152923Sjb//===-- Mips16ISelLowering.h - Mips16 DAG Lowering Interface ----*- C++ -*-===//
252923Sjb//
352923Sjb// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
452923Sjb// See https://llvm.org/LICENSE.txt for license information.
552923Sjb// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
652923Sjb//
7//===----------------------------------------------------------------------===//
8//
9// Subclass of MipsTargetLowering specialized for mips16.
10//
11//===----------------------------------------------------------------------===//
12#include "Mips16ISelLowering.h"
13#include "MCTargetDesc/MipsBaseInfo.h"
14#include "Mips16HardFloatInfo.h"
15#include "MipsMachineFunction.h"
16#include "MipsRegisterInfo.h"
17#include "MipsTargetMachine.h"
18#include "llvm/CodeGen/MachineInstrBuilder.h"
19#include "llvm/CodeGen/TargetInstrInfo.h"
20#include "llvm/Support/CommandLine.h"
21
22using namespace llvm;
23
24#define DEBUG_TYPE "mips-lower"
25
26static cl::opt<bool> DontExpandCondPseudos16(
27  "mips16-dont-expand-cond-pseudo",
28  cl::init(false),
29  cl::desc("Don't expand conditional move related "
30           "pseudos for Mips 16"),
31  cl::Hidden);
32
33namespace {
34struct Mips16Libcall {
35  RTLIB::Libcall Libcall;
36  const char *Name;
37
38  bool operator<(const Mips16Libcall &RHS) const {
39    return std::strcmp(Name, RHS.Name) < 0;
40  }
41};
42
43struct Mips16IntrinsicHelperType{
44  const char* Name;
45  const char* Helper;
46
47  bool operator<(const Mips16IntrinsicHelperType &RHS) const {
48    return std::strcmp(Name, RHS.Name) < 0;
49  }
50  bool operator==(const Mips16IntrinsicHelperType &RHS) const {
51    return std::strcmp(Name, RHS.Name) == 0;
52  }
53};
54}
55
56// Libcalls for which no helper is generated. Sorted by name for binary search.
57static const Mips16Libcall HardFloatLibCalls[] = {
58  { RTLIB::ADD_F64, "__mips16_adddf3" },
59  { RTLIB::ADD_F32, "__mips16_addsf3" },
60  { RTLIB::DIV_F64, "__mips16_divdf3" },
61  { RTLIB::DIV_F32, "__mips16_divsf3" },
62  { RTLIB::OEQ_F64, "__mips16_eqdf2" },
63  { RTLIB::OEQ_F32, "__mips16_eqsf2" },
64  { RTLIB::FPEXT_F32_F64, "__mips16_extendsfdf2" },
65  { RTLIB::FPTOSINT_F64_I32, "__mips16_fix_truncdfsi" },
66  { RTLIB::FPTOSINT_F32_I32, "__mips16_fix_truncsfsi" },
67  { RTLIB::SINTTOFP_I32_F64, "__mips16_floatsidf" },
68  { RTLIB::SINTTOFP_I32_F32, "__mips16_floatsisf" },
69  { RTLIB::UINTTOFP_I32_F64, "__mips16_floatunsidf" },
70  { RTLIB::UINTTOFP_I32_F32, "__mips16_floatunsisf" },
71  { RTLIB::OGE_F64, "__mips16_gedf2" },
72  { RTLIB::OGE_F32, "__mips16_gesf2" },
73  { RTLIB::OGT_F64, "__mips16_gtdf2" },
74  { RTLIB::OGT_F32, "__mips16_gtsf2" },
75  { RTLIB::OLE_F64, "__mips16_ledf2" },
76  { RTLIB::OLE_F32, "__mips16_lesf2" },
77  { RTLIB::OLT_F64, "__mips16_ltdf2" },
78  { RTLIB::OLT_F32, "__mips16_ltsf2" },
79  { RTLIB::MUL_F64, "__mips16_muldf3" },
80  { RTLIB::MUL_F32, "__mips16_mulsf3" },
81  { RTLIB::UNE_F64, "__mips16_nedf2" },
82  { RTLIB::UNE_F32, "__mips16_nesf2" },
83  { RTLIB::UNKNOWN_LIBCALL, "__mips16_ret_dc" }, // No associated libcall.
84  { RTLIB::UNKNOWN_LIBCALL, "__mips16_ret_df" }, // No associated libcall.
85  { RTLIB::UNKNOWN_LIBCALL, "__mips16_ret_sc" }, // No associated libcall.
86  { RTLIB::UNKNOWN_LIBCALL, "__mips16_ret_sf" }, // No associated libcall.
