1//===--- ScheduleDAGSDNodes.cpp - Implement the ScheduleDAGSDNodes class --===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This implements the ScheduleDAG class, which is a base class used by
10// scheduling implementation classes.
11//
12//===----------------------------------------------------------------------===//
13
14#include "ScheduleDAGSDNodes.h"
15#include "InstrEmitter.h"
16#include "SDNodeDbgValue.h"
17#include "llvm/ADT/DenseMap.h"
18#include "llvm/ADT/SmallPtrSet.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/ADT/SmallVector.h"
21#include "llvm/ADT/Statistic.h"
22#include "llvm/CodeGen/MachineInstrBuilder.h"
23#include "llvm/CodeGen/MachineRegisterInfo.h"
24#include "llvm/CodeGen/SelectionDAG.h"
25#include "llvm/CodeGen/TargetInstrInfo.h"
26#include "llvm/CodeGen/TargetLowering.h"
27#include "llvm/CodeGen/TargetRegisterInfo.h"
28#include "llvm/CodeGen/TargetSubtargetInfo.h"
29#include "llvm/Config/llvm-config.h"
30#include "llvm/MC/MCInstrItineraries.h"
31#include "llvm/Support/CommandLine.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/Support/raw_ostream.h"
34#include "llvm/Target/TargetMachine.h"
35using namespace llvm;
36
37#define DEBUG_TYPE "pre-RA-sched"
38
39STATISTIC(LoadsClustered, "Number of loads clustered together");
40
41// This allows the latency-based scheduler to notice high latency instructions
42// without a target itinerary. The choice of number here has more to do with
43// balancing scheduler heuristics than with the actual machine latency.
44static cl::opt<int> HighLatencyCycles(
45  "sched-high-latency-cycles", cl::Hidden, cl::init(10),
46  cl::desc("Roughly estimate the number of cycles that 'long latency'"
47           "instructions take for targets with no itinerary"));
48
49ScheduleDAGSDNodes::ScheduleDAGSDNodes(MachineFunction &mf)
50    : ScheduleDAG(mf), InstrItins(mf.getSubtarget().getInstrItineraryData()) {}
51
52/// Run - perform scheduling.
53///
54void ScheduleDAGSDNodes::Run(SelectionDAG *dag, MachineBasicBlock *bb) {
55  BB = bb;
56  DAG = dag;
57
58  // Clear the scheduler's SUnit DAG.
59  ScheduleDAG::clearDAG();
60  Sequence.clear();
61
62  // Invoke the target's selection of scheduler.
63  Schedule();
64}
65
66/// NewSUnit - Creates a new SUnit and return a ptr to it.
67///
68SUnit *ScheduleDAGSDNodes::newSUnit(SDNode *N) {
69#ifndef NDEBUG
70  const SUnit *Addr = nullptr;
71  if (!SUnits.empty())
72    Addr = &SUnits[0];
73#endif
74  SUnits.emplace_back(N, (unsigned)SUnits.size());
75  assert((Addr == nullptr || Addr == &SUnits[0]) &&
76         "SUnits std::vector reallocated on the fly!");
77  SUnits.back().OrigNode = &SUnits.back();
78  SUnit *SU = &SUnits.back();
79  const TargetLowering &TLI = DAG->getTargetLoweringInfo();
80  if (!N ||
81      (N->isMachineOpcode() &&
82       N->getMachineOpcode() == TargetOpcode::IMPLICIT_DEF))
83    SU->SchedulingPref = Sched::None;
84  else
85    SU->SchedulingPref = TLI.getSchedulingPreference(N);
86  return SU;
87}
88
89SUnit *ScheduleDAGSDNodes::Clone(SUnit *Old) {
90  SUnit *SU = newSUnit(Old->getNode());
91  SU->OrigNode = Old->OrigNode;
92  SU->Latency = Old->Latency;
93  SU->isVRegCycle = Old->isVRegCycle;
94  SU->isCall = Old->isCall;
95  SU->isCallOp = Old->isCallOp;
96  SU->isTwoAddress = Old->isTwoAddress;
97  SU->isCommutable = Old->isCommutable;
98  SU->hasPhysRegDefs = Old->hasPhysRegDefs;
99  SU->hasPhysRegClobbers = Old->hasPhysRegClobbers;
100  SU->isScheduleHigh = Old->isScheduleHigh;
101  SU->isScheduleLow = Old->isScheduleLow;
102  SU->SchedulingPref = Old->SchedulingPref;
103  Old->isCloned = true;
104  return SU;
105}
106
107/// CheckForPhysRegDependency - Check if the dependency between def and use of
108/// a specified operand is a physical register dependency. If so, returns the
109/// register and the cost of copying the register.
110static void CheckForPhysRegDependency(SDNode *Def, SDNode *User, unsigned Op,
111                                      const TargetRegisterInfo *TRI,
112                                      const TargetInstrInfo *TII,
113                                      const TargetLowering &TLI,
114                                      unsigned &PhysReg, int &Cost) {
115  if (Op != 2 || User->getOpcode() != ISD::CopyToReg)
116    return;
117
118  unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
119  if (TLI.checkForPhysRegDependency(Def, User, Op, TRI, TII, PhysReg, Cost))
120    return;
121
122  if (Register::isVirtualRegister(Reg))
123    return;
124
125  unsigned ResNo = User->getOperand(2).getResNo();
126  if (Def->getOpcode() == ISD::CopyFromReg &&
127      cast<RegisterSDNode>(Def->getOperand(1))->getReg() == Reg) {
128    PhysReg = Reg;
129  } else if (Def->isMachineOpcode()) {
130    const MCInstrDesc &II = TII->get(Def->getMachineOpcode());
131    if (ResNo >= II.getNumDefs() && II.hasImplicitDefOfPhysReg(Reg))
132      PhysReg = Reg;
133  }
134
135  if (PhysReg != 0) {
136    const TargetRegisterClass *RC =
137        TRI->getMinimalPhysRegClass(Reg, Def->getSimpleValueType(ResNo));
138    Cost = RC->getCopyCost();
139  }
140}
141
142// Helper for AddGlue to clone node operands.
