1//===- StatepointLowering.cpp - SDAGBuilder's statepoint code -------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file includes support code use by SelectionDAGBuilder when lowering a
10// statepoint sequence in SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#include "StatepointLowering.h"
15#include "SelectionDAGBuilder.h"
16#include "llvm/ADT/ArrayRef.h"
17#include "llvm/ADT/STLExtras.h"
18#include "llvm/ADT/SetVector.h"
19#include "llvm/ADT/SmallBitVector.h"
20#include "llvm/ADT/SmallSet.h"
21#include "llvm/ADT/SmallVector.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/CodeGen/FunctionLoweringInfo.h"
24#include "llvm/CodeGen/GCMetadata.h"
25#include "llvm/CodeGen/ISDOpcodes.h"
26#include "llvm/CodeGen/MachineFrameInfo.h"
27#include "llvm/CodeGen/MachineFunction.h"
28#include "llvm/CodeGen/MachineMemOperand.h"
29#include "llvm/CodeGen/RuntimeLibcalls.h"
30#include "llvm/CodeGen/SelectionDAG.h"
31#include "llvm/CodeGen/SelectionDAGNodes.h"
32#include "llvm/CodeGen/StackMaps.h"
33#include "llvm/CodeGen/TargetLowering.h"
34#include "llvm/CodeGen/TargetOpcodes.h"
35#include "llvm/IR/CallingConv.h"
36#include "llvm/IR/DerivedTypes.h"
37#include "llvm/IR/GCStrategy.h"
38#include "llvm/IR/Instruction.h"
39#include "llvm/IR/Instructions.h"
40#include "llvm/IR/LLVMContext.h"
41#include "llvm/IR/Statepoint.h"
42#include "llvm/IR/Type.h"
43#include "llvm/Support/Casting.h"
44#include "llvm/Support/CommandLine.h"
45#include "llvm/Support/MachineValueType.h"
46#include "llvm/Target/TargetMachine.h"
47#include "llvm/Target/TargetOptions.h"
48#include <cassert>
49#include <cstddef>
50#include <cstdint>
51#include <iterator>
52#include <tuple>
53#include <utility>
54
55using namespace llvm;
56
57#define DEBUG_TYPE "statepoint-lowering"
58
59STATISTIC(NumSlotsAllocatedForStatepoints,
60          "Number of stack slots allocated for statepoints");
61STATISTIC(NumOfStatepoints, "Number of statepoint nodes encountered");
62STATISTIC(StatepointMaxSlotsRequired,
63          "Maximum number of stack slots required for a singe statepoint");
64
65cl::opt<bool> UseRegistersForDeoptValues(
66    "use-registers-for-deopt-values", cl::Hidden, cl::init(false),
67    cl::desc("Allow using registers for non pointer deopt args"));
68
69cl::opt<bool> UseRegistersForGCPointersInLandingPad(
70    "use-registers-for-gc-values-in-landing-pad", cl::Hidden, cl::init(false),
71    cl::desc("Allow using registers for gc pointer in landing pad"));
72
73cl::opt<unsigned> MaxRegistersForGCPointers(
74    "max-registers-for-gc-values", cl::Hidden, cl::init(0),
75    cl::desc("Max number of VRegs allowed to pass GC pointer meta args in"));
76
77typedef FunctionLoweringInfo::StatepointRelocationRecord RecordType;
78
79static void pushStackMapConstant(SmallVectorImpl<SDValue>& Ops,
80                                 SelectionDAGBuilder &Builder, uint64_t Value) {
81  SDLoc L = Builder.getCurSDLoc();
82  Ops.push_back(Builder.DAG.getTargetConstant(StackMaps::ConstantOp, L,
83                                              MVT::i64));
84  Ops.push_back(Builder.DAG.getTargetConstant(Value, L, MVT::i64));
85}
86
87void StatepointLoweringState::startNewStatepoint(SelectionDAGBuilder &Builder) {
88  // Consistency check
89  assert(PendingGCRelocateCalls.empty() &&
90         "Trying to visit statepoint before finished processing previous one");
91  Locations.clear();
92  NextSlotToAllocate = 0;
93  // Need to resize this on each safepoint - we need the two to stay in sync and
94  // the clear patterns of a SelectionDAGBuilder have no relation to
95  // FunctionLoweringInfo.  Also need to ensure used bits get cleared.
96  AllocatedStackSlots.clear();
97  AllocatedStackSlots.resize(Builder.FuncInfo.StatepointStackSlots.size());
98}
99
100void StatepointLoweringState::clear() {
101  Locations.clear();
102  AllocatedStackSlots.clear();
103  assert(PendingGCRelocateCalls.empty() &&
104         "cleared before statepoint sequence completed");
105}
106
107SDValue
108StatepointLoweringState::allocateStackSlot(EVT ValueType,
109                                           SelectionDAGBuilder &Builder) {
110  NumSlotsAllocatedForStatepoints++;
111  MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo();
112
113  unsigned SpillSize = ValueType.getStoreSize();
114  assert((SpillSize * 8) ==
115             (-8u & (7 + ValueType.getSizeInBits())) && // Round up modulo 8.
116         "Size not in bytes?");
117
118  // First look for a previously created stack slot which is not in
119  // use (accounting for the fact arbitrary slots may already be
120  // reserved), or to create a new stack slot and use it.
121
122  const size_t NumSlots = AllocatedStackSlots.size();
123  assert(NextSlotToAllocate <= NumSlots && "Broken invariant");
124
125  assert(AllocatedStackSlots.size() ==
126         Builder.FuncInfo.StatepointStackSlots.size() &&
127         "Broken invariant");
128
129  for (; NextSlotToAllocate < NumSlots; NextSlotToAllocate++) {
130    if (!AllocatedStackSlots.test(NextSlotToAllocate)) {
131      const int FI = Builder.FuncInfo.StatepointStackSlots[NextSlotToAllocate];
132      if (MFI.getObjectSize(FI) == SpillSize) {
133        AllocatedStackSlots.set(NextSlotToAllocate);
134        // TODO: Is ValueType the right thing to use here?
135        return Builder.DAG.getFrameIndex(FI, ValueType);
136      }
137    }
138  }
139
140  // Couldn't find a free slot, so create a new one:
141
142  SDValue SpillSlot = Builder.DAG.CreateStackTemporary(ValueType);
143  const unsigned FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
144  MFI.markAsStatepointSpillSlotObjectIndex(FI);
145
146  Builder.FuncInfo.StatepointStackSlots.push_back(FI);
147  AllocatedStackSlots.resize(AllocatedStackSlots.size()+1, true);
148  assert(AllocatedStackSlots.size() ==
149         Builder.FuncInfo.StatepointStackSlots.size() &&
150         "Broken invariant");
151
152  StatepointMaxSlotsRequired.updateMax(
153      Builder.FuncInfo.StatepointStackSlots.size());
154
155  return SpillSlot;
156}
157
158/// Utility function for reservePreviousStackSlotForValue. Tries to find
159/// stack slot index to which we have spilled value for previous statepoints.
160/// LookUpDepth specifies maximum DFS depth this function is allowed to look.
