (Bitcast.getOpcode() != ISD::BITCAST)
2345    return SDValue();
2346  if (!N->getOperand(1).isUndef())
2347    return SDValue();
2348  SDValue CastOp = Bitcast.getOperand(0);
2349  MVT SrcType = CastOp.getSimpleValueType();
2350  MVT DstType = Bitcast.getSimpleValueType();
2351  if (!SrcType.is128BitVector() ||
2352      SrcType.getVectorNumElements() != DstType.getVectorNumElements())
2353    return SDValue();
2354  SDValue NewShuffle = DAG.getVectorShuffle(
2355      SrcType, SDLoc(N), CastOp, DAG.getUNDEF(SrcType), Shuffle->getMask());
2356  return DAG.getBitcast(DstType, NewShuffle);
2357}
2358
2359/// Convert ({u,s}itofp vec) --> ({u,s}itofp ({s,z}ext vec)) so it doesn't get
2360/// split up into scalar instructions during legalization, and the vector
2361/// extending instructions are selected in performVectorExtendCombine below.
2362static SDValue
2363performVectorExtendToFPCombine(SDNode *N,
2364                               TargetLowering::DAGCombinerInfo &DCI) {
2365  auto &DAG = DCI.DAG;
2366  assert(N->getOpcode() == ISD::UINT_TO_FP ||
2367         N->getOpcode() == ISD::SINT_TO_FP);
2368
2369  EVT InVT = N->getOperand(0)->getValueType(0);
2370  EVT ResVT = N->getValueType(0);
2371  MVT ExtVT;
2372  if (ResVT == MVT::v4f32 && (InVT == MVT::v4i16 || InVT == MVT::v4i8))
2373    ExtVT = MVT::v4i32;
2374  else if (ResVT == MVT::v2f64 && (InVT == MVT::v2i16 || InVT == MVT::v2i8))
2375    ExtVT = MVT::v2i32;
2376  else
2377    return SDValue();
2378
2379  unsigned Op =
2380      N->getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND;
2381  SDValue Conv = DAG.getNode(Op, SDLoc(N), ExtVT, N->getOperand(0));
2382  return DAG.getNode(N->getOpcode(), SDLoc(N), ResVT, Conv);
2383}
2384
2385static SDValue
2386performVectorExtendCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
2387  auto &DAG = DCI.DAG;
2388  assert(N->getOpcode() == ISD::SIGN_EXTEND ||
2389         N->getOpcode() == ISD::ZERO_EXTEND);
2390
2391  // Combine ({s,z}ext (extract_subvector src, i)) into a widening operation if
2392  // possible before the extract_subvector can be expanded.
2393  auto Extract = N->getOperand(0);
2394  if (Extract.getOpcode() != ISD::EXTRACT_SUBVECTOR)
2395    return SDValue();
2396  auto Source = Extract.getOperand(0);
2397  auto *IndexNode = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
2398  if (IndexNode == nullptr)
2399    return SDValue();
2400  auto Index = IndexNode->getZExtValue();
2401
2402  // Only v8i8, v4i16, and v2i32 extracts can be widened, and only if the
2403  // extracted subvector is the low or high half of its source.