143static void CloneNodeWithValues(SDNode *N, SelectionDAG *DAG, ArrayRef<EVT> VTs,
144                                SDValue ExtraOper = SDValue()) {
145  SmallVector<SDValue, 8> Ops(N->op_begin(), N->op_end());
146  if (ExtraOper.getNode())
147    Ops.push_back(ExtraOper);
148
149  SDVTList VTList = DAG->getVTList(VTs);
150  MachineSDNode *MN = dyn_cast<MachineSDNode>(N);
151
152  // Store memory references.
153  SmallVector<MachineMemOperand *, 2> MMOs;
154  if (MN)
155    MMOs.assign(MN->memoperands_begin(), MN->memoperands_end());
156
157  DAG->MorphNodeTo(N, N->getOpcode(), VTList, Ops);
158
159  // Reset the memory references
160  if (MN)
161    DAG->setNodeMemRefs(MN, MMOs);
162}
163
164static bool AddGlue(SDNode *N, SDValue Glue, bool AddGlue, SelectionDAG *DAG) {
165  SDNode *GlueDestNode = Glue.getNode();
166
167  // Don't add glue from a node to itself.
168  if (GlueDestNode == N) return false;
169
170  // Don't add a glue operand to something that already uses glue.
171  if (GlueDestNode &&
172      N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) {
173    return false;
174  }
175  // Don't add glue to something that already has a glue value.
176  if (N->getValueType(N->getNumValues() - 1) == MVT::Glue) return false;
177
178  SmallVector<EVT, 4> VTs(N->values());
179  if (AddGlue)
180    VTs.push_back(MVT::Glue);
181
182  CloneNodeWithValues(N, DAG, VTs, Glue);
183
184  return true;
185}
186
187// Cleanup after unsuccessful AddGlue. Use the standard method of morphing the
188// node even though simply shrinking the value list is sufficient.
189static void RemoveUnusedGlue(SDNode *N, SelectionDAG *DAG) {
190  assert((N->getValueType(N->getNumValues() - 1) == MVT::Glue &&
191          !N->hasAnyUseOfValue(N->getNumValues() - 1)) &&
192         "expected an unused glue value");
193
194  CloneNodeWithValues(N, DAG,
195                      ArrayRef(N->value_begin(), N->getNumValues() - 1));
196}
197
198/// ClusterNeighboringLoads - Force nearby loads together by "gluing" them.
199/// This function finds loads of the same base and different offsets. If the
200/// offsets are not far apart (target specific), it add MVT::Glue inputs and
201/// outputs to ensure they are scheduled together and in order. This
202/// optimization may benefit some targets by improving cache locality.
203void ScheduleDAGSDNodes::ClusterNeighboringLoads(SDNode *Node) {
204  SDValue Chain;
205  unsigned NumOps = Node->getNumOperands();
206  if (Node->getOperand(NumOps-1).getValueType() == MVT::Other)
207    Chain = Node->getOperand(NumOps-1);
208  if (!Chain)
209    return;
210
211  // Skip any load instruction that has a tied input. There may be an additional
212  // dependency requiring a different order than by increasing offsets, and the
213  // added glue may introduce a cycle.
214  auto hasTiedInput = [this](const SDNode *N) {
215    const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
216    for (unsigned I = 0; I != MCID.getNumOperands(); ++I) {
217      if (MCID.getOperandConstraint(I, MCOI::TIED_TO) != -1)
218        return true;
219    }
220
221    return false;
222  };
223
224  // Look for other loads of the same chain. Find loads that are loading from
225  // the same base pointer and different offsets.
226  SmallPtrSet<SDNode*, 16> Visited;
227  SmallVector<int64_t, 4> Offsets;
228  DenseMap<long long, SDNode*> O2SMap;  // Map from offset to SDNode.
229  bool Cluster = false;
230  SDNode *Base = Node;
231
232  if (hasTiedInput(Base))
233    return;
234
235  // This algorithm requires a reasonably low use count before finding a match
236  // to avoid uselessly blowing up compile time in large blocks.
237  unsigned UseCount = 0;
238  for (SDNode::use_iterator I = Chain->use_begin(), E = Chain->use_end();
239       I != E && UseCount < 100; ++I, ++UseCount) {
240    if (I.getUse().getResNo() != Chain.getResNo())
241      continue;
242
243    SDNode *User = *I;
244    if (User == Node || !Visited.insert(User).second)
245      continue;
246    int64_t Offset1, Offset2;
247    if (!TII->areLoadsFromSameBasePtr(Base, User, Offset1, Offset2) ||
248        Offset1 == Offset2 ||
249        hasTiedInput(User)) {
250      // FIXME: Should be ok if they addresses are identical. But earlier
251      // optimizations really should have eliminated one of the loads.
252      continue;
253    }
254    if (O2SMap.insert(std::make_pair(Offset1, Base)).second)
255      Offsets.push_back(Offset1);
256    O2SMap.insert(std::make_pair(Offset2, User));
257    Offsets.push_back(Offset2);
258    if (Offset2 < Offset1)
259      Base = User;
260    Cluster = true;
261    // Reset UseCount to allow more matches.
262    UseCount = 0;
263  }
264
265  if (!Cluster)
266    return;
267
268  // Sort them in increasing order.
269  llvm::sort(Offsets);
270
271  // Check if the loads are close enough.
