1//===- SplitKit.cpp - Toolkit for splitting live ranges -------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains the SplitAnalysis class as well as mutator functions for
10// live range splitting.
11//
12//===----------------------------------------------------------------------===//
13
14#include "SplitKit.h"
15#include "llvm/ADT/STLExtras.h"
16#include "llvm/ADT/Statistic.h"
17#include "llvm/Analysis/AliasAnalysis.h"
18#include "llvm/CodeGen/LiveRangeEdit.h"
19#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
20#include "llvm/CodeGen/MachineDominators.h"
21#include "llvm/CodeGen/MachineInstr.h"
22#include "llvm/CodeGen/MachineInstrBuilder.h"
23#include "llvm/CodeGen/MachineLoopInfo.h"
24#include "llvm/CodeGen/MachineOperand.h"
25#include "llvm/CodeGen/MachineRegisterInfo.h"
26#include "llvm/CodeGen/TargetInstrInfo.h"
27#include "llvm/CodeGen/TargetOpcodes.h"
28#include "llvm/CodeGen/TargetRegisterInfo.h"
29#include "llvm/CodeGen/TargetSubtargetInfo.h"
30#include "llvm/CodeGen/VirtRegMap.h"
31#include "llvm/Config/llvm-config.h"
32#include "llvm/IR/DebugLoc.h"
33#include "llvm/Support/Allocator.h"
34#include "llvm/Support/BlockFrequency.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/raw_ostream.h"
38#include <algorithm>
39#include <cassert>
40#include <iterator>
41#include <limits>
42#include <tuple>
43
44using namespace llvm;
45
46#define DEBUG_TYPE "regalloc"
47
48STATISTIC(NumFinished, "Number of splits finished");
49STATISTIC(NumSimple,   "Number of splits that were simple");
50STATISTIC(NumCopies,   "Number of copies inserted for splitting");
51STATISTIC(NumRemats,   "Number of rematerialized defs for splitting");
52
53//===----------------------------------------------------------------------===//
54//                     Last Insert Point Analysis
55//===----------------------------------------------------------------------===//
56
57InsertPointAnalysis::InsertPointAnalysis(const LiveIntervals &lis,
58                                         unsigned BBNum)
59    : LIS(lis), LastInsertPoint(BBNum) {}
60
61SlotIndex
62InsertPointAnalysis::computeLastInsertPoint(const LiveInterval &CurLI,
63                                            const MachineBasicBlock &MBB) {
64  unsigned Num = MBB.getNumber();
65  std::pair<SlotIndex, SlotIndex> &LIP = LastInsertPoint[Num];
66  SlotIndex MBBEnd = LIS.getMBBEndIdx(&MBB);
67
68  SmallVector<const MachineBasicBlock *, 1> ExceptionalSuccessors;
69  bool EHPadSuccessor = false;
70  for (const MachineBasicBlock *SMBB : MBB.successors()) {
71    if (SMBB->isEHPad()) {
72      ExceptionalSuccessors.push_back(SMBB);
73      EHPadSuccessor = true;
74    } else if (SMBB->isInlineAsmBrIndirectTarget())
75      ExceptionalSuccessors.push_back(SMBB);
76  }
77
78  // Compute insert points on the first call. The pair is independent of the
79  // current live interval.
80  if (!LIP.first.isValid()) {
81    MachineBasicBlock::const_iterator FirstTerm = MBB.getFirstTerminator();
82    if (FirstTerm == MBB.end())
83      LIP.first = MBBEnd;
84    else
85      LIP.first = LIS.getInstructionIndex(*FirstTerm);
86
87    // If there is a landing pad or inlineasm_br successor, also find the
88    // instruction. If there is no such instruction, we don't need to do
89    // anything special.  We assume there cannot be multiple instructions that
90    // are Calls with EHPad successors or INLINEASM_BR in a block. Further, we
91    // assume that if there are any, they will be after any other call
92    // instructions in the block.
93    if (ExceptionalSuccessors.empty())
94      return LIP.first;
95    for (const MachineInstr &MI : llvm::reverse(MBB)) {
96      if ((EHPadSuccessor && MI.isCall()) ||
97          MI.getOpcode() == TargetOpcode::INLINEASM_BR) {
98        LIP.second = LIS.getInstructionIndex(MI);
99        break;
100      }
101    }
102  }
103
104  // If CurLI is live into a landing pad successor, move the last insert point
105  // back to the call that may throw.
106  if (!LIP.second)
107    return LIP.first;
108
109  if (none_of(ExceptionalSuccessors, [&](const MachineBasicBlock *EHPad) {
110        return LIS.isLiveInToMBB(CurLI, EHPad);
111      }))
112    return LIP.first;
113
114  // Find the value leaving MBB.
115  const VNInfo *VNI = CurLI.getVNInfoBefore(MBBEnd);
116  if (!VNI)
117    return LIP.first;
118
119  // The def of statepoint instruction is a gc relocation and it should be alive
120  // in landing pad. So we cannot split interval after statepoint instruction.
121  if (SlotIndex::isSameInstr(VNI->def, LIP.second))
122    if (auto *I = LIS.getInstructionFromIndex(LIP.second))
123      if (I->getOpcode() == TargetOpcode::STATEPOINT)
124        return LIP.second;
125
126  // If the value leaving MBB was defined after the call in MBB, it can't
127  // really be live-in to the landing pad.  This can happen if the landing pad
128  // has a PHI, and this register is undef on the exceptional edge.
129  // <rdar://problem/10664933>
130  if (!SlotIndex::isEarlierInstr(VNI->def, LIP.second) && VNI->def < MBBEnd)
131    return LIP.first;
132
133  // Value is properly live-in to the landing pad.
134  // Only allow inserts before the call.
135  return LIP.second;
136}
137
138MachineBasicBlock::iterator
139InsertPointAnalysis::getLastInsertPointIter(const LiveInterval &CurLI,
140                                            MachineBasicBlock &MBB) {
141  SlotIndex LIP = getLastInsertPoint(CurLI, MBB);
142  if (LIP == LIS.getMBBEndIdx(&MBB))
143    return MBB.end();
144  return LIS.getInstructionFromIndex(LIP);
145}
146
147//===----------------------------------------------------------------------===//
148//                                 Split Analysis
149//===----------------------------------------------------------------------===//
150
151SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, const LiveIntervals &lis,
152                             const MachineLoopInfo &mli)
153    : MF(vrm.getMachineFunction()), VRM(vrm), LIS(lis), Loops(mli),
154      TII(*MF.getSubtarget().getInstrInfo()), IPA(lis, MF.getNumBlockIDs()) {}
155
156void SplitAnalysis::clear() {
157  UseSlots.clear();
158  UseBlocks.clear();
159  ThroughBlocks.clear();
160  CurLI = nullptr;
161}
162
163/// analyzeUses - Count instructions, basic blocks, and loops using CurLI.
164void SplitAnalysis::analyzeUses() {
165  assert(UseSlots.empty() && "Call clear first");
166
167  // First get all the defs from the interval values. This provides the correct
168  // slots for early clobbers.
169  for (const VNInfo *VNI : CurLI->valnos)
170    if (!VNI->isPHIDef() && !VNI->isUnused())
171      UseSlots.push_back(VNI->def);
172
173  // Get use slots form the use-def chain.
174  const MachineRegisterInfo &MRI = MF.getRegInfo();
175  for (MachineOperand &MO : MRI.use_nodbg_operands(CurLI->reg()))
176    if (!MO.isUndef())
177      UseSlots.push_back(LIS.getInstructionIndex(*MO.getParent()).getRegSlot());
178
179  array_pod_sort(UseSlots.begin(), UseSlots.end());
180
181  // Remove duplicates, keeping the smaller slot for each instruction.
182  // That is what we want for early clobbers.
183  UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(),
184                             SlotIndex::isSameInstr),
185                 UseSlots.end());
186
187  // Compute per-live block info.
188  calcLiveBlockInfo();
189
190  LLVM_DEBUG(dbgs() << "Analyze counted " << UseSlots.size() << " instrs in "
191                    << UseBlocks.size() << " blocks, through "
192                    << NumThroughBlocks << " blocks.\n");
193}
194
195/// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks
196/// where CurLI is live.
197void SplitAnalysis::calcLiveBlockInfo() {
198  ThroughBlocks.resize(MF.getNumBlockIDs());
199  NumThroughBlocks = NumGapBlocks = 0;
200  if (CurLI->empty())
201    return;
202
203  LiveInterval::const_iterator LVI = CurLI->begin();
204  LiveInterval::const_iterator LVE = CurLI->end();
205
206  SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE;
207  UseI = UseSlots.begin();
208  UseE = UseSlots.end();
209
210  // Loop over basic blocks where CurLI is live.
211  MachineFunction::iterator MFI =
212      LIS.getMBBFromIndex(LVI->start)->getIterator();
213  while (true) {
214    BlockInfo BI;
215    BI.MBB = &*MFI;
216    SlotIndex Start, Stop;
217    std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
218
219    // If the block contains no uses, the range must be live through. At one
220    // point, RegisterCoalescer could create dangling ranges that ended
221    // mid-block.
222    if (UseI == UseE || *UseI >= Stop) {
223      ++NumThroughBlocks;
224      ThroughBlocks.set(BI.MBB->getNumber());
225      // The range shouldn't end mid-block if there are no uses. This shouldn't
226      // happen.
227      assert(LVI->end >= Stop && "range ends mid block with no uses");
228    } else {
229      // This block has uses. Find the first and last uses in the block.
230      BI.FirstInstr = *UseI;
231      assert(BI.FirstInstr >= Start);
232      do ++UseI;
233      while (UseI != UseE && *UseI < Stop);
234      BI.LastInstr = UseI[-1];
235      assert(BI.LastInstr < Stop);
236
237      // LVI is the first live segment overlapping MBB.
