1//===- COFFObjectFile.cpp - COFF object file implementation ---------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file declares the COFFObjectFile class.
10//
11//===----------------------------------------------------------------------===//
12
13#include "llvm/ADT/ArrayRef.h"
14#include "llvm/ADT/StringRef.h"
15#include "llvm/ADT/StringSwitch.h"
16#include "llvm/ADT/Triple.h"
17#include "llvm/ADT/iterator_range.h"
18#include "llvm/BinaryFormat/COFF.h"
19#include "llvm/Object/Binary.h"
20#include "llvm/Object/COFF.h"
21#include "llvm/Object/Error.h"
22#include "llvm/Object/ObjectFile.h"
23#include "llvm/Support/BinaryStreamReader.h"
24#include "llvm/Support/Endian.h"
25#include "llvm/Support/Error.h"
26#include "llvm/Support/ErrorHandling.h"
27#include "llvm/Support/MathExtras.h"
28#include "llvm/Support/MemoryBufferRef.h"
29#include <algorithm>
30#include <cassert>
31#include <cinttypes>
32#include <cstddef>
33#include <cstring>
34#include <limits>
35#include <memory>
36#include <system_error>
37
38using namespace llvm;
39using namespace object;
40
41using support::ulittle16_t;
42using support::ulittle32_t;
43using support::ulittle64_t;
44using support::little16_t;
45
46// Returns false if size is greater than the buffer size. And sets ec.
47static bool checkSize(MemoryBufferRef M, std::error_code &EC, uint64_t Size) {
48  if (M.getBufferSize() < Size) {
49    EC = object_error::unexpected_eof;
50    return false;
51  }
52  return true;
53}
54
55// Sets Obj unless any bytes in [addr, addr + size) fall outsize of m.
56// Returns unexpected_eof if error.
57template <typename T>
58static Error getObject(const T *&Obj, MemoryBufferRef M, const void *Ptr,
59                       const uint64_t Size = sizeof(T)) {
60  uintptr_t Addr = reinterpret_cast<uintptr_t>(Ptr);
61  if (Error E = Binary::checkOffset(M, Addr, Size))
62    return E;
63  Obj = reinterpret_cast<const T *>(Addr);
64  return Error::success();
65}
66
67// Decode a string table entry in base 64 (//AAAAAA). Expects \arg Str without
68// prefixed slashes.
69static bool decodeBase64StringEntry(StringRef Str, uint32_t &Result) {
70  assert(Str.size() <= 6 && "String too long, possible overflow.");
71  if (Str.size() > 6)
72    return true;
73
74  uint64_t Value = 0;
75  while (!Str.empty()) {
76    unsigned CharVal;
77    if (Str[0] >= 'A' && Str[0] <= 'Z') // 0..25
78      CharVal = Str[0] - 'A';
79    else if (Str[0] >= 'a' && Str[0] <= 'z') // 26..51
80      CharVal = Str[0] - 'a' + 26;
81    else if (Str[0] >= '0' && Str[0] <= '9') // 52..61
82      CharVal = Str[0] - '0' + 52;
83    else if (Str[0] == '+') // 62
84      CharVal = 62;
85    else if (Str[0] == '/') // 63
86      CharVal = 63;
87    else
88      return true;
89
90    Value = (Value * 64) + CharVal;
91    Str = Str.substr(1);
92  }
93
94  if (Value > std::numeric_limits<uint32_t>::max())
95    return true;
96
97  Result = static_cast<uint32_t>(Value);
98  return false;
99}
100
101template <typename coff_symbol_type>
102const coff_symbol_type *COFFObjectFile::toSymb(DataRefImpl Ref) const {
103  const coff_symbol_type *Addr =
104      reinterpret_cast<const coff_symbol_type *>(Ref.p);
105
106  assert(!checkOffset(Data, reinterpret_cast<uintptr_t>(Addr), sizeof(*Addr)));
107#ifndef NDEBUG
108  // Verify that the symbol points to a valid entry in the symbol table.
109  uintptr_t Offset =
110      reinterpret_cast<uintptr_t>(Addr) - reinterpret_cast<uintptr_t>(base());
111
112  assert((Offset - getPointerToSymbolTable()) % sizeof(coff_symbol_type) == 0 &&
113         "Symbol did not point to the beginning of a symbol");
114#endif
115
116  return Addr;
117}
118
119const coff_section *COFFObjectFile::toSec(DataRefImpl Ref) const {
120  const coff_section *Addr = reinterpret_cast<const coff_section*>(Ref.p);
121
122#ifndef NDEBUG
123  // Verify that the section points to a valid entry in the section table.
124  if (Addr < SectionTable || Addr >= (SectionTable + getNumberOfSections()))
125    report_fatal_error("Section was outside of section table.");
126
127  uintptr_t Offset = reinterpret_cast<uintptr_t>(Addr) -
128                     reinterpret_cast<uintptr_t>(SectionTable);
129  assert(Offset % sizeof(coff_section) == 0 &&
130         "Section did not point to the beginning of a section");
131#endif
132
133  return Addr;
134}
135
136void COFFObjectFile::moveSymbolNext(DataRefImpl &Ref) const {
137  auto End = reinterpret_cast<uintptr_t>(StringTable);
138  if (SymbolTable16) {
139    const coff_symbol16 *Symb = toSymb<coff_symbol16>(Ref);
140    Symb += 1 + Symb->NumberOfAuxSymbols;
141    Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End);
142  } else if (SymbolTable32) {
143    const coff_symbol32 *Symb = toSymb<coff_symbol32>(Ref);
144    Symb += 1 + Symb->NumberOfAuxSymbols;
145    Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End);
146  } else {
147    llvm_unreachable("no symbol table pointer!");
148  }
149}
150
151Expected<StringRef> COFFObjectFile::getSymbolName(DataRefImpl Ref) const {
152  return getSymbolName(getCOFFSymbol(Ref));
153}
154
155uint64_t COFFObjectFile::getSymbolValueImpl(DataRefImpl Ref) const {
156  return getCOFFSymbol(Ref).getValue();
157}
158
159uint32_t COFFObjectFile::getSymbolAlignment(DataRefImpl Ref) const {
160  // MSVC/link.exe seems to align symbols to the next-power-of-2
161  // up to 32 bytes.
162  COFFSymbolRef Symb = getCOFFSymbol(Ref);
163  return std::min(uint64_t(32), PowerOf2Ceil(Symb.getValue()));
164}
165
166Expected<uint64_t> COFFObjectFile::getSymbolAddress(DataRefImpl Ref) const {
167  uint64_t Result = cantFail(getSymbolValue(Ref));
168  COFFSymbolRef Symb = getCOFFSymbol(Ref);
169  int32_t SectionNumber = Symb.getSectionNumber();
170
171  if (Symb.isAnyUndefined() || Symb.isCommon() ||
172      COFF::isReservedSectionNumber(SectionNumber))
173    return Result;
174
175  Expected<const coff_section *> Section = getSection(SectionNumber);
176  if (!Section)
177    return Section.takeError();
178  Result += (*Section)->VirtualAddress;
179
180  // The section VirtualAddress does not include ImageBase, and we want to
181  // return virtual addresses.
182  Result += getImageBase();
183
184  return Result;
185}
186
187Expected<SymbolRef::Type> COFFObjectFile::getSymbolType(DataRefImpl Ref) const {
188  COFFSymbolRef Symb = getCOFFSymbol(Ref);
189  int32_t SectionNumber = Symb.getSectionNumber();
190
191  if (Symb.getComplexType() == COFF::IMAGE_SYM_DTYPE_FUNCTION)
192    return SymbolRef::ST_Function;
193  if (Symb.isAnyUndefined())
194    return SymbolRef::ST_Unknown;
195  if (Symb.isCommon())
196    return SymbolRef::ST_Data;
197  if (Symb.isFileRecord())
198    return SymbolRef::ST_File;
199
200  // TODO: perhaps we need a new symbol type ST_Section.
201  if (SectionNumber == COFF::IMAGE_SYM_DEBUG || Symb.isSectionDefinition())
202    return SymbolRef::ST_Debug;
203
204  if (!COFF::isReservedSectionNumber(SectionNumber))
205    return SymbolRef::ST_Data;
206
207  return SymbolRef::ST_Other;
208}
209
210Expected<uint32_t> COFFObjectFile::getSymbolFlags(DataRefImpl Ref) const {
211  COFFSymbolRef Symb = getCOFFSymbol(Ref);
212  uint32_t Result = SymbolRef::SF_None;
213
214  if (Symb.isExternal() || Symb.isWeakExternal())
215    Result |= SymbolRef::SF_Global;
216
217  if (const coff_aux_weak_external *AWE = Symb.getWeakExternal()) {
218    Result |= SymbolRef::SF_Weak;
219    if (AWE->Characteristics != COFF::IMAGE_WEAK_EXTERN_SEARCH_ALIAS)
220      Result |= SymbolRef::SF_Undefined;
221  }
222
223  if (Symb.getSectionNumber() == COFF::IMAGE_SYM_ABSOLUTE)
224    Result |= SymbolRef::SF_Absolute;
225
226  if (Symb.isFileRecord())
227    Result |= SymbolRef::SF_FormatSpecific;
228
229  if (Symb.isSectionDefinition())
230    Result |= SymbolRef::SF_FormatSpecific;
231
232  if (Symb.isCommon())
233    Result |= SymbolRef::SF_Common;
234
235  if (Symb.isUndefined())
236    Result |= SymbolRef::SF_Undefined;
237
238  return Result;
239}
240
241uint64_t COFFObjectFile::getCommonSymbolSizeImpl(DataRefImpl Ref) const {
242  COFFSymbolRef Symb = getCOFFSymbol(Ref);
243  return Symb.getValue();
244}
245
246Expected<section_iterator>
247COFFObjectFile::getSymbolSection(DataRefImpl Ref) const {
248  COFFSymbolRef Symb = getCOFFSymbol(Ref);
249  if (COFF::isReservedSectionNumber(Symb.getSectionNumber()))
250    return section_end();
251  Expected<const coff_section *> Sec = getSection(Symb.getSectionNumber());
252  if (!Sec)
253    return Sec.takeError();
254  DataRefImpl Ret;
255  Ret.p = reinterpret_cast<uintptr_t>(*Sec);
256  return section_iterator(SectionRef(Ret, this));
257}
258
259unsigned COFFObjectFile::getSymbolSectionID(SymbolRef Sym) const {
260  COFFSymbolRef Symb = getCOFFSymbol(Sym.getRawDataRefImpl());
261  return Symb.getSectionNumber();
262}
263
264void COFFObjectFile::moveSectionNext(DataRefImpl &Ref) const {
265  const coff_section *Sec = toSec(Ref);
266  Sec += 1;
267  Ref.p = reinterpret_cast<uintptr_t>(Sec);
268}
269
270Expected<StringRef> COFFObjectFile::getSectionName(DataRefImpl Ref) const {
271  const coff_section *Sec = toSec(Ref);
272  return getSectionName(Sec);
273}
274
275uint64_t COFFObjectFile::getSectionAddress(DataRefImpl Ref) const {
276  const coff_section *Sec = toSec(Ref);
277  uint64_t Result = Sec->VirtualAddress;
278
279  // The section VirtualAddress does not include ImageBase, and we want to
280  // return virtual addresses.