272  SmallVector<SDNode*, 4> Loads;
273  unsigned NumLoads = 0;
274  int64_t BaseOff = Offsets[0];
275  SDNode *BaseLoad = O2SMap[BaseOff];
276  Loads.push_back(BaseLoad);
277  for (unsigned i = 1, e = Offsets.size(); i != e; ++i) {
278    int64_t Offset = Offsets[i];
279    SDNode *Load = O2SMap[Offset];
280    if (!TII->shouldScheduleLoadsNear(BaseLoad, Load, BaseOff, Offset,NumLoads))
281      break; // Stop right here. Ignore loads that are further away.
282    Loads.push_back(Load);
283    ++NumLoads;
284  }
285
286  if (NumLoads == 0)
287    return;
288
289  // Cluster loads by adding MVT::Glue outputs and inputs. This also
290  // ensure they are scheduled in order of increasing addresses.
291  SDNode *Lead = Loads[0];
292  SDValue InGlue;
293  if (AddGlue(Lead, InGlue, true, DAG))
294    InGlue = SDValue(Lead, Lead->getNumValues() - 1);
295  for (unsigned I = 1, E = Loads.size(); I != E; ++I) {
296    bool OutGlue = I < E - 1;
297    SDNode *Load = Loads[I];
298
299    // If AddGlue fails, we could leave an unsused glue value. This should not
300    // cause any
301    if (AddGlue(Load, InGlue, OutGlue, DAG)) {
302      if (OutGlue)
303        InGlue = SDValue(Load, Load->getNumValues() - 1);
304
305      ++LoadsClustered;
306    }
307    else if (!OutGlue && InGlue.getNode())
308      RemoveUnusedGlue(InGlue.getNode(), DAG);
309  }
310}
311
312/// ClusterNodes - Cluster certain nodes which should be scheduled together.
313///
314void ScheduleDAGSDNodes::ClusterNodes() {
315  for (SDNode &NI : DAG->allnodes()) {
316    SDNode *Node = &NI;
317    if (!Node || !Node->isMachineOpcode())
318      continue;
319
320    unsigned Opc = Node->getMachineOpcode();
321    const MCInstrDesc &MCID = TII->get(Opc);
322    if (MCID.mayLoad())
323      // Cluster loads from "near" addresses into combined SUnits.
324      ClusterNeighboringLoads(Node);
325  }
326}
327
328void ScheduleDAGSDNodes::BuildSchedUnits() {
329  // During scheduling, the NodeId field of SDNode is used to map SDNodes
330  // to their associated SUnits by holding SUnits table indices. A value
331  // of -1 means the SDNode does not yet have an associated SUnit.
332  unsigned NumNodes = 0;
333  for (SDNode &NI : DAG->allnodes()) {
334    NI.setNodeId(-1);
335    ++NumNodes;
336  }
337
338  // Reserve entries in the vector for each of the SUnits we are creating.  This
339  // ensure that reallocation of the vector won't happen, so SUnit*'s won't get
340  // invalidated.
341  // FIXME: Multiply by 2 because we may clone nodes during scheduling.
342  // This is a temporary workaround.
343  SUnits.reserve(NumNodes * 2);
344
345  // Add all nodes in depth first order.
346  SmallVector<SDNode*, 64> Worklist;
347  SmallPtrSet<SDNode*, 32> Visited;
348  Worklist.push_back(DAG->getRoot().getNode());
349  Visited.insert(DAG->getRoot().getNode());
350
351  SmallVector<SUnit*, 8> CallSUnits;
352  while (!Worklist.empty()) {
353    SDNode *NI = Worklist.pop_back_val();
354
355    // Add all operands to the worklist unless they've already been added.
356    for (const SDValue &Op : NI->op_values())
357      if (Visited.insert(Op.getNode()).second)
358        Worklist.push_back(Op.getNode());
359
360    if (isPassiveNode(NI))  // Leaf node, e.g. a TargetImmediate.
361      continue;
362
363    // If this node has already been processed, stop now.
364    if (NI->getNodeId() != -1) continue;
365
366    SUnit *NodeSUnit = newSUnit(NI);
367
368    // See if anything is glued to this node, if so, add them to glued
369    // nodes.  Nodes can have at most one glue input and one glue output.  Glue
370    // is required to be the last operand and result of a node.
371
372    // Scan up to find glued preds.
373    SDNode *N = NI;
374    while (N->getNumOperands() &&
375           N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) {
376      N = N->getOperand(N->getNumOperands()-1).getNode();
377      assert(N->getNodeId() == -1 && "Node already inserted!");
378      N->setNodeId(NodeSUnit->NodeNum);
379      if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall())
380        NodeSUnit->isCall = true;
381    }
382
383    // Scan down to find any glued succs.
384    N = NI;
385    while (N->getValueType(N->getNumValues()-1) == MVT::Glue) {
386      SDValue GlueVal(N, N->getNumValues()-1);
387
388      // There are either zero or one users of the Glue result.
389      bool HasGlueUse = false;
390      for (SDNode *U : N->uses())
391        if (GlueVal.isOperandOf(U)) {
392          HasGlueUse = true;
393          assert(N->getNodeId() == -1 && "Node already inserted!");
394          N->setNodeId(NodeSUnit->NodeNum);
395          N = U;
396          if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall())
397            NodeSUnit->isCall = true;
398          break;
399        }
400      if (!HasGlueUse) break;
401    }
402
403    if (NodeSUnit->isCall)
404      CallSUnits.push_back(NodeSUnit);
405
406    // Schedule zero-latency TokenFactor below any nodes that may increase the
407    // schedule height. Otherwise, ancestors of the TokenFactor may appear to
408    // have false stalls.
409    if (NI->getOpcode() == ISD::TokenFactor)
410      NodeSUnit->isScheduleLow = true;
411
412    // If there are glue operands involved, N is now the bottom-most node
413    // of the sequence of nodes that are glued together.
414    // Update the SUnit.
415    NodeSUnit->setNode(N);
416    assert(N->getNodeId() == -1 && "Node already inserted!");
417    N->setNodeId(NodeSUnit->NodeNum);
418
419    // Compute NumRegDefsLeft. This must be done before AddSchedEdges.