161static std::optional<int> findPreviousSpillSlot(const Value *Val,
162                                                SelectionDAGBuilder &Builder,
163                                                int LookUpDepth) {
164  // Can not look any further - give up now
165  if (LookUpDepth <= 0)
166    return std::nullopt;
167
168  // Spill location is known for gc relocates
169  if (const auto *Relocate = dyn_cast<GCRelocateInst>(Val)) {
170    const Value *Statepoint = Relocate->getStatepoint();
171    assert((isa<GCStatepointInst>(Statepoint) || isa<UndefValue>(Statepoint)) &&
172           "GetStatepoint must return one of two types");
173    if (isa<UndefValue>(Statepoint))
174      return std::nullopt;
175
176    const auto &RelocationMap = Builder.FuncInfo.StatepointRelocationMaps
177                                    [cast<GCStatepointInst>(Statepoint)];
178
179    auto It = RelocationMap.find(Relocate);
180    if (It == RelocationMap.end())
181      return std::nullopt;
182
183    auto &Record = It->second;
184    if (Record.type != RecordType::Spill)
185      return std::nullopt;
186
187    return Record.payload.FI;
188  }
189
190  // Look through bitcast instructions.
191  if (const BitCastInst *Cast = dyn_cast<BitCastInst>(Val))
192    return findPreviousSpillSlot(Cast->getOperand(0), Builder, LookUpDepth - 1);
193
194  // Look through phi nodes
195  // All incoming values should have same known stack slot, otherwise result
196  // is unknown.
197  if (const PHINode *Phi = dyn_cast<PHINode>(Val)) {
198    std::optional<int> MergedResult;
199
200    for (const auto &IncomingValue : Phi->incoming_values()) {
201      std::optional<int> SpillSlot =
202          findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth - 1);
203      if (!SpillSlot)
204        return std::nullopt;
205
206      if (MergedResult && *MergedResult != *SpillSlot)
207        return std::nullopt;
208
209      MergedResult = SpillSlot;
210    }
211    return MergedResult;
212  }
213
214  // TODO: We can do better for PHI nodes. In cases like this:
215  //   ptr = phi(relocated_pointer, not_relocated_pointer)
216  //   statepoint(ptr)
217  // We will return that stack slot for ptr is unknown. And later we might
218  // assign different stack slots for ptr and relocated_pointer. This limits
219  // llvm's ability to remove redundant stores.
220  // Unfortunately it's hard to accomplish in current infrastructure.
221  // We use this function to eliminate spill store completely, while
222  // in example we still need to emit store, but instead of any location
223  // we need to use special "preferred" location.
224
225  // TODO: handle simple updates.  If a value is modified and the original
226  // value is no longer live, it would be nice to put the modified value in the
227  // same slot.  This allows folding of the memory accesses for some
228  // instructions types (like an increment).
229  //   statepoint (i)
230  //   i1 = i+1
231  //   statepoint (i1)
232  // However we need to be careful for cases like this:
233  //   statepoint(i)
234  //   i1 = i+1
235  //   statepoint(i, i1)
236  // Here we want to reserve spill slot for 'i', but not for 'i+1'. If we just
237  // put handling of simple modifications in this function like it's done
238  // for bitcasts we might end up reserving i's slot for 'i+1' because order in
239  // which we visit values is unspecified.
240
241  // Don't know any information about this instruction
242  return std::nullopt;
243}
244
245/// Return true if-and-only-if the given SDValue can be lowered as either a
246/// constant argument or a stack reference.  The key point is that the value
247/// doesn't need to be spilled or tracked as a vreg use.
248static bool willLowerDirectly(SDValue Incoming) {
249  // We are making an unchecked assumption that the frame size <= 2^16 as that
250  // is the largest offset which can be encoded in the stackmap format.
251  if (isa<FrameIndexSDNode>(Incoming))
252    return true;
253
254  // The largest constant describeable in the StackMap format is 64 bits.
255  // Potential Optimization:  Constants values are sign extended by consumer,
256  // and thus there are many constants of static type > 64 bits whose value
257  // happens to be sext(Con64) and could thus be lowered directly.
258  if (Incoming.getValueType().getSizeInBits() > 64)
259    return false;
260
261  return (isa<ConstantSDNode>(Incoming) || isa<ConstantFPSDNode>(Incoming) ||
262          Incoming.isUndef());
263}
264
265/// Try to find existing copies of the incoming values in stack slots used for
266/// statepoint spilling.  If we can find a spill slot for the incoming value,
267/// mark that slot as allocated, and reuse the same slot for this safepoint.
268/// This helps to avoid series of loads and stores that only serve to reshuffle
269/// values on the stack between calls.
270static void reservePreviousStackSlotForValue(const Value *IncomingValue,
271                                             SelectionDAGBuilder &Builder) {
272  SDValue Incoming = Builder.getValue(IncomingValue);
273
274  // If we won't spill this, we don't need to check for previously allocated
275  // stack slots.
276  if (willLowerDirectly(Incoming))
277    return;
278
279  SDValue OldLocation = Builder.StatepointLowering.getLocation(Incoming);
280  if (OldLocation.getNode())
281    // Duplicates in input
282    return;
283
284  const int LookUpDepth = 6;
285  std::optional<int> Index =
286      findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth);
287  if (!Index)
288    return;
289
290  const auto &StatepointSlots = Builder.FuncInfo.StatepointStackSlots;
291
292  auto SlotIt = find(StatepointSlots, *Index);
293  assert(SlotIt != StatepointSlots.end() &&
294         "Value spilled to the unknown stack slot");
295
296  // This is one of our dedicated lowering slots
297  const int Offset = std::distance(StatepointSlots.begin(), SlotIt);
298  if (Builder.StatepointLowering.isStackSlotAllocated(Offset)) {
299    // stack slot already assigned to someone else, can't use it!
300    // TODO: currently we reserve space for gc arguments after doing
301    // normal allocation for deopt arguments.  We should reserve for
302    // _all_ deopt and gc arguments, then start allocating.  This
303    // will prevent some moves being inserted when vm state changes,
304    // but gc state doesn't between two calls.
305    return;
306  }
307  // Reserve this stack slot
308  Builder.StatepointLowering.reserveStackSlot(Offset);
309
310  // Cache this slot so we find it when going through the normal
311  // assignment loop.
312  SDValue Loc =
313      Builder.DAG.getTargetFrameIndex(*Index, Builder.getFrameIndexTy());
314  Builder.StatepointLowering.setLocation(Incoming, Loc);
315}
316
317/// Extract call from statepoint, lower it and return pointer to the
318/// call node. Also update NodeMap so that getValue(statepoint) will
319/// reference lowered call result
320static std::pair<SDValue, SDNode *> lowerCallFromStatepointLoweringInfo(
321    SelectionDAGBuilder::StatepointLoweringInfo &SI,
322    SelectionDAGBuilder &Builder) {
323  SDValue ReturnValue, CallEndVal;
324  std::tie(ReturnValue, CallEndVal) =
325      Builder.lowerInvokable(SI.CLI, SI.EHPadBB);
326  SDNode *CallEnd = CallEndVal.getNode();
327
328  // Get a call instruction from the call sequence chain.  Tail calls are not
329  // allowed.  The following code is essentially reverse engineering X86's
330  // LowerCallTo.
331  //
332  // We are expecting DAG to have the following form:
333  //
334  // ch = eh_label (only in case of invoke statepoint)
335  //   ch, glue = callseq_start ch
336  //   ch, glue = X86::Call ch, glue
337  //   ch, glue = callseq_end ch, glue
338  //   get_return_value ch, glue
339  //
340  // get_return_value can either be a sequence of CopyFromReg instructions
341  // to grab the return value from the return register(s), or it can be a LOAD
342  // to load a value returned by reference via a stack slot.