281  Result += getImageBase();
282  return Result;
283}
284
285uint64_t COFFObjectFile::getSectionIndex(DataRefImpl Sec) const {
286  return toSec(Sec) - SectionTable;
287}
288
289uint64_t COFFObjectFile::getSectionSize(DataRefImpl Ref) const {
290  return getSectionSize(toSec(Ref));
291}
292
293Expected<ArrayRef<uint8_t>>
294COFFObjectFile::getSectionContents(DataRefImpl Ref) const {
295  const coff_section *Sec = toSec(Ref);
296  ArrayRef<uint8_t> Res;
297  if (Error E = getSectionContents(Sec, Res))
298    return std::move(E);
299  return Res;
300}
301
302uint64_t COFFObjectFile::getSectionAlignment(DataRefImpl Ref) const {
303  const coff_section *Sec = toSec(Ref);
304  return Sec->getAlignment();
305}
306
307bool COFFObjectFile::isSectionCompressed(DataRefImpl Sec) const {
308  return false;
309}
310
311bool COFFObjectFile::isSectionText(DataRefImpl Ref) const {
312  const coff_section *Sec = toSec(Ref);
313  return Sec->Characteristics & COFF::IMAGE_SCN_CNT_CODE;
314}
315
316bool COFFObjectFile::isSectionData(DataRefImpl Ref) const {
317  const coff_section *Sec = toSec(Ref);
318  return Sec->Characteristics & COFF::IMAGE_SCN_CNT_INITIALIZED_DATA;
319}
320
321bool COFFObjectFile::isSectionBSS(DataRefImpl Ref) const {
322  const coff_section *Sec = toSec(Ref);
323  const uint32_t BssFlags = COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA |
324                            COFF::IMAGE_SCN_MEM_READ |
325                            COFF::IMAGE_SCN_MEM_WRITE;
326  return (Sec->Characteristics & BssFlags) == BssFlags;
327}
328
329// The .debug sections are the only debug sections for COFF
330// (\see MCObjectFileInfo.cpp).
331bool COFFObjectFile::isDebugSection(DataRefImpl Ref) const {
332  Expected<StringRef> SectionNameOrErr = getSectionName(Ref);
333  if (!SectionNameOrErr) {
334    // TODO: Report the error message properly.
335    consumeError(SectionNameOrErr.takeError());
336    return false;
337  }
338  StringRef SectionName = SectionNameOrErr.get();
339  return SectionName.startswith(".debug");
340}
341
342unsigned COFFObjectFile::getSectionID(SectionRef Sec) const {
343  uintptr_t Offset =
344      Sec.getRawDataRefImpl().p - reinterpret_cast<uintptr_t>(SectionTable);
345  assert((Offset % sizeof(coff_section)) == 0);
346  return (Offset / sizeof(coff_section)) + 1;
347}
348
349bool COFFObjectFile::isSectionVirtual(DataRefImpl Ref) const {
350  const coff_section *Sec = toSec(Ref);
351  // In COFF, a virtual section won't have any in-file
352  // content, so the file pointer to the content will be zero.
353  return Sec->PointerToRawData == 0;
354}
355
356static uint32_t getNumberOfRelocations(const coff_section *Sec,
357                                       MemoryBufferRef M, const uint8_t *base) {
358  // The field for the number of relocations in COFF section table is only
359  // 16-bit wide. If a section has more than 65535 relocations, 0xFFFF is set to
360  // NumberOfRelocations field, and the actual relocation count is stored in the
361  // VirtualAddress field in the first relocation entry.
362  if (Sec->hasExtendedRelocations()) {
363    const coff_relocation *FirstReloc;
364    if (Error E = getObject(FirstReloc, M,
365                            reinterpret_cast<const coff_relocation *>(
366                                base + Sec->PointerToRelocations))) {
367      consumeError(std::move(E));
368      return 0;
369    }
370    // -1 to exclude this first relocation entry.
371    return FirstReloc->VirtualAddress - 1;
372  }
373  return Sec->NumberOfRelocations;
374}
375
376static const coff_relocation *
377getFirstReloc(const coff_section *Sec, MemoryBufferRef M, const uint8_t *Base) {
378  uint64_t NumRelocs = getNumberOfRelocations(Sec, M, Base);
379  if (!NumRelocs)
380    return nullptr;
381  auto begin = reinterpret_cast<const coff_relocation *>(
382      Base + Sec->PointerToRelocations);
383  if (Sec->hasExtendedRelocations()) {
384    // Skip the first relocation entry repurposed to store the number of
385    // relocations.
386    begin++;
387  }
388  if (auto E = Binary::checkOffset(M, reinterpret_cast<uintptr_t>(begin),
389                                   sizeof(coff_relocation) * NumRelocs)) {
390    consumeError(std::move(E));
391    return nullptr;
392  }
393  return begin;
394}
395
396relocation_iterator COFFObjectFile::section_rel_begin(DataRefImpl Ref) const {
397  const coff_section *Sec = toSec(Ref);
398  const coff_relocation *begin = getFirstReloc(Sec, Data, base());
399  if (begin && Sec->VirtualAddress != 0)
400    report_fatal_error("Sections with relocations should have an address of 0");
401  DataRefImpl Ret;
402  Ret.p = reinterpret_cast<uintptr_t>(begin);
403  return relocation_iterator(RelocationRef(Ret, this));
404}
405
406relocation_iterator COFFObjectFile::section_rel_end(DataRefImpl Ref) const {
407  const coff_section *Sec = toSec(Ref);
408  const coff_relocation *I = getFirstReloc(Sec, Data, base());
409  if (I)
410    I += getNumberOfRelocations(Sec, Data, base());
411  DataRefImpl Ret;
412  Ret.p = reinterpret_cast<uintptr_t>(I);
413  return relocation_iterator(RelocationRef(Ret, this));
414}
415
416// Initialize the pointer to the symbol table.
417Error COFFObjectFile::initSymbolTablePtr() {
418  if (COFFHeader)
419    if (Error E = getObject(
420            SymbolTable16, Data, base() + getPointerToSymbolTable(),
421            (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize()))
422      return E;
423
424  if (COFFBigObjHeader)
425    if (Error E = getObject(
426            SymbolTable32, Data, base() + getPointerToSymbolTable(),
427            (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize()))
428      return E;
429
430  // Find string table. The first four byte of the string table contains the
431  // total size of the string table, including the size field itself. If the
432  // string table is empty, the value of the first four byte would be 4.
433  uint32_t StringTableOffset = getPointerToSymbolTable() +
434                               getNumberOfSymbols() * getSymbolTableEntrySize();
435  const uint8_t *StringTableAddr = base() + StringTableOffset;
436  const ulittle32_t *StringTableSizePtr;
437  if (Error E = getObject(StringTableSizePtr, Data, StringTableAddr))
438    return E;
439  StringTableSize = *StringTableSizePtr;
440  if (Error E = getObject(StringTable, Data, StringTableAddr, StringTableSize))
441    return E;
442
443  // Treat table sizes < 4 as empty because contrary to the PECOFF spec, some
444  // tools like cvtres write a size of 0 for an empty table instead of 4.
445  if (StringTableSize < 4)
446    StringTableSize = 4;
447
448  // Check that the string table is null terminated if has any in it.
449  if (StringTableSize > 4 && StringTable[StringTableSize - 1] != 0)
450    return createStringError(object_error::parse_failed,
451                             "string table missing null terminator");
452  return Error::success();
453}
454
455uint64_t COFFObjectFile::getImageBase() const {
456  if (PE32Header)
457    return PE32Header->ImageBase;
458  else if (PE32PlusHeader)
459    return PE32PlusHeader->ImageBase;
460  // This actually comes up in practice.
461  return 0;
462}
463
464// Returns the file offset for the given VA.
465Error COFFObjectFile::getVaPtr(uint64_t Addr, uintptr_t &Res) const {
466  uint64_t ImageBase = getImageBase();
467  uint64_t Rva = Addr - ImageBase;
468  assert(Rva <= UINT32_MAX);
469  return getRvaPtr((uint32_t)Rva, Res);
470}
471
472// Returns the file offset for the given RVA.
473Error COFFObjectFile::getRvaPtr(uint32_t Addr, uintptr_t &Res,
474                                const char *ErrorContext) const {
475  for (const SectionRef &S : sections()) {
476    const coff_section *Section = getCOFFSection(S);
477    uint32_t SectionStart = Section->VirtualAddress;
478    uint32_t SectionEnd = Section->VirtualAddress + Section->VirtualSize;
479    if (SectionStart <= Addr && Addr < SectionEnd) {
480      // A table/directory entry can be pointing to somewhere in a stripped
481      // section, in an object that went through `objcopy --only-keep-debug`.
482      // In this case we don't want to cause the parsing of the object file to
483      // fail, otherwise it will be impossible to use this object as debug info
484      // in LLDB. Return SectionStrippedError here so that
485      // COFFObjectFile::initialize can ignore the error.
486      // Somewhat common binaries may have RVAs pointing outside of the
487      // provided raw data. Instead of rejecting the binaries, just
488      // treat the section as stripped for these purposes.