420    InitNumRegDefsLeft(NodeSUnit);
421
422    // Assign the Latency field of NodeSUnit using target-provided information.
423    computeLatency(NodeSUnit);
424  }
425
426  // Find all call operands.
427  while (!CallSUnits.empty()) {
428    SUnit *SU = CallSUnits.pop_back_val();
429    for (const SDNode *SUNode = SU->getNode(); SUNode;
430         SUNode = SUNode->getGluedNode()) {
431      if (SUNode->getOpcode() != ISD::CopyToReg)
432        continue;
433      SDNode *SrcN = SUNode->getOperand(2).getNode();
434      if (isPassiveNode(SrcN)) continue;   // Not scheduled.
435      SUnit *SrcSU = &SUnits[SrcN->getNodeId()];
436      SrcSU->isCallOp = true;
437    }
438  }
439}
440
441void ScheduleDAGSDNodes::AddSchedEdges() {
442  const TargetSubtargetInfo &ST = MF.getSubtarget();
443
444  // Check to see if the scheduler cares about latencies.
445  bool UnitLatencies = forceUnitLatencies();
446
447  // Pass 2: add the preds, succs, etc.
448  for (SUnit &SU : SUnits) {
449    SDNode *MainNode = SU.getNode();
450
451    if (MainNode->isMachineOpcode()) {
452      unsigned Opc = MainNode->getMachineOpcode();
453      const MCInstrDesc &MCID = TII->get(Opc);
454      for (unsigned i = 0; i != MCID.getNumOperands(); ++i) {
455        if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) {
456          SU.isTwoAddress = true;
457          break;
458        }
459      }
460      if (MCID.isCommutable())
461        SU.isCommutable = true;
462    }
463
464    // Find all predecessors and successors of the group.
465    for (SDNode *N = SU.getNode(); N; N = N->getGluedNode()) {
466      if (N->isMachineOpcode() &&
467          !TII->get(N->getMachineOpcode()).implicit_defs().empty()) {
468        SU.hasPhysRegClobbers = true;
469        unsigned NumUsed = InstrEmitter::CountResults(N);
470        while (NumUsed != 0 && !N->hasAnyUseOfValue(NumUsed - 1))
471          --NumUsed;    // Skip over unused values at the end.
472        if (NumUsed > TII->get(N->getMachineOpcode()).getNumDefs())
473          SU.hasPhysRegDefs = true;
474      }
475
476      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
477        SDNode *OpN = N->getOperand(i).getNode();
478        unsigned DefIdx = N->getOperand(i).getResNo();
479        if (isPassiveNode(OpN)) continue;   // Not scheduled.
480        SUnit *OpSU = &SUnits[OpN->getNodeId()];
481        assert(OpSU && "Node has no SUnit!");
482        if (OpSU == &SU)
483          continue; // In the same group.
484
485        EVT OpVT = N->getOperand(i).getValueType();
486        assert(OpVT != MVT::Glue && "Glued nodes should be in same sunit!");
487        bool isChain = OpVT == MVT::Other;
488
489        unsigned PhysReg = 0;
490        int Cost = 1;
491        // Determine if this is a physical register dependency.
492        const TargetLowering &TLI = DAG->getTargetLoweringInfo();
493        CheckForPhysRegDependency(OpN, N, i, TRI, TII, TLI, PhysReg, Cost);
494        assert((PhysReg == 0 || !isChain) &&
495               "Chain dependence via physreg data?");
496        // FIXME: See ScheduleDAGSDNodes::EmitCopyFromReg. For now, scheduler
497        // emits a copy from the physical register to a virtual register unless
498        // it requires a cross class copy (cost < 0). That means we are only
499        // treating "expensive to copy" register dependency as physical register
500        // dependency. This may change in the future though.
501        if (Cost >= 0 && !StressSched)
502          PhysReg = 0;
503
504        // If this is a ctrl dep, latency is 1.
505        unsigned OpLatency = isChain ? 1 : OpSU->Latency;
506        // Special-case TokenFactor chains as zero-latency.
507        if(isChain && OpN->getOpcode() == ISD::TokenFactor)
508          OpLatency = 0;
509
510        SDep Dep = isChain ? SDep(OpSU, SDep::Barrier)
511          : SDep(OpSU, SDep::Data, PhysReg);
512        Dep.setLatency(OpLatency);
513        if (!isChain && !UnitLatencies) {
514          computeOperandLatency(OpN, N, i, Dep);
515          ST.adjustSchedDependency(OpSU, DefIdx, &SU, i, Dep);
516        }
517
518        if (!SU.addPred(Dep) && !Dep.isCtrl() && OpSU->NumRegDefsLeft > 1) {
519          // Multiple register uses are combined in the same SUnit. For example,
520          // we could have a set of glued nodes with all their defs consumed by
521          // another set of glued nodes. Register pressure tracking sees this as
522          // a single use, so to keep pressure balanced we reduce the defs.
523          //
524          // We can't tell (without more book-keeping) if this results from
525          // glued nodes or duplicate operands. As long as we don't reduce
526          // NumRegDefsLeft to zero, we handle the common cases well.
527          --OpSU->NumRegDefsLeft;
528        }
529      }
530    }
531  }
532}
533
534/// BuildSchedGraph - Build the SUnit graph from the selection dag that we
535/// are input.  This SUnit graph is similar to the SelectionDAG, but
536/// excludes nodes that aren't interesting to scheduling, and represents
537/// glued together nodes with a single SUnit.
538void ScheduleDAGSDNodes::BuildSchedGraph(AAResults *AA) {
539  // Cluster certain nodes which should be scheduled together.
540  ClusterNodes();
541  // Populate the SUnits array.
542  BuildSchedUnits();
543  // Compute all the scheduling dependencies between nodes.