343
344  bool HasDef = !SI.CLI.RetTy->isVoidTy();
345  if (HasDef) {
346    if (CallEnd->getOpcode() == ISD::LOAD)
347      CallEnd = CallEnd->getOperand(0).getNode();
348    else
349      while (CallEnd->getOpcode() == ISD::CopyFromReg)
350        CallEnd = CallEnd->getOperand(0).getNode();
351  }
352
353  assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && "expected!");
354  return std::make_pair(ReturnValue, CallEnd->getOperand(0).getNode());
355}
356
357static MachineMemOperand* getMachineMemOperand(MachineFunction &MF,
358                                               FrameIndexSDNode &FI) {
359  auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FI.getIndex());
360  auto MMOFlags = MachineMemOperand::MOStore |
361    MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
362  auto &MFI = MF.getFrameInfo();
363  return MF.getMachineMemOperand(PtrInfo, MMOFlags,
364                                 MFI.getObjectSize(FI.getIndex()),
365                                 MFI.getObjectAlign(FI.getIndex()));
366}
367
368/// Spill a value incoming to the statepoint. It might be either part of
369/// vmstate
370/// or gcstate. In both cases unconditionally spill it on the stack unless it
371/// is a null constant. Return pair with first element being frame index
372/// containing saved value and second element with outgoing chain from the
373/// emitted store
374static std::tuple<SDValue, SDValue, MachineMemOperand*>
375spillIncomingStatepointValue(SDValue Incoming, SDValue Chain,
376                             SelectionDAGBuilder &Builder) {
377  SDValue Loc = Builder.StatepointLowering.getLocation(Incoming);
378  MachineMemOperand* MMO = nullptr;
379
380  // Emit new store if we didn't do it for this ptr before
381  if (!Loc.getNode()) {
382    Loc = Builder.StatepointLowering.allocateStackSlot(Incoming.getValueType(),
383                                                       Builder);
384    int Index = cast<FrameIndexSDNode>(Loc)->getIndex();
385    // We use TargetFrameIndex so that isel will not select it into LEA
386    Loc = Builder.DAG.getTargetFrameIndex(Index, Builder.getFrameIndexTy());
387
388    // Right now we always allocate spill slots that are of the same
389    // size as the value we're about to spill (the size of spillee can
390    // vary since we spill vectors of pointers too).  At some point we
391    // can consider allowing spills of smaller values to larger slots
392    // (i.e. change the '==' in the assert below to a '>=').
393    MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo();
394    assert((MFI.getObjectSize(Index) * 8) ==
395               (-8 & (7 + // Round up modulo 8.
396                      (int64_t)Incoming.getValueSizeInBits())) &&
397           "Bad spill:  stack slot does not match!");
398
399    // Note: Using the alignment of the spill slot (rather than the abi or
400    // preferred alignment) is required for correctness when dealing with spill
401    // slots with preferred alignments larger than frame alignment..
402    auto &MF = Builder.DAG.getMachineFunction();
403    auto PtrInfo = MachinePointerInfo::getFixedStack(MF, Index);
404    auto *StoreMMO = MF.getMachineMemOperand(
405        PtrInfo, MachineMemOperand::MOStore, MFI.getObjectSize(Index),
406        MFI.getObjectAlign(Index));
407    Chain = Builder.DAG.getStore(Chain, Builder.getCurSDLoc(), Incoming, Loc,
408                                 StoreMMO);
409
410    MMO = getMachineMemOperand(MF, *cast<FrameIndexSDNode>(Loc));
411
412    Builder.StatepointLowering.setLocation(Incoming, Loc);
413  }
414
415  assert(Loc.getNode());
416  return std::make_tuple(Loc, Chain, MMO);
417}
418
419/// Lower a single value incoming to a statepoint node.  This value can be
420/// either a deopt value or a gc value, the handling is the same.  We special
421/// case constants and allocas, then fall back to spilling if required.
422static void
423lowerIncomingStatepointValue(SDValue Incoming, bool RequireSpillSlot,
424                             SmallVectorImpl<SDValue> &Ops,
425                             SmallVectorImpl<MachineMemOperand *> &MemRefs,
426                             SelectionDAGBuilder &Builder) {
427
428  if (willLowerDirectly(Incoming)) {
429    if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) {
430      // This handles allocas as arguments to the statepoint (this is only
431      // really meaningful for a deopt value.  For GC, we'd be trying to
432      // relocate the address of the alloca itself?)
433      assert(Incoming.getValueType() == Builder.getFrameIndexTy() &&
434             "Incoming value is a frame index!");
435      Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(),
436                                                    Builder.getFrameIndexTy()));
437
438      auto &MF = Builder.DAG.getMachineFunction();
439      auto *MMO = getMachineMemOperand(MF, *FI);
440      MemRefs.push_back(MMO);
441      return;
442    }
443
444    assert(Incoming.getValueType().getSizeInBits() <= 64);
445
446    if (Incoming.isUndef()) {
447      // Put an easily recognized constant that's unlikely to be a valid
448      // value so that uses of undef by the consumer of the stackmap is
449      // easily recognized. This is legal since the compiler is always
450      // allowed to chose an arbitrary value for undef.
451      pushStackMapConstant(Ops, Builder, 0xFEFEFEFE);
452      return;
453    }
454
455    // If the original value was a constant, make sure it gets recorded as
456    // such in the stackmap.  This is required so that the consumer can
457    // parse any internal format to the deopt state.  It also handles null
458    // pointers and other constant pointers in GC states.
459    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Incoming)) {
460      pushStackMapConstant(Ops, Builder, C->getSExtValue());
461      return;
462    } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Incoming)) {
463      pushStackMapConstant(Ops, Builder,
464                           C->getValueAPF().bitcastToAPInt().getZExtValue());
465      return;
466    }
467
468    llvm_unreachable("unhandled direct lowering case");
469  }
470
471
472
473  if (!RequireSpillSlot) {
474    // If this value is live in (not live-on-return, or live-through), we can
475    // treat it the same way patchpoint treats it's "live in" values.  We'll
476    // end up folding some of these into stack references, but they'll be
477    // handled by the register allocator.  Note that we do not have the notion
478    // of a late use so these values might be placed in registers which are
479    // clobbered by the call.  This is fine for live-in. For live-through
480    // fix-up pass should be executed to force spilling of such registers.
481    Ops.push_back(Incoming);
482  } else {
483    // Otherwise, locate a spill slot and explicitly spill it so it can be
484    // found by the runtime later.  Note: We know all of these spills are
485    // independent, but don't bother to exploit that chain wise.  DAGCombine
486    // will happily do so as needed, so doing it here would be a small compile
487    // time win at most.
488    SDValue Chain = Builder.getRoot();
489    auto Res = spillIncomingStatepointValue(Incoming, Chain, Builder);
490    Ops.push_back(std::get<0>(Res));
491    if (auto *MMO = std::get<2>(Res))
492      MemRefs.push_back(MMO);
493    Chain = std::get<1>(Res);;
494    Builder.DAG.setRoot(Chain);
495  }
496
497}
498
499/// Return true if value V represents the GC value. The behavior is conservative
500/// in case it is not sure that value is not GC the function returns true.
501static bool isGCValue(const Value *V, SelectionDAGBuilder &Builder) {
502  auto *Ty = V->getType();
503  if (!Ty->isPtrOrPtrVectorTy())
504    return false;
505  if (auto *GFI = Builder.GFI)
506    if (auto IsManaged = GFI->getStrategy().isGCManagedPointer(Ty))
507      return *IsManaged;
508  return true; // conservative
509}
510
511/// Lower deopt state and gc pointer arguments of the statepoint.  The actual
512/// lowering is described in lowerIncomingStatepointValue.  This function is
513/// responsible for lowering everything in the right position and playing some
514/// tricks to avoid redundant stack manipulation where possible.  On
515/// completion, 'Ops' will contain ready to use operands for machine code
516/// statepoint. The chain nodes will have already been created and the DAG root
517/// will be set to the last value spilled (if any were).