489      if (Section->SizeOfRawData < Section->VirtualSize &&
490          Addr >= SectionStart + Section->SizeOfRawData) {
491        return make_error<SectionStrippedError>();
492      }
493      uint32_t Offset = Addr - SectionStart;
494      Res = reinterpret_cast<uintptr_t>(base()) + Section->PointerToRawData +
495            Offset;
496      return Error::success();
497    }
498  }
499  if (ErrorContext)
500    return createStringError(object_error::parse_failed,
501                             "RVA 0x%" PRIx32 " for %s not found", Addr,
502                             ErrorContext);
503  return createStringError(object_error::parse_failed,
504                           "RVA 0x%" PRIx32 " not found", Addr);
505}
506
507Error COFFObjectFile::getRvaAndSizeAsBytes(uint32_t RVA, uint32_t Size,
508                                           ArrayRef<uint8_t> &Contents,
509                                           const char *ErrorContext) const {
510  for (const SectionRef &S : sections()) {
511    const coff_section *Section = getCOFFSection(S);
512    uint32_t SectionStart = Section->VirtualAddress;
513    // Check if this RVA is within the section bounds. Be careful about integer
514    // overflow.
515    uint32_t OffsetIntoSection = RVA - SectionStart;
516    if (SectionStart <= RVA && OffsetIntoSection < Section->VirtualSize &&
517        Size <= Section->VirtualSize - OffsetIntoSection) {
518      uintptr_t Begin = reinterpret_cast<uintptr_t>(base()) +
519                        Section->PointerToRawData + OffsetIntoSection;
520      Contents =
521          ArrayRef<uint8_t>(reinterpret_cast<const uint8_t *>(Begin), Size);
522      return Error::success();
523    }
524  }
525  if (ErrorContext)
526    return createStringError(object_error::parse_failed,
527                             "RVA 0x%" PRIx32 " for %s not found", RVA,
528                             ErrorContext);
529  return createStringError(object_error::parse_failed,
530                           "RVA 0x%" PRIx32 " not found", RVA);
531}
532
533// Returns hint and name fields, assuming \p Rva is pointing to a Hint/Name
534// table entry.
535Error COFFObjectFile::getHintName(uint32_t Rva, uint16_t &Hint,
536                                  StringRef &Name) const {
537  uintptr_t IntPtr = 0;
538  if (Error E = getRvaPtr(Rva, IntPtr))
539    return E;
540  const uint8_t *Ptr = reinterpret_cast<const uint8_t *>(IntPtr);
541  Hint = *reinterpret_cast<const ulittle16_t *>(Ptr);
542  Name = StringRef(reinterpret_cast<const char *>(Ptr + 2));
543  return Error::success();
544}
545
546Error COFFObjectFile::getDebugPDBInfo(const debug_directory *DebugDir,
547                                      const codeview::DebugInfo *&PDBInfo,
548                                      StringRef &PDBFileName) const {
549  ArrayRef<uint8_t> InfoBytes;
550  if (Error E =
551          getRvaAndSizeAsBytes(DebugDir->AddressOfRawData, DebugDir->SizeOfData,
552                               InfoBytes, "PDB info"))
553    return E;
554  if (InfoBytes.size() < sizeof(*PDBInfo) + 1)
555    return createStringError(object_error::parse_failed, "PDB info too small");
556  PDBInfo = reinterpret_cast<const codeview::DebugInfo *>(InfoBytes.data());
557  InfoBytes = InfoBytes.drop_front(sizeof(*PDBInfo));
558  PDBFileName = StringRef(reinterpret_cast<const char *>(InfoBytes.data()),
559                          InfoBytes.size());
560  // Truncate the name at the first null byte. Ignore any padding.
561  PDBFileName = PDBFileName.split('\0').first;
562  return Error::success();
563}
564
565Error COFFObjectFile::getDebugPDBInfo(const codeview::DebugInfo *&PDBInfo,
566                                      StringRef &PDBFileName) const {
567  for (const debug_directory &D : debug_directories())
568    if (D.Type == COFF::IMAGE_DEBUG_TYPE_CODEVIEW)
569      return getDebugPDBInfo(&D, PDBInfo, PDBFileName);
570  // If we get here, there is no PDB info to return.
571  PDBInfo = nullptr;
572  PDBFileName = StringRef();
573  return Error::success();
574}
575
576// Find the import table.
577Error COFFObjectFile::initImportTablePtr() {
578  // First, we get the RVA of the import table. If the file lacks a pointer to
579  // the import table, do nothing.
580  const data_directory *DataEntry = getDataDirectory(COFF::IMPORT_TABLE);
581  if (!DataEntry)
582    return Error::success();
583
584  // Do nothing if the pointer to import table is NULL.
585  if (DataEntry->RelativeVirtualAddress == 0)
586    return Error::success();
587
588  uint32_t ImportTableRva = DataEntry->RelativeVirtualAddress;
589
590  // Find the section that contains the RVA. This is needed because the RVA is
591  // the import table's memory address which is different from its file offset.
592  uintptr_t IntPtr = 0;
593  if (Error E = getRvaPtr(ImportTableRva, IntPtr, "import table"))
594    return E;
595  if (Error E = checkOffset(Data, IntPtr, DataEntry->Size))
596    return E;
597  ImportDirectory = reinterpret_cast<
598      const coff_import_directory_table_entry *>(IntPtr);
599  return Error::success();
600}
601
602// Initializes DelayImportDirectory and NumberOfDelayImportDirectory.
603Error COFFObjectFile::initDelayImportTablePtr() {
604  const data_directory *DataEntry =
605      getDataDirectory(COFF::DELAY_IMPORT_DESCRIPTOR);
606  if (!DataEntry)
607    return Error::success();
608  if (DataEntry->RelativeVirtualAddress == 0)
609    return Error::success();
610
611  uint32_t RVA = DataEntry->RelativeVirtualAddress;
612  NumberOfDelayImportDirectory = DataEntry->Size /
613      sizeof(delay_import_directory_table_entry) - 1;
614
615  uintptr_t IntPtr = 0;
616  if (Error E = getRvaPtr(RVA, IntPtr, "delay import table"))
617    return E;
618  if (Error E = checkOffset(Data, IntPtr, DataEntry->Size))
619    return E;
620
621  DelayImportDirectory = reinterpret_cast<
622      const delay_import_directory_table_entry *>(IntPtr);
623  return Error::success();
624}
625
626// Find the export table.
627Error COFFObjectFile::initExportTablePtr() {
628  // First, we get the RVA of the export table. If the file lacks a pointer to
629  // the export table, do nothing.
630  const data_directory *DataEntry = getDataDirectory(COFF::EXPORT_TABLE);
631  if (!DataEntry)
632    return Error::success();
633
634  // Do nothing if the pointer to export table is NULL.
635  if (DataEntry->RelativeVirtualAddress == 0)
636    return Error::success();
637
638  uint32_t ExportTableRva = DataEntry->RelativeVirtualAddress;
639  uintptr_t IntPtr = 0;
640  if (Error E = getRvaPtr(ExportTableRva, IntPtr, "export table"))
641    return E;
642  if (Error E = checkOffset(Data, IntPtr, DataEntry->Size))
643    return E;
644
645  ExportDirectory =
646      reinterpret_cast<const export_directory_table_entry *>(IntPtr);
647  return Error::success();
648}
649
650Error COFFObjectFile::initBaseRelocPtr() {
651  const data_directory *DataEntry =
652      getDataDirectory(COFF::BASE_RELOCATION_TABLE);
653  if (!DataEntry)
654    return Error::success();
655  if (DataEntry->RelativeVirtualAddress == 0)
656    return Error::success();
657
658  uintptr_t IntPtr = 0;
659  if (Error E = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr,
660                          "base reloc table"))
661    return E;
662  if (Error E = checkOffset(Data, IntPtr, DataEntry->Size))
663    return E;
664
665  BaseRelocHeader = reinterpret_cast<const coff_base_reloc_block_header *>(
666      IntPtr);
667  BaseRelocEnd = reinterpret_cast<coff_base_reloc_block_header *>(
668      IntPtr + DataEntry->Size);
669  // FIXME: Verify the section containing BaseRelocHeader has at least
670  // DataEntry->Size bytes after DataEntry->RelativeVirtualAddress.
671  return Error::success();
672}
673
674Error COFFObjectFile::initDebugDirectoryPtr() {
675  // Get the RVA of the debug directory. Do nothing if it does not exist.
676  const data_directory *DataEntry = getDataDirectory(COFF::DEBUG_DIRECTORY);
677  if (!DataEntry)
678    return Error::success();
679
680  // Do nothing if the RVA is NULL.
681  if (DataEntry->RelativeVirtualAddress == 0)
682    return Error::success();
683
684  // Check that the size is a multiple of the entry size.
685  if (DataEntry->Size % sizeof(debug_directory) != 0)
686    return createStringError(object_error::parse_failed,
687                             "debug directory has uneven size");
688
689  uintptr_t IntPtr = 0;
690  if (Error E = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr,
691                          "debug directory"))
692    return E;
693  if (Error E = checkOffset(Data, IntPtr, DataEntry->Size))
694    return E;
695
696  DebugDirectoryBegin = reinterpret_cast<const debug_directory *>(IntPtr);
697  DebugDirectoryEnd = reinterpret_cast<const debug_directory *>(
698      IntPtr + DataEntry->Size);
699  // FIXME: Verify the section containing DebugDirectoryBegin has at least
700  // DataEntry->Size bytes after DataEntry->RelativeVirtualAddress.
701  return Error::success();
702}
703
704Error COFFObjectFile::initTLSDirectoryPtr() {
705  // Get the RVA of the TLS directory. Do nothing if it does not exist.
706  const data_directory *DataEntry = getDataDirectory(COFF::TLS_TABLE);
707  if (!DataEntry)
708    return Error::success();
709
710  // Do nothing if the RVA is NULL.
711  if (DataEntry->RelativeVirtualAddress == 0)
712    return Error::success();
713
714  uint64_t DirSize =
715      is64() ? sizeof(coff_tls_directory64) : sizeof(coff_tls_directory32);
716
717  // Check that the size is correct.