544  AddSchedEdges();
545}
546
547// Initialize NumNodeDefs for the current Node's opcode.
548void ScheduleDAGSDNodes::RegDefIter::InitNodeNumDefs() {
549  // Check for phys reg copy.
550  if (!Node)
551    return;
552
553  if (!Node->isMachineOpcode()) {
554    if (Node->getOpcode() == ISD::CopyFromReg)
555      NodeNumDefs = 1;
556    else
557      NodeNumDefs = 0;
558    return;
559  }
560  unsigned POpc = Node->getMachineOpcode();
561  if (POpc == TargetOpcode::IMPLICIT_DEF) {
562    // No register need be allocated for this.
563    NodeNumDefs = 0;
564    return;
565  }
566  if (POpc == TargetOpcode::PATCHPOINT &&
567      Node->getValueType(0) == MVT::Other) {
568    // PATCHPOINT is defined to have one result, but it might really have none
569    // if we're not using CallingConv::AnyReg. Don't mistake the chain for a
570    // real definition.
571    NodeNumDefs = 0;
572    return;
573  }
574  unsigned NRegDefs = SchedDAG->TII->get(Node->getMachineOpcode()).getNumDefs();
575  // Some instructions define regs that are not represented in the selection DAG
576  // (e.g. unused flags). See tMOVi8. Make sure we don't access past NumValues.
577  NodeNumDefs = std::min(Node->getNumValues(), NRegDefs);
578  DefIdx = 0;
579}
580
581// Construct a RegDefIter for this SUnit and find the first valid value.
582ScheduleDAGSDNodes::RegDefIter::RegDefIter(const SUnit *SU,
583                                           const ScheduleDAGSDNodes *SD)
584    : SchedDAG(SD), Node(SU->getNode()) {
585  InitNodeNumDefs();
586  Advance();
587}
588
589// Advance to the next valid value defined by the SUnit.
590void ScheduleDAGSDNodes::RegDefIter::Advance() {
591  for (;Node;) { // Visit all glued nodes.
592    for (;DefIdx < NodeNumDefs; ++DefIdx) {
593      if (!Node->hasAnyUseOfValue(DefIdx))
594        continue;
595      ValueType = Node->getSimpleValueType(DefIdx);
596      ++DefIdx;
597      return; // Found a normal regdef.
598    }
599    Node = Node->getGluedNode();
600    if (!Node) {
601      return; // No values left to visit.
602    }
603    InitNodeNumDefs();
604  }
605}
606
607void ScheduleDAGSDNodes::InitNumRegDefsLeft(SUnit *SU) {
608  assert(SU->NumRegDefsLeft == 0 && "expect a new node");
609  for (RegDefIter I(SU, this); I.IsValid(); I.Advance()) {
610    assert(SU->NumRegDefsLeft < USHRT_MAX && "overflow is ok but unexpected");
611    ++SU->NumRegDefsLeft;
612  }
613}
614
615void ScheduleDAGSDNodes::computeLatency(SUnit *SU) {
616  SDNode *N = SU->getNode();
617
618  // TokenFactor operands are considered zero latency, and some schedulers
619  // (e.g. Top-Down list) may rely on the fact that operand latency is nonzero
620  // whenever node latency is nonzero.
621  if (N && N->getOpcode() == ISD::TokenFactor) {
622    SU->Latency = 0;
623    return;
624  }
625
626  // Check to see if the scheduler cares about latencies.
627  if (forceUnitLatencies()) {
628    SU->Latency = 1;
629    return;
630  }
631
632  if (!InstrItins || InstrItins->isEmpty()) {
633    if (N && N->isMachineOpcode() &&
634        TII->isHighLatencyDef(N->getMachineOpcode()))
635      SU->Latency = HighLatencyCycles;
636    else
637      SU->Latency = 1;
638    return;
639  }
640
641  // Compute the latency for the node.  We use the sum of the latencies for
642  // all nodes glued together into this SUnit.
643  SU->Latency = 0;
644  for (SDNode *N = SU->getNode(); N; N = N->getGluedNode())
645    if (N->isMachineOpcode())
646      SU->Latency += TII->getInstrLatency(InstrItins, N);
647}
648
649void ScheduleDAGSDNodes::computeOperandLatency(SDNode *Def, SDNode *Use,
650                                               unsigned OpIdx, SDep& dep) const{
651  // Check to see if the scheduler cares about latencies.
652  if (forceUnitLatencies())
653    return;
654
655  if (dep.getKind() != SDep::Data)
656    return;
657
658  unsigned DefIdx = Use->getOperand(OpIdx).getResNo();
659  if (Use->isMachineOpcode())
660    // Adjust the use operand index by num of defs.
661    OpIdx += TII->get(Use->getMachineOpcode()).getNumDefs();
662  int Latency = TII->getOperandLatency(InstrItins, Def, DefIdx, Use, OpIdx);
663  if (Latency > 1 && Use->getOpcode() == ISD::CopyToReg &&
664      !BB->succ_empty()) {
665    unsigned Reg = cast<RegisterSDNode>(Use->getOperand(1))->getReg();
666    if (Register::isVirtualRegister(Reg))
667      // This copy is a liveout value. It is likely coalesced, so reduce the
668      // latency so not to penalize the def.
669      // FIXME: need target specific adjustment here?