518static void
519lowerStatepointMetaArgs(SmallVectorImpl<SDValue> &Ops,
520                        SmallVectorImpl<MachineMemOperand *> &MemRefs,
521                        SmallVectorImpl<SDValue> &GCPtrs,
522                        DenseMap<SDValue, int> &LowerAsVReg,
523                        SelectionDAGBuilder::StatepointLoweringInfo &SI,
524                        SelectionDAGBuilder &Builder) {
525  // Lower the deopt and gc arguments for this statepoint.  Layout will be:
526  // deopt argument length, deopt arguments.., gc arguments...
527
528  // Figure out what lowering strategy we're going to use for each part
529  // Note: Is is conservatively correct to lower both "live-in" and "live-out"
530  // as "live-through". A "live-through" variable is one which is "live-in",
531  // "live-out", and live throughout the lifetime of the call (i.e. we can find
532  // it from any PC within the transitive callee of the statepoint).  In
533  // particular, if the callee spills callee preserved registers we may not
534  // be able to find a value placed in that register during the call.  This is
535  // fine for live-out, but not for live-through.  If we were willing to make
536  // assumptions about the code generator producing the callee, we could
537  // potentially allow live-through values in callee saved registers.
538  const bool LiveInDeopt =
539    SI.StatepointFlags & (uint64_t)StatepointFlags::DeoptLiveIn;
540
541  // Decide which deriver pointers will go on VRegs
542  unsigned MaxVRegPtrs = MaxRegistersForGCPointers.getValue();
543
544  // Pointers used on exceptional path of invoke statepoint.
545  // We cannot assing them to VRegs.
546  SmallSet<SDValue, 8> LPadPointers;
547  if (!UseRegistersForGCPointersInLandingPad)
548    if (const auto *StInvoke =
549            dyn_cast_or_null<InvokeInst>(SI.StatepointInstr)) {
550      LandingPadInst *LPI = StInvoke->getLandingPadInst();
551      for (const auto *Relocate : SI.GCRelocates)
552        if (Relocate->getOperand(0) == LPI) {
553          LPadPointers.insert(Builder.getValue(Relocate->getBasePtr()));
554          LPadPointers.insert(Builder.getValue(Relocate->getDerivedPtr()));
555        }
556    }
557
558  LLVM_DEBUG(dbgs() << "Deciding how to lower GC Pointers:\n");
559
560  // List of unique lowered GC Pointer values.
561  SmallSetVector<SDValue, 16> LoweredGCPtrs;
562  // Map lowered GC Pointer value to the index in above vector
563  DenseMap<SDValue, unsigned> GCPtrIndexMap;
564
565  unsigned CurNumVRegs = 0;
566
567  auto canPassGCPtrOnVReg = [&](SDValue SD) {
568    if (SD.getValueType().isVector())
569      return false;
570    if (LPadPointers.count(SD))
571      return false;
572    return !willLowerDirectly(SD);
573  };
574
575  auto processGCPtr = [&](const Value *V) {
576    SDValue PtrSD = Builder.getValue(V);
577    if (!LoweredGCPtrs.insert(PtrSD))
578      return; // skip duplicates
579    GCPtrIndexMap[PtrSD] = LoweredGCPtrs.size() - 1;
580
581    assert(!LowerAsVReg.count(PtrSD) && "must not have been seen");
582    if (LowerAsVReg.size() == MaxVRegPtrs)
583      return;
584    assert(V->getType()->isVectorTy() == PtrSD.getValueType().isVector() &&
585           "IR and SD types disagree");
586    if (!canPassGCPtrOnVReg(PtrSD)) {
587      LLVM_DEBUG(dbgs() << "direct/spill "; PtrSD.dump(&Builder.DAG));
588      return;
589    }
590    LLVM_DEBUG(dbgs() << "vreg "; PtrSD.dump(&Builder.DAG));
591    LowerAsVReg[PtrSD] = CurNumVRegs++;
592  };
593
594  // Process derived pointers first to give them more chance to go on VReg.
595  for (const Value *V : SI.Ptrs)
596    processGCPtr(V);
597  for (const Value *V : SI.Bases)
598    processGCPtr(V);
599
600  LLVM_DEBUG(dbgs() << LowerAsVReg.size() << " pointers will go in vregs\n");
601
602  auto requireSpillSlot = [&](const Value *V) {
603    if (!Builder.DAG.getTargetLoweringInfo().isTypeLegal(
604             Builder.getValue(V).getValueType()))
605      return true;
606    if (isGCValue(V, Builder))
607      return !LowerAsVReg.count(Builder.getValue(V));
608    return !(LiveInDeopt || UseRegistersForDeoptValues);
609  };
610
611  // Before we actually start lowering (and allocating spill slots for values),
612  // reserve any stack slots which we judge to be profitable to reuse for a
613  // particular value.  This is purely an optimization over the code below and
614  // doesn't change semantics at all.  It is important for performance that we
615  // reserve slots for both deopt and gc values before lowering either.
616  for (const Value *V : SI.DeoptState) {
617    if (requireSpillSlot(V))
618      reservePreviousStackSlotForValue(V, Builder);
619  }
620
621  for (const Value *V : SI.Ptrs) {
622    SDValue SDV = Builder.getValue(V);
623    if (!LowerAsVReg.count(SDV))
624      reservePreviousStackSlotForValue(V, Builder);
625  }
626
627  for (const Value *V : SI.Bases) {
628    SDValue SDV = Builder.getValue(V);
629    if (!LowerAsVReg.count(SDV))
630      reservePreviousStackSlotForValue(V, Builder);
631  }
632
633  // First, prefix the list with the number of unique values to be
634  // lowered.  Note that this is the number of *Values* not the
635  // number of SDValues required to lower them.
636  const int NumVMSArgs = SI.DeoptState.size();
637  pushStackMapConstant(Ops, Builder, NumVMSArgs);
638
639  // The vm state arguments are lowered in an opaque manner.  We do not know
640  // what type of values are contained within.
641  LLVM_DEBUG(dbgs() << "Lowering deopt state\n");
642  for (const Value *V : SI.DeoptState) {
643    SDValue Incoming;
644    // If this is a function argument at a static frame index, generate it as
645    // the frame index.
646    if (const Argument *Arg = dyn_cast<Argument>(V)) {
647      int FI = Builder.FuncInfo.getArgumentFrameIndex(Arg);
648      if (FI != INT_MAX)
649        Incoming = Builder.DAG.getFrameIndex(FI, Builder.getFrameIndexTy());
650    }
651    if (!Incoming.getNode())
652      Incoming = Builder.getValue(V);
653    LLVM_DEBUG(dbgs() << "Value " << *V
654                      << " requireSpillSlot = " << requireSpillSlot(V) << "\n");
655    lowerIncomingStatepointValue(Incoming, requireSpillSlot(V), Ops, MemRefs,
656                                 Builder);
657  }
658
659  // Finally, go ahead and lower all the gc arguments.
660  pushStackMapConstant(Ops, Builder, LoweredGCPtrs.size());
661  for (SDValue SDV : LoweredGCPtrs)
662    lowerIncomingStatepointValue(SDV, !LowerAsVReg.count(SDV), Ops, MemRefs,
663                                 Builder);
664
665  // Copy to out vector. LoweredGCPtrs will be empty after this point.