87  { RTLIB::SUB_F64, "__mips16_subdf3" },
88  { RTLIB::SUB_F32, "__mips16_subsf3" },
89  { RTLIB::FPROUND_F64_F32, "__mips16_truncdfsf2" },
90  { RTLIB::UO_F64, "__mips16_unorddf2" },
91  { RTLIB::UO_F32, "__mips16_unordsf2" }
92};
93
94static const Mips16IntrinsicHelperType Mips16IntrinsicHelper[] = {
95  {"__fixunsdfsi", "__mips16_call_stub_2" },
96  {"ceil",  "__mips16_call_stub_df_2"},
97  {"ceilf", "__mips16_call_stub_sf_1"},
98  {"copysign",  "__mips16_call_stub_df_10"},
99  {"copysignf", "__mips16_call_stub_sf_5"},
100  {"cos",  "__mips16_call_stub_df_2"},
101  {"cosf", "__mips16_call_stub_sf_1"},
102  {"exp2",  "__mips16_call_stub_df_2"},
103  {"exp2f", "__mips16_call_stub_sf_1"},
104  {"floor",  "__mips16_call_stub_df_2"},
105  {"floorf", "__mips16_call_stub_sf_1"},
106  {"log2",  "__mips16_call_stub_df_2"},
107  {"log2f", "__mips16_call_stub_sf_1"},
108  {"nearbyint",  "__mips16_call_stub_df_2"},
109  {"nearbyintf", "__mips16_call_stub_sf_1"},
110  {"rint",  "__mips16_call_stub_df_2"},
111  {"rintf", "__mips16_call_stub_sf_1"},
112  {"sin",  "__mips16_call_stub_df_2"},
113  {"sinf", "__mips16_call_stub_sf_1"},
114  {"sqrt",  "__mips16_call_stub_df_2"},
115  {"sqrtf", "__mips16_call_stub_sf_1"},
116  {"trunc",  "__mips16_call_stub_df_2"},
117  {"truncf", "__mips16_call_stub_sf_1"},
118};
119
120Mips16TargetLowering::Mips16TargetLowering(const MipsTargetMachine &TM,
121                                           const MipsSubtarget &STI)
122    : MipsTargetLowering(TM, STI) {
123
124  // Set up the register classes
125  addRegisterClass(MVT::i32, &Mips::CPU16RegsRegClass);
126
127  if (!Subtarget.useSoftFloat())
128    setMips16HardFloatLibCalls();
129
130  setOperationAction(ISD::ATOMIC_FENCE,       MVT::Other, Expand);
131  setOperationAction(ISD::ATOMIC_CMP_SWAP,    MVT::i32,   Expand);
132  setOperationAction(ISD::ATOMIC_SWAP,        MVT::i32,   Expand);
133  setOperationAction(ISD::ATOMIC_LOAD_ADD,    MVT::i32,   Expand);
134  setOperationAction(ISD::ATOMIC_LOAD_SUB,    MVT::i32,   Expand);
135  setOperationAction(ISD::ATOMIC_LOAD_AND,    MVT::i32,   Expand);
136  setOperationAction(ISD::ATOMIC_LOAD_OR,     MVT::i32,   Expand);
137  setOperationAction(ISD::ATOMIC_LOAD_XOR,    MVT::i32,   Expand);
138  setOperationAction(ISD::ATOMIC_LOAD_NAND,   MVT::i32,   Expand);
139  setOperationAction(ISD::ATOMIC_LOAD_MIN,    MVT::i32,   Expand);
140  setOperationAction(ISD::ATOMIC_LOAD_MAX,    MVT::i32,   Expand);
141  setOperationAction(ISD::ATOMIC_LOAD_UMIN,   MVT::i32,   Expand);
142  setOperationAction(ISD::ATOMIC_LOAD_UMAX,   MVT::i32,   Expand);
143
144  setOperationAction(ISD::ROTR, MVT::i32,  Expand);
145  setOperationAction(ISD::ROTR, MVT::i64,  Expand);
146  setOperationAction(ISD::BSWAP, MVT::i32, Expand);
147  setOperationAction(ISD::BSWAP, MVT::i64, Expand);
148
149  computeRegisterProperties(STI.getRegisterInfo());
150}
151
152const MipsTargetLowering *
153llvm::createMips16TargetLowering(const MipsTargetMachine &TM,
154                                 const MipsSubtarget &STI) {
155  return new Mips16TargetLowering(TM, STI);
156}
157
158bool Mips16TargetLowering::allowsMisalignedMemoryAccesses(
159    EVT VT, unsigned, Align, MachineMemOperand::Flags, unsigned *Fast) const {
160  return false;
161}
162
163MachineBasicBlock *
164Mips16TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
165                                                  MachineBasicBlock *BB) const {
166  switch (MI.getOpcode()) {
167  default:
168    return MipsTargetLowering::EmitInstrWithCustomInserter(MI, BB);
169  case Mips::SelBeqZ:
170    return emitSel16(Mips::BeqzRxImm16, MI, BB);