670      Latency = (Latency > 1) ? Latency - 1 : 1;
671  }
672  if (Latency >= 0)
673    dep.setLatency(Latency);
674}
675
676void ScheduleDAGSDNodes::dumpNode(const SUnit &SU) const {
677#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
678  dumpNodeName(SU);
679  dbgs() << ": ";
680
681  if (!SU.getNode()) {
682    dbgs() << "PHYS REG COPY\n";
683    return;
684  }
685
686  SU.getNode()->dump(DAG);
687  dbgs() << "\n";
688  SmallVector<SDNode *, 4> GluedNodes;
689  for (SDNode *N = SU.getNode()->getGluedNode(); N; N = N->getGluedNode())
690    GluedNodes.push_back(N);
691  while (!GluedNodes.empty()) {
692    dbgs() << "    ";
693    GluedNodes.back()->dump(DAG);
694    dbgs() << "\n";
695    GluedNodes.pop_back();
696  }
697#endif
698}
699
700void ScheduleDAGSDNodes::dump() const {
701#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
702  if (EntrySU.getNode() != nullptr)
703    dumpNodeAll(EntrySU);
704  for (const SUnit &SU : SUnits)
705    dumpNodeAll(SU);
706  if (ExitSU.getNode() != nullptr)
707    dumpNodeAll(ExitSU);
708#endif
709}
710
711#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
712void ScheduleDAGSDNodes::dumpSchedule() const {
713  for (const SUnit *SU : Sequence) {
714    if (SU)
715      dumpNode(*SU);
716    else
717      dbgs() << "**** NOOP ****\n";
718  }
719}
720#endif
721
722#ifndef NDEBUG
723/// VerifyScheduledSequence - Verify that all SUnits were scheduled and that
724/// their state is consistent with the nodes listed in Sequence.
725///
726void ScheduleDAGSDNodes::VerifyScheduledSequence(bool isBottomUp) {
727  unsigned ScheduledNodes = ScheduleDAG::VerifyScheduledDAG(isBottomUp);
728  unsigned Noops = llvm::count(Sequence, nullptr);
729  assert(Sequence.size() - Noops == ScheduledNodes &&
730         "The number of nodes scheduled doesn't match the expected number!");
731}
732#endif // NDEBUG
733
734/// ProcessSDDbgValues - Process SDDbgValues associated with this node.
735static void
736ProcessSDDbgValues(SDNode *N, SelectionDAG *DAG, InstrEmitter &Emitter,
737                   SmallVectorImpl<std::pair<unsigned, MachineInstr*> > &Orders,
738                   DenseMap<SDValue, Register> &VRBaseMap, unsigned Order) {
739  if (!N->getHasDebugValue())
740    return;
741
742  /// Returns true if \p DV has any VReg operand locations which don't exist in
743  /// VRBaseMap.
744  auto HasUnknownVReg = [&VRBaseMap](SDDbgValue *DV) {
745    for (const SDDbgOperand &L : DV->getLocationOps()) {
746      if (L.getKind() == SDDbgOperand::SDNODE &&
747          VRBaseMap.count({L.getSDNode(), L.getResNo()}) == 0)
748        return true;
749    }
750    return false;
751  };
752
753  // Opportunistically insert immediate dbg_value uses, i.e. those with the same
754  // source order number as N.
755  MachineBasicBlock *BB = Emitter.getBlock();
756  MachineBasicBlock::iterator InsertPos = Emitter.getInsertPos();
757  for (auto *DV : DAG->GetDbgValues(N)) {
758    if (DV->isEmitted())
759      continue;
760    unsigned DVOrder = DV->getOrder();
761    if (Order != 0 && DVOrder != Order)
762      continue;
763    // If DV has any VReg location operands which haven't been mapped then
764    // either that node is no longer available or we just haven't visited the
765    // node yet. In the former case we should emit an undef dbg_value, but we
766    // can do it later. And for the latter we'll want to wait until all
767    // dependent nodes have been visited.
768    if (!DV->isInvalidated() && HasUnknownVReg(DV))
769      continue;
770    MachineInstr *DbgMI = Emitter.EmitDbgValue(DV, VRBaseMap);
771    if (!DbgMI)
772      continue;
773    Orders.push_back({DVOrder, DbgMI});
774    BB->insert(InsertPos, DbgMI);
775  }
776}
777
778// ProcessSourceNode - Process nodes with source order numbers. These are added
779// to a vector which EmitSchedule uses to determine how to insert dbg_value
780// instructions in the right order.
781static void
782ProcessSourceNode(SDNode *N, SelectionDAG *DAG, InstrEmitter &Emitter,
783                  DenseMap<SDValue, Register> &VRBaseMap,
784                  SmallVectorImpl<std::pair<unsigned, MachineInstr *>> &Orders,
785                  SmallSet<Register, 8> &Seen, MachineInstr *NewInsn) {
786  unsigned Order = N->getIROrder();
787  if (!Order || Seen.count(Order)) {
788    // Process any valid SDDbgValues even if node does not have any order
789    // assigned.
790    ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, 0);
791    return;
792  }
793
794  // If a new instruction was generated for this Order number, record it.
795  // Otherwise, leave this order number unseen: we will either find later
796  // instructions for it, or leave it unseen if there were no instructions at
797  // all.
798  if (NewInsn) {
799    Seen.insert(Order);
800    Orders.push_back({Order, NewInsn});
801  }
802
803  // Even if no instruction was generated, a Value may have become defined via
804  // earlier nodes. Try to process them now.
805  ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, Order);
806}
807
808void ScheduleDAGSDNodes::
809EmitPhysRegCopy(SUnit *SU, DenseMap<SUnit*, Register> &VRBaseMap,
810                MachineBasicBlock::iterator InsertPos) {
811  for (const SDep &Pred : SU->Preds) {
812    if (Pred.isCtrl())
813      continue; // ignore chain preds
814    if (Pred.getSUnit()->CopyDstRC) {
815      // Copy to physical register.
816      DenseMap<SUnit *, Register>::iterator VRI =
817          VRBaseMap.find(Pred.getSUnit());
818      assert(VRI != VRBaseMap.end() && "Node emitted out of order - late");
819      // Find the destination physical register.
820      Register Reg;
821      for (const SDep &Succ : SU->Succs) {
822        if (Succ.isCtrl())
823          continue; // ignore chain preds
824        if (Succ.getReg()) {
825          Reg = Succ.getReg();
826          break;
827        }
828      }
829      BuildMI(*BB, InsertPos, DebugLoc(), TII->get(TargetOpcode::COPY), Reg)
830        .addReg(VRI->second);
831    } else {
832      // Copy from physical register.