718  if (DataEntry->Size != DirSize)
719    return createStringError(
720        object_error::parse_failed,
721        "TLS Directory size (%u) is not the expected size (%" PRIu64 ").",
722        static_cast<uint32_t>(DataEntry->Size), DirSize);
723
724  uintptr_t IntPtr = 0;
725  if (Error E =
726          getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr, "TLS directory"))
727    return E;
728  if (Error E = checkOffset(Data, IntPtr, DataEntry->Size))
729    return E;
730
731  if (is64())
732    TLSDirectory64 = reinterpret_cast<const coff_tls_directory64 *>(IntPtr);
733  else
734    TLSDirectory32 = reinterpret_cast<const coff_tls_directory32 *>(IntPtr);
735
736  return Error::success();
737}
738
739Error COFFObjectFile::initLoadConfigPtr() {
740  // Get the RVA of the debug directory. Do nothing if it does not exist.
741  const data_directory *DataEntry = getDataDirectory(COFF::LOAD_CONFIG_TABLE);
742  if (!DataEntry)
743    return Error::success();
744
745  // Do nothing if the RVA is NULL.
746  if (DataEntry->RelativeVirtualAddress == 0)
747    return Error::success();
748  uintptr_t IntPtr = 0;
749  if (Error E = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr,
750                          "load config table"))
751    return E;
752  if (Error E = checkOffset(Data, IntPtr, DataEntry->Size))
753    return E;
754
755  LoadConfig = (const void *)IntPtr;
756  return Error::success();
757}
758
759Expected<std::unique_ptr<COFFObjectFile>>
760COFFObjectFile::create(MemoryBufferRef Object) {
761  std::unique_ptr<COFFObjectFile> Obj(new COFFObjectFile(std::move(Object)));
762  if (Error E = Obj->initialize())
763    return std::move(E);
764  return std::move(Obj);
765}
766
767COFFObjectFile::COFFObjectFile(MemoryBufferRef Object)
768    : ObjectFile(Binary::ID_COFF, Object), COFFHeader(nullptr),
769      COFFBigObjHeader(nullptr), PE32Header(nullptr), PE32PlusHeader(nullptr),
770      DataDirectory(nullptr), SectionTable(nullptr), SymbolTable16(nullptr),
771      SymbolTable32(nullptr), StringTable(nullptr), StringTableSize(0),
772      ImportDirectory(nullptr), DelayImportDirectory(nullptr),
773      NumberOfDelayImportDirectory(0), ExportDirectory(nullptr),
774      BaseRelocHeader(nullptr), BaseRelocEnd(nullptr),
775      DebugDirectoryBegin(nullptr), DebugDirectoryEnd(nullptr),
776      TLSDirectory32(nullptr), TLSDirectory64(nullptr) {}
777
778static Error ignoreStrippedErrors(Error E) {
779  if (E.isA<SectionStrippedError>()) {
780    consumeError(std::move(E));
781    return Error::success();
782  }
783  return E;
784}
785
786Error COFFObjectFile::initialize() {
787  // Check that we at least have enough room for a header.
788  std::error_code EC;
789  if (!checkSize(Data, EC, sizeof(coff_file_header)))
790    return errorCodeToError(EC);
791
792  // The current location in the file where we are looking at.
793  uint64_t CurPtr = 0;
794
795  // PE header is optional and is present only in executables. If it exists,
796  // it is placed right after COFF header.
797  bool HasPEHeader = false;
798
799  // Check if this is a PE/COFF file.
800  if (checkSize(Data, EC, sizeof(dos_header) + sizeof(COFF::PEMagic))) {
801    // PE/COFF, seek through MS-DOS compatibility stub and 4-byte
802    // PE signature to find 'normal' COFF header.
803    const auto *DH = reinterpret_cast<const dos_header *>(base());
804    if (DH->Magic[0] == 'M' && DH->Magic[1] == 'Z') {
805      CurPtr = DH->AddressOfNewExeHeader;
806      // Check the PE magic bytes. ("PE\0\0")
807      if (memcmp(base() + CurPtr, COFF::PEMagic, sizeof(COFF::PEMagic)) != 0) {
808        return createStringError(object_error::parse_failed,
809                                 "incorrect PE magic");
810      }
811      CurPtr += sizeof(COFF::PEMagic); // Skip the PE magic bytes.
812      HasPEHeader = true;
813    }
814  }
815
816  if (Error E = getObject(COFFHeader, Data, base() + CurPtr))
817    return E;
818
819  // It might be a bigobj file, let's check.  Note that COFF bigobj and COFF
820  // import libraries share a common prefix but bigobj is more restrictive.
821  if (!HasPEHeader && COFFHeader->Machine == COFF::IMAGE_FILE_MACHINE_UNKNOWN &&
822      COFFHeader->NumberOfSections == uint16_t(0xffff) &&
823      checkSize(Data, EC, sizeof(coff_bigobj_file_header))) {
824    if (Error E = getObject(COFFBigObjHeader, Data, base() + CurPtr))
825      return E;
826
827    // Verify that we are dealing with bigobj.
828    if (COFFBigObjHeader->Version >= COFF::BigObjHeader::MinBigObjectVersion &&
829        std::memcmp(COFFBigObjHeader->UUID, COFF::BigObjMagic,
830                    sizeof(COFF::BigObjMagic)) == 0) {
831      COFFHeader = nullptr;
832      CurPtr += sizeof(coff_bigobj_file_header);
833    } else {
834      // It's not a bigobj.
835      COFFBigObjHeader = nullptr;
836    }
837  }
838  if (COFFHeader) {
839    // The prior checkSize call may have failed.  This isn't a hard error
840    // because we were just trying to sniff out bigobj.
841    EC = std::error_code();
842    CurPtr += sizeof(coff_file_header);
843
844    if (COFFHeader->isImportLibrary())
845      return errorCodeToError(EC);
846  }
847
848  if (HasPEHeader) {
849    const pe32_header *Header;
850    if (Error E = getObject(Header, Data, base() + CurPtr))
851      return E;
852
853    const uint8_t *DataDirAddr;
854    uint64_t DataDirSize;
855    if (Header->Magic == COFF::PE32Header::PE32) {
856      PE32Header = Header;
857      DataDirAddr = base() + CurPtr + sizeof(pe32_header);
858      DataDirSize = sizeof(data_directory) * PE32Header->NumberOfRvaAndSize;
859    } else if (Header->Magic == COFF::PE32Header::PE32_PLUS) {
860      PE32PlusHeader = reinterpret_cast<const pe32plus_header *>(Header);
861      DataDirAddr = base() + CurPtr + sizeof(pe32plus_header);
862      DataDirSize = sizeof(data_directory) * PE32PlusHeader->NumberOfRvaAndSize;
863    } else {
864      // It's neither PE32 nor PE32+.
865      return createStringError(object_error::parse_failed,
866                               "incorrect PE magic");
867    }
868    if (Error E = getObject(DataDirectory, Data, DataDirAddr, DataDirSize))
869      return E;
870  }
871
872  if (COFFHeader)
873    CurPtr += COFFHeader->SizeOfOptionalHeader;
874
875  assert(COFFHeader || COFFBigObjHeader);
876
877  if (Error E =
878          getObject(SectionTable, Data, base() + CurPtr,
879                    (uint64_t)getNumberOfSections() * sizeof(coff_section)))
880    return E;
881
882  // Initialize the pointer to the symbol table.
883  if (getPointerToSymbolTable() != 0) {
884    if (Error E = initSymbolTablePtr()) {
885      // Recover from errors reading the symbol table.
886      consumeError(std::move(E));
887      SymbolTable16 = nullptr;
888      SymbolTable32 = nullptr;
889      StringTable = nullptr;
890      StringTableSize = 0;
891    }
892  } else {
893    // We had better not have any symbols if we don't have a symbol table.
894    if (getNumberOfSymbols() != 0) {
895      return createStringError(object_error::parse_failed,
896                               "symbol table missing");
897    }
898  }
899
900  // Initialize the pointer to the beginning of the import table.
901  if (Error E = ignoreStrippedErrors(initImportTablePtr()))
902    return E;
903  if (Error E = ignoreStrippedErrors(initDelayImportTablePtr()))
904    return E;
905
906  // Initialize the pointer to the export table.
907  if (Error E = ignoreStrippedErrors(initExportTablePtr()))
908    return E;
909
910  // Initialize the pointer to the base relocation table.
911  if (Error E = ignoreStrippedErrors(initBaseRelocPtr()))
912    return E;
913
914  // Initialize the pointer to the debug directory.
915  if (Error E = ignoreStrippedErrors(initDebugDirectoryPtr()))
916    return E;
917
918  // Initialize the pointer to the TLS directory.
919  if (Error E = ignoreStrippedErrors(initTLSDirectoryPtr()))
920    return E;
921
922  if (Error E = ignoreStrippedErrors(initLoadConfigPtr()))
923    return E;
924
925  return Error::success();
926}
927
928basic_symbol_iterator COFFObjectFile::symbol_begin() const {
929  DataRefImpl Ret;
930  Ret.p = getSymbolTable();
931  return basic_symbol_iterator(SymbolRef(Ret, this));
932}
933
934basic_symbol_iterator COFFObjectFile::symbol_end() const {
935  // The symbol table ends where the string table begins.