171  case Mips::SelBneZ:
172    return emitSel16(Mips::BnezRxImm16, MI, BB);
173  case Mips::SelTBteqZCmpi:
174    return emitSeliT16(Mips::Bteqz16, Mips::CmpiRxImmX16, MI, BB);
175  case Mips::SelTBteqZSlti:
176    return emitSeliT16(Mips::Bteqz16, Mips::SltiRxImmX16, MI, BB);
177  case Mips::SelTBteqZSltiu:
178    return emitSeliT16(Mips::Bteqz16, Mips::SltiuRxImmX16, MI, BB);
179  case Mips::SelTBtneZCmpi:
180    return emitSeliT16(Mips::Btnez16, Mips::CmpiRxImmX16, MI, BB);
181  case Mips::SelTBtneZSlti:
182    return emitSeliT16(Mips::Btnez16, Mips::SltiRxImmX16, MI, BB);
183  case Mips::SelTBtneZSltiu:
184    return emitSeliT16(Mips::Btnez16, Mips::SltiuRxImmX16, MI, BB);
185  case Mips::SelTBteqZCmp:
186    return emitSelT16(Mips::Bteqz16, Mips::CmpRxRy16, MI, BB);
187  case Mips::SelTBteqZSlt:
188    return emitSelT16(Mips::Bteqz16, Mips::SltRxRy16, MI, BB);
189  case Mips::SelTBteqZSltu:
190    return emitSelT16(Mips::Bteqz16, Mips::SltuRxRy16, MI, BB);
191  case Mips::SelTBtneZCmp:
192    return emitSelT16(Mips::Btnez16, Mips::CmpRxRy16, MI, BB);
193  case Mips::SelTBtneZSlt:
194    return emitSelT16(Mips::Btnez16, Mips::SltRxRy16, MI, BB);
195  case Mips::SelTBtneZSltu:
196    return emitSelT16(Mips::Btnez16, Mips::SltuRxRy16, MI, BB);
197  case Mips::BteqzT8CmpX16:
198    return emitFEXT_T8I816_ins(Mips::Bteqz16, Mips::CmpRxRy16, MI, BB);
199  case Mips::BteqzT8SltX16:
200    return emitFEXT_T8I816_ins(Mips::Bteqz16, Mips::SltRxRy16, MI, BB);
201  case Mips::BteqzT8SltuX16:
202    // TBD: figure out a way to get this or remove the instruction
203    // altogether.
204    return emitFEXT_T8I816_ins(Mips::Bteqz16, Mips::SltuRxRy16, MI, BB);
205  case Mips::BtnezT8CmpX16:
206    return emitFEXT_T8I816_ins(Mips::Btnez16, Mips::CmpRxRy16, MI, BB);
207  case Mips::BtnezT8SltX16:
208    return emitFEXT_T8I816_ins(Mips::Btnez16, Mips::SltRxRy16, MI, BB);
209  case Mips::BtnezT8SltuX16:
210    // TBD: figure out a way to get this or remove the instruction
211    // altogether.
212    return emitFEXT_T8I816_ins(Mips::Btnez16, Mips::SltuRxRy16, MI, BB);
213  case Mips::BteqzT8CmpiX16: return emitFEXT_T8I8I16_ins(
214    Mips::Bteqz16, Mips::CmpiRxImm16, Mips::CmpiRxImmX16, false, MI, BB);
215  case Mips::BteqzT8SltiX16: return emitFEXT_T8I8I16_ins(
216    Mips::Bteqz16, Mips::SltiRxImm16, Mips::SltiRxImmX16, true, MI, BB);
217  case Mips::BteqzT8SltiuX16: return emitFEXT_T8I8I16_ins(
218    Mips::Bteqz16, Mips::SltiuRxImm16, Mips::SltiuRxImmX16, false, MI, BB);
219  case Mips::BtnezT8CmpiX16: return emitFEXT_T8I8I16_ins(
220    Mips::Btnez16, Mips::CmpiRxImm16, Mips::CmpiRxImmX16, false, MI, BB);
221  case Mips::BtnezT8SltiX16: return emitFEXT_T8I8I16_ins(
222    Mips::Btnez16, Mips::SltiRxImm16, Mips::SltiRxImmX16, true, MI, BB);
223  case Mips::BtnezT8SltiuX16: return emitFEXT_T8I8I16_ins(
224    Mips::Btnez16, Mips::SltiuRxImm16, Mips::SltiuRxImmX16, false, MI, BB);
225    break;
226  case Mips::SltCCRxRy16:
227    return emitFEXT_CCRX16_ins(Mips::SltRxRy16, MI, BB);
228    break;
229  case Mips::SltiCCRxImmX16:
230    return emitFEXT_CCRXI16_ins
231      (Mips::SltiRxImm16, Mips::SltiRxImmX16, MI, BB);
232  case Mips::SltiuCCRxImmX16:
233    return emitFEXT_CCRXI16_ins
234      (Mips::SltiuRxImm16, Mips::SltiuRxImmX16, MI, BB);
235  case Mips::SltuCCRxRy16:
236    return emitFEXT_CCRX16_ins
237      (Mips::SltuRxRy16, MI, BB);
238  }
239}
240
241bool Mips16TargetLowering::isEligibleForTailCallOptimization(
242    const CCState &CCInfo, unsigned NextStackOffset,
243    const MipsFunctionInfo &FI) const {
244  // No tail call optimization for mips16.
