1//===- InterleavedAccessPass.cpp ------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the Interleaved Access pass, which identifies
10// interleaved memory accesses and transforms them into target specific
11// intrinsics.
12//
13// An interleaved load reads data from memory into several vectors, with
14// DE-interleaving the data on a factor. An interleaved store writes several
15// vectors to memory with RE-interleaving the data on a factor.
16//
17// As interleaved accesses are difficult to identified in CodeGen (mainly
18// because the VECTOR_SHUFFLE DAG node is quite different from the shufflevector
19// IR), we identify and transform them to intrinsics in this pass so the
20// intrinsics can be easily matched into target specific instructions later in
21// CodeGen.
22//
23// E.g. An interleaved load (Factor = 2):
24//        %wide.vec = load <8 x i32>, <8 x i32>* %ptr
25//        %v0 = shuffle <8 x i32> %wide.vec, <8 x i32> poison, <0, 2, 4, 6>
26//        %v1 = shuffle <8 x i32> %wide.vec, <8 x i32> poison, <1, 3, 5, 7>
27//
28// It could be transformed into a ld2 intrinsic in AArch64 backend or a vld2
29// intrinsic in ARM backend.
30//
31// In X86, this can be further optimized into a set of target
32// specific loads followed by an optimized sequence of shuffles.
33//
34// E.g. An interleaved store (Factor = 3):
35//        %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
36//                                    <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
37//        store <12 x i32> %i.vec, <12 x i32>* %ptr
38//
39// It could be transformed into a st3 intrinsic in AArch64 backend or a vst3
40// intrinsic in ARM backend.
41//
42// Similarly, a set of interleaved stores can be transformed into an optimized
43// sequence of shuffles followed by a set of target specific stores for X86.
44//
45//===----------------------------------------------------------------------===//
46
47#include "llvm/ADT/ArrayRef.h"
48#include "llvm/ADT/DenseMap.h"
49#include "llvm/ADT/SetVector.h"
50#include "llvm/ADT/SmallVector.h"
51#include "llvm/CodeGen/TargetLowering.h"
52#include "llvm/CodeGen/TargetPassConfig.h"
53#include "llvm/CodeGen/TargetSubtargetInfo.h"
54#include "llvm/IR/Constants.h"
55#include "llvm/IR/Dominators.h"
56#include "llvm/IR/Function.h"
57#include "llvm/IR/IRBuilder.h"
58#include "llvm/IR/InstIterator.h"
59#include "llvm/IR/Instruction.h"
60#include "llvm/IR/Instructions.h"
61#include "llvm/InitializePasses.h"
62#include "llvm/Pass.h"
63#include "llvm/Support/Casting.h"
64#include "llvm/Support/CommandLine.h"
65#include "llvm/Support/Debug.h"
66#include "llvm/Support/MathExtras.h"
67#include "llvm/Support/raw_ostream.h"
68#include "llvm/Target/TargetMachine.h"
69#include "llvm/Transforms/Utils/Local.h"
70#include <cassert>
71#include <utility>
72
73using namespace llvm;
74
75#define DEBUG_TYPE "interleaved-access"
76
77static cl::opt<bool> LowerInterleavedAccesses(
78    "lower-interleaved-accesses",
79    cl::desc("Enable lowering interleaved accesses to intrinsics"),
80    cl::init(true), cl::Hidden);
81
82namespace {
83
84class InterleavedAccess : public FunctionPass {
85public:
86  static char ID;
87
88  InterleavedAccess() : FunctionPass(ID) {
89    initializeInterleavedAccessPass(*PassRegistry::getPassRegistry());
90  }
91
92  StringRef getPassName() const override { return "Interleaved Access Pass"; }
93
94  bool runOnFunction(Function &F) override;
95
96  void getAnalysisUsage(AnalysisUsage &AU) const override {
97    AU.addRequired<DominatorTreeWrapperPass>();
98    AU.setPreservesCFG();
99  }
100
101private:
102  DominatorTree *DT = nullptr;
103  const TargetLowering *TLI = nullptr;
104
105  /// The maximum supported interleave factor.
106  unsigned MaxFactor;
107
108  /// Transform an interleaved load into target specific intrinsics.
109  bool lowerInterleavedLoad(LoadInst *LI,
110                            SmallVector<Instruction *, 32> &DeadInsts);
111
112  /// Transform an interleaved store into target specific intrinsics.