936  DataRefImpl Ret;
937  Ret.p = reinterpret_cast<uintptr_t>(StringTable);
938  return basic_symbol_iterator(SymbolRef(Ret, this));
939}
940
941import_directory_iterator COFFObjectFile::import_directory_begin() const {
942  if (!ImportDirectory)
943    return import_directory_end();
944  if (ImportDirectory->isNull())
945    return import_directory_end();
946  return import_directory_iterator(
947      ImportDirectoryEntryRef(ImportDirectory, 0, this));
948}
949
950import_directory_iterator COFFObjectFile::import_directory_end() const {
951  return import_directory_iterator(
952      ImportDirectoryEntryRef(nullptr, -1, this));
953}
954
955delay_import_directory_iterator
956COFFObjectFile::delay_import_directory_begin() const {
957  return delay_import_directory_iterator(
958      DelayImportDirectoryEntryRef(DelayImportDirectory, 0, this));
959}
960
961delay_import_directory_iterator
962COFFObjectFile::delay_import_directory_end() const {
963  return delay_import_directory_iterator(
964      DelayImportDirectoryEntryRef(
965          DelayImportDirectory, NumberOfDelayImportDirectory, this));
966}
967
968export_directory_iterator COFFObjectFile::export_directory_begin() const {
969  return export_directory_iterator(
970      ExportDirectoryEntryRef(ExportDirectory, 0, this));
971}
972
973export_directory_iterator COFFObjectFile::export_directory_end() const {
974  if (!ExportDirectory)
975    return export_directory_iterator(ExportDirectoryEntryRef(nullptr, 0, this));
976  ExportDirectoryEntryRef Ref(ExportDirectory,
977                              ExportDirectory->AddressTableEntries, this);
978  return export_directory_iterator(Ref);
979}
980
981section_iterator COFFObjectFile::section_begin() const {
982  DataRefImpl Ret;
983  Ret.p = reinterpret_cast<uintptr_t>(SectionTable);
984  return section_iterator(SectionRef(Ret, this));
985}
986
987section_iterator COFFObjectFile::section_end() const {
988  DataRefImpl Ret;
989  int NumSections =
990      COFFHeader && COFFHeader->isImportLibrary() ? 0 : getNumberOfSections();
991  Ret.p = reinterpret_cast<uintptr_t>(SectionTable + NumSections);
992  return section_iterator(SectionRef(Ret, this));
993}
994
995base_reloc_iterator COFFObjectFile::base_reloc_begin() const {
996  return base_reloc_iterator(BaseRelocRef(BaseRelocHeader, this));
997}
998
999base_reloc_iterator COFFObjectFile::base_reloc_end() const {
1000  return base_reloc_iterator(BaseRelocRef(BaseRelocEnd, this));
1001}
1002
1003uint8_t COFFObjectFile::getBytesInAddress() const {
1004  return getArch() == Triple::x86_64 || getArch() == Triple::aarch64 ? 8 : 4;
1005}
1006
1007StringRef COFFObjectFile::getFileFormatName() const {
1008  switch(getMachine()) {
1009  case COFF::IMAGE_FILE_MACHINE_I386:
1010    return "COFF-i386";
1011  case COFF::IMAGE_FILE_MACHINE_AMD64:
1012    return "COFF-x86-64";
1013  case COFF::IMAGE_FILE_MACHINE_ARMNT:
1014    return "COFF-ARM";
1015  case COFF::IMAGE_FILE_MACHINE_ARM64:
1016    return "COFF-ARM64";
1017  case COFF::IMAGE_FILE_MACHINE_ARM64EC:
1018    return "COFF-ARM64EC";
1019  default:
1020    return "COFF-<unknown arch>";
1021  }
1022}
1023
1024Triple::ArchType COFFObjectFile::getArch() const {
1025  switch (getMachine()) {
1026  case COFF::IMAGE_FILE_MACHINE_I386:
1027    return Triple::x86;
1028  case COFF::IMAGE_FILE_MACHINE_AMD64:
1029    return Triple::x86_64;
1030  case COFF::IMAGE_FILE_MACHINE_ARMNT:
1031    return Triple::thumb;
1032  case COFF::IMAGE_FILE_MACHINE_ARM64:
1033  case COFF::IMAGE_FILE_MACHINE_ARM64EC:
1034    return Triple::aarch64;
1035  default:
1036    return Triple::UnknownArch;
1037  }
1038}
1039
1040Expected<uint64_t> COFFObjectFile::getStartAddress() const {
1041  if (PE32Header)
1042    return PE32Header->AddressOfEntryPoint;
1043  return 0;
1044}
1045
1046iterator_range<import_directory_iterator>
1047COFFObjectFile::import_directories() const {
1048  return make_range(import_directory_begin(), import_directory_end());
1049}
1050
1051iterator_range<delay_import_directory_iterator>
1052COFFObjectFile::delay_import_directories() const {
1053  return make_range(delay_import_directory_begin(),
1054                    delay_import_directory_end());
1055}
1056
1057iterator_range<export_directory_iterator>
1058COFFObjectFile::export_directories() const {
1059  return make_range(export_directory_begin(), export_directory_end());
1060}
1061
1062iterator_range<base_reloc_iterator> COFFObjectFile::base_relocs() const {
1063  return make_range(base_reloc_begin(), base_reloc_end());
1064}
1065
1066const data_directory *COFFObjectFile::getDataDirectory(uint32_t Index) const {
1067  if (!DataDirectory)
1068    return nullptr;
1069  assert(PE32Header || PE32PlusHeader);
1070  uint32_t NumEnt = PE32Header ? PE32Header->NumberOfRvaAndSize
1071                               : PE32PlusHeader->NumberOfRvaAndSize;
1072  if (Index >= NumEnt)
1073    return nullptr;
1074  return &DataDirectory[Index];
1075}
1076
1077Expected<const coff_section *> COFFObjectFile::getSection(int32_t Index) const {
1078  // Perhaps getting the section of a reserved section index should be an error,
1079  // but callers rely on this to return null.
1080  if (COFF::isReservedSectionNumber(Index))
1081    return (const coff_section *)nullptr;
1082  if (static_cast<uint32_t>(Index) <= getNumberOfSections()) {
1083    // We already verified the section table data, so no need to check again.
1084    return SectionTable + (Index - 1);
1085  }
1086  return createStringError(object_error::parse_failed,
1087                           "section index out of bounds");
1088}
1089
1090Expected<StringRef> COFFObjectFile::getString(uint32_t Offset) const {
1091  if (StringTableSize <= 4)
1092    // Tried to get a string from an empty string table.
1093    return createStringError(object_error::parse_failed, "string table empty");
1094  if (Offset >= StringTableSize)
1095    return errorCodeToError(object_error::unexpected_eof);
1096  return StringRef(StringTable + Offset);
1097}
1098
1099Expected<StringRef> COFFObjectFile::getSymbolName(COFFSymbolRef Symbol) const {
1100  return getSymbolName(Symbol.getGeneric());
1101}
1102
1103Expected<StringRef>
1104COFFObjectFile::getSymbolName(const coff_symbol_generic *Symbol) const {
1105  // Check for string table entry. First 4 bytes are 0.
1106  if (Symbol->Name.Offset.Zeroes == 0)
1107    return getString(Symbol->Name.Offset.Offset);
1108
1109  // Null terminated, let ::strlen figure out the length.
1110  if (Symbol->Name.ShortName[COFF::NameSize - 1] == 0)
1111    return StringRef(Symbol->Name.ShortName);
1112
1113  // Not null terminated, use all 8 bytes.
1114  return StringRef(Symbol->Name.ShortName, COFF::NameSize);
1115}
1116
1117ArrayRef<uint8_t>
1118COFFObjectFile::getSymbolAuxData(COFFSymbolRef Symbol) const {
1119  const uint8_t *Aux = nullptr;
1120
1121  size_t SymbolSize = getSymbolTableEntrySize();
1122  if (Symbol.getNumberOfAuxSymbols() > 0) {
1123    // AUX data comes immediately after the symbol in COFF
1124    Aux = reinterpret_cast<const uint8_t *>(Symbol.getRawPtr()) + SymbolSize;
1125#ifndef NDEBUG
1126    // Verify that the Aux symbol points to a valid entry in the symbol table.
1127    uintptr_t Offset = uintptr_t(Aux) - uintptr_t(base());
1128    if (Offset < getPointerToSymbolTable() ||
1129        Offset >=
1130            getPointerToSymbolTable() + (getNumberOfSymbols() * SymbolSize))
1131      report_fatal_error("Aux Symbol data was outside of symbol table.");
1132
1133    assert((Offset - getPointerToSymbolTable()) % SymbolSize == 0 &&
1134           "Aux Symbol data did not point to the beginning of a symbol");
1135#endif
1136  }
1137  return ArrayRef(Aux, Symbol.getNumberOfAuxSymbols() * SymbolSize);
1138}
1139
1140uint32_t COFFObjectFile::getSymbolIndex(COFFSymbolRef Symbol) const {
1141  uintptr_t Offset =
1142      reinterpret_cast<uintptr_t>(Symbol.getRawPtr()) - getSymbolTable();
1143  assert(Offset % getSymbolTableEntrySize() == 0 &&
1144         "Symbol did not point to the beginning of a symbol");
1145  size_t Index = Offset / getSymbolTableEntrySize();
1146  assert(Index < getNumberOfSymbols());
1147  return Index;
1148}
1149
1150Expected<StringRef>
1151COFFObjectFile::getSectionName(const coff_section *Sec) const {
1152  StringRef Name = StringRef(Sec->Name, COFF::NameSize).split('\0').first;
1153
1154  // Check for string table entry. First byte is '/'.
1155  if (Name.startswith("/")) {
1156    uint32_t Offset;
1157    if (Name.startswith("//")) {
1158      if (decodeBase64StringEntry(Name.substr(2), Offset))
1159        return createStringError(object_error::parse_failed,
1160                                 "invalid section name");
1161    } else {
1162      if (Name.substr(1).getAsInteger(10, Offset))
1163        return createStringError(object_error::parse_failed,
1164                                 "invalid section name");
1165    }
1166    return getString(Offset);
1167  }
1168
1169  return Name;
1170}
1171
1172uint64_t COFFObjectFile::getSectionSize(const coff_section *Sec) const {
1173  // SizeOfRawData and VirtualSize change what they represent depending on
1174  // whether or not we have an executable image.
1175  //
1176  // For object files, SizeOfRawData contains the size of section's data;
1177  // VirtualSize should be zero but isn't due to buggy COFF writers.
1178  //
1179  // For executables, SizeOfRawData *must* be a multiple of FileAlignment; the
1180  // actual section size is in VirtualSize.  It is possible for VirtualSize to
1181  // be greater than SizeOfRawData; the contents past that point should be
1182  // considered to be zero.
1183  if (getDOSHeader())
1184    return std::min(Sec->VirtualSize, Sec->SizeOfRawData);
1185  return Sec->SizeOfRawData;
1186}
1187
1188Error COFFObjectFile::getSectionContents(const coff_section *Sec,
1189                                         ArrayRef<uint8_t> &Res) const {
1190  // In COFF, a virtual section won't have any in-file
1191  // content, so the file pointer to the content will be zero.
1192  if (Sec->PointerToRawData == 0)
1193    return Error::success();
1194  // The only thing that we need to verify is that the contents is contained
1195  // within the file bounds. We don't need to make sure it doesn't cover other
1196  // data, as there's nothing that says that is not allowed.