245  return false;
246}
247
248void Mips16TargetLowering::setMips16HardFloatLibCalls() {
249  for (unsigned I = 0; I != std::size(HardFloatLibCalls); ++I) {
250    assert((I == 0 || HardFloatLibCalls[I - 1] < HardFloatLibCalls[I]) &&
251           "Array not sorted!");
252    if (HardFloatLibCalls[I].Libcall != RTLIB::UNKNOWN_LIBCALL)
253      setLibcallName(HardFloatLibCalls[I].Libcall, HardFloatLibCalls[I].Name);
254  }
255}
256
257//
258// The Mips16 hard float is a crazy quilt inherited from gcc. I have a much
259// cleaner way to do all of this but it will have to wait until the traditional
260// gcc mechanism is completed.
261//
262// For Pic, in order for Mips16 code to call Mips32 code which according the abi
263// have either arguments or returned values placed in floating point registers,
264// we use a set of helper functions. (This includes functions which return type
265//  complex which on Mips are returned in a pair of floating point registers).
266//
267// This is an encoding that we inherited from gcc.
268// In Mips traditional O32, N32 ABI, floating point numbers are passed in
269// floating point argument registers 1,2 only when the first and optionally
270// the second arguments are float (sf) or double (df).
271// For Mips16 we are only concerned with the situations where floating point
272// arguments are being passed in floating point registers by the ABI, because
273// Mips16 mode code cannot execute floating point instructions to load those
274// values and hence helper functions are needed.
275// The possibilities are (), (sf), (sf, sf), (sf, df), (df), (df, sf), (df, df)
276// the helper function suffixs for these are:
277//                        0,  1,    5,        9,         2,   6,        10
278// this suffix can then be calculated as follows:
279// for a given argument Arg:
280//     Arg1x, Arg2x = 1 :  Arg is sf
281//                    2 :  Arg is df
282//                    0:   Arg is neither sf or df
283// So this stub is the string for number Arg1x + Arg2x*4.
284// However not all numbers between 0 and 10 are possible, we check anyway and
285// assert if the impossible exists.
286//
287
288unsigned int Mips16TargetLowering::getMips16HelperFunctionStubNumber
289  (ArgListTy &Args) const {
290  unsigned int resultNum = 0;
291  if (Args.size() >= 1) {
292    Type *t = Args[0].Ty;
293    if (t->isFloatTy()) {
294      resultNum = 1;
295    }
296    else if (t->isDoubleTy()) {
297      resultNum = 2;
298    }
299  }
300  if (resultNum) {
301    if (Args.size() >=2) {
302      Type *t = Args[1].Ty;
303      if (t->isFloatTy()) {
304        resultNum += 4;
305      }
306      else if (t->isDoubleTy()) {
307        resultNum += 8;
308      }
309    }
310  }
311  return resultNum;
312}
313
314//
315// Prefixes are attached to stub numbers depending on the return type.
316// return type: float  sf_
317//              double df_
318//              single complex sc_
319//              double complext dc_
320//              others  NO PREFIX
321//
322//
323// The full name of a helper function is__mips16_call_stub +
324//    return type dependent prefix + stub number
325//
326// FIXME: This is something that probably should be in a different source file
327// and perhaps done differently but my main purpose is to not waste runtime
328// on something that we can enumerate in the source. Another possibility is
329// to have a python script to generate these mapping tables. This will do
330// for now. There are a whole series of helper function mapping arrays, one
331// for each return type class as outlined above. There there are 11 possible
332// entries. Ones with 0 are ones which should never be selected.
333//
334// All the arrays are similar except for ones which return neither
335// sf, df, sc, dc, in which we only care about ones which have sf or df as a
336// first parameter.