113  bool lowerInterleavedStore(StoreInst *SI,
114                             SmallVector<Instruction *, 32> &DeadInsts);
115
116  /// Returns true if the uses of an interleaved load by the
117  /// extractelement instructions in \p Extracts can be replaced by uses of the
118  /// shufflevector instructions in \p Shuffles instead. If so, the necessary
119  /// replacements are also performed.
120  bool tryReplaceExtracts(ArrayRef<ExtractElementInst *> Extracts,
121                          ArrayRef<ShuffleVectorInst *> Shuffles);
122
123  /// Given a number of shuffles of the form shuffle(binop(x,y)), convert them
124  /// to binop(shuffle(x), shuffle(y)) to allow the formation of an
125  /// interleaving load. Any newly created shuffles that operate on \p LI will
126  /// be added to \p Shuffles. Returns true, if any changes to the IR have been
127  /// made.
128  bool replaceBinOpShuffles(ArrayRef<ShuffleVectorInst *> BinOpShuffles,
129                            SmallVectorImpl<ShuffleVectorInst *> &Shuffles,
130                            LoadInst *LI);
131};
132
133} // end anonymous namespace.
134
135char InterleavedAccess::ID = 0;
136
137INITIALIZE_PASS_BEGIN(InterleavedAccess, DEBUG_TYPE,
138    "Lower interleaved memory accesses to target specific intrinsics", false,
139    false)
140INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
141INITIALIZE_PASS_END(InterleavedAccess, DEBUG_TYPE,
142    "Lower interleaved memory accesses to target specific intrinsics", false,
143    false)
144
145FunctionPass *llvm::createInterleavedAccessPass() {
146  return new InterleavedAccess();
147}
148
149/// Check if the mask is a DE-interleave mask of the given factor
150/// \p Factor like:
151///     <Index, Index+Factor, ..., Index+(NumElts-1)*Factor>
152static bool isDeInterleaveMaskOfFactor(ArrayRef<int> Mask, unsigned Factor,
153                                       unsigned &Index) {
154  // Check all potential start indices from 0 to (Factor - 1).
155  for (Index = 0; Index < Factor; Index++) {
156    unsigned i = 0;
157
158    // Check that elements are in ascending order by Factor. Ignore undef
159    // elements.
160    for (; i < Mask.size(); i++)
161      if (Mask[i] >= 0 && static_cast<unsigned>(Mask[i]) != Index + i * Factor)
162        break;
163
164    if (i == Mask.size())
165      return true;
166  }
167
168  return false;
169}
170
171/// Check if the mask is a DE-interleave mask for an interleaved load.
172///
173/// E.g. DE-interleave masks (Factor = 2) could be:
174///     <0, 2, 4, 6>    (mask of index 0 to extract even elements)
175///     <1, 3, 5, 7>    (mask of index 1 to extract odd elements)
176static bool isDeInterleaveMask(ArrayRef<int> Mask, unsigned &Factor,
177                               unsigned &Index, unsigned MaxFactor,
178                               unsigned NumLoadElements) {
179  if (Mask.size() < 2)
180    return false;
181
182  // Check potential Factors.
183  for (Factor = 2; Factor <= MaxFactor; Factor++) {
184    // Make sure we don't produce a load wider than the input load.
185    if (Mask.size() * Factor > NumLoadElements)
186      return false;
187    if (isDeInterleaveMaskOfFactor(Mask, Factor, Index))
188      return true;
189  }
190
191  return false;
192}
193
194/// Check if the mask can be used in an interleaved store.
195//
196/// It checks for a more general pattern than the RE-interleave mask.
197/// I.e. <x, y, ... z, x+1, y+1, ...z+1, x+2, y+2, ...z+2, ...>
198/// E.g. For a Factor of 2 (LaneLen=4): <4, 32, 5, 33, 6, 34, 7, 35>
199/// E.g. For a Factor of 3 (LaneLen=4): <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
200/// E.g. For a Factor of 4 (LaneLen=2): <8, 2, 12, 4, 9, 3, 13, 5>
201///
202/// The particular case of an RE-interleave mask is:
203/// I.e. <0, LaneLen, ... , LaneLen*(Factor - 1), 1, LaneLen + 1, ...>
204/// E.g. For a Factor of 2 (LaneLen=4): <0, 4, 1, 5, 2, 6, 3, 7>
205static bool isReInterleaveMask(ArrayRef<int> Mask, unsigned &Factor,
206                               unsigned MaxFactor, unsigned OpNumElts) {
207  unsigned NumElts = Mask.size();
208  if (NumElts < 4)
209    return false;
210
211  // Check potential Factors.