666  GCPtrs = LoweredGCPtrs.takeVector();
667
668  // If there are any explicit spill slots passed to the statepoint, record
669  // them, but otherwise do not do anything special.  These are user provided
670  // allocas and give control over placement to the consumer.  In this case,
671  // it is the contents of the slot which may get updated, not the pointer to
672  // the alloca
673  SmallVector<SDValue, 4> Allocas;
674  for (Value *V : SI.GCArgs) {
675    SDValue Incoming = Builder.getValue(V);
676    if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) {
677      // This handles allocas as arguments to the statepoint
678      assert(Incoming.getValueType() == Builder.getFrameIndexTy() &&
679             "Incoming value is a frame index!");
680      Allocas.push_back(Builder.DAG.getTargetFrameIndex(
681          FI->getIndex(), Builder.getFrameIndexTy()));
682
683      auto &MF = Builder.DAG.getMachineFunction();
684      auto *MMO = getMachineMemOperand(MF, *FI);
685      MemRefs.push_back(MMO);
686    }
687  }
688  pushStackMapConstant(Ops, Builder, Allocas.size());
689  Ops.append(Allocas.begin(), Allocas.end());
690
691  // Now construct GC base/derived map;
692  pushStackMapConstant(Ops, Builder, SI.Ptrs.size());
693  SDLoc L = Builder.getCurSDLoc();
694  for (unsigned i = 0; i < SI.Ptrs.size(); ++i) {
695    SDValue Base = Builder.getValue(SI.Bases[i]);
696    assert(GCPtrIndexMap.count(Base) && "base not found in index map");
697    Ops.push_back(
698        Builder.DAG.getTargetConstant(GCPtrIndexMap[Base], L, MVT::i64));
699    SDValue Derived = Builder.getValue(SI.Ptrs[i]);
700    assert(GCPtrIndexMap.count(Derived) && "derived not found in index map");
701    Ops.push_back(
702        Builder.DAG.getTargetConstant(GCPtrIndexMap[Derived], L, MVT::i64));
703  }
704}
705
706SDValue SelectionDAGBuilder::LowerAsSTATEPOINT(
707    SelectionDAGBuilder::StatepointLoweringInfo &SI) {
708  // The basic scheme here is that information about both the original call and
709  // the safepoint is encoded in the CallInst.  We create a temporary call and
710  // lower it, then reverse engineer the calling sequence.
711
712  NumOfStatepoints++;
713  // Clear state
714  StatepointLowering.startNewStatepoint(*this);
715  assert(SI.Bases.size() == SI.Ptrs.size() && "Pointer without base!");
716  assert((GFI || SI.Bases.empty()) &&
717         "No gc specified, so cannot relocate pointers!");
718
719  LLVM_DEBUG(dbgs() << "Lowering statepoint " << *SI.StatepointInstr << "\n");
720#ifndef NDEBUG
721  for (const auto *Reloc : SI.GCRelocates)
722    if (Reloc->getParent() == SI.StatepointInstr->getParent())
723      StatepointLowering.scheduleRelocCall(*Reloc);
724#endif
725
726  // Lower statepoint vmstate and gcstate arguments
727
728  // All lowered meta args.
729  SmallVector<SDValue, 10> LoweredMetaArgs;
730  // Lowered GC pointers (subset of above).
731  SmallVector<SDValue, 16> LoweredGCArgs;
732  SmallVector<MachineMemOperand*, 16> MemRefs;
733  // Maps derived pointer SDValue to statepoint result of relocated pointer.
734  DenseMap<SDValue, int> LowerAsVReg;
735  lowerStatepointMetaArgs(LoweredMetaArgs, MemRefs, LoweredGCArgs, LowerAsVReg,
736                          SI, *this);
737
738  // Now that we've emitted the spills, we need to update the root so that the
739  // call sequence is ordered correctly.
740  SI.CLI.setChain(getRoot());
741
742  // Get call node, we will replace it later with statepoint
743  SDValue ReturnVal;
744  SDNode *CallNode;
745  std::tie(ReturnVal, CallNode) = lowerCallFromStatepointLoweringInfo(SI, *this);
746
747  // Construct the actual GC_TRANSITION_START, STATEPOINT, and GC_TRANSITION_END
748  // nodes with all the appropriate arguments and return values.
749
750  // Call Node: Chain, Target, {Args}, RegMask, [Glue]
751  SDValue Chain = CallNode->getOperand(0);
752
753  SDValue Glue;
754  bool CallHasIncomingGlue = CallNode->getGluedNode();
755  if (CallHasIncomingGlue) {
756    // Glue is always last operand
757    Glue = CallNode->getOperand(CallNode->getNumOperands() - 1);
758  }
759
760  // Build the GC_TRANSITION_START node if necessary.
761  //
762  // The operands to the GC_TRANSITION_{START,END} nodes are laid out in the
763  // order in which they appear in the call to the statepoint intrinsic. If
764  // any of the operands is a pointer-typed, that operand is immediately
765  // followed by a SRCVALUE for the pointer that may be used during lowering
766  // (e.g. to form MachinePointerInfo values for loads/stores).
767  const bool IsGCTransition =
768      (SI.StatepointFlags & (uint64_t)StatepointFlags::GCTransition) ==
769      (uint64_t)StatepointFlags::GCTransition;
770  if (IsGCTransition) {
771    SmallVector<SDValue, 8> TSOps;
772
773    // Add chain
774    TSOps.push_back(Chain);
775
776    // Add GC transition arguments
777    for (const Value *V : SI.GCTransitionArgs) {
778      TSOps.push_back(getValue(V));
779      if (V->getType()->isPointerTy())
780        TSOps.push_back(DAG.getSrcValue(V));
781    }
782
783    // Add glue if necessary
784    if (CallHasIncomingGlue)
785      TSOps.push_back(Glue);
786
787    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
788
789    SDValue GCTransitionStart =
790        DAG.getNode(ISD::GC_TRANSITION_START, getCurSDLoc(), NodeTys, TSOps);
791
792    Chain = GCTransitionStart.getValue(0);
793    Glue = GCTransitionStart.getValue(1);
794  }
795
796  // TODO: Currently, all of these operands are being marked as read/write in
797  // PrologEpilougeInserter.cpp, we should special case the VMState arguments
798  // and flags to be read-only.
799  SmallVector<SDValue, 40> Ops;
800
801  // Add the <id> and <numBytes> constants.
802  Ops.push_back(DAG.getTargetConstant(SI.ID, getCurSDLoc(), MVT::i64));
803  Ops.push_back(
804      DAG.getTargetConstant(SI.NumPatchBytes, getCurSDLoc(), MVT::i32));
805
806  // Calculate and push starting position of vmstate arguments
807  // Get number of arguments incoming directly into call node
808  unsigned NumCallRegArgs =
809      CallNode->getNumOperands() - (CallHasIncomingGlue ? 4 : 3);
810  Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, getCurSDLoc(), MVT::i32));
811
812  // Add call target
813  SDValue CallTarget = SDValue(CallNode->getOperand(1).getNode(), 0);
814  Ops.push_back(CallTarget);
815
816  // Add call arguments
817  // Get position of register mask in the call
818  SDNode::op_iterator RegMaskIt;
819  if (CallHasIncomingGlue)
820    RegMaskIt = CallNode->op_end() - 2;
821  else
822    RegMaskIt = CallNode->op_end() - 1;
823  Ops.insert(Ops.end(), CallNode->op_begin() + 2, RegMaskIt);
824
825  // Add a constant argument for the calling convention
826  pushStackMapConstant(Ops, *this, SI.CLI.CallConv);
827
828  // Add a constant argument for the flags
829  uint64_t Flags = SI.StatepointFlags;
830  assert(((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0) &&
831         "Unknown flag used");
832  pushStackMapConstant(Ops, *this, Flags);
833
834  // Insert all vmstate and gcstate arguments
835  llvm::append_range(Ops, LoweredMetaArgs);
836
837  // Add register mask from call node
838  Ops.push_back(*RegMaskIt);
839
840  // Add chain
841  Ops.push_back(Chain);
842
843  // Same for the glue, but we add it only if original call had it
844  if (Glue.getNode())
845    Ops.push_back(Glue);
846
847  // Compute return values.  Provide a glue output since we consume one as
848  // input.  This allows someone else to chain off us as needed.