337//
338#define P_ "__mips16_call_stub_"
339#define MAX_STUB_NUMBER 10
340#define T1 P "1", P "2", 0, 0, P "5", P "6", 0, 0, P "9", P "10"
341#define T P "0" , T1
342#define P P_
343static char const * vMips16Helper[MAX_STUB_NUMBER+1] =
344  {nullptr, T1 };
345#undef P
346#define P P_ "sf_"
347static char const * sfMips16Helper[MAX_STUB_NUMBER+1] =
348  { T };
349#undef P
350#define P P_ "df_"
351static char const * dfMips16Helper[MAX_STUB_NUMBER+1] =
352  { T };
353#undef P
354#define P P_ "sc_"
355static char const * scMips16Helper[MAX_STUB_NUMBER+1] =
356  { T };
357#undef P
358#define P P_ "dc_"
359static char const * dcMips16Helper[MAX_STUB_NUMBER+1] =
360  { T };
361#undef P
362#undef P_
363
364
365const char* Mips16TargetLowering::
366  getMips16HelperFunction
367    (Type* RetTy, ArgListTy &Args, bool &needHelper) const {
368  const unsigned int stubNum = getMips16HelperFunctionStubNumber(Args);
369#ifndef NDEBUG
370  const unsigned int maxStubNum = 10;
371  assert(stubNum <= maxStubNum);
372  const bool validStubNum[maxStubNum+1] =
373    {true, true, true, false, false, true, true, false, false, true, true};
374  assert(validStubNum[stubNum]);
375#endif
376  const char *result;
377  if (RetTy->isFloatTy()) {
378    result = sfMips16Helper[stubNum];
379  }
380  else if (RetTy ->isDoubleTy()) {
381    result = dfMips16Helper[stubNum];
382  } else if (StructType *SRetTy = dyn_cast<StructType>(RetTy)) {
383    // check if it's complex
384    if (SRetTy->getNumElements() == 2) {
385      if ((SRetTy->getElementType(0)->isFloatTy()) &&
386          (SRetTy->getElementType(1)->isFloatTy())) {
387        result = scMips16Helper[stubNum];
388      } else if ((SRetTy->getElementType(0)->isDoubleTy()) &&
389                 (SRetTy->getElementType(1)->isDoubleTy())) {
390        result = dcMips16Helper[stubNum];
391      } else {
392        llvm_unreachable("Uncovered condition");
393      }
394    } else {
395      llvm_unreachable("Uncovered condition");
396    }
397  } else {
398    if (stubNum == 0) {
399      needHelper = false;
400      return "";
401    }
402    result = vMips16Helper[stubNum];
403  }
404  needHelper = true;
405  return result;
406}
407
408void Mips16TargetLowering::
409getOpndList(SmallVectorImpl<SDValue> &Ops,
410            std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
411            bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
412            bool IsCallReloc, CallLoweringInfo &CLI, SDValue Callee,
413            SDValue Chain) const {
414  SelectionDAG &DAG = CLI.DAG;
415  MachineFunction &MF = DAG.getMachineFunction();
416  MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
417  const char* Mips16HelperFunction = nullptr;
418  bool NeedMips16Helper = false;
419
420  if (Subtarget.inMips16HardFloat()) {
421    //
422    // currently we don't have symbols tagged with the mips16 or mips32
423    // qualifier so we will assume that we don't know what kind it is.
424    // and generate the helper
425    //
426    bool LookupHelper = true;
427    if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(CLI.Callee)) {
428      Mips16Libcall Find = { RTLIB::UNKNOWN_LIBCALL, S->getSymbol() };
429
430      if (std::binary_search(std::begin(HardFloatLibCalls),
431                             std::end(HardFloatLibCalls), Find))
432        LookupHelper = false;
433      else {
434        const char *Symbol = S->getSymbol();
435        Mips16IntrinsicHelperType IntrinsicFind = { Symbol, "" };
436        const Mips16HardFloatInfo::FuncSignature *Signature =
437            Mips16HardFloatInfo::findFuncSignature(Symbol);
438        if (!IsPICCall && (Signature && (FuncInfo->StubsNeeded.find(Symbol) ==
439                                         FuncInfo->StubsNeeded.end()))) {
440          FuncInfo->StubsNeeded[Symbol] = Signature;
441          //
442          // S2 is normally saved if the stub is for a function which
443          // returns a float or double value and is not otherwise. This is
444          // because more work is required after the function the stub
445          // is calling completes, and so the stub cannot directly return
446          // and the stub has no stack space to store the return address so
447          // S2 is used for that purpose.
448          // In order to take advantage of not saving S2, we need to also
449          // optimize the call in the stub and this requires some further
450          // functionality in MipsAsmPrinter which we don't have yet.