2404  EVT ResVT = N->getValueType(0);
2405  if (ResVT == MVT::v8i16) {
2406    if (Extract.getValueType() != MVT::v8i8 ||
2407        Source.getValueType() != MVT::v16i8 || (Index != 0 && Index != 8))
2408      return SDValue();
2409  } else if (ResVT == MVT::v4i32) {
2410    if (Extract.getValueType() != MVT::v4i16 ||
2411        Source.getValueType() != MVT::v8i16 || (Index != 0 && Index != 4))
2412      return SDValue();
2413  } else if (ResVT == MVT::v2i64) {
2414    if (Extract.getValueType() != MVT::v2i32 ||
2415        Source.getValueType() != MVT::v4i32 || (Index != 0 && Index != 2))
2416      return SDValue();
2417  } else {
2418    return SDValue();
2419  }
2420
2421  bool IsSext = N->getOpcode() == ISD::SIGN_EXTEND;
2422  bool IsLow = Index == 0;
2423
2424  unsigned Op = IsSext ? (IsLow ? WebAssemblyISD::EXTEND_LOW_S
2425                                : WebAssemblyISD::EXTEND_HIGH_S)
2426                       : (IsLow ? WebAssemblyISD::EXTEND_LOW_U
2427                                : WebAssemblyISD::EXTEND_HIGH_U);
2428
2429  return DAG.getNode(Op, SDLoc(N), ResVT, Source);
2430}
2431
2432static SDValue
2433performVectorTruncZeroCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
2434  auto &DAG = DCI.DAG;
2435
2436  auto GetWasmConversionOp = [](unsigned Op) {
2437    switch (Op) {
2438    case ISD::FP_TO_SINT_SAT:
2439      return WebAssemblyISD::TRUNC_SAT_ZERO_S;
2440    case ISD::FP_TO_UINT_SAT:
2441      return WebAssemblyISD::TRUNC_SAT_ZERO_U;
2442    case ISD::FP_ROUND:
2443      return WebAssemblyISD::DEMOTE_ZERO;
2444    }
2445    llvm_unreachable("unexpected op");
2446  };
2447
2448  auto IsZeroSplat = [](SDValue SplatVal) {
2449    auto *Splat = dyn_cast<BuildVectorSDNode>(SplatVal.getNode());
2450    APInt SplatValue, SplatUndef;
2451    unsigned SplatBitSize;
2452    bool HasAnyUndefs;
2453    return Splat &&
2454           Splat->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
2455                                  HasAnyUndefs) &&
2456           SplatValue == 0;
2457  };
2458
2459  if (N->getOpcode() == ISD::CONCAT_VECTORS) {
2460    // Combine this:
2461    //
2462    //   (concat_vectors (v2i32 (fp_to_{s,u}int_sat $x, 32)), (v2i32 (splat 0)))
2463    //
2464    // into (i32x4.trunc_sat_f64x2_zero_{s,u} $x).
2465    //
2466    // Or this:
2467    //
2468    //   (concat_vectors (v2f32 (fp_round (v2f64 $x))), (v2f32 (splat 0)))
2469    //
2470    // into (f32x4.demote_zero_f64x2 $x).
2471    EVT ResVT;
2472    EVT ExpectedConversionType;
2473    auto Conversion = N->getOperand(0);
2474    auto ConversionOp = Conversion.getOpcode();
2475    switch (ConversionOp) {
2476    case ISD::FP_TO_SINT_SAT:
2477    case ISD::FP_TO_UINT_SAT:
2478      ResVT = MVT::v4i32;
2479      ExpectedConversionType = MVT::v2i32;
2480      break;
2481    case ISD::FP_ROUND:
2482      ResVT = MVT::v4f32;
2483      ExpectedConversionType = MVT::v2f32;
2484      break;
2485    default:
2486      return SDValue();
2487    }
2488
2489    if (N->getValueType(0) != ResVT)
2490      return SDValue();
2491
2492    if (Conversion.getValueType() != ExpectedConversionType)
2493      return SDValue();
2494
2495    auto Source = Conversion.getOperand(0);
2496    if (Source.getValueType() != MVT::v2f64)
2497      return SDValue();
2498
2499    if (!IsZeroSplat(N->getOperand(1)) ||
2500        N->getOperand(1).getValueType() != ExpectedConversionType)
2501      return SDValue();
2502
2503    unsigned Op = GetWasmConversionOp(ConversionOp);
2504    return DAG.getNode(Op, SDLoc(N), ResVT, Source);
2505  }
2506
2507  // Combine this:
2508  //
2509  //   (fp_to_{s,u}int_sat (concat_vectors $x, (v2f64 (splat 0))), 32)
2510  //
2511  // into (i32x4.trunc_sat_f64x2_zero_{s,u} $x).
2512  //
2513  // Or this:
2514  //
2515  //   (v4f32 (fp_round (concat_vectors $x, (v2f64 (splat 0)))))
2516  //
2517  // into (f32x4.demote_zero_f64x2 $x).