238      BI.LiveIn = LVI->start <= Start;
239
240      // When not live in, the first use should be a def.
241      if (!BI.LiveIn) {
242        assert(LVI->start == LVI->valno->def && "Dangling Segment start");
243        assert(LVI->start == BI.FirstInstr && "First instr should be a def");
244        BI.FirstDef = BI.FirstInstr;
245      }
246
247      // Look for gaps in the live range.
248      BI.LiveOut = true;
249      while (LVI->end < Stop) {
250        SlotIndex LastStop = LVI->end;
251        if (++LVI == LVE || LVI->start >= Stop) {
252          BI.LiveOut = false;
253          BI.LastInstr = LastStop;
254          break;
255        }
256
257        if (LastStop < LVI->start) {
258          // There is a gap in the live range. Create duplicate entries for the
259          // live-in snippet and the live-out snippet.
260          ++NumGapBlocks;
261
262          // Push the Live-in part.
263          BI.LiveOut = false;
264          UseBlocks.push_back(BI);
265          UseBlocks.back().LastInstr = LastStop;
266
267          // Set up BI for the live-out part.
268          BI.LiveIn = false;
269          BI.LiveOut = true;
270          BI.FirstInstr = BI.FirstDef = LVI->start;
271        }
272
273        // A Segment that starts in the middle of the block must be a def.
274        assert(LVI->start == LVI->valno->def && "Dangling Segment start");
275        if (!BI.FirstDef)
276          BI.FirstDef = LVI->start;
277      }
278
279      UseBlocks.push_back(BI);
280
281      // LVI is now at LVE or LVI->end >= Stop.
282      if (LVI == LVE)
283        break;
284    }
285
286    // Live segment ends exactly at Stop. Move to the next segment.
287    if (LVI->end == Stop && ++LVI == LVE)
288      break;
289
290    // Pick the next basic block.
291    if (LVI->start < Stop)
292      ++MFI;
293    else
294      MFI = LIS.getMBBFromIndex(LVI->start)->getIterator();
295  }
296
297  assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count");
298}
299
300unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const {
301  if (cli->empty())
302    return 0;
303  LiveInterval *li = const_cast<LiveInterval*>(cli);
304  LiveInterval::iterator LVI = li->begin();
305  LiveInterval::iterator LVE = li->end();
306  unsigned Count = 0;
307
308  // Loop over basic blocks where li is live.
309  MachineFunction::const_iterator MFI =
310      LIS.getMBBFromIndex(LVI->start)->getIterator();
311  SlotIndex Stop = LIS.getMBBEndIdx(&*MFI);
312  while (true) {
313    ++Count;
314    LVI = li->advanceTo(LVI, Stop);
315    if (LVI == LVE)
316      return Count;
317    do {
318      ++MFI;
319      Stop = LIS.getMBBEndIdx(&*MFI);
320    } while (Stop <= LVI->start);
321  }
322}
323
324bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const {
325  Register OrigReg = VRM.getOriginal(CurLI->reg());
326  const LiveInterval &Orig = LIS.getInterval(OrigReg);
327  assert(!Orig.empty() && "Splitting empty interval?");
328  LiveInterval::const_iterator I = Orig.find(Idx);
329
330  // Range containing Idx should begin at Idx.
331  if (I != Orig.end() && I->start <= Idx)
332    return I->start == Idx;
333
334  // Range does not contain Idx, previous must end at Idx.
335  return I != Orig.begin() && (--I)->end == Idx;
336}
337
338void SplitAnalysis::analyze(const LiveInterval *li) {
339  clear();
340  CurLI = li;
341  analyzeUses();
342}
343
344//===----------------------------------------------------------------------===//
345//                               Split Editor
346//===----------------------------------------------------------------------===//
347
348/// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
349SplitEditor::SplitEditor(SplitAnalysis &SA, LiveIntervals &LIS, VirtRegMap &VRM,
350                         MachineDominatorTree &MDT,
351                         MachineBlockFrequencyInfo &MBFI, VirtRegAuxInfo &VRAI)
352    : SA(SA), LIS(LIS), VRM(VRM), MRI(VRM.getMachineFunction().getRegInfo()),
353      MDT(MDT), TII(*VRM.getMachineFunction().getSubtarget().getInstrInfo()),
354      TRI(*VRM.getMachineFunction().getSubtarget().getRegisterInfo()),
355      MBFI(MBFI), VRAI(VRAI), RegAssign(Allocator) {}
356
357void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) {
358  Edit = &LRE;
359  SpillMode = SM;
360  OpenIdx = 0;
361  RegAssign.clear();
362  Values.clear();
363
364  // Reset the LiveIntervalCalc instances needed for this spill mode.
365  LICalc[0].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
366                  &LIS.getVNInfoAllocator());
367  if (SpillMode)
368    LICalc[1].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
369                    &LIS.getVNInfoAllocator());
370
371  Edit->anyRematerializable();
372}
373
374#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
375LLVM_DUMP_METHOD void SplitEditor::dump() const {
376  if (RegAssign.empty()) {
377    dbgs() << " empty\n";
378    return;
379  }
380
381  for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I)
382    dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value();
383  dbgs() << '\n';
384}
385#endif
386
387/// Find a subrange corresponding to the exact lane mask @p LM in the live
388/// interval @p LI. The interval @p LI is assumed to contain such a subrange.
389/// This function is used to find corresponding subranges between the
390/// original interval and the new intervals.
391template <typename T> auto &getSubrangeImpl(LaneBitmask LM, T &LI) {
392  for (auto &S : LI.subranges())
393    if (S.LaneMask == LM)
394      return S;
395  llvm_unreachable("SubRange for this mask not found");
396}
397
398LiveInterval::SubRange &getSubRangeForMaskExact(LaneBitmask LM,
399                                                LiveInterval &LI) {
400  return getSubrangeImpl(LM, LI);
401}
402
403const LiveInterval::SubRange &getSubRangeForMaskExact(LaneBitmask LM,
404                                                      const LiveInterval &LI) {
405  return getSubrangeImpl(LM, LI);
406}
407
408/// Find a subrange corresponding to the lane mask @p LM, or a superset of it,
409/// in the live interval @p LI. The interval @p LI is assumed to contain such
410/// a subrange.  This function is used to find corresponding subranges between
411/// the original interval and the new intervals.
412const LiveInterval::SubRange &getSubRangeForMask(LaneBitmask LM,
413                                                 const LiveInterval &LI) {
414  for (const LiveInterval::SubRange &S : LI.subranges())
415    if ((S.LaneMask & LM) == LM)
416      return S;
417  llvm_unreachable("SubRange for this mask not found");
418}
419
420void SplitEditor::addDeadDef(LiveInterval &LI, VNInfo *VNI, bool Original) {
421  if (!LI.hasSubRanges()) {
422    LI.createDeadDef(VNI);
423    return;
424  }
425
426  SlotIndex Def = VNI->def;
427  if (Original) {
428    // If we are transferring a def from the original interval, make sure
429    // to only update the subranges for which the original subranges had
430    // a def at this location.
431    for (LiveInterval::SubRange &S : LI.subranges()) {
432      auto &PS = getSubRangeForMask(S.LaneMask, Edit->getParent());
433      VNInfo *PV = PS.getVNInfoAt(Def);
434      if (PV != nullptr && PV->def == Def)
435        S.createDeadDef(Def, LIS.getVNInfoAllocator());
436    }
437  } else {
438    // This is a new def: either from rematerialization, or from an inserted
439    // copy. Since rematerialization can regenerate a definition of a sub-
440    // register, we need to check which subranges need to be updated.
441    const MachineInstr *DefMI = LIS.getInstructionFromIndex(Def);
442    assert(DefMI != nullptr);
443    LaneBitmask LM;
444    for (const MachineOperand &DefOp : DefMI->defs()) {
445      Register R = DefOp.getReg();
446      if (R != LI.reg())
447        continue;
448      if (unsigned SR = DefOp.getSubReg())
449        LM |= TRI.getSubRegIndexLaneMask(SR);
450      else {
451        LM = MRI.getMaxLaneMaskForVReg(R);
452        break;
453      }
454    }
455    for (LiveInterval::SubRange &S : LI.subranges())
456      if ((S.LaneMask & LM).any())
457        S.createDeadDef(Def, LIS.getVNInfoAllocator());
458  }
459}
460
461VNInfo *SplitEditor::defValue(unsigned RegIdx,
462                              const VNInfo *ParentVNI,
463                              SlotIndex Idx,
464                              bool Original) {
465  assert(ParentVNI && "Mapping  NULL value");
466  assert(Idx.isValid() && "Invalid SlotIndex");
467  assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI");
468  LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
469
470  // Create a new value.
471  VNInfo *VNI = LI->getNextValue(Idx, LIS.getVNInfoAllocator());
472
473  bool Force = LI->hasSubRanges();
474  ValueForcePair FP(Force ? nullptr : VNI, Force);
475  // Use insert for lookup, so we can add missing values with a second lookup.
476  std::pair<ValueMap::iterator, bool> InsP =
477    Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), FP));
478
479  // This was the first time (RegIdx, ParentVNI) was mapped, and it is not
480  // forced. Keep it as a simple def without any liveness.
481  if (!Force && InsP.second)
482    return VNI;
483
484  // If the previous value was a simple mapping, add liveness for it now.
485  if (VNInfo *OldVNI = InsP.first->second.getPointer()) {
486    addDeadDef(*LI, OldVNI, Original);
487
488    // No longer a simple mapping.  Switch to a complex mapping. If the
489    // interval has subranges, make it a forced mapping.