849  SmallVector<EVT, 8> NodeTys;
850  for (auto SD : LoweredGCArgs) {
851    if (!LowerAsVReg.count(SD))
852      continue;
853    NodeTys.push_back(SD.getValueType());
854  }
855  LLVM_DEBUG(dbgs() << "Statepoint has " << NodeTys.size() << " results\n");
856  assert(NodeTys.size() == LowerAsVReg.size() && "Inconsistent GC Ptr lowering");
857  NodeTys.push_back(MVT::Other);
858  NodeTys.push_back(MVT::Glue);
859
860  unsigned NumResults = NodeTys.size();
861  MachineSDNode *StatepointMCNode =
862    DAG.getMachineNode(TargetOpcode::STATEPOINT, getCurSDLoc(), NodeTys, Ops);
863  DAG.setNodeMemRefs(StatepointMCNode, MemRefs);
864
865  // For values lowered to tied-defs, create the virtual registers if used
866  // in other blocks. For local gc.relocate record appropriate statepoint
867  // result in StatepointLoweringState.
868  DenseMap<SDValue, Register> VirtRegs;
869  for (const auto *Relocate : SI.GCRelocates) {
870    Value *Derived = Relocate->getDerivedPtr();
871    SDValue SD = getValue(Derived);
872    if (!LowerAsVReg.count(SD))
873      continue;
874
875    SDValue Relocated = SDValue(StatepointMCNode, LowerAsVReg[SD]);
876
877    // Handle local relocate. Note that different relocates might
878    // map to the same SDValue.
879    if (SI.StatepointInstr->getParent() == Relocate->getParent()) {
880      SDValue Res = StatepointLowering.getLocation(SD);
881      if (Res)
882        assert(Res == Relocated);
883      else
884        StatepointLowering.setLocation(SD, Relocated);
885      continue;
886    }
887
888    // Handle multiple gc.relocates of the same input efficiently.
889    if (VirtRegs.count(SD))
890      continue;
891
892    auto *RetTy = Relocate->getType();
893    Register Reg = FuncInfo.CreateRegs(RetTy);
894    RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
895                     DAG.getDataLayout(), Reg, RetTy, std::nullopt);
896    SDValue Chain = DAG.getRoot();
897    RFV.getCopyToRegs(Relocated, DAG, getCurSDLoc(), Chain, nullptr);
898    PendingExports.push_back(Chain);
899
900    VirtRegs[SD] = Reg;
901  }
902
903  // Record for later use how each relocation was lowered.  This is needed to
904  // allow later gc.relocates to mirror the lowering chosen.
905  const Instruction *StatepointInstr = SI.StatepointInstr;
906  auto &RelocationMap = FuncInfo.StatepointRelocationMaps[StatepointInstr];
907  for (const GCRelocateInst *Relocate : SI.GCRelocates) {
908    const Value *V = Relocate->getDerivedPtr();
909    SDValue SDV = getValue(V);
910    SDValue Loc = StatepointLowering.getLocation(SDV);
911
912    bool IsLocal = (Relocate->getParent() == StatepointInstr->getParent());
913
914    RecordType Record;
915    if (IsLocal && LowerAsVReg.count(SDV)) {
916      // Result is already stored in StatepointLowering
917      Record.type = RecordType::SDValueNode;
918    } else if (LowerAsVReg.count(SDV)) {
919      Record.type = RecordType::VReg;
920      assert(VirtRegs.count(SDV));
921      Record.payload.Reg = VirtRegs[SDV];
922    } else if (Loc.getNode()) {
923      Record.type = RecordType::Spill;
924      Record.payload.FI = cast<FrameIndexSDNode>(Loc)->getIndex();
925    } else {
926      Record.type = RecordType::NoRelocate;
927      // If we didn't relocate a value, we'll essentialy end up inserting an
928      // additional use of the original value when lowering the gc.relocate.
929      // We need to make sure the value is available at the new use, which
930      // might be in another block.
931      if (Relocate->getParent() != StatepointInstr->getParent())
932        ExportFromCurrentBlock(V);
933    }
934    RelocationMap[Relocate] = Record;
935  }
936
937
938
939  SDNode *SinkNode = StatepointMCNode;
940
941  // Build the GC_TRANSITION_END node if necessary.
942  //
943  // See the comment above regarding GC_TRANSITION_START for the layout of
944  // the operands to the GC_TRANSITION_END node.
945  if (IsGCTransition) {
946    SmallVector<SDValue, 8> TEOps;
947
948    // Add chain
949    TEOps.push_back(SDValue(StatepointMCNode, NumResults - 2));
950
951    // Add GC transition arguments
952    for (const Value *V : SI.GCTransitionArgs) {
953      TEOps.push_back(getValue(V));
954      if (V->getType()->isPointerTy())
955        TEOps.push_back(DAG.getSrcValue(V));
956    }
957
958    // Add glue
959    TEOps.push_back(SDValue(StatepointMCNode, NumResults - 1));
960
961    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
962
963    SDValue GCTransitionStart =
964        DAG.getNode(ISD::GC_TRANSITION_END, getCurSDLoc(), NodeTys, TEOps);
965
966    SinkNode = GCTransitionStart.getNode();
967  }
968
969  // Replace original call
970  // Call: ch,glue = CALL ...
971  // Statepoint: [gc relocates],ch,glue = STATEPOINT ...
972  unsigned NumSinkValues = SinkNode->getNumValues();
973  SDValue StatepointValues[2] = {SDValue(SinkNode, NumSinkValues - 2),
974                                 SDValue(SinkNode, NumSinkValues - 1)};
975  DAG.ReplaceAllUsesWith(CallNode, StatepointValues);
976  // Remove original call node
977  DAG.DeleteNode(CallNode);
978
979  // Since we always emit CopyToRegs (even for local relocates), we must
980  // update root, so that they are emitted before any local uses.
981  (void)getControlRoot();
982
983  // TODO: A better future implementation would be to emit a single variable
984  // argument, variable return value STATEPOINT node here and then hookup the
985  // return value of each gc.relocate to the respective output of the
986  // previously emitted STATEPOINT value.  Unfortunately, this doesn't appear
987  // to actually be possible today.
988
989  return ReturnVal;
990}
991
992/// Return two gc.results if present.  First result is a block local
993/// gc.result, second result is a non-block local gc.result.  Corresponding
994/// entry will be nullptr if not present.