212  for (Factor = 2; Factor <= MaxFactor; Factor++) {
213    if (NumElts % Factor)
214      continue;
215
216    unsigned LaneLen = NumElts / Factor;
217    if (!isPowerOf2_32(LaneLen))
218      continue;
219
220    // Check whether each element matches the general interleaved rule.
221    // Ignore undef elements, as long as the defined elements match the rule.
222    // Outer loop processes all factors (x, y, z in the above example)
223    unsigned I = 0, J;
224    for (; I < Factor; I++) {
225      unsigned SavedLaneValue;
226      unsigned SavedNoUndefs = 0;
227
228      // Inner loop processes consecutive accesses (x, x+1... in the example)
229      for (J = 0; J < LaneLen - 1; J++) {
230        // Lane computes x's position in the Mask
231        unsigned Lane = J * Factor + I;
232        unsigned NextLane = Lane + Factor;
233        int LaneValue = Mask[Lane];
234        int NextLaneValue = Mask[NextLane];
235
236        // If both are defined, values must be sequential
237        if (LaneValue >= 0 && NextLaneValue >= 0 &&
238            LaneValue + 1 != NextLaneValue)
239          break;
240
241        // If the next value is undef, save the current one as reference
242        if (LaneValue >= 0 && NextLaneValue < 0) {
243          SavedLaneValue = LaneValue;
244          SavedNoUndefs = 1;
245        }
246
247        // Undefs are allowed, but defined elements must still be consecutive:
248        // i.e.: x,..., undef,..., x + 2,..., undef,..., undef,..., x + 5, ....
249        // Verify this by storing the last non-undef followed by an undef
250        // Check that following non-undef masks are incremented with the
251        // corresponding distance.
252        if (SavedNoUndefs > 0 && LaneValue < 0) {
253          SavedNoUndefs++;
254          if (NextLaneValue >= 0 &&
255              SavedLaneValue + SavedNoUndefs != (unsigned)NextLaneValue)
256            break;
257        }
258      }
259
260      if (J < LaneLen - 1)
261        break;
262
263      int StartMask = 0;
264      if (Mask[I] >= 0) {
265        // Check that the start of the I range (J=0) is greater than 0
266        StartMask = Mask[I];
267      } else if (Mask[(LaneLen - 1) * Factor + I] >= 0) {
268        // StartMask defined by the last value in lane
269        StartMask = Mask[(LaneLen - 1) * Factor + I] - J;
270      } else if (SavedNoUndefs > 0) {
271        // StartMask defined by some non-zero value in the j loop
272        StartMask = SavedLaneValue - (LaneLen - 1 - SavedNoUndefs);
273      }
274      // else StartMask remains set to 0, i.e. all elements are undefs
275
276      if (StartMask < 0)
277        break;
278      // We must stay within the vectors; This case can happen with undefs.
279      if (StartMask + LaneLen > OpNumElts*2)
280        break;
281    }
282
283    // Found an interleaved mask of current factor.
284    if (I == Factor)
285      return true;
286  }
287
288  return false;
289}
290
291bool InterleavedAccess::lowerInterleavedLoad(
292    LoadInst *LI, SmallVector<Instruction *, 32> &DeadInsts) {
293  if (!LI->isSimple() || isa<ScalableVectorType>(LI->getType()))
294    return false;
295
296  // Check if all users of this load are shufflevectors. If we encounter any
297  // users that are extractelement instructions or binary operators, we save
298  // them to later check if they can be modified to extract from one of the
299  // shufflevectors instead of the load.
300
301  SmallVector<ShuffleVectorInst *, 4> Shuffles;
302  SmallVector<ExtractElementInst *, 4> Extracts;
303  // BinOpShuffles need to be handled a single time in case both operands of the
304  // binop are the same load.
305  SmallSetVector<ShuffleVectorInst *, 4> BinOpShuffles;
306
307  for (auto *User : LI->users()) {
308    auto *Extract = dyn_cast<ExtractElementInst>(User);
309    if (Extract && isa<ConstantInt>(Extract->getIndexOperand())) {
310      Extracts.push_back(Extract);
311      continue;
312    }
313    if (auto *BI = dyn_cast<BinaryOperator>(User)) {
314      if (all_of(BI->users(),
315                 [](auto *U) { return isa<ShuffleVectorInst>(U); })) {
316        for (auto *SVI : BI->users())
317          BinOpShuffles.insert(cast<ShuffleVectorInst>(SVI));
318        continue;
319      }
320    }
321    auto *SVI = dyn_cast<ShuffleVectorInst>(User);
322    if (!SVI || !isa<UndefValue>(SVI->getOperand(1)))
323      return false;
324
325    Shuffles.push_back(SVI);
326  }
327
328  if (Shuffles.empty() && BinOpShuffles.empty())
329    return false;
330
331  unsigned Factor, Index;
332
333  unsigned NumLoadElements =
334      cast<FixedVectorType>(LI->getType())->getNumElements();
335  auto *FirstSVI = Shuffles.size() > 0 ? Shuffles[0] : BinOpShuffles[0];
336  // Check if the first shufflevector is DE-interleave shuffle.