451          // So for now we always save S2. The optimization will be done
452          // in a follow-on patch.
453          //
454          if (true || (Signature->RetSig != Mips16HardFloatInfo::NoFPRet))
455            FuncInfo->setSaveS2();
456        }
457        // one more look at list of intrinsics
458        const Mips16IntrinsicHelperType *Helper =
459            llvm::lower_bound(Mips16IntrinsicHelper, IntrinsicFind);
460        if (Helper != std::end(Mips16IntrinsicHelper) &&
461            *Helper == IntrinsicFind) {
462          Mips16HelperFunction = Helper->Helper;
463          NeedMips16Helper = true;
464          LookupHelper = false;
465        }
466
467      }
468    } else if (GlobalAddressSDNode *G =
469                   dyn_cast<GlobalAddressSDNode>(CLI.Callee)) {
470      Mips16Libcall Find = { RTLIB::UNKNOWN_LIBCALL,
471                             G->getGlobal()->getName().data() };
472
473      if (std::binary_search(std::begin(HardFloatLibCalls),
474                             std::end(HardFloatLibCalls), Find))
475        LookupHelper = false;
476    }
477    if (LookupHelper)
478      Mips16HelperFunction =
479        getMips16HelperFunction(CLI.RetTy, CLI.getArgs(), NeedMips16Helper);
480  }
481
482  SDValue JumpTarget = Callee;
483
484  // T9 should contain the address of the callee function if
485  // -relocation-model=pic or it is an indirect call.
486  if (IsPICCall || !GlobalOrExternal) {
487    unsigned V0Reg = Mips::V0;
488    if (NeedMips16Helper) {
489      RegsToPass.push_front(std::make_pair(V0Reg, Callee));
490      JumpTarget = DAG.getExternalSymbol(Mips16HelperFunction,
491                                         getPointerTy(DAG.getDataLayout()));
492      ExternalSymbolSDNode *S = cast<ExternalSymbolSDNode>(JumpTarget);
493      JumpTarget = getAddrGlobal(S, CLI.DL, JumpTarget.getValueType(), DAG,
494                                 MipsII::MO_GOT, Chain,
495                                 FuncInfo->callPtrInfo(MF, S->getSymbol()));
496    } else
497      RegsToPass.push_front(std::make_pair((unsigned)Mips::T9, Callee));
498  }
499
500  Ops.push_back(JumpTarget);
501
502  MipsTargetLowering::getOpndList(Ops, RegsToPass, IsPICCall, GlobalOrExternal,
503                                  InternalLinkage, IsCallReloc, CLI, Callee,
504                                  Chain);
505}
506
507MachineBasicBlock *
508Mips16TargetLowering::emitSel16(unsigned Opc, MachineInstr &MI,
509                                MachineBasicBlock *BB) const {
510  if (DontExpandCondPseudos16)
511    return BB;
512  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
513  DebugLoc DL = MI.getDebugLoc();
514  // To "insert" a SELECT_CC instruction, we actually have to insert the
515  // diamond control-flow pattern.  The incoming instruction knows the
516  // destination vreg to set, the condition code register to branch on, the
517  // true/false values to select between, and a branch opcode to use.
518  const BasicBlock *LLVM_BB = BB->getBasicBlock();
519  MachineFunction::iterator It = ++BB->getIterator();
520
521  //  thisMBB:
522  //  ...
523  //   TrueVal = ...
524  //   setcc r1, r2, r3
525  //   bNE   r1, r0, copy1MBB
526  //   fallthrough --> copy0MBB
527  MachineBasicBlock *thisMBB  = BB;
528  MachineFunction *F = BB->getParent();
529  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
530  MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
531  F->insert(It, copy0MBB);
532  F->insert(It, sinkMBB);
533
534  // Transfer the remainder of BB and its successor edges to sinkMBB.
535  sinkMBB->splice(sinkMBB->begin(), BB,
536                  std::next(MachineBasicBlock::iterator(MI)), BB->end());
537  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
538
539  // Next, add the true and fallthrough blocks as its successors.
540  BB->addSuccessor(copy0MBB);
541  BB->addSuccessor(sinkMBB);
542
543  BuildMI(BB, DL, TII->get(Opc))
544      .addReg(MI.getOperand(3).getReg())
545      .addMBB(sinkMBB);
546
547  //  copy0MBB:
548  //   %FalseValue = ...
549  //   # fallthrough to sinkMBB
550  BB = copy0MBB;
551
552  // Update machine-CFG edges
553  BB->addSuccessor(sinkMBB);
554
555  //  sinkMBB:
556  //   %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
557  //  ...