995static std::pair<const GCResultInst*, const GCResultInst*>
996getGCResultLocality(const GCStatepointInst &S) {
997  std::pair<const GCResultInst *, const GCResultInst*> Res(nullptr, nullptr);
998  for (const auto *U : S.users()) {
999    auto *GRI = dyn_cast<GCResultInst>(U);
1000    if (!GRI)
1001      continue;
1002    if (GRI->getParent() == S.getParent())
1003      Res.first = GRI;
1004    else
1005      Res.second = GRI;
1006  }
1007  return Res;
1008}
1009
1010void
1011SelectionDAGBuilder::LowerStatepoint(const GCStatepointInst &I,
1012                                     const BasicBlock *EHPadBB /*= nullptr*/) {
1013  assert(I.getCallingConv() != CallingConv::AnyReg &&
1014         "anyregcc is not supported on statepoints!");
1015
1016#ifndef NDEBUG
1017  // Check that the associated GCStrategy expects to encounter statepoints.
1018  assert(GFI->getStrategy().useStatepoints() &&
1019         "GCStrategy does not expect to encounter statepoints");
1020#endif
1021
1022  SDValue ActualCallee;
1023  SDValue Callee = getValue(I.getActualCalledOperand());
1024
1025  if (I.getNumPatchBytes() > 0) {
1026    // If we've been asked to emit a nop sequence instead of a call instruction
1027    // for this statepoint then don't lower the call target, but use a constant
1028    // `undef` instead.  Not lowering the call target lets statepoint clients
1029    // get away without providing a physical address for the symbolic call
1030    // target at link time.
1031    ActualCallee = DAG.getUNDEF(Callee.getValueType());
1032  } else {
1033    ActualCallee = Callee;
1034  }
1035
1036  StatepointLoweringInfo SI(DAG);
1037  populateCallLoweringInfo(SI.CLI, &I, GCStatepointInst::CallArgsBeginPos,
1038                           I.getNumCallArgs(), ActualCallee,
1039                           I.getActualReturnType(), false /* IsPatchPoint */);
1040
1041  // There may be duplication in the gc.relocate list; such as two copies of
1042  // each relocation on normal and exceptional path for an invoke.  We only
1043  // need to spill once and record one copy in the stackmap, but we need to
1044  // reload once per gc.relocate.  (Dedupping gc.relocates is trickier and best
1045  // handled as a CSE problem elsewhere.)
1046  // TODO: There a couple of major stackmap size optimizations we could do
1047  // here if we wished.
1048  // 1) If we've encountered a derived pair {B, D}, we don't need to actually
1049  // record {B,B} if it's seen later.
1050  // 2) Due to rematerialization, actual derived pointers are somewhat rare;
1051  // given that, we could change the format to record base pointer relocations
1052  // separately with half the space. This would require a format rev and a
1053  // fairly major rework of the STATEPOINT node though.
1054  SmallSet<SDValue, 8> Seen;
1055  for (const GCRelocateInst *Relocate : I.getGCRelocates()) {
1056    SI.GCRelocates.push_back(Relocate);
1057
1058    SDValue DerivedSD = getValue(Relocate->getDerivedPtr());
1059    if (Seen.insert(DerivedSD).second) {
1060      SI.Bases.push_back(Relocate->getBasePtr());
1061      SI.Ptrs.push_back(Relocate->getDerivedPtr());
1062    }
1063  }
1064
1065  // If we find a deopt value which isn't explicitly added, we need to
1066  // ensure it gets lowered such that gc cycles occurring before the
1067  // deoptimization event during the lifetime of the call don't invalidate
1068  // the pointer we're deopting with.  Note that we assume that all
1069  // pointers passed to deopt are base pointers; relaxing that assumption
1070  // would require relatively large changes to how we represent relocations.
1071  for (Value *V : I.deopt_operands()) {
1072    if (!isGCValue(V, *this))
1073      continue;
1074    if (Seen.insert(getValue(V)).second) {
1075      SI.Bases.push_back(V);
1076      SI.Ptrs.push_back(V);
1077    }
1078  }
1079
1080  SI.GCArgs = ArrayRef<const Use>(I.gc_args_begin(), I.gc_args_end());
1081  SI.StatepointInstr = &I;
1082  SI.ID = I.getID();
1083
1084  SI.DeoptState = ArrayRef<const Use>(I.deopt_begin(), I.deopt_end());
1085  SI.GCTransitionArgs = ArrayRef<const Use>(I.gc_transition_args_begin(),
1086                                            I.gc_transition_args_end());
1087
1088  SI.StatepointFlags = I.getFlags();
1089  SI.NumPatchBytes = I.getNumPatchBytes();
1090  SI.EHPadBB = EHPadBB;
1091
1092  SDValue ReturnValue = LowerAsSTATEPOINT(SI);
1093
1094  // Export the result value if needed
1095  const auto GCResultLocality = getGCResultLocality(I);
1096
1097  if (!GCResultLocality.first && !GCResultLocality.second) {
1098    // The return value is not needed, just generate a poison value.
1099    // Note: This covers the void return case.
1100    setValue(&I, DAG.getIntPtrConstant(-1, getCurSDLoc()));
1101    return;
1102  }
1103
1104  if (GCResultLocality.first) {
1105    // Result value will be used in a same basic block. Don't export it or
1106    // perform any explicit register copies. The gc_result will simply grab
1107    // this value.
1108    setValue(&I, ReturnValue);
1109  }
1110
1111  if (!GCResultLocality.second)
1112    return;
1113  // Result value will be used in a different basic block so we need to export
1114  // it now.  Default exporting mechanism will not work here because statepoint
1115  // call has a different type than the actual call. It means that by default
1116  // llvm will create export register of the wrong type (always i32 in our
1117  // case). So instead we need to create export register with correct type
1118  // manually.
1119  // TODO: To eliminate this problem we can remove gc.result intrinsics
1120  //       completely and make statepoint call to return a tuple.
1121  Type *RetTy = GCResultLocality.second->getType();
1122  Register Reg = FuncInfo.CreateRegs(RetTy);
1123  RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1124                   DAG.getDataLayout(), Reg, RetTy,
1125                   I.getCallingConv());
1126  SDValue Chain = DAG.getEntryNode();
1127
1128  RFV.getCopyToRegs(ReturnValue, DAG, getCurSDLoc(), Chain, nullptr);
1129  PendingExports.push_back(Chain);
1130  FuncInfo.ValueMap[&I] = Reg;
1131}
1132
1133void SelectionDAGBuilder::LowerCallSiteWithDeoptBundleImpl(
1134    const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB,
1135    bool VarArgDisallowed, bool ForceVoidReturnTy) {
1136  StatepointLoweringInfo SI(DAG);
1137  unsigned ArgBeginIndex = Call->arg_begin() - Call->op_begin();
1138  populateCallLoweringInfo(
1139      SI.CLI, Call, ArgBeginIndex, Call->arg_size(), Callee,
1140      ForceVoidReturnTy ? Type::getVoidTy(*DAG.getContext()) : Call->getType(),
1141      false);
1142  if (!VarArgDisallowed)
1143    SI.CLI.IsVarArg = Call->getFunctionType()->isVarArg();
1144
1145  auto DeoptBundle = *Call->getOperandBundle(LLVMContext::OB_deopt);
1146
1147  unsigned DefaultID = StatepointDirectives::DeoptBundleStatepointID;
1148
1149  auto SD = parseStatepointDirectivesFromAttrs(Call->getAttributes());
1150  SI.ID = SD.StatepointID.value_or(DefaultID);
1151  SI.NumPatchBytes = SD.NumPatchBytes.value_or(0);
1152
1153  SI.DeoptState =
1154      ArrayRef<const Use>(DeoptBundle.Inputs.begin(), DeoptBundle.Inputs.end());
1155  SI.StatepointFlags = static_cast<uint64_t>(StatepointFlags::None);
1156  SI.EHPadBB = EHPadBB;
1157
1158  // NB! The GC arguments are deliberately left empty.