490    InsP.first->second = ValueForcePair(nullptr, Force);
491  }
492
493  // This is a complex mapping, add liveness for VNI
494  addDeadDef(*LI, VNI, Original);
495  return VNI;
496}
497
498void SplitEditor::forceRecompute(unsigned RegIdx, const VNInfo &ParentVNI) {
499  ValueForcePair &VFP = Values[std::make_pair(RegIdx, ParentVNI.id)];
500  VNInfo *VNI = VFP.getPointer();
501
502  // ParentVNI was either unmapped or already complex mapped. Either way, just
503  // set the force bit.
504  if (!VNI) {
505    VFP.setInt(true);
506    return;
507  }
508
509  // This was previously a single mapping. Make sure the old def is represented
510  // by a trivial live range.
511  addDeadDef(LIS.getInterval(Edit->get(RegIdx)), VNI, false);
512
513  // Mark as complex mapped, forced.
514  VFP = ValueForcePair(nullptr, true);
515}
516
517SlotIndex SplitEditor::buildSingleSubRegCopy(Register FromReg, Register ToReg,
518    MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore,
519    unsigned SubIdx, LiveInterval &DestLI, bool Late, SlotIndex Def) {
520  const MCInstrDesc &Desc = TII.get(TargetOpcode::COPY);
521  bool FirstCopy = !Def.isValid();
522  MachineInstr *CopyMI = BuildMI(MBB, InsertBefore, DebugLoc(), Desc)
523      .addReg(ToReg, RegState::Define | getUndefRegState(FirstCopy)
524              | getInternalReadRegState(!FirstCopy), SubIdx)
525      .addReg(FromReg, 0, SubIdx);
526
527  SlotIndexes &Indexes = *LIS.getSlotIndexes();
528  if (FirstCopy) {
529    Def = Indexes.insertMachineInstrInMaps(*CopyMI, Late).getRegSlot();
530  } else {
531    CopyMI->bundleWithPred();
532  }
533  return Def;
534}
535
536SlotIndex SplitEditor::buildCopy(Register FromReg, Register ToReg,
537    LaneBitmask LaneMask, MachineBasicBlock &MBB,
538    MachineBasicBlock::iterator InsertBefore, bool Late, unsigned RegIdx) {
539  const MCInstrDesc &Desc = TII.get(TargetOpcode::COPY);
540  SlotIndexes &Indexes = *LIS.getSlotIndexes();
541  if (LaneMask.all() || LaneMask == MRI.getMaxLaneMaskForVReg(FromReg)) {
542    // The full vreg is copied.
543    MachineInstr *CopyMI =
544        BuildMI(MBB, InsertBefore, DebugLoc(), Desc, ToReg).addReg(FromReg);
545    return Indexes.insertMachineInstrInMaps(*CopyMI, Late).getRegSlot();
546  }
547
548  // Only a subset of lanes needs to be copied. The following is a simple
549  // heuristic to construct a sequence of COPYs. We could add a target
550  // specific callback if this turns out to be suboptimal.
551  LiveInterval &DestLI = LIS.getInterval(Edit->get(RegIdx));
552
553  // First pass: Try to find a perfectly matching subregister index. If none
554  // exists find the one covering the most lanemask bits.
555  const TargetRegisterClass *RC = MRI.getRegClass(FromReg);
556  assert(RC == MRI.getRegClass(ToReg) && "Should have same reg class");
557
558  SmallVector<unsigned, 8> SubIndexes;
559
560  // Abort if we cannot possibly implement the COPY with the given indexes.
561  if (!TRI.getCoveringSubRegIndexes(MRI, RC, LaneMask, SubIndexes))
562    report_fatal_error("Impossible to implement partial COPY");
563
564  SlotIndex Def;
565  for (unsigned BestIdx : SubIndexes) {
566    Def = buildSingleSubRegCopy(FromReg, ToReg, MBB, InsertBefore, BestIdx,
567                                DestLI, Late, Def);
568  }
569
570  BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator();
571  DestLI.refineSubRanges(
572      Allocator, LaneMask,
573      [Def, &Allocator](LiveInterval::SubRange &SR) {
574        SR.createDeadDef(Def, Allocator);
575      },
576      Indexes, TRI);
577
578  return Def;
579}
580
581VNInfo *SplitEditor::defFromParent(unsigned RegIdx, const VNInfo *ParentVNI,
582                                   SlotIndex UseIdx, MachineBasicBlock &MBB,
583                                   MachineBasicBlock::iterator I) {
584  SlotIndex Def;
585  LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
586
587  // We may be trying to avoid interference that ends at a deleted instruction,
588  // so always begin RegIdx 0 early and all others late.
589  bool Late = RegIdx != 0;
590
591  // Attempt cheap-as-a-copy rematerialization.
592  Register Original = VRM.getOriginal(Edit->get(RegIdx));
593  LiveInterval &OrigLI = LIS.getInterval(Original);
594  VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx);
595
596  Register Reg = LI->reg();
597  bool DidRemat = false;
598  if (OrigVNI) {
599    LiveRangeEdit::Remat RM(ParentVNI);
600    RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def);
601    if (Edit->canRematerializeAt(RM, OrigVNI, UseIdx, true)) {
602      Def = Edit->rematerializeAt(MBB, I, Reg, RM, TRI, Late);
603      ++NumRemats;
604      DidRemat = true;
605    }
606  }
607  if (!DidRemat) {
608    LaneBitmask LaneMask;
609    if (OrigLI.hasSubRanges()) {
610      LaneMask = LaneBitmask::getNone();
611      for (LiveInterval::SubRange &S : OrigLI.subranges()) {
612        if (S.liveAt(UseIdx))
613          LaneMask |= S.LaneMask;
614      }
615    } else {
616      LaneMask = LaneBitmask::getAll();
617    }
618
619    if (LaneMask.none()) {
620      const MCInstrDesc &Desc = TII.get(TargetOpcode::IMPLICIT_DEF);
621      MachineInstr *ImplicitDef = BuildMI(MBB, I, DebugLoc(), Desc, Reg);
622      SlotIndexes &Indexes = *LIS.getSlotIndexes();
623      Def = Indexes.insertMachineInstrInMaps(*ImplicitDef, Late).getRegSlot();
624    } else {
625      ++NumCopies;
626      Def = buildCopy(Edit->getReg(), Reg, LaneMask, MBB, I, Late, RegIdx);
627    }
628  }
629
630  // Define the value in Reg.
631  return defValue(RegIdx, ParentVNI, Def, false);
632}
633
634/// Create a new virtual register and live interval.
635unsigned SplitEditor::openIntv() {
636  // Create the complement as index 0.
637  if (Edit->empty())
638    Edit->createEmptyInterval();
639
640  // Create the open interval.
641  OpenIdx = Edit->size();
642  Edit->createEmptyInterval();
643  return OpenIdx;
644}
645
646void SplitEditor::selectIntv(unsigned Idx) {
647  assert(Idx != 0 && "Cannot select the complement interval");
648  assert(Idx < Edit->size() && "Can only select previously opened interval");
649  LLVM_DEBUG(dbgs() << "    selectIntv " << OpenIdx << " -> " << Idx << '\n');
650  OpenIdx = Idx;
651}
652
653SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) {
654  assert(OpenIdx && "openIntv not called before enterIntvBefore");
655  LLVM_DEBUG(dbgs() << "    enterIntvBefore " << Idx);
656  Idx = Idx.getBaseIndex();
657  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
658  if (!ParentVNI) {
659    LLVM_DEBUG(dbgs() << ": not live\n");
660    return Idx;
661  }
662  LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
663  MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
664  assert(MI && "enterIntvBefore called with invalid index");
665
666  VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI);
667  return VNI->def;
668}
669
670SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) {
671  assert(OpenIdx && "openIntv not called before enterIntvAfter");
672  LLVM_DEBUG(dbgs() << "    enterIntvAfter " << Idx);
673  Idx = Idx.getBoundaryIndex();
674  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
675  if (!ParentVNI) {
676    LLVM_DEBUG(dbgs() << ": not live\n");
677    return Idx;
678  }
679  LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
680  MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
681  assert(MI && "enterIntvAfter called with invalid index");
682
683  VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(),
684                              std::next(MachineBasicBlock::iterator(MI)));
685  return VNI->def;
686}
687
688SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
689  assert(OpenIdx && "openIntv not called before enterIntvAtEnd");
690  SlotIndex End = LIS.getMBBEndIdx(&MBB);
691  SlotIndex Last = End.getPrevSlot();
692  LLVM_DEBUG(dbgs() << "    enterIntvAtEnd " << printMBBReference(MBB) << ", "
693                    << Last);
694  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last);
695  if (!ParentVNI) {
696    LLVM_DEBUG(dbgs() << ": not live\n");
697    return End;
698  }
699  SlotIndex LSP = SA.getLastSplitPoint(&MBB);
700  if (LSP < Last) {
701    // It could be that the use after LSP is a def, and thus the ParentVNI
702    // just selected starts at that def.  For this case to exist, the def
703    // must be part of a tied def/use pair (as otherwise we'd have split
704    // distinct live ranges into individual live intervals), and thus we
705    // can insert the def into the VNI of the use and the tied def/use
706    // pair can live in the resulting interval.
707    Last = LSP;
708    ParentVNI = Edit->getParent().getVNInfoAt(Last);
709    if (!ParentVNI) {
710      // undef use --> undef tied def
711      LLVM_DEBUG(dbgs() << ": tied use not live\n");
712      return End;
713    }
714  }
715
716  LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id);
717  VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB,
718                              SA.getLastSplitPointIter(&MBB));
719  RegAssign.insert(VNI->def, End, OpenIdx);
720  LLVM_DEBUG(dump());
721  return VNI->def;
722}
723
724/// useIntv - indicate that all instructions in MBB should use OpenLI.