558  BB = sinkMBB;
559
560  BuildMI(*BB, BB->begin(), DL, TII->get(Mips::PHI), MI.getOperand(0).getReg())
561      .addReg(MI.getOperand(1).getReg())
562      .addMBB(thisMBB)
563      .addReg(MI.getOperand(2).getReg())
564      .addMBB(copy0MBB);
565
566  MI.eraseFromParent(); // The pseudo instruction is gone now.
567  return BB;
568}
569
570MachineBasicBlock *
571Mips16TargetLowering::emitSelT16(unsigned Opc1, unsigned Opc2, MachineInstr &MI,
572                                 MachineBasicBlock *BB) const {
573  if (DontExpandCondPseudos16)
574    return BB;
575  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
576  DebugLoc DL = MI.getDebugLoc();
577  // To "insert" a SELECT_CC instruction, we actually have to insert the
578  // diamond control-flow pattern.  The incoming instruction knows the
579  // destination vreg to set, the condition code register to branch on, the
580  // true/false values to select between, and a branch opcode to use.
581  const BasicBlock *LLVM_BB = BB->getBasicBlock();
582  MachineFunction::iterator It = ++BB->getIterator();
583
584  //  thisMBB:
585  //  ...
586  //   TrueVal = ...
587  //   setcc r1, r2, r3
588  //   bNE   r1, r0, copy1MBB
589  //   fallthrough --> copy0MBB
590  MachineBasicBlock *thisMBB  = BB;
591  MachineFunction *F = BB->getParent();
592  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
593  MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
594  F->insert(It, copy0MBB);
595  F->insert(It, sinkMBB);
596
597  // Transfer the remainder of BB and its successor edges to sinkMBB.
598  sinkMBB->splice(sinkMBB->begin(), BB,
599                  std::next(MachineBasicBlock::iterator(MI)), BB->end());
600  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
601
602  // Next, add the true and fallthrough blocks as its successors.
603  BB->addSuccessor(copy0MBB);
604  BB->addSuccessor(sinkMBB);
605
606  BuildMI(BB, DL, TII->get(Opc2))
607      .addReg(MI.getOperand(3).getReg())
608      .addReg(MI.getOperand(4).getReg());
609  BuildMI(BB, DL, TII->get(Opc1)).addMBB(sinkMBB);
610
611  //  copy0MBB:
612  //   %FalseValue = ...
613  //   # fallthrough to sinkMBB
614  BB = copy0MBB;
615
616  // Update machine-CFG edges
617  BB->addSuccessor(sinkMBB);
618
619  //  sinkMBB:
620  //   %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
621  //  ...
622  BB = sinkMBB;
623
624  BuildMI(*BB, BB->begin(), DL, TII->get(Mips::PHI), MI.getOperand(0).getReg())
625      .addReg(MI.getOperand(1).getReg())
626      .addMBB(thisMBB)
627      .addReg(MI.getOperand(2).getReg())
628      .addMBB(copy0MBB);
629
630  MI.eraseFromParent(); // The pseudo instruction is gone now.
631  return BB;
632
633}
634
635MachineBasicBlock *
636Mips16TargetLowering::emitSeliT16(unsigned Opc1, unsigned Opc2,
637                                  MachineInstr &MI,
638                                  MachineBasicBlock *BB) const {
639  if (DontExpandCondPseudos16)
640    return BB;
641  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
642  DebugLoc DL = MI.getDebugLoc();
643  // To "insert" a SELECT_CC instruction, we actually have to insert the
644  // diamond control-flow pattern.  The incoming instruction knows the
645  // destination vreg to set, the condition code register to branch on, the
646  // true/false values to select between, and a branch opcode to use.
647  const BasicBlock *LLVM_BB = BB->getBasicBlock();
648  MachineFunction::iterator It = ++BB->getIterator();
649
650  //  thisMBB:
651  //  ...
652  //   TrueVal = ...
653  //   setcc r1, r2, r3
654  //   bNE   r1, r0, copy1MBB
655  //   fallthrough --> copy0MBB
656  MachineBasicBlock *thisMBB  = BB;
657  MachineFunction *F = BB->getParent();
658  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
659  MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
660  F->insert(It, copy0MBB);
661  F->insert(It, sinkMBB);
662
663  // Transfer the remainder of BB and its successor edges to sinkMBB.
664  sinkMBB->splice(sinkMBB->begin(), BB,
665                  std::next(MachineBasicBlock::iterator(MI)), BB->end());
666  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
667
668  // Next, add the true and fallthrough blocks as its successors.
669  BB->addSuccessor(copy0MBB);
670  BB->addSuccessor(sinkMBB);
671
672  BuildMI(BB, DL, TII->get(Opc2))
673      .addReg(MI.getOperand(3).getReg())
674      .addImm(MI.getOperand(4).getImm());
675  BuildMI(BB, DL, TII->get(Opc1)).addMBB(sinkMBB);
676
677  //  copy0MBB:
678  //   %FalseValue = ...