2518  EVT ResVT;
2519  auto ConversionOp = N->getOpcode();
2520  switch (ConversionOp) {
2521  case ISD::FP_TO_SINT_SAT:
2522  case ISD::FP_TO_UINT_SAT:
2523    ResVT = MVT::v4i32;
2524    break;
2525  case ISD::FP_ROUND:
2526    ResVT = MVT::v4f32;
2527    break;
2528  default:
2529    llvm_unreachable("unexpected op");
2530  }
2531
2532  if (N->getValueType(0) != ResVT)
2533    return SDValue();
2534
2535  auto Concat = N->getOperand(0);
2536  if (Concat.getValueType() != MVT::v4f64)
2537    return SDValue();
2538
2539  auto Source = Concat.getOperand(0);
2540  if (Source.getValueType() != MVT::v2f64)
2541    return SDValue();
2542
2543  if (!IsZeroSplat(Concat.getOperand(1)) ||
2544      Concat.getOperand(1).getValueType() != MVT::v2f64)
2545    return SDValue();
2546
2547  unsigned Op = GetWasmConversionOp(ConversionOp);
2548  return DAG.getNode(Op, SDLoc(N), ResVT, Source);
2549}
2550
2551// Helper to extract VectorWidth bits from Vec, starting from IdxVal.
2552static SDValue extractSubVector(SDValue Vec, unsigned IdxVal, SelectionDAG &DAG,
2553                                const SDLoc &DL, unsigned VectorWidth) {
2554  EVT VT = Vec.getValueType();
2555  EVT ElVT = VT.getVectorElementType();
2556  unsigned Factor = VT.getSizeInBits() / VectorWidth;
2557  EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
2558                                  VT.getVectorNumElements() / Factor);
2559
2560  // Extract the relevant VectorWidth bits.  Generate an EXTRACT_SUBVECTOR
2561  unsigned ElemsPerChunk = VectorWidth / ElVT.getSizeInBits();
2562  assert(isPowerOf2_32(ElemsPerChunk) && "Elements per chunk not power of 2");
2563
2564  // This is the index of the first element of the VectorWidth-bit chunk
2565  // we want. Since ElemsPerChunk is a power of 2 just need to clear bits.
2566  IdxVal &= ~(ElemsPerChunk - 1);
2567
2568  // If the input is a buildvector just emit a smaller one.
2569  if (Vec.getOpcode() == ISD::BUILD_VECTOR)
2570    return DAG.getBuildVector(ResultVT, DL,
2571                              Vec->ops().slice(IdxVal, ElemsPerChunk));
2572
2573  SDValue VecIdx = DAG.getIntPtrConstant(IdxVal, DL);
2574  return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ResultVT, Vec, VecIdx);
2575}
2576
2577// Helper to recursively truncate vector elements in half with NARROW_U. DstVT
2578// is the expected destination value type after recursion. In is the initial
2579// input. Note that the input should have enough leading zero bits to prevent
2580// NARROW_U from saturating results.
2581static SDValue truncateVectorWithNARROW(EVT DstVT, SDValue In, const SDLoc &DL,
2582                                        SelectionDAG &DAG) {
2583  EVT SrcVT = In.getValueType();
2584
2585  // No truncation required, we might get here due to recursive calls.
2586  if (SrcVT == DstVT)
2587    return In;
2588
2589  unsigned SrcSizeInBits = SrcVT.getSizeInBits();
2590  unsigned NumElems = SrcVT.getVectorNumElements();
2591  if (!isPowerOf2_32(NumElems))
2592    return SDValue();
2593  assert(DstVT.getVectorNumElements() == NumElems && "Illegal truncation");
2594  assert(SrcSizeInBits > DstVT.getSizeInBits() && "Illegal truncation");
2595
2596  LLVMContext &Ctx = *DAG.getContext();
2597  EVT PackedSVT = EVT::getIntegerVT(Ctx, SrcVT.getScalarSizeInBits() / 2);
2598
2599  // Narrow to the largest type possible:
2600  // vXi64/vXi32 -> i16x8.narrow_i32x4_u and vXi16 -> i8x16.narrow_i16x8_u.