725void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
726  useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB));
727}
728
729void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
730  assert(OpenIdx && "openIntv not called before useIntv");
731  LLVM_DEBUG(dbgs() << "    useIntv [" << Start << ';' << End << "):");
732  RegAssign.insert(Start, End, OpenIdx);
733  LLVM_DEBUG(dump());
734}
735
736SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) {
737  assert(OpenIdx && "openIntv not called before leaveIntvAfter");
738  LLVM_DEBUG(dbgs() << "    leaveIntvAfter " << Idx);
739
740  // The interval must be live beyond the instruction at Idx.
741  SlotIndex Boundary = Idx.getBoundaryIndex();
742  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Boundary);
743  if (!ParentVNI) {
744    LLVM_DEBUG(dbgs() << ": not live\n");
745    return Boundary.getNextSlot();
746  }
747  LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
748  MachineInstr *MI = LIS.getInstructionFromIndex(Boundary);
749  assert(MI && "No instruction at index");
750
751  // In spill mode, make live ranges as short as possible by inserting the copy
752  // before MI.  This is only possible if that instruction doesn't redefine the
753  // value.  The inserted COPY is not a kill, and we don't need to recompute
754  // the source live range.  The spiller also won't try to hoist this copy.
755  if (SpillMode && !SlotIndex::isSameInstr(ParentVNI->def, Idx) &&
756      MI->readsVirtualRegister(Edit->getReg())) {
757    forceRecompute(0, *ParentVNI);
758    defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
759    return Idx;
760  }
761
762  VNInfo *VNI = defFromParent(0, ParentVNI, Boundary, *MI->getParent(),
763                              std::next(MachineBasicBlock::iterator(MI)));
764  return VNI->def;
765}
766
767SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) {
768  assert(OpenIdx && "openIntv not called before leaveIntvBefore");
769  LLVM_DEBUG(dbgs() << "    leaveIntvBefore " << Idx);
770
771  // The interval must be live into the instruction at Idx.
772  Idx = Idx.getBaseIndex();
773  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
774  if (!ParentVNI) {
775    LLVM_DEBUG(dbgs() << ": not live\n");
776    return Idx.getNextSlot();
777  }
778  LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
779
780  MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
781  assert(MI && "No instruction at index");
782  VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
783  return VNI->def;
784}
785
786SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
787  assert(OpenIdx && "openIntv not called before leaveIntvAtTop");
788  SlotIndex Start = LIS.getMBBStartIdx(&MBB);
789  LLVM_DEBUG(dbgs() << "    leaveIntvAtTop " << printMBBReference(MBB) << ", "
790                    << Start);
791
792  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
793  if (!ParentVNI) {
794    LLVM_DEBUG(dbgs() << ": not live\n");
795    return Start;
796  }
797
798  VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB,
799                              MBB.SkipPHIsLabelsAndDebug(MBB.begin()));
800  RegAssign.insert(Start, VNI->def, OpenIdx);
801  LLVM_DEBUG(dump());
802  return VNI->def;
803}
804
805static bool hasTiedUseOf(MachineInstr &MI, unsigned Reg) {
806  return any_of(MI.defs(), [Reg](const MachineOperand &MO) {
807    return MO.isReg() && MO.isTied() && MO.getReg() == Reg;
808  });
809}
810
811void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) {
812  assert(OpenIdx && "openIntv not called before overlapIntv");
813  const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
814  assert(ParentVNI == Edit->getParent().getVNInfoBefore(End) &&
815         "Parent changes value in extended range");
816  assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) &&
817         "Range cannot span basic blocks");
818
819  // The complement interval will be extended as needed by LICalc.extend().
820  if (ParentVNI)
821    forceRecompute(0, *ParentVNI);
822
823  // If the last use is tied to a def, we can't mark it as live for the
824  // interval which includes only the use.  That would cause the tied pair
825  // to end up in two different intervals.
826  if (auto *MI = LIS.getInstructionFromIndex(End))
827    if (hasTiedUseOf(*MI, Edit->getReg())) {
828      LLVM_DEBUG(dbgs() << "skip overlap due to tied def at end\n");
829      return;
830    }
831
832  LLVM_DEBUG(dbgs() << "    overlapIntv [" << Start << ';' << End << "):");
833  RegAssign.insert(Start, End, OpenIdx);
834  LLVM_DEBUG(dump());
835}
836
837//===----------------------------------------------------------------------===//
838//                                  Spill modes
839//===----------------------------------------------------------------------===//
840
841void SplitEditor::removeBackCopies(SmallVectorImpl<VNInfo*> &Copies) {
842  LiveInterval *LI = &LIS.getInterval(Edit->get(0));
843  LLVM_DEBUG(dbgs() << "Removing " << Copies.size() << " back-copies.\n");
844  RegAssignMap::iterator AssignI;
845  AssignI.setMap(RegAssign);
846
847  for (const VNInfo *C : Copies) {
848    SlotIndex Def = C->def;
849    MachineInstr *MI = LIS.getInstructionFromIndex(Def);
850    assert(MI && "No instruction for back-copy");
851
852    MachineBasicBlock *MBB = MI->getParent();
853    MachineBasicBlock::iterator MBBI(MI);
854    bool AtBegin;
855    do AtBegin = MBBI == MBB->begin();
856    while (!AtBegin && (--MBBI)->isDebugOrPseudoInstr());
857
858    LLVM_DEBUG(dbgs() << "Removing " << Def << '\t' << *MI);
859    LIS.removeVRegDefAt(*LI, Def);
860    LIS.RemoveMachineInstrFromMaps(*MI);
861    MI->eraseFromParent();
862
863    // Adjust RegAssign if a register assignment is killed at Def. We want to
864    // avoid calculating the live range of the source register if possible.
865    AssignI.find(Def.getPrevSlot());
866    if (!AssignI.valid() || AssignI.start() >= Def)
867      continue;
868    // If MI doesn't kill the assigned register, just leave it.
869    if (AssignI.stop() != Def)
870      continue;
871    unsigned RegIdx = AssignI.value();
872    // We could hoist back-copy right after another back-copy. As a result
873    // MMBI points to copy instruction which is actually dead now.
874    // We cannot set its stop to MBBI which will be the same as start and
875    // interval does not support that.
876    SlotIndex Kill =
877        AtBegin ? SlotIndex() : LIS.getInstructionIndex(*MBBI).getRegSlot();
878    if (AtBegin || !MBBI->readsVirtualRegister(Edit->getReg()) ||
879        Kill <= AssignI.start()) {
880      LLVM_DEBUG(dbgs() << "  cannot find simple kill of RegIdx " << RegIdx
881                        << '\n');
882      forceRecompute(RegIdx, *Edit->getParent().getVNInfoAt(Def));
883    } else {
884      LLVM_DEBUG(dbgs() << "  move kill to " << Kill << '\t' << *MBBI);
885      AssignI.setStop(Kill);
886    }
887  }
888}
889
890MachineBasicBlock*
891SplitEditor::findShallowDominator(MachineBasicBlock *MBB,
892                                  MachineBasicBlock *DefMBB) {
893  if (MBB == DefMBB)
894    return MBB;
895  assert(MDT.dominates(DefMBB, MBB) && "MBB must be dominated by the def.");
896
897  const MachineLoopInfo &Loops = SA.Loops;
898  const MachineLoop *DefLoop = Loops.getLoopFor(DefMBB);
899  MachineDomTreeNode *DefDomNode = MDT[DefMBB];
900
901  // Best candidate so far.
902  MachineBasicBlock *BestMBB = MBB;
903  unsigned BestDepth = std::numeric_limits<unsigned>::max();
904
905  while (true) {
906    const MachineLoop *Loop = Loops.getLoopFor(MBB);
907
908    // MBB isn't in a loop, it doesn't get any better.  All dominators have a
909    // higher frequency by definition.
910    if (!Loop) {
911      LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB)
912                        << " dominates " << printMBBReference(*MBB)
913                        << " at depth 0\n");
914      return MBB;
915    }
916
917    // We'll never be able to exit the DefLoop.
918    if (Loop == DefLoop) {
919      LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB)
920                        << " dominates " << printMBBReference(*MBB)
921                        << " in the same loop\n");
922      return MBB;
923    }
924
925    // Least busy dominator seen so far.
926    unsigned Depth = Loop->getLoopDepth();
927    if (Depth < BestDepth) {
928      BestMBB = MBB;
929      BestDepth = Depth;
930      LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB)
931                        << " dominates " << printMBBReference(*MBB)
932                        << " at depth " << Depth << '\n');
933    }
934
935    // Leave loop by going to the immediate dominator of the loop header.
936    // This is a bigger stride than simply walking up the dominator tree.
937    MachineDomTreeNode *IDom = MDT[Loop->getHeader()]->getIDom();
938
939    // Too far up the dominator tree?
940    if (!IDom || !MDT.dominates(DefDomNode, IDom))
941      return BestMBB;
942
943    MBB = IDom->getBlock();
944  }
945}
946
947void SplitEditor::computeRedundantBackCopies(
948    DenseSet<unsigned> &NotToHoistSet, SmallVectorImpl<VNInfo *> &BackCopies) {
949  LiveInterval *LI = &LIS.getInterval(Edit->get(0));
950  const LiveInterval *Parent = &Edit->getParent();
951  SmallVector<SmallPtrSet<VNInfo *, 8>, 8> EqualVNs(Parent->getNumValNums());
952  SmallPtrSet<VNInfo *, 8> DominatedVNIs;
953
954  // Aggregate VNIs having the same value as ParentVNI.
955  for (VNInfo *VNI : LI->valnos) {
956    if (VNI->isUnused())
957      continue;
958    VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
959    EqualVNs[ParentVNI->id].insert(VNI);
960  }
961
962  // For VNI aggregation of each ParentVNI, collect dominated, i.e.,
963  // redundant VNIs to BackCopies.