833      assert(Pred.getReg() && "Unknown physical register!");
834      Register VRBase = MRI.createVirtualRegister(SU->CopyDstRC);
835      bool isNew = VRBaseMap.insert(std::make_pair(SU, VRBase)).second;
836      (void)isNew; // Silence compiler warning.
837      assert(isNew && "Node emitted out of order - early");
838      BuildMI(*BB, InsertPos, DebugLoc(), TII->get(TargetOpcode::COPY), VRBase)
839          .addReg(Pred.getReg());
840    }
841    break;
842  }
843}
844
845/// EmitSchedule - Emit the machine code in scheduled order. Return the new
846/// InsertPos and MachineBasicBlock that contains this insertion
847/// point. ScheduleDAGSDNodes holds a BB pointer for convenience, but this does
848/// not necessarily refer to returned BB. The emitter may split blocks.
849MachineBasicBlock *ScheduleDAGSDNodes::
850EmitSchedule(MachineBasicBlock::iterator &InsertPos) {
851  InstrEmitter Emitter(DAG->getTarget(), BB, InsertPos);
852  DenseMap<SDValue, Register> VRBaseMap;
853  DenseMap<SUnit*, Register> CopyVRBaseMap;
854  SmallVector<std::pair<unsigned, MachineInstr*>, 32> Orders;
855  SmallSet<Register, 8> Seen;
856  bool HasDbg = DAG->hasDebugValues();
857
858  // Emit a node, and determine where its first instruction is for debuginfo.
859  // Zero, one, or multiple instructions can be created when emitting a node.
860  auto EmitNode =
861      [&](SDNode *Node, bool IsClone, bool IsCloned,
862          DenseMap<SDValue, Register> &VRBaseMap) -> MachineInstr * {
863    // Fetch instruction prior to this, or end() if nonexistant.
864    auto GetPrevInsn = [&](MachineBasicBlock::iterator I) {
865      if (I == BB->begin())
866        return BB->end();
867      else
868        return std::prev(Emitter.getInsertPos());
869    };
870
871    MachineBasicBlock::iterator Before = GetPrevInsn(Emitter.getInsertPos());
872    Emitter.EmitNode(Node, IsClone, IsCloned, VRBaseMap);
873    MachineBasicBlock::iterator After = GetPrevInsn(Emitter.getInsertPos());
874
875    // If the iterator did not change, no instructions were inserted.
876    if (Before == After)
877      return nullptr;
878
879    MachineInstr *MI;
880    if (Before == BB->end()) {
881      // There were no prior instructions; the new ones must start at the
882      // beginning of the block.
883      MI = &Emitter.getBlock()->instr_front();
884    } else {
885      // Return first instruction after the pre-existing instructions.
886      MI = &*std::next(Before);
887    }
888
889    if (MI->isCandidateForCallSiteEntry() &&
890        DAG->getTarget().Options.EmitCallSiteInfo)
891      MF.addCallArgsForwardingRegs(MI, DAG->getCallSiteInfo(Node));
892
893    if (DAG->getNoMergeSiteInfo(Node)) {
894      MI->setFlag(MachineInstr::MIFlag::NoMerge);
895    }
896
897    if (MDNode *MD = DAG->getPCSections(Node))
898      MI->setPCSections(MF, MD);
899
900    return MI;
901  };
902
903  // If this is the first BB, emit byval parameter dbg_value's.
904  if (HasDbg && BB->getParent()->begin() == MachineFunction::iterator(BB)) {
905    SDDbgInfo::DbgIterator PDI = DAG->ByvalParmDbgBegin();
906    SDDbgInfo::DbgIterator PDE = DAG->ByvalParmDbgEnd();
907    for (; PDI != PDE; ++PDI) {
908      MachineInstr *DbgMI= Emitter.EmitDbgValue(*PDI, VRBaseMap);
909      if (DbgMI) {
910        BB->insert(InsertPos, DbgMI);
911        // We re-emit the dbg_value closer to its use, too, after instructions
912        // are emitted to the BB.
913        (*PDI)->clearIsEmitted();
914      }
915    }
916  }
917
918  for (SUnit *SU : Sequence) {
919    if (!SU) {
920      // Null SUnit* is a noop.
921      TII->insertNoop(*Emitter.getBlock(), InsertPos);
922      continue;
923    }
924
925    // For pre-regalloc scheduling, create instructions corresponding to the
926    // SDNode and any glued SDNodes and append them to the block.
927    if (!SU->getNode()) {
928      // Emit a copy.
929      EmitPhysRegCopy(SU, CopyVRBaseMap, InsertPos);
930      continue;
931    }
932
933    SmallVector<SDNode *, 4> GluedNodes;
934    for (SDNode *N = SU->getNode()->getGluedNode(); N; N = N->getGluedNode())
935      GluedNodes.push_back(N);
936    while (!GluedNodes.empty()) {
937      SDNode *N = GluedNodes.back();
938      auto NewInsn = EmitNode(N, SU->OrigNode != SU, SU->isCloned, VRBaseMap);
939      // Remember the source order of the inserted instruction.
940      if (HasDbg)
941        ProcessSourceNode(N, DAG, Emitter, VRBaseMap, Orders, Seen, NewInsn);
942
943      if (MDNode *MD = DAG->getHeapAllocSite(N))
944        if (NewInsn && NewInsn->isCall())
945          NewInsn->setHeapAllocMarker(MF, MD);
946
947      GluedNodes.pop_back();
948    }
949    auto NewInsn =
950        EmitNode(SU->getNode(), SU->OrigNode != SU, SU->isCloned, VRBaseMap);
951    // Remember the source order of the inserted instruction.