2601  EVT InVT = MVT::i16, OutVT = MVT::i8;
2602  if (SrcVT.getScalarSizeInBits() > 16) {
2603    InVT = MVT::i32;
2604    OutVT = MVT::i16;
2605  }
2606  unsigned SubSizeInBits = SrcSizeInBits / 2;
2607  InVT = EVT::getVectorVT(Ctx, InVT, SubSizeInBits / InVT.getSizeInBits());
2608  OutVT = EVT::getVectorVT(Ctx, OutVT, SubSizeInBits / OutVT.getSizeInBits());
2609
2610  // Split lower/upper subvectors.
2611  SDValue Lo = extractSubVector(In, 0, DAG, DL, SubSizeInBits);
2612  SDValue Hi = extractSubVector(In, NumElems / 2, DAG, DL, SubSizeInBits);
2613
2614  // 256bit -> 128bit truncate - Narrow lower/upper 128-bit subvectors.
2615  if (SrcVT.is256BitVector() && DstVT.is128BitVector()) {
2616    Lo = DAG.getBitcast(InVT, Lo);
2617    Hi = DAG.getBitcast(InVT, Hi);
2618    SDValue Res = DAG.getNode(WebAssemblyISD::NARROW_U, DL, OutVT, Lo, Hi);
2619    return DAG.getBitcast(DstVT, Res);
2620  }
2621
2622  // Recursively narrow lower/upper subvectors, concat result and narrow again.
2623  EVT PackedVT = EVT::getVectorVT(Ctx, PackedSVT, NumElems / 2);
2624  Lo = truncateVectorWithNARROW(PackedVT, Lo, DL, DAG);
2625  Hi = truncateVectorWithNARROW(PackedVT, Hi, DL, DAG);
2626
2627  PackedVT = EVT::getVectorVT(Ctx, PackedSVT, NumElems);
2628  SDValue Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, PackedVT, Lo, Hi);
2629  return truncateVectorWithNARROW(DstVT, Res, DL, DAG);
2630}
2631
2632static SDValue performTruncateCombine(SDNode *N,
2633                                      TargetLowering::DAGCombinerInfo &DCI) {
2634  auto &DAG = DCI.DAG;
2635
2636  SDValue In = N->getOperand(0);
2637  EVT InVT = In.getValueType();
2638  if (!InVT.isSimple())
2639    return SDValue();
2640
2641  EVT OutVT = N->getValueType(0);
2642  if (!OutVT.isVector())
2643    return SDValue();
2644
2645  EVT OutSVT = OutVT.getVectorElementType();
2646  EVT InSVT = InVT.getVectorElementType();
2647  // Currently only cover truncate to v16i8 or v8i16.
2648  if (!((InSVT == MVT::i16 || InSVT == MVT::i32 || InSVT == MVT::i64) &&
2649        (OutSVT == MVT::i8 || OutSVT == MVT::i16) && OutVT.is128BitVector()))
2650    return SDValue();
2651
2652  SDLoc DL(N);
2653  APInt Mask = APInt::getLowBitsSet(InVT.getScalarSizeInBits(),
2654                                    OutVT.getScalarSizeInBits());
2655  In = DAG.getNode(ISD::AND, DL, InVT, In, DAG.getConstant(Mask, DL, InVT));
2656  return truncateVectorWithNARROW(OutVT, In, DL, DAG);
2657}
2658
2659SDValue
2660WebAssemblyTargetLowering::PerformDAGCombine(SDNode *N,
2661                                             DAGCombinerInfo &DCI) const {
2662  switch (N->getOpcode()) {
2663  default:
2664    return SDValue();
2665  case ISD::VECTOR_SHUFFLE:
2666    return performVECTOR_SHUFFLECombine(N, DCI);
2667  case ISD::SIGN_EXTEND:
2668  case ISD::ZERO_EXTEND:
2669    return performVectorExtendCombine(N, DCI);
2670  case ISD::UINT_TO_FP:
2671  case ISD::SINT_TO_FP:
2672    return performVectorExtendToFPCombine(N, DCI);
2673  case ISD::FP_TO_SINT_SAT:
2674  case ISD::FP_TO_UINT_SAT:
2675  case ISD::FP_ROUND:
2676  case ISD::CONCAT_VECTORS:
2677    return performVectorTruncZeroCombine(N, DCI);
2678  case ISD::TRUNCATE:
2679    return performTruncateCombine(N, DCI);
2680  }
2681}
2682