964  for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) {
965    const VNInfo *ParentVNI = Parent->getValNumInfo(i);
966    if (!NotToHoistSet.count(ParentVNI->id))
967      continue;
968    SmallPtrSetIterator<VNInfo *> It1 = EqualVNs[ParentVNI->id].begin();
969    SmallPtrSetIterator<VNInfo *> It2 = It1;
970    for (; It1 != EqualVNs[ParentVNI->id].end(); ++It1) {
971      It2 = It1;
972      for (++It2; It2 != EqualVNs[ParentVNI->id].end(); ++It2) {
973        if (DominatedVNIs.count(*It1) || DominatedVNIs.count(*It2))
974          continue;
975
976        MachineBasicBlock *MBB1 = LIS.getMBBFromIndex((*It1)->def);
977        MachineBasicBlock *MBB2 = LIS.getMBBFromIndex((*It2)->def);
978        if (MBB1 == MBB2) {
979          DominatedVNIs.insert((*It1)->def < (*It2)->def ? (*It2) : (*It1));
980        } else if (MDT.dominates(MBB1, MBB2)) {
981          DominatedVNIs.insert(*It2);
982        } else if (MDT.dominates(MBB2, MBB1)) {
983          DominatedVNIs.insert(*It1);
984        }
985      }
986    }
987    if (!DominatedVNIs.empty()) {
988      forceRecompute(0, *ParentVNI);
989      append_range(BackCopies, DominatedVNIs);
990      DominatedVNIs.clear();
991    }
992  }
993}
994
995/// For SM_Size mode, find a common dominator for all the back-copies for
996/// the same ParentVNI and hoist the backcopies to the dominator BB.
997/// For SM_Speed mode, if the common dominator is hot and it is not beneficial
998/// to do the hoisting, simply remove the dominated backcopies for the same
999/// ParentVNI.
1000void SplitEditor::hoistCopies() {
1001  // Get the complement interval, always RegIdx 0.
1002  LiveInterval *LI = &LIS.getInterval(Edit->get(0));
1003  const LiveInterval *Parent = &Edit->getParent();
1004
1005  // Track the nearest common dominator for all back-copies for each ParentVNI,
1006  // indexed by ParentVNI->id.
1007  using DomPair = std::pair<MachineBasicBlock *, SlotIndex>;
1008  SmallVector<DomPair, 8> NearestDom(Parent->getNumValNums());
1009  // The total cost of all the back-copies for each ParentVNI.
1010  SmallVector<BlockFrequency, 8> Costs(Parent->getNumValNums());
1011  // The ParentVNI->id set for which hoisting back-copies are not beneficial
1012  // for Speed.
1013  DenseSet<unsigned> NotToHoistSet;
1014
1015  // Find the nearest common dominator for parent values with multiple
1016  // back-copies.  If a single back-copy dominates, put it in DomPair.second.
1017  for (VNInfo *VNI : LI->valnos) {
1018    if (VNI->isUnused())
1019      continue;
1020    VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
1021    assert(ParentVNI && "Parent not live at complement def");
1022
1023    // Don't hoist remats.  The complement is probably going to disappear
1024    // completely anyway.
1025    if (Edit->didRematerialize(ParentVNI))
1026      continue;
1027
1028    MachineBasicBlock *ValMBB = LIS.getMBBFromIndex(VNI->def);
1029
1030    DomPair &Dom = NearestDom[ParentVNI->id];
1031
1032    // Keep directly defined parent values.  This is either a PHI or an
1033    // instruction in the complement range.  All other copies of ParentVNI
1034    // should be eliminated.
1035    if (VNI->def == ParentVNI->def) {
1036      LLVM_DEBUG(dbgs() << "Direct complement def at " << VNI->def << '\n');
1037      Dom = DomPair(ValMBB, VNI->def);
1038      continue;
1039    }
1040    // Skip the singly mapped values.  There is nothing to gain from hoisting a
1041    // single back-copy.
1042    if (Values.lookup(std::make_pair(0, ParentVNI->id)).getPointer()) {
1043      LLVM_DEBUG(dbgs() << "Single complement def at " << VNI->def << '\n');
1044      continue;
1045    }
1046
1047    if (!Dom.first) {
1048      // First time we see ParentVNI.  VNI dominates itself.
1049      Dom = DomPair(ValMBB, VNI->def);
1050    } else if (Dom.first == ValMBB) {
1051      // Two defs in the same block.  Pick the earlier def.
1052      if (!Dom.second.isValid() || VNI->def < Dom.second)
1053        Dom.second = VNI->def;
1054    } else {
1055      // Different basic blocks. Check if one dominates.
1056      MachineBasicBlock *Near =
1057        MDT.findNearestCommonDominator(Dom.first, ValMBB);
1058      if (Near == ValMBB)
1059        // Def ValMBB dominates.
1060        Dom = DomPair(ValMBB, VNI->def);
1061      else if (Near != Dom.first)
1062        // None dominate. Hoist to common dominator, need new def.
1063        Dom = DomPair(Near, SlotIndex());
1064      Costs[ParentVNI->id] += MBFI.getBlockFreq(ValMBB);
1065    }
1066
1067    LLVM_DEBUG(dbgs() << "Multi-mapped complement " << VNI->id << '@'
1068                      << VNI->def << " for parent " << ParentVNI->id << '@'
1069                      << ParentVNI->def << " hoist to "
1070                      << printMBBReference(*Dom.first) << ' ' << Dom.second
1071                      << '\n');
1072  }
1073
1074  // Insert the hoisted copies.
1075  for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) {
1076    DomPair &Dom = NearestDom[i];
1077    if (!Dom.first || Dom.second.isValid())
1078      continue;
1079    // This value needs a hoisted copy inserted at the end of Dom.first.
1080    const VNInfo *ParentVNI = Parent->getValNumInfo(i);
1081    MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(ParentVNI->def);
1082    // Get a less loopy dominator than Dom.first.
1083    Dom.first = findShallowDominator(Dom.first, DefMBB);
1084    if (SpillMode == SM_Speed &&
1085        MBFI.getBlockFreq(Dom.first) > Costs[ParentVNI->id]) {
1086      NotToHoistSet.insert(ParentVNI->id);
1087      continue;
1088    }
1089    SlotIndex LSP = SA.getLastSplitPoint(Dom.first);
1090    if (LSP <= ParentVNI->def) {
1091      NotToHoistSet.insert(ParentVNI->id);
1092      continue;
1093    }
1094    Dom.second = defFromParent(0, ParentVNI, LSP, *Dom.first,
1095                               SA.getLastSplitPointIter(Dom.first))->def;
1096  }
1097
1098  // Remove redundant back-copies that are now known to be dominated by another
1099  // def with the same value.
1100  SmallVector<VNInfo*, 8> BackCopies;
1101  for (VNInfo *VNI : LI->valnos) {
1102    if (VNI->isUnused())
1103      continue;
1104    VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
1105    const DomPair &Dom = NearestDom[ParentVNI->id];
1106    if (!Dom.first || Dom.second == VNI->def ||
1107        NotToHoistSet.count(ParentVNI->id))
1108      continue;
1109    BackCopies.push_back(VNI);
1110    forceRecompute(0, *ParentVNI);
1111  }
1112
1113  // If it is not beneficial to hoist all the BackCopies, simply remove
1114  // redundant BackCopies in speed mode.
1115  if (SpillMode == SM_Speed && !NotToHoistSet.empty())
1116    computeRedundantBackCopies(NotToHoistSet, BackCopies);
1117
1118  removeBackCopies(BackCopies);
1119}
1120
1121/// transferValues - Transfer all possible values to the new live ranges.
1122/// Values that were rematerialized are left alone, they need LICalc.extend().
1123bool SplitEditor::transferValues() {
1124  bool Skipped = false;
1125  RegAssignMap::const_iterator AssignI = RegAssign.begin();
1126  for (const LiveRange::Segment &S : Edit->getParent()) {
1127    LLVM_DEBUG(dbgs() << "  blit " << S << ':');
1128    VNInfo *ParentVNI = S.valno;
1129    // RegAssign has holes where RegIdx 0 should be used.
1130    SlotIndex Start = S.start;
1131    AssignI.advanceTo(Start);
1132    do {
1133      unsigned RegIdx;
1134      SlotIndex End = S.end;
1135      if (!AssignI.valid()) {
1136        RegIdx = 0;
1137      } else if (AssignI.start() <= Start) {
1138        RegIdx = AssignI.value();
1139        if (AssignI.stop() < End) {
1140          End = AssignI.stop();
1141          ++AssignI;
1142        }
1143      } else {
1144        RegIdx = 0;
1145        End = std::min(End, AssignI.start());
1146      }
1147
1148      // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI.
1149      LLVM_DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx << '('
1150                        << printReg(Edit->get(RegIdx)) << ')');
1151      LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1152
1153      // Check for a simply defined value that can be blitted directly.
1154      ValueForcePair VFP = Values.lookup(std::make_pair(RegIdx, ParentVNI->id));
1155      if (VNInfo *VNI = VFP.getPointer()) {
1156        LLVM_DEBUG(dbgs() << ':' << VNI->id);
1157        LI.addSegment(LiveInterval::Segment(Start, End, VNI));
1158        Start = End;
1159        continue;
1160      }
1161
1162      // Skip values with forced recomputation.
1163      if (VFP.getInt()) {
1164        LLVM_DEBUG(dbgs() << "(recalc)");
1165        Skipped = true;
1166        Start = End;
1167        continue;
1168      }
1169
1170      LiveIntervalCalc &LIC = getLICalc(RegIdx);
1171
1172      // This value has multiple defs in RegIdx, but it wasn't rematerialized,
1173      // so the live range is accurate. Add live-in blocks in [Start;End) to the
1174      // LiveInBlocks.