952    if (HasDbg)
953      ProcessSourceNode(SU->getNode(), DAG, Emitter, VRBaseMap, Orders, Seen,
954                        NewInsn);
955
956    if (MDNode *MD = DAG->getHeapAllocSite(SU->getNode())) {
957      if (NewInsn && NewInsn->isCall())
958        NewInsn->setHeapAllocMarker(MF, MD);
959    }
960  }
961
962  // Insert all the dbg_values which have not already been inserted in source
963  // order sequence.
964  if (HasDbg) {
965    MachineBasicBlock::iterator BBBegin = BB->getFirstNonPHI();
966
967    // Sort the source order instructions and use the order to insert debug
968    // values. Use stable_sort so that DBG_VALUEs are inserted in the same order
969    // regardless of the host's implementation fo std::sort.
970    llvm::stable_sort(Orders, less_first());
971    std::stable_sort(DAG->DbgBegin(), DAG->DbgEnd(),
972                     [](const SDDbgValue *LHS, const SDDbgValue *RHS) {
973                       return LHS->getOrder() < RHS->getOrder();
974                     });
975
976    SDDbgInfo::DbgIterator DI = DAG->DbgBegin();
977    SDDbgInfo::DbgIterator DE = DAG->DbgEnd();
978    // Now emit the rest according to source order.
979    unsigned LastOrder = 0;
980    for (unsigned i = 0, e = Orders.size(); i != e && DI != DE; ++i) {
981      unsigned Order = Orders[i].first;
982      MachineInstr *MI = Orders[i].second;
983      // Insert all SDDbgValue's whose order(s) are before "Order".
984      assert(MI);
985      for (; DI != DE; ++DI) {
986        if ((*DI)->getOrder() < LastOrder || (*DI)->getOrder() >= Order)
987          break;
988        if ((*DI)->isEmitted())
989          continue;
990
991        MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, VRBaseMap);
992        if (DbgMI) {
993          if (!LastOrder)
994            // Insert to start of the BB (after PHIs).
995            BB->insert(BBBegin, DbgMI);
996          else {
997            // Insert at the instruction, which may be in a different
998            // block, if the block was split by a custom inserter.
999            MachineBasicBlock::iterator Pos = MI;
1000            MI->getParent()->insert(Pos, DbgMI);
1001          }
1002        }
1003      }
1004      LastOrder = Order;
1005    }
1006    // Add trailing DbgValue's before the terminator. FIXME: May want to add
1007    // some of them before one or more conditional branches?
1008    SmallVector<MachineInstr*, 8> DbgMIs;
1009    for (; DI != DE; ++DI) {
1010      if ((*DI)->isEmitted())
1011        continue;
1012      assert((*DI)->getOrder() >= LastOrder &&
1013             "emitting DBG_VALUE out of order");
1014      if (MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, VRBaseMap))
1015        DbgMIs.push_back(DbgMI);
1016    }
1017
1018    MachineBasicBlock *InsertBB = Emitter.getBlock();
1019    MachineBasicBlock::iterator Pos = InsertBB->getFirstTerminator();
1020    InsertBB->insert(Pos, DbgMIs.begin(), DbgMIs.end());
1021
1022    SDDbgInfo::DbgLabelIterator DLI = DAG->DbgLabelBegin();
1023    SDDbgInfo::DbgLabelIterator DLE = DAG->DbgLabelEnd();
1024    // Now emit the rest according to source order.
1025    LastOrder = 0;
1026    for (const auto &InstrOrder : Orders) {
1027      unsigned Order = InstrOrder.first;
1028      MachineInstr *MI = InstrOrder.second;
1029      if (!MI)
1030        continue;
1031
1032      // Insert all SDDbgLabel's whose order(s) are before "Order".
1033      for (; DLI != DLE &&
1034             (*DLI)->getOrder() >= LastOrder && (*DLI)->getOrder() < Order;
1035             ++DLI) {
1036        MachineInstr *DbgMI = Emitter.EmitDbgLabel(*DLI);
1037        if (DbgMI) {
1038          if (!LastOrder)
1039            // Insert to start of the BB (after PHIs).
1040            BB->insert(BBBegin, DbgMI);
1041          else {
1042            // Insert at the instruction, which may be in a different
1043            // block, if the block was split by a custom inserter.
1044            MachineBasicBlock::iterator Pos = MI;
1045            MI->getParent()->insert(Pos, DbgMI);
1046          }
1047        }
1048      }
1049      if (DLI == DLE)
1050        break;
1051
1052      LastOrder = Order;
1053    }
1054  }
1055
1056  InsertPos = Emitter.getInsertPos();
1057  // In some cases, DBG_VALUEs might be inserted after the first terminator,
1058  // which results in an invalid MBB. If that happens, move the DBG_VALUEs
1059  // before the first terminator.
1060  MachineBasicBlock *InsertBB = Emitter.getBlock();
1061  auto FirstTerm = InsertBB->getFirstTerminator();
1062  if (FirstTerm != InsertBB->end()) {
1063    assert(!FirstTerm->isDebugValue() &&
1064           "first terminator cannot be a debug value");
1065    for (MachineInstr &MI : make_early_inc_range(
1066             make_range(std::next(FirstTerm), InsertBB->end()))) {
1067      // Only scan up to insertion point.
1068      if (&MI == InsertPos)
1069        break;
1070
1071      if (!MI.isDebugValue())
1072        continue;
1073
1074      // The DBG_VALUE was referencing a value produced by a terminator. By
1075      // moving the DBG_VALUE, the referenced value also needs invalidating.
1076      MI.getOperand(0).ChangeToRegister(0, false);
1077      MI.moveBefore(&*FirstTerm);
1078    }
1079  }
1080  return InsertBB;
1081}
1082
1083/// Return the basic block label.
1084std::string ScheduleDAGSDNodes::getDAGName() const {
1085  return "sunit-dag." + BB->getFullName();
1086}
1087