1197  uintptr_t ConStart =
1198      reinterpret_cast<uintptr_t>(base()) + Sec->PointerToRawData;
1199  uint32_t SectionSize = getSectionSize(Sec);
1200  if (Error E = checkOffset(Data, ConStart, SectionSize))
1201    return E;
1202  Res = ArrayRef(reinterpret_cast<const uint8_t *>(ConStart), SectionSize);
1203  return Error::success();
1204}
1205
1206const coff_relocation *COFFObjectFile::toRel(DataRefImpl Rel) const {
1207  return reinterpret_cast<const coff_relocation*>(Rel.p);
1208}
1209
1210void COFFObjectFile::moveRelocationNext(DataRefImpl &Rel) const {
1211  Rel.p = reinterpret_cast<uintptr_t>(
1212            reinterpret_cast<const coff_relocation*>(Rel.p) + 1);
1213}
1214
1215uint64_t COFFObjectFile::getRelocationOffset(DataRefImpl Rel) const {
1216  const coff_relocation *R = toRel(Rel);
1217  return R->VirtualAddress;
1218}
1219
1220symbol_iterator COFFObjectFile::getRelocationSymbol(DataRefImpl Rel) const {
1221  const coff_relocation *R = toRel(Rel);
1222  DataRefImpl Ref;
1223  if (R->SymbolTableIndex >= getNumberOfSymbols())
1224    return symbol_end();
1225  if (SymbolTable16)
1226    Ref.p = reinterpret_cast<uintptr_t>(SymbolTable16 + R->SymbolTableIndex);
1227  else if (SymbolTable32)
1228    Ref.p = reinterpret_cast<uintptr_t>(SymbolTable32 + R->SymbolTableIndex);
1229  else
1230    llvm_unreachable("no symbol table pointer!");
1231  return symbol_iterator(SymbolRef(Ref, this));
1232}
1233
1234uint64_t COFFObjectFile::getRelocationType(DataRefImpl Rel) const {
1235  const coff_relocation* R = toRel(Rel);
1236  return R->Type;
1237}
1238
1239const coff_section *
1240COFFObjectFile::getCOFFSection(const SectionRef &Section) const {
1241  return toSec(Section.getRawDataRefImpl());
1242}
1243
1244COFFSymbolRef COFFObjectFile::getCOFFSymbol(const DataRefImpl &Ref) const {
1245  if (SymbolTable16)
1246    return toSymb<coff_symbol16>(Ref);
1247  if (SymbolTable32)
1248    return toSymb<coff_symbol32>(Ref);
1249  llvm_unreachable("no symbol table pointer!");
1250}
1251
1252COFFSymbolRef COFFObjectFile::getCOFFSymbol(const SymbolRef &Symbol) const {
1253  return getCOFFSymbol(Symbol.getRawDataRefImpl());
1254}
1255
1256const coff_relocation *
1257COFFObjectFile::getCOFFRelocation(const RelocationRef &Reloc) const {
1258  return toRel(Reloc.getRawDataRefImpl());
1259}
1260
1261ArrayRef<coff_relocation>
1262COFFObjectFile::getRelocations(const coff_section *Sec) const {
1263  return {getFirstReloc(Sec, Data, base()),
1264          getNumberOfRelocations(Sec, Data, base())};
1265}
1266
1267#define LLVM_COFF_SWITCH_RELOC_TYPE_NAME(reloc_type)                           \
1268  case COFF::reloc_type:                                                       \
1269    return #reloc_type;
1270
1271StringRef COFFObjectFile::getRelocationTypeName(uint16_t Type) const {
1272  switch (getMachine()) {
1273  case COFF::IMAGE_FILE_MACHINE_AMD64:
1274    switch (Type) {
1275    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ABSOLUTE);
1276    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR64);
1277    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32);
1278    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32NB);
1279    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32);
1280    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_1);
1281    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_2);
1282    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_3);
1283    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_4);
1284    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_5);
1285    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECTION);
1286    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL);
1287    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL7);
1288    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_TOKEN);
1289    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SREL32);
1290    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_PAIR);
1291    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SSPAN32);
1292    default:
1293      return "Unknown";
1294    }
1295    break;
1296  case COFF::IMAGE_FILE_MACHINE_ARMNT:
1297    switch (Type) {
1298    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ABSOLUTE);
1299    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32);
1300    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32NB);
1301    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24);
1302    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH11);
1303    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_TOKEN);
1304    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX24);
1305    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX11);
1306    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_REL32);
1307    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECTION);
1308    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECREL);
1309    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32A);
1310    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32T);
1311    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH20T);
1312    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24T);
1313    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX23T);
1314    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_PAIR);
1315    default:
1316      return "Unknown";
1317    }
1318    break;
1319  case COFF::IMAGE_FILE_MACHINE_ARM64:
1320  case COFF::IMAGE_FILE_MACHINE_ARM64EC:
1321    switch (Type) {
1322    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ABSOLUTE);
1323    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ADDR32);
1324    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ADDR32NB);
1325    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_BRANCH26);
1326    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_PAGEBASE_REL21);
1327    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_REL21);
1328    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_PAGEOFFSET_12A);
1329    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_PAGEOFFSET_12L);
1330    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL);
1331    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL_LOW12A);
1332    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL_HIGH12A);
1333    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL_LOW12L);
1334    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_TOKEN);
1335    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECTION);
1336    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ADDR64);
1337    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_BRANCH19);
1338    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_BRANCH14);
1339    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_REL32);
1340    default:
1341      return "Unknown";
1342    }
1343    break;
1344  case COFF::IMAGE_FILE_MACHINE_I386:
1345    switch (Type) {
1346    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_ABSOLUTE);
1347    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR16);
1348    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL16);
1349    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32);
1350    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32NB);
1351    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SEG12);
1352    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECTION);
1353    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL);
1354    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_TOKEN);
1355    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL7);
1356    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL32);
1357    default:
1358      return "Unknown";
1359    }
1360    break;
1361  default:
1362    return "Unknown";
1363  }
1364}
1365
1366#undef LLVM_COFF_SWITCH_RELOC_TYPE_NAME
1367
1368void COFFObjectFile::getRelocationTypeName(
1369    DataRefImpl Rel, SmallVectorImpl<char> &Result) const {
1370  const coff_relocation *Reloc = toRel(Rel);
1371  StringRef Res = getRelocationTypeName(Reloc->Type);
1372  Result.append(Res.begin(), Res.end());
1373}
1374
1375bool COFFObjectFile::isRelocatableObject() const {
1376  return !DataDirectory;
1377}
1378
1379StringRef COFFObjectFile::mapDebugSectionName(StringRef Name) const {
1380  return StringSwitch<StringRef>(Name)
1381      .Case("eh_fram", "eh_frame")
1382      .Default(Name);
1383}
1384
1385bool ImportDirectoryEntryRef::
1386operator==(const ImportDirectoryEntryRef &Other) const {
1387  return ImportTable == Other.ImportTable && Index == Other.Index;
1388}
1389
1390void ImportDirectoryEntryRef::moveNext() {
1391  ++Index;
1392  if (ImportTable[Index].isNull()) {
1393    Index = -1;
1394    ImportTable = nullptr;
1395  }
1396}
1397
1398Error ImportDirectoryEntryRef::getImportTableEntry(
1399    const coff_import_directory_table_entry *&Result) const {
1400  return getObject(Result, OwningObject->Data, ImportTable + Index);
1401}
1402
1403static imported_symbol_iterator
1404makeImportedSymbolIterator(const COFFObjectFile *Object,
1405                           uintptr_t Ptr, int Index) {
1406  if (Object->getBytesInAddress() == 4) {
1407    auto *P = reinterpret_cast<const import_lookup_table_entry32 *>(Ptr);
1408    return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object));
1409  }
1410  auto *P = reinterpret_cast<const import_lookup_table_entry64 *>(Ptr);
1411  return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object));
1412}
1413
1414static imported_symbol_iterator
1415importedSymbolBegin(uint32_t RVA, const COFFObjectFile *Object) {
1416  uintptr_t IntPtr = 0;
1417  // FIXME: Handle errors.
1418  cantFail(Object->getRvaPtr(RVA, IntPtr));
1419  return makeImportedSymbolIterator(Object, IntPtr, 0);
1420}
1421
1422static imported_symbol_iterator
1423importedSymbolEnd(uint32_t RVA, const COFFObjectFile *Object) {
1424  uintptr_t IntPtr = 0;
1425  // FIXME: Handle errors.
1426  cantFail(Object->getRvaPtr(RVA, IntPtr));
1427  // Forward the pointer to the last entry which is null.