1175      MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator();
1176      SlotIndex BlockStart, BlockEnd;
1177      std::tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(&*MBB);
1178
1179      // The first block may be live-in, or it may have its own def.
1180      if (Start != BlockStart) {
1181        VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End));
1182        assert(VNI && "Missing def for complex mapped value");
1183        LLVM_DEBUG(dbgs() << ':' << VNI->id << "*" << printMBBReference(*MBB));
1184        // MBB has its own def. Is it also live-out?
1185        if (BlockEnd <= End)
1186          LIC.setLiveOutValue(&*MBB, VNI);
1187
1188        // Skip to the next block for live-in.
1189        ++MBB;
1190        BlockStart = BlockEnd;
1191      }
1192
1193      // Handle the live-in blocks covered by [Start;End).
1194      assert(Start <= BlockStart && "Expected live-in block");
1195      while (BlockStart < End) {
1196        LLVM_DEBUG(dbgs() << ">" << printMBBReference(*MBB));
1197        BlockEnd = LIS.getMBBEndIdx(&*MBB);
1198        if (BlockStart == ParentVNI->def) {
1199          // This block has the def of a parent PHI, so it isn't live-in.
1200          assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?");
1201          VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End));
1202          assert(VNI && "Missing def for complex mapped parent PHI");
1203          if (End >= BlockEnd)
1204            LIC.setLiveOutValue(&*MBB, VNI); // Live-out as well.
1205        } else {
1206          // This block needs a live-in value.  The last block covered may not
1207          // be live-out.
1208          if (End < BlockEnd)
1209            LIC.addLiveInBlock(LI, MDT[&*MBB], End);
1210          else {
1211            // Live-through, and we don't know the value.
1212            LIC.addLiveInBlock(LI, MDT[&*MBB]);
1213            LIC.setLiveOutValue(&*MBB, nullptr);
1214          }
1215        }
1216        BlockStart = BlockEnd;
1217        ++MBB;
1218      }
1219      Start = End;
1220    } while (Start != S.end);
1221    LLVM_DEBUG(dbgs() << '\n');
1222  }
1223
1224  LICalc[0].calculateValues();
1225  if (SpillMode)
1226    LICalc[1].calculateValues();
1227
1228  return Skipped;
1229}
1230
1231static bool removeDeadSegment(SlotIndex Def, LiveRange &LR) {
1232  const LiveRange::Segment *Seg = LR.getSegmentContaining(Def);
1233  if (Seg == nullptr)
1234    return true;
1235  if (Seg->end != Def.getDeadSlot())
1236    return false;
1237  // This is a dead PHI. Remove it.
1238  LR.removeSegment(*Seg, true);
1239  return true;
1240}
1241
1242void SplitEditor::extendPHIRange(MachineBasicBlock &B, LiveIntervalCalc &LIC,
1243                                 LiveRange &LR, LaneBitmask LM,
1244                                 ArrayRef<SlotIndex> Undefs) {
1245  for (MachineBasicBlock *P : B.predecessors()) {
1246    SlotIndex End = LIS.getMBBEndIdx(P);
1247    SlotIndex LastUse = End.getPrevSlot();
1248    // The predecessor may not have a live-out value. That is OK, like an
1249    // undef PHI operand.
1250    const LiveInterval &PLI = Edit->getParent();
1251    // Need the cast because the inputs to ?: would otherwise be deemed
1252    // "incompatible": SubRange vs LiveInterval.
1253    const LiveRange &PSR = !LM.all() ? getSubRangeForMaskExact(LM, PLI)
1254                                     : static_cast<const LiveRange &>(PLI);
1255    if (PSR.liveAt(LastUse))
1256      LIC.extend(LR, End, /*PhysReg=*/0, Undefs);
1257  }
1258}
1259
1260void SplitEditor::extendPHIKillRanges() {
1261  // Extend live ranges to be live-out for successor PHI values.
1262
1263  // Visit each PHI def slot in the parent live interval. If the def is dead,
1264  // remove it. Otherwise, extend the live interval to reach the end indexes
1265  // of all predecessor blocks.
1266
1267  const LiveInterval &ParentLI = Edit->getParent();
1268  for (const VNInfo *V : ParentLI.valnos) {
1269    if (V->isUnused() || !V->isPHIDef())
1270      continue;
1271
1272    unsigned RegIdx = RegAssign.lookup(V->def);
1273    LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1274    LiveIntervalCalc &LIC = getLICalc(RegIdx);
1275    MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def);
1276    if (!removeDeadSegment(V->def, LI))
1277      extendPHIRange(B, LIC, LI, LaneBitmask::getAll(), /*Undefs=*/{});
1278  }
1279
1280  SmallVector<SlotIndex, 4> Undefs;
1281  LiveIntervalCalc SubLIC;
1282
1283  for (const LiveInterval::SubRange &PS : ParentLI.subranges()) {
1284    for (const VNInfo *V : PS.valnos) {
1285      if (V->isUnused() || !V->isPHIDef())
1286        continue;
1287      unsigned RegIdx = RegAssign.lookup(V->def);
1288      LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1289      LiveInterval::SubRange &S = getSubRangeForMaskExact(PS.LaneMask, LI);
1290      if (removeDeadSegment(V->def, S))
1291        continue;
1292
1293      MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def);
1294      SubLIC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
1295                   &LIS.getVNInfoAllocator());
1296      Undefs.clear();
1297      LI.computeSubRangeUndefs(Undefs, PS.LaneMask, MRI, *LIS.getSlotIndexes());
1298      extendPHIRange(B, SubLIC, S, PS.LaneMask, Undefs);
1299    }
1300  }
1301}
1302
1303/// rewriteAssigned - Rewrite all uses of Edit->getReg().
1304void SplitEditor::rewriteAssigned(bool ExtendRanges) {
1305  struct ExtPoint {
1306    ExtPoint(const MachineOperand &O, unsigned R, SlotIndex N)
1307      : MO(O), RegIdx(R), Next(N) {}
1308
1309    MachineOperand MO;
1310    unsigned RegIdx;
1311    SlotIndex Next;
1312  };
1313
1314  SmallVector<ExtPoint,4> ExtPoints;
1315
1316  for (MachineOperand &MO :
1317       llvm::make_early_inc_range(MRI.reg_operands(Edit->getReg()))) {
1318    MachineInstr *MI = MO.getParent();
1319    // LiveDebugVariables should have handled all DBG_VALUE instructions.
1320    if (MI->isDebugValue()) {
1321      LLVM_DEBUG(dbgs() << "Zapping " << *MI);
1322      MO.setReg(0);
1323      continue;
1324    }
1325
1326    // <undef> operands don't really read the register, so it doesn't matter
1327    // which register we choose.  When the use operand is tied to a def, we must
1328    // use the same register as the def, so just do that always.
1329    SlotIndex Idx = LIS.getInstructionIndex(*MI);
1330    if (MO.isDef() || MO.isUndef())
1331      Idx = Idx.getRegSlot(MO.isEarlyClobber());
1332
1333    // Rewrite to the mapped register at Idx.
1334    unsigned RegIdx = RegAssign.lookup(Idx);
1335    LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1336    MO.setReg(LI.reg());
1337    LLVM_DEBUG(dbgs() << "  rewr " << printMBBReference(*MI->getParent())
1338                      << '\t' << Idx << ':' << RegIdx << '\t' << *MI);
1339
1340    // Extend liveness to Idx if the instruction reads reg.
1341    if (!ExtendRanges || MO.isUndef())
1342      continue;
1343
1344    // Skip instructions that don't read Reg.
1345    if (MO.isDef()) {
1346      if (!MO.getSubReg() && !MO.isEarlyClobber())
1347        continue;
1348      // We may want to extend a live range for a partial redef, or for a use
1349      // tied to an early clobber.
1350      if (!Edit->getParent().liveAt(Idx.getPrevSlot()))
1351        continue;
1352    } else {
1353      assert(MO.isUse());
1354      bool IsEarlyClobber = false;
1355      if (MO.isTied()) {
1356        // We want to extend a live range into `e` slot rather than `r` slot if
1357        // tied-def is early clobber, because the `e` slot already contained
1358        // in the live range of early-clobber tied-def operand, give an example
1359        // here:
1360        //  0  %0 = ...
1361        // 16  early-clobber %0 = Op %0 (tied-def 0), ...
1362        // 32  ... = Op %0
1363        // Before extend:
1364        //   %0 = [0r, 0d) [16e, 32d)
1365        // The point we want to extend is 0d to 16e not 16r in this case, but if
1366        // we use 16r here we will extend nothing because that already contained
1367        // in [16e, 32d).
1368        unsigned OpIdx = MI->getOperandNo(&MO);
1369        unsigned DefOpIdx = MI->findTiedOperandIdx(OpIdx);
1370        const MachineOperand &DefOp = MI->getOperand(DefOpIdx);
1371        IsEarlyClobber = DefOp.isEarlyClobber();
1372      }
1373
1374      Idx = Idx.getRegSlot(IsEarlyClobber);
1375    }
1376
1377    SlotIndex Next = Idx;
1378    if (LI.hasSubRanges()) {
1379      // We have to delay extending subranges until we have seen all operands
1380      // defining the register. This is because a <def,read-undef> operand
1381      // will create an "undef" point, and we cannot extend any subranges
1382      // until all of them have been accounted for.