1159
1160  if (SDValue ReturnVal = LowerAsSTATEPOINT(SI)) {
1161    ReturnVal = lowerRangeToAssertZExt(DAG, *Call, ReturnVal);
1162    setValue(Call, ReturnVal);
1163  }
1164}
1165
1166void SelectionDAGBuilder::LowerCallSiteWithDeoptBundle(
1167    const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB) {
1168  LowerCallSiteWithDeoptBundleImpl(Call, Callee, EHPadBB,
1169                                   /* VarArgDisallowed = */ false,
1170                                   /* ForceVoidReturnTy  = */ false);
1171}
1172
1173void SelectionDAGBuilder::visitGCResult(const GCResultInst &CI) {
1174  // The result value of the gc_result is simply the result of the actual
1175  // call.  We've already emitted this, so just grab the value.
1176  const Value *SI = CI.getStatepoint();
1177  assert((isa<GCStatepointInst>(SI) || isa<UndefValue>(SI)) &&
1178         "GetStatepoint must return one of two types");
1179  if (isa<UndefValue>(SI))
1180    return;
1181
1182  if (cast<GCStatepointInst>(SI)->getParent() == CI.getParent()) {
1183    setValue(&CI, getValue(SI));
1184    return;
1185  }
1186  // Statepoint is in different basic block so we should have stored call
1187  // result in a virtual register.
1188  // We can not use default getValue() functionality to copy value from this
1189  // register because statepoint and actual call return types can be
1190  // different, and getValue() will use CopyFromReg of the wrong type,
1191  // which is always i32 in our case.
1192  Type *RetTy = CI.getType();
1193  SDValue CopyFromReg = getCopyFromRegs(SI, RetTy);
1194
1195  assert(CopyFromReg.getNode());
1196  setValue(&CI, CopyFromReg);
1197}
1198
1199void SelectionDAGBuilder::visitGCRelocate(const GCRelocateInst &Relocate) {
1200  const Value *Statepoint = Relocate.getStatepoint();
1201#ifndef NDEBUG
1202  // Consistency check
1203  // We skip this check for relocates not in the same basic block as their
1204  // statepoint. It would be too expensive to preserve validation info through
1205  // different basic blocks.
1206  assert((isa<GCStatepointInst>(Statepoint) || isa<UndefValue>(Statepoint)) &&
1207         "GetStatepoint must return one of two types");
1208  if (isa<UndefValue>(Statepoint))
1209    return;
1210
1211  if (cast<GCStatepointInst>(Statepoint)->getParent() == Relocate.getParent())
1212    StatepointLowering.relocCallVisited(Relocate);
1213#endif
1214
1215  const Value *DerivedPtr = Relocate.getDerivedPtr();
1216  auto &RelocationMap =
1217      FuncInfo.StatepointRelocationMaps[cast<GCStatepointInst>(Statepoint)];
1218  auto SlotIt = RelocationMap.find(&Relocate);
1219  assert(SlotIt != RelocationMap.end() && "Relocating not lowered gc value");
1220  const RecordType &Record = SlotIt->second;
1221
1222  // If relocation was done via virtual register..
1223  if (Record.type == RecordType::SDValueNode) {
1224    assert(cast<GCStatepointInst>(Statepoint)->getParent() ==
1225               Relocate.getParent() &&
1226           "Nonlocal gc.relocate mapped via SDValue");
1227    SDValue SDV = StatepointLowering.getLocation(getValue(DerivedPtr));
1228    assert(SDV.getNode() && "empty SDValue");
1229    setValue(&Relocate, SDV);
1230    return;
1231  }
1232  if (Record.type == RecordType::VReg) {
1233    Register InReg = Record.payload.Reg;
1234    RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1235                     DAG.getDataLayout(), InReg, Relocate.getType(),
1236                     std::nullopt); // This is not an ABI copy.
1237    // We generate copy to/from regs even for local uses, hence we must
1238    // chain with current root to ensure proper ordering of copies w.r.t.
1239    // statepoint.
1240    SDValue Chain = DAG.getRoot();
1241    SDValue Relocation = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
1242                                             Chain, nullptr, nullptr);
1243    setValue(&Relocate, Relocation);
1244    return;
1245  }
1246
1247  if (Record.type == RecordType::Spill) {
1248    unsigned Index = Record.payload.FI;
1249    SDValue SpillSlot = DAG.getTargetFrameIndex(Index, getFrameIndexTy());
1250
1251    // All the reloads are independent and are reading memory only modified by
1252    // statepoints (i.e. no other aliasing stores); informing SelectionDAG of
1253    // this this let's CSE kick in for free and allows reordering of
1254    // instructions if possible.  The lowering for statepoint sets the root,
1255    // so this is ordering all reloads with the either
1256    // a) the statepoint node itself, or
1257    // b) the entry of the current block for an invoke statepoint.
1258    const SDValue Chain = DAG.getRoot(); // != Builder.getRoot()
1259
1260    auto &MF = DAG.getMachineFunction();
1261    auto &MFI = MF.getFrameInfo();
1262    auto PtrInfo = MachinePointerInfo::getFixedStack(MF, Index);
1263    auto *LoadMMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad,
1264                                            MFI.getObjectSize(Index),
1265                                            MFI.getObjectAlign(Index));
1266
1267    auto LoadVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
1268                                                           Relocate.getType());
1269
1270    SDValue SpillLoad =
1271        DAG.getLoad(LoadVT, getCurSDLoc(), Chain, SpillSlot, LoadMMO);
1272    PendingLoads.push_back(SpillLoad.getValue(1));
1273
1274    assert(SpillLoad.getNode());
1275    setValue(&Relocate, SpillLoad);
1276    return;
1277  }
1278
1279  assert(Record.type == RecordType::NoRelocate);
1280  SDValue SD = getValue(DerivedPtr);
1281
1282  if (SD.isUndef() && SD.getValueType().getSizeInBits() <= 64) {
1283    // Lowering relocate(undef) as arbitrary constant. Current constant value
1284    // is chosen such that it's unlikely to be a valid pointer.
1285    setValue(&Relocate, DAG.getTargetConstant(0xFEFEFEFE, SDLoc(SD), MVT::i64));
1286    return;
1287  }
1288
1289  // We didn't need to spill these special cases (constants and allocas).
1290  // See the handling in spillIncomingValueForStatepoint for detail.
1291  setValue(&Relocate, SD);
1292}
1293
1294void SelectionDAGBuilder::LowerDeoptimizeCall(const CallInst *CI) {
1295  const auto &TLI = DAG.getTargetLoweringInfo();
1296  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(RTLIB::DEOPTIMIZE),
1297                                         TLI.getPointerTy(DAG.getDataLayout()));
1298
1299  // We don't lower calls to __llvm_deoptimize as varargs, but as a regular
1300  // call.  We also do not lower the return value to any virtual register, and
1301  // change the immediately following return to a trap instruction.
1302  LowerCallSiteWithDeoptBundleImpl(CI, Callee, /* EHPadBB = */ nullptr,
1303                                   /* VarArgDisallowed = */ true,
1304                                   /* ForceVoidReturnTy = */ true);
1305}
1306
1307void SelectionDAGBuilder::LowerDeoptimizingReturn() {
1308  // We do not lower the return value from llvm.deoptimize to any virtual
1309  // register, and change the immediately following return to a trap
1310  // instruction.
1311  if (DAG.getTarget().Options.TrapUnreachable)
1312    DAG.setRoot(
1313        DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
1314}
1315