1428  int Index = 0;
1429  if (Object->getBytesInAddress() == 4) {
1430    auto *Entry = reinterpret_cast<ulittle32_t *>(IntPtr);
1431    while (*Entry++)
1432      ++Index;
1433  } else {
1434    auto *Entry = reinterpret_cast<ulittle64_t *>(IntPtr);
1435    while (*Entry++)
1436      ++Index;
1437  }
1438  return makeImportedSymbolIterator(Object, IntPtr, Index);
1439}
1440
1441imported_symbol_iterator
1442ImportDirectoryEntryRef::imported_symbol_begin() const {
1443  return importedSymbolBegin(ImportTable[Index].ImportAddressTableRVA,
1444                             OwningObject);
1445}
1446
1447imported_symbol_iterator
1448ImportDirectoryEntryRef::imported_symbol_end() const {
1449  return importedSymbolEnd(ImportTable[Index].ImportAddressTableRVA,
1450                           OwningObject);
1451}
1452
1453iterator_range<imported_symbol_iterator>
1454ImportDirectoryEntryRef::imported_symbols() const {
1455  return make_range(imported_symbol_begin(), imported_symbol_end());
1456}
1457
1458imported_symbol_iterator ImportDirectoryEntryRef::lookup_table_begin() const {
1459  return importedSymbolBegin(ImportTable[Index].ImportLookupTableRVA,
1460                             OwningObject);
1461}
1462
1463imported_symbol_iterator ImportDirectoryEntryRef::lookup_table_end() const {
1464  return importedSymbolEnd(ImportTable[Index].ImportLookupTableRVA,
1465                           OwningObject);
1466}
1467
1468iterator_range<imported_symbol_iterator>
1469ImportDirectoryEntryRef::lookup_table_symbols() const {
1470  return make_range(lookup_table_begin(), lookup_table_end());
1471}
1472
1473Error ImportDirectoryEntryRef::getName(StringRef &Result) const {
1474  uintptr_t IntPtr = 0;
1475  if (Error E = OwningObject->getRvaPtr(ImportTable[Index].NameRVA, IntPtr,
1476                                        "import directory name"))
1477    return E;
1478  Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1479  return Error::success();
1480}
1481
1482Error
1483ImportDirectoryEntryRef::getImportLookupTableRVA(uint32_t  &Result) const {
1484  Result = ImportTable[Index].ImportLookupTableRVA;
1485  return Error::success();
1486}
1487
1488Error ImportDirectoryEntryRef::getImportAddressTableRVA(
1489    uint32_t &Result) const {
1490  Result = ImportTable[Index].ImportAddressTableRVA;
1491  return Error::success();
1492}
1493
1494bool DelayImportDirectoryEntryRef::
1495operator==(const DelayImportDirectoryEntryRef &Other) const {
1496  return Table == Other.Table && Index == Other.Index;
1497}
1498
1499void DelayImportDirectoryEntryRef::moveNext() {
1500  ++Index;
1501}
1502
1503imported_symbol_iterator
1504DelayImportDirectoryEntryRef::imported_symbol_begin() const {
1505  return importedSymbolBegin(Table[Index].DelayImportNameTable,
1506                             OwningObject);
1507}
1508
1509imported_symbol_iterator
1510DelayImportDirectoryEntryRef::imported_symbol_end() const {
1511  return importedSymbolEnd(Table[Index].DelayImportNameTable,
1512                           OwningObject);
1513}
1514
1515iterator_range<imported_symbol_iterator>
1516DelayImportDirectoryEntryRef::imported_symbols() const {
1517  return make_range(imported_symbol_begin(), imported_symbol_end());
1518}
1519
1520Error DelayImportDirectoryEntryRef::getName(StringRef &Result) const {
1521  uintptr_t IntPtr = 0;
1522  if (Error E = OwningObject->getRvaPtr(Table[Index].Name, IntPtr,
1523                                        "delay import directory name"))
1524    return E;
1525  Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1526  return Error::success();
1527}
1528
1529Error DelayImportDirectoryEntryRef::getDelayImportTable(
1530    const delay_import_directory_table_entry *&Result) const {
1531  Result = &Table[Index];
1532  return Error::success();
1533}
1534
1535Error DelayImportDirectoryEntryRef::getImportAddress(int AddrIndex,
1536                                                     uint64_t &Result) const {
1537  uint32_t RVA = Table[Index].DelayImportAddressTable +
1538      AddrIndex * (OwningObject->is64() ? 8 : 4);
1539  uintptr_t IntPtr = 0;
1540  if (Error E = OwningObject->getRvaPtr(RVA, IntPtr, "import address"))
1541    return E;
1542  if (OwningObject->is64())
1543    Result = *reinterpret_cast<const ulittle64_t *>(IntPtr);
1544  else
1545    Result = *reinterpret_cast<const ulittle32_t *>(IntPtr);
1546  return Error::success();
1547}
1548
1549bool ExportDirectoryEntryRef::
1550operator==(const ExportDirectoryEntryRef &Other) const {
1551  return ExportTable == Other.ExportTable && Index == Other.Index;
1552}
1553
1554void ExportDirectoryEntryRef::moveNext() {
1555  ++Index;
1556}
1557
1558// Returns the name of the current export symbol. If the symbol is exported only
1559// by ordinal, the empty string is set as a result.
1560Error ExportDirectoryEntryRef::getDllName(StringRef &Result) const {
1561  uintptr_t IntPtr = 0;
1562  if (Error E =
1563          OwningObject->getRvaPtr(ExportTable->NameRVA, IntPtr, "dll name"))
1564    return E;
1565  Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1566  return Error::success();
1567}
1568
1569// Returns the starting ordinal number.
1570Error ExportDirectoryEntryRef::getOrdinalBase(uint32_t &Result) const {
1571  Result = ExportTable->OrdinalBase;
1572  return Error::success();
1573}
1574
1575// Returns the export ordinal of the current export symbol.
1576Error ExportDirectoryEntryRef::getOrdinal(uint32_t &Result) const {
1577  Result = ExportTable->OrdinalBase + Index;
1578  return Error::success();
1579}
1580
1581// Returns the address of the current export symbol.
1582Error ExportDirectoryEntryRef::getExportRVA(uint32_t &Result) const {
1583  uintptr_t IntPtr = 0;
1584  if (Error EC = OwningObject->getRvaPtr(ExportTable->ExportAddressTableRVA,
1585                                         IntPtr, "export address"))
1586    return EC;
1587  const export_address_table_entry *entry =
1588      reinterpret_cast<const export_address_table_entry *>(IntPtr);
1589  Result = entry[Index].ExportRVA;
1590  return Error::success();
1591}
1592
1593// Returns the name of the current export symbol. If the symbol is exported only
1594// by ordinal, the empty string is set as a result.
1595Error
1596ExportDirectoryEntryRef::getSymbolName(StringRef &Result) const {
1597  uintptr_t IntPtr = 0;
1598  if (Error EC = OwningObject->getRvaPtr(ExportTable->OrdinalTableRVA, IntPtr,
1599                                         "export ordinal table"))
1600    return EC;
1601  const ulittle16_t *Start = reinterpret_cast<const ulittle16_t *>(IntPtr);
1602
1603  uint32_t NumEntries = ExportTable->NumberOfNamePointers;
1604  int Offset = 0;
1605  for (const ulittle16_t *I = Start, *E = Start + NumEntries;
1606       I < E; ++I, ++Offset) {
1607    if (*I != Index)
1608      continue;
1609    if (Error EC = OwningObject->getRvaPtr(ExportTable->NamePointerRVA, IntPtr,
1610                                           "export table entry"))
1611      return EC;
1612    const ulittle32_t *NamePtr = reinterpret_cast<const ulittle32_t *>(IntPtr);
1613    if (Error EC = OwningObject->getRvaPtr(NamePtr[Offset], IntPtr,
1614                                           "export symbol name"))
1615      return EC;
1616    Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1617    return Error::success();
1618  }
1619  Result = "";
1620  return Error::success();
1621}
1622
1623Error ExportDirectoryEntryRef::isForwarder(bool &Result) const {
1624  const data_directory *DataEntry =
1625      OwningObject->getDataDirectory(COFF::EXPORT_TABLE);
1626  if (!DataEntry)
1627    return createStringError(object_error::parse_failed,
1628                             "export table missing");
1629  uint32_t RVA;
1630  if (auto EC = getExportRVA(RVA))
1631    return EC;
1632  uint32_t Begin = DataEntry->RelativeVirtualAddress;
1633  uint32_t End = DataEntry->RelativeVirtualAddress + DataEntry->Size;
1634  Result = (Begin <= RVA && RVA < End);
1635  return Error::success();
1636}
1637
1638Error ExportDirectoryEntryRef::getForwardTo(StringRef &Result) const {
1639  uint32_t RVA;
1640  if (auto EC = getExportRVA(RVA))
1641    return EC;
1642  uintptr_t IntPtr = 0;
1643  if (auto EC = OwningObject->getRvaPtr(RVA, IntPtr, "export forward target"))
1644    return EC;
1645  Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1646  return Error::success();
1647}
1648
1649bool ImportedSymbolRef::
1650operator==(const ImportedSymbolRef &Other) const {
1651  return Entry32 == Other.Entry32 && Entry64 == Other.Entry64
1652      && Index == Other.Index;
1653}
1654
1655void ImportedSymbolRef::moveNext() {
1656  ++Index;
1657}
1658
1659Error ImportedSymbolRef::getSymbolName(StringRef &Result) const {
1660  uint32_t RVA;
1661  if (Entry32) {
1662    // If a symbol is imported only by ordinal, it has no name.
1663    if (Entry32[Index].isOrdinal())
1664      return Error::success();
1665    RVA = Entry32[Index].getHintNameRVA();
1666  } else {
1667    if (Entry64[Index].isOrdinal())
1668      return Error::success();
1669    RVA = Entry64[Index].getHintNameRVA();
1670  }
1671  uintptr_t IntPtr = 0;
1672  if (Error EC = OwningObject->getRvaPtr(RVA, IntPtr, "import symbol name"))
1673    return EC;
1674  // +2 because the first two bytes is hint.
1675  Result = StringRef(reinterpret_cast<const char *>(IntPtr + 2));
1676  return Error::success();
1677}
1678
1679Error ImportedSymbolRef::isOrdinal(bool &Result) const {
1680  if (Entry32)
1681    Result = Entry32[Index].isOrdinal();
1682  else
1683    Result = Entry64[Index].isOrdinal();
1684  return Error::success();
1685}
1686
1687Error ImportedSymbolRef::getHintNameRVA(uint32_t &Result) const {
1688  if (Entry32)
1689    Result = Entry32[Index].getHintNameRVA();
1690  else
1691    Result = Entry64[Index].getHintNameRVA();
1692  return Error::success();
1693}
1694
1695Error ImportedSymbolRef::getOrdinal(uint16_t &Result) const {
1696  uint32_t RVA;
1697  if (Entry32) {
1698    if (Entry32[Index].isOrdinal()) {
1699      Result = Entry32[Index].getOrdinal();
1700      return Error::success();
1701    }
1702    RVA = Entry32[Index].getHintNameRVA();
1703  } else {
1704    if (Entry64[Index].isOrdinal()) {
1705      Result = Entry64[Index].getOrdinal();
1706      return Error::success();
1707    }
1708    RVA = Entry64[Index].getHintNameRVA();
1709  }
1710  uintptr_t IntPtr = 0;
1711  if (Error EC = OwningObject->getRvaPtr(RVA, IntPtr, "import symbol ordinal"))
1712    return EC;
1713  Result = *reinterpret_cast<const ulittle16_t *>(IntPtr);
1714  return Error::success();
1715}
1716
1717Expected<std::unique_ptr<COFFObjectFile>>
1718ObjectFile::createCOFFObjectFile(MemoryBufferRef Object) {
1719  return COFFObjectFile::create(Object);
1720}
1721
1722bool BaseRelocRef::operator==(const BaseRelocRef &Other) const {
1723  return Header == Other.Header && Index == Other.Index;
1724}
1725
1726void BaseRelocRef::moveNext() {
1727  // Header->BlockSize is the size of the current block, including the
1728  // size of the header itself.