1383      if (MO.isUse())
1384        ExtPoints.push_back(ExtPoint(MO, RegIdx, Next));
1385    } else {
1386      LiveIntervalCalc &LIC = getLICalc(RegIdx);
1387      LIC.extend(LI, Next, 0, ArrayRef<SlotIndex>());
1388    }
1389  }
1390
1391  for (ExtPoint &EP : ExtPoints) {
1392    LiveInterval &LI = LIS.getInterval(Edit->get(EP.RegIdx));
1393    assert(LI.hasSubRanges());
1394
1395    LiveIntervalCalc SubLIC;
1396    Register Reg = EP.MO.getReg(), Sub = EP.MO.getSubReg();
1397    LaneBitmask LM = Sub != 0 ? TRI.getSubRegIndexLaneMask(Sub)
1398                              : MRI.getMaxLaneMaskForVReg(Reg);
1399    for (LiveInterval::SubRange &S : LI.subranges()) {
1400      if ((S.LaneMask & LM).none())
1401        continue;
1402      // The problem here can be that the new register may have been created
1403      // for a partially defined original register. For example:
1404      //   %0:subreg_hireg<def,read-undef> = ...
1405      //   ...
1406      //   %1 = COPY %0
1407      if (S.empty())
1408        continue;
1409      SubLIC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
1410                   &LIS.getVNInfoAllocator());
1411      SmallVector<SlotIndex, 4> Undefs;
1412      LI.computeSubRangeUndefs(Undefs, S.LaneMask, MRI, *LIS.getSlotIndexes());
1413      SubLIC.extend(S, EP.Next, 0, Undefs);
1414    }
1415  }
1416
1417  for (Register R : *Edit) {
1418    LiveInterval &LI = LIS.getInterval(R);
1419    if (!LI.hasSubRanges())
1420      continue;
1421    LI.clear();
1422    LI.removeEmptySubRanges();
1423    LIS.constructMainRangeFromSubranges(LI);
1424  }
1425}
1426
1427void SplitEditor::deleteRematVictims() {
1428  SmallVector<MachineInstr*, 8> Dead;
1429  for (const Register &R : *Edit) {
1430    LiveInterval *LI = &LIS.getInterval(R);
1431    for (const LiveRange::Segment &S : LI->segments) {
1432      // Dead defs end at the dead slot.
1433      if (S.end != S.valno->def.getDeadSlot())
1434        continue;
1435      if (S.valno->isPHIDef())
1436        continue;
1437      MachineInstr *MI = LIS.getInstructionFromIndex(S.valno->def);
1438      assert(MI && "Missing instruction for dead def");
1439      MI->addRegisterDead(LI->reg(), &TRI);
1440
1441      if (!MI->allDefsAreDead())
1442        continue;
1443
1444      LLVM_DEBUG(dbgs() << "All defs dead: " << *MI);
1445      Dead.push_back(MI);
1446    }
1447  }
1448
1449  if (Dead.empty())
1450    return;
1451
1452  Edit->eliminateDeadDefs(Dead, std::nullopt);
1453}
1454
1455void SplitEditor::forceRecomputeVNI(const VNInfo &ParentVNI) {
1456  // Fast-path for common case.
1457  if (!ParentVNI.isPHIDef()) {
1458    for (unsigned I = 0, E = Edit->size(); I != E; ++I)
1459      forceRecompute(I, ParentVNI);
1460    return;
1461  }
1462
1463  // Trace value through phis.
1464  SmallPtrSet<const VNInfo *, 8> Visited; ///< whether VNI was/is in worklist.
1465  SmallVector<const VNInfo *, 4> WorkList;
1466  Visited.insert(&ParentVNI);
1467  WorkList.push_back(&ParentVNI);
1468
1469  const LiveInterval &ParentLI = Edit->getParent();
1470  const SlotIndexes &Indexes = *LIS.getSlotIndexes();
1471  do {
1472    const VNInfo &VNI = *WorkList.back();
1473    WorkList.pop_back();
1474    for (unsigned I = 0, E = Edit->size(); I != E; ++I)
1475      forceRecompute(I, VNI);
1476    if (!VNI.isPHIDef())
1477      continue;
1478
1479    MachineBasicBlock &MBB = *Indexes.getMBBFromIndex(VNI.def);
1480    for (const MachineBasicBlock *Pred : MBB.predecessors()) {
1481      SlotIndex PredEnd = Indexes.getMBBEndIdx(Pred);
1482      VNInfo *PredVNI = ParentLI.getVNInfoBefore(PredEnd);
1483      assert(PredVNI && "Value available in PhiVNI predecessor");
1484      if (Visited.insert(PredVNI).second)
1485        WorkList.push_back(PredVNI);
1486    }
1487  } while(!WorkList.empty());
1488}
1489
1490void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) {
1491  ++NumFinished;
1492
1493  // At this point, the live intervals in Edit contain VNInfos corresponding to
1494  // the inserted copies.
1495
1496  // Add the original defs from the parent interval.
1497  for (const VNInfo *ParentVNI : Edit->getParent().valnos) {
1498    if (ParentVNI->isUnused())
1499      continue;
1500    unsigned RegIdx = RegAssign.lookup(ParentVNI->def);
1501    defValue(RegIdx, ParentVNI, ParentVNI->def, true);
1502
1503    // Force rematted values to be recomputed everywhere.
1504    // The new live ranges may be truncated.
1505    if (Edit->didRematerialize(ParentVNI))
1506      forceRecomputeVNI(*ParentVNI);
1507  }
1508
1509  // Hoist back-copies to the complement interval when in spill mode.
1510  switch (SpillMode) {
1511  case SM_Partition:
1512    // Leave all back-copies as is.
1513    break;
1514  case SM_Size:
1515  case SM_Speed:
1516    // hoistCopies will behave differently between size and speed.
1517    hoistCopies();
1518  }
1519
1520  // Transfer the simply mapped values, check if any are skipped.
1521  bool Skipped = transferValues();
1522
1523  // Rewrite virtual registers, possibly extending ranges.
1524  rewriteAssigned(Skipped);
1525
1526  if (Skipped)
1527    extendPHIKillRanges();
1528  else
1529    ++NumSimple;
1530
1531  // Delete defs that were rematted everywhere.
1532  if (Skipped)
1533    deleteRematVictims();
1534
1535  // Get rid of unused values and set phi-kill flags.
1536  for (Register Reg : *Edit) {
1537    LiveInterval &LI = LIS.getInterval(Reg);
1538    LI.removeEmptySubRanges();
1539    LI.RenumberValues();
1540  }
1541
1542  // Provide a reverse mapping from original indices to Edit ranges.
1543  if (LRMap) {
1544    auto Seq = llvm::seq<unsigned>(0, Edit->size());
1545    LRMap->assign(Seq.begin(), Seq.end());
1546  }
1547
1548  // Now check if any registers were separated into multiple components.
1549  ConnectedVNInfoEqClasses ConEQ(LIS);
1550  for (unsigned i = 0, e = Edit->size(); i != e; ++i) {
1551    // Don't use iterators, they are invalidated by create() below.
1552    Register VReg = Edit->get(i);
1553    LiveInterval &LI = LIS.getInterval(VReg);
1554    SmallVector<LiveInterval*, 8> SplitLIs;
1555    LIS.splitSeparateComponents(LI, SplitLIs);
1556    Register Original = VRM.getOriginal(VReg);
1557    for (LiveInterval *SplitLI : SplitLIs)
1558      VRM.setIsSplitFromReg(SplitLI->reg(), Original);
1559
1560    // The new intervals all map back to i.
1561    if (LRMap)
1562      LRMap->resize(Edit->size(), i);
1563  }
1564
1565  // Calculate spill weight and allocation hints for new intervals.
1566  Edit->calculateRegClassAndHint(VRM.getMachineFunction(), VRAI);
1567
1568  assert(!LRMap || LRMap->size() == Edit->size());
1569}
1570
1571//===----------------------------------------------------------------------===//
1572//                            Single Block Splitting
1573//===----------------------------------------------------------------------===//
1574
1575bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI,
1576                                           bool SingleInstrs) const {
1577  // Always split for multiple instructions.
1578  if (!BI.isOneInstr())
1579    return true;
1580  // Don't split for single instructions unless explicitly requested.
1581  if (!SingleInstrs)
1582    return false;
1583  // Splitting a live-through range always makes progress.
1584  if (BI.LiveIn && BI.LiveOut)
1585    return true;
1586  // No point in isolating a copy. It has no register class constraints.
1587  if (LIS.getInstructionFromIndex(BI.FirstInstr)->isCopyLike())
1588    return false;
1589  // Finally, don't isolate an end point that was created by earlier splits.
1590  return isOriginalEndpoint(BI.FirstInstr);
1591}
1592
1593void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) {
1594  openIntv();
1595  SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB);
1596  SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr,
1597    LastSplitPoint));
1598  if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) {
1599    useIntv(SegStart, leaveIntvAfter(BI.LastInstr));
1600  } else {
1601      // The last use is after the last valid split point.
1602    SlotIndex SegStop = leaveIntvBefore(LastSplitPoint);
1603    useIntv(SegStart, SegStop);
1604    overlapIntv(SegStop, BI.LastInstr);
1605  }
1606}
1607
1608//===----------------------------------------------------------------------===//
1609//                    Global Live Range Splitting Support
1610//===----------------------------------------------------------------------===//
1611
1612// These methods support a method of global live range splitting that uses a
1613// global algorithm to decide intervals for CFG edges. They will insert split
1614// points and color intervals in basic blocks while avoiding interference.
1615//
1616// Note that splitSingleBlock is also useful for blocks where both CFG edges
1617// are on the stack.
1618
1619void SplitEditor::splitLiveThroughBlock(unsigned MBBNum,
1620                                        unsigned IntvIn, SlotIndex LeaveBefore,
1621                                        unsigned IntvOut, SlotIndex EnterAfter){
1622  SlotIndex Start, Stop;
1623  std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum);
1624
1625  LLVM_DEBUG(dbgs() << "%bb." << MBBNum << " [" << Start << ';' << Stop
1626                    << ") intf " << LeaveBefore << '-' << EnterAfter
1627                    << ", live-through " << IntvIn << " -> " << IntvOut);
1628
1629  assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks");
1630
1631  assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block");
1632  assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf");
1633  assert((!EnterAfter || EnterAfter >= Start) && "Interference before block");
1634
1635  MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum);
1636
1637  if (!IntvOut) {
1638    LLVM_DEBUG(dbgs() << ", spill on entry.\n");
1639    //
1640    //        <<<<<<<<<    Possible LeaveBefore interference.