679  //   # fallthrough to sinkMBB
680  BB = copy0MBB;
681
682  // Update machine-CFG edges
683  BB->addSuccessor(sinkMBB);
684
685  //  sinkMBB:
686  //   %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
687  //  ...
688  BB = sinkMBB;
689
690  BuildMI(*BB, BB->begin(), DL, TII->get(Mips::PHI), MI.getOperand(0).getReg())
691      .addReg(MI.getOperand(1).getReg())
692      .addMBB(thisMBB)
693      .addReg(MI.getOperand(2).getReg())
694      .addMBB(copy0MBB);
695
696  MI.eraseFromParent(); // The pseudo instruction is gone now.
697  return BB;
698
699}
700
701MachineBasicBlock *
702Mips16TargetLowering::emitFEXT_T8I816_ins(unsigned BtOpc, unsigned CmpOpc,
703                                          MachineInstr &MI,
704                                          MachineBasicBlock *BB) const {
705  if (DontExpandCondPseudos16)
706    return BB;
707  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
708  Register regX = MI.getOperand(0).getReg();
709  Register regY = MI.getOperand(1).getReg();
710  MachineBasicBlock *target = MI.getOperand(2).getMBB();
711  BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(CmpOpc))
712      .addReg(regX)
713      .addReg(regY);
714  BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(BtOpc)).addMBB(target);
715  MI.eraseFromParent(); // The pseudo instruction is gone now.
716  return BB;
717}
718
719MachineBasicBlock *Mips16TargetLowering::emitFEXT_T8I8I16_ins(
720    unsigned BtOpc, unsigned CmpiOpc, unsigned CmpiXOpc, bool ImmSigned,
721    MachineInstr &MI, MachineBasicBlock *BB) const {
722  if (DontExpandCondPseudos16)
723    return BB;
724  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
725  Register regX = MI.getOperand(0).getReg();
726  int64_t imm = MI.getOperand(1).getImm();
727  MachineBasicBlock *target = MI.getOperand(2).getMBB();
728  unsigned CmpOpc;
729  if (isUInt<8>(imm))
730    CmpOpc = CmpiOpc;
731  else if ((!ImmSigned && isUInt<16>(imm)) ||
732           (ImmSigned && isInt<16>(imm)))
733    CmpOpc = CmpiXOpc;
734  else
735    llvm_unreachable("immediate field not usable");
736  BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(CmpOpc)).addReg(regX).addImm(imm);
737  BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(BtOpc)).addMBB(target);
738  MI.eraseFromParent(); // The pseudo instruction is gone now.
739  return BB;
740}
741
742static unsigned Mips16WhichOp8uOr16simm
743  (unsigned shortOp, unsigned longOp, int64_t Imm) {
744  if (isUInt<8>(Imm))
745    return shortOp;
746  else if (isInt<16>(Imm))
747    return longOp;
748  else
749    llvm_unreachable("immediate field not usable");
750}
751
752MachineBasicBlock *
753Mips16TargetLowering::emitFEXT_CCRX16_ins(unsigned SltOpc, MachineInstr &MI,
754                                          MachineBasicBlock *BB) const {
755  if (DontExpandCondPseudos16)
756    return BB;
757  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
758  Register CC = MI.getOperand(0).getReg();
759  Register regX = MI.getOperand(1).getReg();
760  Register regY = MI.getOperand(2).getReg();
761  BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SltOpc))
762      .addReg(regX)
763      .addReg(regY);
764  BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(Mips::MoveR3216), CC)
765      .addReg(Mips::T8);
766  MI.eraseFromParent(); // The pseudo instruction is gone now.
767  return BB;
768}
769
770MachineBasicBlock *
771Mips16TargetLowering::emitFEXT_CCRXI16_ins(unsigned SltiOpc, unsigned SltiXOpc,
772                                           MachineInstr &MI,
773                                           MachineBasicBlock *BB) const {
774  if (DontExpandCondPseudos16)
775    return BB;
776  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
777  Register CC = MI.getOperand(0).getReg();
778  Register regX = MI.getOperand(1).getReg();
779  int64_t Imm = MI.getOperand(2).getImm();
780  unsigned SltOpc = Mips16WhichOp8uOr16simm(SltiOpc, SltiXOpc, Imm);
781  BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SltOpc)).addReg(regX).addImm(Imm);
782  BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(Mips::MoveR3216), CC)
783      .addReg(Mips::T8);
784  MI.eraseFromParent(); // The pseudo instruction is gone now.
785  return BB;
786
787}
788