1729  uint32_t Size = sizeof(*Header) +
1730      sizeof(coff_base_reloc_block_entry) * (Index + 1);
1731  if (Size == Header->BlockSize) {
1732    // .reloc contains a list of base relocation blocks. Each block
1733    // consists of the header followed by entries. The header contains
1734    // how many entories will follow. When we reach the end of the
1735    // current block, proceed to the next block.
1736    Header = reinterpret_cast<const coff_base_reloc_block_header *>(
1737        reinterpret_cast<const uint8_t *>(Header) + Size);
1738    Index = 0;
1739  } else {
1740    ++Index;
1741  }
1742}
1743
1744Error BaseRelocRef::getType(uint8_t &Type) const {
1745  auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1);
1746  Type = Entry[Index].getType();
1747  return Error::success();
1748}
1749
1750Error BaseRelocRef::getRVA(uint32_t &Result) const {
1751  auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1);
1752  Result = Header->PageRVA + Entry[Index].getOffset();
1753  return Error::success();
1754}
1755
1756#define RETURN_IF_ERROR(Expr)                                                  \
1757  do {                                                                         \
1758    Error E = (Expr);                                                          \
1759    if (E)                                                                     \
1760      return std::move(E);                                                     \
1761  } while (0)
1762
1763Expected<ArrayRef<UTF16>>
1764ResourceSectionRef::getDirStringAtOffset(uint32_t Offset) {
1765  BinaryStreamReader Reader = BinaryStreamReader(BBS);
1766  Reader.setOffset(Offset);
1767  uint16_t Length;
1768  RETURN_IF_ERROR(Reader.readInteger(Length));
1769  ArrayRef<UTF16> RawDirString;
1770  RETURN_IF_ERROR(Reader.readArray(RawDirString, Length));
1771  return RawDirString;
1772}
1773
1774Expected<ArrayRef<UTF16>>
1775ResourceSectionRef::getEntryNameString(const coff_resource_dir_entry &Entry) {
1776  return getDirStringAtOffset(Entry.Identifier.getNameOffset());
1777}
1778
1779Expected<const coff_resource_dir_table &>
1780ResourceSectionRef::getTableAtOffset(uint32_t Offset) {
1781  const coff_resource_dir_table *Table = nullptr;
1782
1783  BinaryStreamReader Reader(BBS);
1784  Reader.setOffset(Offset);
1785  RETURN_IF_ERROR(Reader.readObject(Table));
1786  assert(Table != nullptr);
1787  return *Table;
1788}
1789
1790Expected<const coff_resource_dir_entry &>
1791ResourceSectionRef::getTableEntryAtOffset(uint32_t Offset) {
1792  const coff_resource_dir_entry *Entry = nullptr;
1793
1794  BinaryStreamReader Reader(BBS);
1795  Reader.setOffset(Offset);
1796  RETURN_IF_ERROR(Reader.readObject(Entry));
1797  assert(Entry != nullptr);
1798  return *Entry;
1799}
1800
1801Expected<const coff_resource_data_entry &>
1802ResourceSectionRef::getDataEntryAtOffset(uint32_t Offset) {
1803  const coff_resource_data_entry *Entry = nullptr;
1804
1805  BinaryStreamReader Reader(BBS);
1806  Reader.setOffset(Offset);
1807  RETURN_IF_ERROR(Reader.readObject(Entry));
1808  assert(Entry != nullptr);
1809  return *Entry;
1810}
1811
1812Expected<const coff_resource_dir_table &>
1813ResourceSectionRef::getEntrySubDir(const coff_resource_dir_entry &Entry) {
1814  assert(Entry.Offset.isSubDir());
1815  return getTableAtOffset(Entry.Offset.value());
1816}
1817
1818Expected<const coff_resource_data_entry &>
1819ResourceSectionRef::getEntryData(const coff_resource_dir_entry &Entry) {
1820  assert(!Entry.Offset.isSubDir());
1821  return getDataEntryAtOffset(Entry.Offset.value());
1822}
1823
1824Expected<const coff_resource_dir_table &> ResourceSectionRef::getBaseTable() {
1825  return getTableAtOffset(0);
1826}
1827
1828Expected<const coff_resource_dir_entry &>
1829ResourceSectionRef::getTableEntry(const coff_resource_dir_table &Table,
1830                                  uint32_t Index) {
1831  if (Index >= (uint32_t)(Table.NumberOfNameEntries + Table.NumberOfIDEntries))
1832    return createStringError(object_error::parse_failed, "index out of range");
1833  const uint8_t *TablePtr = reinterpret_cast<const uint8_t *>(&Table);
1834  ptrdiff_t TableOffset = TablePtr - BBS.data().data();
1835  return getTableEntryAtOffset(TableOffset + sizeof(Table) +
1836                               Index * sizeof(coff_resource_dir_entry));
1837}
1838
1839Error ResourceSectionRef::load(const COFFObjectFile *O) {
1840  for (const SectionRef &S : O->sections()) {
1841    Expected<StringRef> Name = S.getName();
1842    if (!Name)
1843      return Name.takeError();
1844
1845    if (*Name == ".rsrc" || *Name == ".rsrc$01")
1846      return load(O, S);
1847  }
1848  return createStringError(object_error::parse_failed,
1849                           "no resource section found");
1850}
1851
1852Error ResourceSectionRef::load(const COFFObjectFile *O, const SectionRef &S) {
1853  Obj = O;
1854  Section = S;
1855  Expected<StringRef> Contents = Section.getContents();
1856  if (!Contents)
1857    return Contents.takeError();
1858  BBS = BinaryByteStream(*Contents, support::little);
1859  const coff_section *COFFSect = Obj->getCOFFSection(Section);
1860  ArrayRef<coff_relocation> OrigRelocs = Obj->getRelocations(COFFSect);
1861  Relocs.reserve(OrigRelocs.size());
1862  for (const coff_relocation &R : OrigRelocs)
1863    Relocs.push_back(&R);
1864  llvm::sort(Relocs, [](const coff_relocation *A, const coff_relocation *B) {
1865    return A->VirtualAddress < B->VirtualAddress;
1866  });
1867  return Error::success();
1868}
1869
1870Expected<StringRef>
1871ResourceSectionRef::getContents(const coff_resource_data_entry &Entry) {
1872  if (!Obj)
1873    return createStringError(object_error::parse_failed, "no object provided");
1874
1875  // Find a potential relocation at the DataRVA field (first member of
1876  // the coff_resource_data_entry struct).
1877  const uint8_t *EntryPtr = reinterpret_cast<const uint8_t *>(&Entry);
1878  ptrdiff_t EntryOffset = EntryPtr - BBS.data().data();
1879  coff_relocation RelocTarget{ulittle32_t(EntryOffset), ulittle32_t(0),
1880                              ulittle16_t(0)};
1881  auto RelocsForOffset =
1882      std::equal_range(Relocs.begin(), Relocs.end(), &RelocTarget,
1883                       [](const coff_relocation *A, const coff_relocation *B) {
1884                         return A->VirtualAddress < B->VirtualAddress;
1885                       });
1886
1887  if (RelocsForOffset.first != RelocsForOffset.second) {
1888    // We found a relocation with the right offset. Check that it does have
1889    // the expected type.
1890    const coff_relocation &R = **RelocsForOffset.first;
1891    uint16_t RVAReloc;
1892    switch (Obj->getMachine()) {
1893    case COFF::IMAGE_FILE_MACHINE_I386:
1894      RVAReloc = COFF::IMAGE_REL_I386_DIR32NB;
1895      break;
1896    case COFF::IMAGE_FILE_MACHINE_AMD64:
1897      RVAReloc = COFF::IMAGE_REL_AMD64_ADDR32NB;
1898      break;
1899    case COFF::IMAGE_FILE_MACHINE_ARMNT:
1900      RVAReloc = COFF::IMAGE_REL_ARM_ADDR32NB;
1901      break;
1902    case COFF::IMAGE_FILE_MACHINE_ARM64:
1903    case COFF::IMAGE_FILE_MACHINE_ARM64EC:
1904      RVAReloc = COFF::IMAGE_REL_ARM64_ADDR32NB;
1905      break;
1906    default:
1907      return createStringError(object_error::parse_failed,
1908                               "unsupported architecture");
1909    }
1910    if (R.Type != RVAReloc)
1911      return createStringError(object_error::parse_failed,
1912                               "unexpected relocation type");
1913    // Get the relocation's symbol
1914    Expected<COFFSymbolRef> Sym = Obj->getSymbol(R.SymbolTableIndex);
1915    if (!Sym)
1916      return Sym.takeError();
1917    // And the symbol's section
1918    Expected<const coff_section *> Section =
1919        Obj->getSection(Sym->getSectionNumber());
1920    if (!Section)
1921      return Section.takeError();
1922    // Add the initial value of DataRVA to the symbol's offset to find the
1923    // data it points at.
1924    uint64_t Offset = Entry.DataRVA + Sym->getValue();
1925    ArrayRef<uint8_t> Contents;
1926    if (Error E = Obj->getSectionContents(*Section, Contents))
1927      return std::move(E);
1928    if (Offset + Entry.DataSize > Contents.size())
1929      return createStringError(object_error::parse_failed,
1930                               "data outside of section");
1931    // Return a reference to the data inside the section.
1932    return StringRef(reinterpret_cast<const char *>(Contents.data()) + Offset,
1933                     Entry.DataSize);
1934  } else {
1935    // Relocatable objects need a relocation for the DataRVA field.
1936    if (Obj->isRelocatableObject())
1937      return createStringError(object_error::parse_failed,
1938                               "no relocation found for DataRVA");
1939
1940    // Locate the section that contains the address that DataRVA points at.
1941    uint64_t VA = Entry.DataRVA + Obj->getImageBase();
1942    for (const SectionRef &S : Obj->sections()) {
1943      if (VA >= S.getAddress() &&
1944          VA + Entry.DataSize <= S.getAddress() + S.getSize()) {
1945        uint64_t Offset = VA - S.getAddress();
1946        Expected<StringRef> Contents = S.getContents();
1947        if (!Contents)
1948          return Contents.takeError();
1949        return Contents->slice(Offset, Offset + Entry.DataSize);
1950      }
1951    }
1952    return createStringError(object_error::parse_failed,
1953                             "address not found in image");
1954  }
1955}
1956