1641    //    |-----------|    Live through.
1642    //    -____________    Spill on entry.
1643    //
1644    selectIntv(IntvIn);
1645    SlotIndex Idx = leaveIntvAtTop(*MBB);
1646    assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1647    (void)Idx;
1648    return;
1649  }
1650
1651  if (!IntvIn) {
1652    LLVM_DEBUG(dbgs() << ", reload on exit.\n");
1653    //
1654    //    >>>>>>>          Possible EnterAfter interference.
1655    //    |-----------|    Live through.
1656    //    ___________--    Reload on exit.
1657    //
1658    selectIntv(IntvOut);
1659    SlotIndex Idx = enterIntvAtEnd(*MBB);
1660    assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1661    (void)Idx;
1662    return;
1663  }
1664
1665  if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) {
1666    LLVM_DEBUG(dbgs() << ", straight through.\n");
1667    //
1668    //    |-----------|    Live through.
1669    //    -------------    Straight through, same intv, no interference.
1670    //
1671    selectIntv(IntvOut);
1672    useIntv(Start, Stop);
1673    return;
1674  }
1675
1676  // We cannot legally insert splits after LSP.
1677  SlotIndex LSP = SA.getLastSplitPoint(MBBNum);
1678  assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf");
1679
1680  if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter ||
1681                  LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) {
1682    LLVM_DEBUG(dbgs() << ", switch avoiding interference.\n");
1683    //
1684    //    >>>>     <<<<    Non-overlapping EnterAfter/LeaveBefore interference.
1685    //    |-----------|    Live through.
1686    //    ------=======    Switch intervals between interference.
1687    //
1688    selectIntv(IntvOut);
1689    SlotIndex Idx;
1690    if (LeaveBefore && LeaveBefore < LSP) {
1691      Idx = enterIntvBefore(LeaveBefore);
1692      useIntv(Idx, Stop);
1693    } else {
1694      Idx = enterIntvAtEnd(*MBB);
1695    }
1696    selectIntv(IntvIn);
1697    useIntv(Start, Idx);
1698    assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1699    assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1700    return;
1701  }
1702
1703  LLVM_DEBUG(dbgs() << ", create local intv for interference.\n");
1704  //
1705  //    >>><><><><<<<    Overlapping EnterAfter/LeaveBefore interference.
1706  //    |-----------|    Live through.
1707  //    ==---------==    Switch intervals before/after interference.
1708  //
1709  assert(LeaveBefore <= EnterAfter && "Missed case");
1710
1711  selectIntv(IntvOut);
1712  SlotIndex Idx = enterIntvAfter(EnterAfter);
1713  useIntv(Idx, Stop);
1714  assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1715
1716  selectIntv(IntvIn);
1717  Idx = leaveIntvBefore(LeaveBefore);
1718  useIntv(Start, Idx);
1719  assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1720}
1721
1722void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI,
1723                                  unsigned IntvIn, SlotIndex LeaveBefore) {
1724  SlotIndex Start, Stop;
1725  std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1726
1727  LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " [" << Start << ';'
1728                    << Stop << "), uses " << BI.FirstInstr << '-'
1729                    << BI.LastInstr << ", reg-in " << IntvIn
1730                    << ", leave before " << LeaveBefore
1731                    << (BI.LiveOut ? ", stack-out" : ", killed in block"));
1732
1733  assert(IntvIn && "Must have register in");
1734  assert(BI.LiveIn && "Must be live-in");
1735  assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference");
1736
1737  if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) {
1738    LLVM_DEBUG(dbgs() << " before interference.\n");
1739    //
1740    //               <<<    Interference after kill.
1741    //     |---o---x   |    Killed in block.
1742    //     =========        Use IntvIn everywhere.
1743    //
1744    selectIntv(IntvIn);
1745    useIntv(Start, BI.LastInstr);
1746    return;
1747  }
1748
1749  SlotIndex LSP = SA.getLastSplitPoint(BI.MBB);
1750
1751  if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) {
1752    //
1753    //               <<<    Possible interference after last use.
1754    //     |---o---o---|    Live-out on stack.
1755    //     =========____    Leave IntvIn after last use.
1756    //
1757    //                 <    Interference after last use.
1758    //     |---o---o--o|    Live-out on stack, late last use.
1759    //     ============     Copy to stack after LSP, overlap IntvIn.
1760    //            \_____    Stack interval is live-out.
1761    //
1762    if (BI.LastInstr < LSP) {
1763      LLVM_DEBUG(dbgs() << ", spill after last use before interference.\n");
1764      selectIntv(IntvIn);
1765      SlotIndex Idx = leaveIntvAfter(BI.LastInstr);
1766      useIntv(Start, Idx);
1767      assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1768    } else {
1769      LLVM_DEBUG(dbgs() << ", spill before last split point.\n");
1770      selectIntv(IntvIn);
1771      SlotIndex Idx = leaveIntvBefore(LSP);
1772      overlapIntv(Idx, BI.LastInstr);
1773      useIntv(Start, Idx);
1774      assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1775    }
1776    return;
1777  }
1778
1779  // The interference is overlapping somewhere we wanted to use IntvIn. That
1780  // means we need to create a local interval that can be allocated a
1781  // different register.
1782  unsigned LocalIntv = openIntv();
1783  (void)LocalIntv;
1784  LLVM_DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n");
1785
1786  if (!BI.LiveOut || BI.LastInstr < LSP) {
1787    //
1788    //           <<<<<<<    Interference overlapping uses.
1789    //     |---o---o---|    Live-out on stack.
1790    //     =====----____    Leave IntvIn before interference, then spill.
1791    //
1792    SlotIndex To = leaveIntvAfter(BI.LastInstr);
1793    SlotIndex From = enterIntvBefore(LeaveBefore);
1794    useIntv(From, To);
1795    selectIntv(IntvIn);
1796    useIntv(Start, From);
1797    assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1798    return;
1799  }
1800
1801  //           <<<<<<<    Interference overlapping uses.
1802  //     |---o---o--o|    Live-out on stack, late last use.
1803  //     =====-------     Copy to stack before LSP, overlap LocalIntv.
1804  //            \_____    Stack interval is live-out.
1805  //
1806  SlotIndex To = leaveIntvBefore(LSP);
1807  overlapIntv(To, BI.LastInstr);
1808  SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore));
1809  useIntv(From, To);
1810  selectIntv(IntvIn);
1811  useIntv(Start, From);
1812  assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1813}
1814
1815void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI,
1816                                   unsigned IntvOut, SlotIndex EnterAfter) {
1817  SlotIndex Start, Stop;
1818  std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1819
1820  LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " [" << Start << ';'
1821                    << Stop << "), uses " << BI.FirstInstr << '-'
1822                    << BI.LastInstr << ", reg-out " << IntvOut
1823                    << ", enter after " << EnterAfter
1824                    << (BI.LiveIn ? ", stack-in" : ", defined in block"));
1825
1826  SlotIndex LSP = SA.getLastSplitPoint(BI.MBB);
1827
1828  assert(IntvOut && "Must have register out");
1829  assert(BI.LiveOut && "Must be live-out");
1830  assert((!EnterAfter || EnterAfter < LSP) && "Bad interference");
1831
1832  if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) {
1833    LLVM_DEBUG(dbgs() << " after interference.\n");
1834    //
1835    //    >>>>             Interference before def.
1836    //    |   o---o---|    Defined in block.
1837    //        =========    Use IntvOut everywhere.
1838    //
1839    selectIntv(IntvOut);
1840    useIntv(BI.FirstInstr, Stop);
1841    return;
1842  }
1843
1844  if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) {
1845    LLVM_DEBUG(dbgs() << ", reload after interference.\n");
1846    //
1847    //    >>>>             Interference before def.
1848    //    |---o---o---|    Live-through, stack-in.
1849    //    ____=========    Enter IntvOut before first use.
1850    //
1851    selectIntv(IntvOut);
1852    SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr));
1853    useIntv(Idx, Stop);
1854    assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1855    return;
1856  }
1857
1858  // The interference is overlapping somewhere we wanted to use IntvOut. That
1859  // means we need to create a local interval that can be allocated a
1860  // different register.
1861  LLVM_DEBUG(dbgs() << ", interference overlaps uses.\n");
1862  //
1863  //    >>>>>>>          Interference overlapping uses.
1864  //    |---o---o---|    Live-through, stack-in.
1865  //    ____---======    Create local interval for interference range.
1866  //
1867  selectIntv(IntvOut);
1868  SlotIndex Idx = enterIntvAfter(EnterAfter);
1869  useIntv(Idx, Stop);
1870  assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1871
1872  openIntv();
1873  SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr));
1874  useIntv(From, Idx);
1875}
1876
1877void SplitAnalysis::BlockInfo::print(raw_ostream &OS) const {
1878  OS << "{" << printMBBReference(*MBB) << ", "
1879     << "uses " << FirstInstr << " to " << LastInstr << ", "
1880     << "1st def " << FirstDef << ", "
1881     << (LiveIn ? "live in" : "dead in") << ", "
1882     << (LiveOut ? "live out" : "dead out") << "}";
1883}
1884
1885void SplitAnalysis::BlockInfo::dump() const {
1886  print(dbgs());
1887  dbgs() << "\n";
1888}
1889