337  if (!isDeInterleaveMask(FirstSVI->getShuffleMask(), Factor, Index, MaxFactor,
338                          NumLoadElements))
339    return false;
340
341  // Holds the corresponding index for each DE-interleave shuffle.
342  SmallVector<unsigned, 4> Indices;
343
344  Type *VecTy = FirstSVI->getType();
345
346  // Check if other shufflevectors are also DE-interleaved of the same type
347  // and factor as the first shufflevector.
348  for (auto *Shuffle : Shuffles) {
349    if (Shuffle->getType() != VecTy)
350      return false;
351    if (!isDeInterleaveMaskOfFactor(Shuffle->getShuffleMask(), Factor,
352                                    Index))
353      return false;
354
355    assert(Shuffle->getShuffleMask().size() <= NumLoadElements);
356    Indices.push_back(Index);
357  }
358  for (auto *Shuffle : BinOpShuffles) {
359    if (Shuffle->getType() != VecTy)
360      return false;
361    if (!isDeInterleaveMaskOfFactor(Shuffle->getShuffleMask(), Factor,
362                                    Index))
363      return false;
364
365    assert(Shuffle->getShuffleMask().size() <= NumLoadElements);
366
367    if (cast<Instruction>(Shuffle->getOperand(0))->getOperand(0) == LI)
368      Indices.push_back(Index);
369    if (cast<Instruction>(Shuffle->getOperand(0))->getOperand(1) == LI)
370      Indices.push_back(Index);
371  }
372
373  // Try and modify users of the load that are extractelement instructions to
374  // use the shufflevector instructions instead of the load.
375  if (!tryReplaceExtracts(Extracts, Shuffles))
376    return false;
377
378  bool BinOpShuffleChanged =
379      replaceBinOpShuffles(BinOpShuffles.getArrayRef(), Shuffles, LI);
380
381  LLVM_DEBUG(dbgs() << "IA: Found an interleaved load: " << *LI << "\n");
382
383  // Try to create target specific intrinsics to replace the load and shuffles.
384  if (!TLI->lowerInterleavedLoad(LI, Shuffles, Indices, Factor)) {
385    // If Extracts is not empty, tryReplaceExtracts made changes earlier.
386    return !Extracts.empty() || BinOpShuffleChanged;
387  }
388
389  append_range(DeadInsts, Shuffles);
390
391  DeadInsts.push_back(LI);
392  return true;
393}
394
395bool InterleavedAccess::replaceBinOpShuffles(
396    ArrayRef<ShuffleVectorInst *> BinOpShuffles,
397    SmallVectorImpl<ShuffleVectorInst *> &Shuffles, LoadInst *LI) {
398  for (auto *SVI : BinOpShuffles) {
399    BinaryOperator *BI = cast<BinaryOperator>(SVI->getOperand(0));
400    Type *BIOp0Ty = BI->getOperand(0)->getType();
401    ArrayRef<int> Mask = SVI->getShuffleMask();
402    assert(all_of(Mask, [&](int Idx) {
403      return Idx < (int)cast<FixedVectorType>(BIOp0Ty)->getNumElements();
404    }));
405
406    auto *NewSVI1 =
407        new ShuffleVectorInst(BI->getOperand(0), PoisonValue::get(BIOp0Ty),
408                              Mask, SVI->getName(), SVI);
409    auto *NewSVI2 = new ShuffleVectorInst(
410        BI->getOperand(1), PoisonValue::get(BI->getOperand(1)->getType()), Mask,
411        SVI->getName(), SVI);
412    BinaryOperator *NewBI = BinaryOperator::CreateWithCopiedFlags(
413        BI->getOpcode(), NewSVI1, NewSVI2, BI, BI->getName(), SVI);
414    SVI->replaceAllUsesWith(NewBI);
415    LLVM_DEBUG(dbgs() << "  Replaced: " << *BI << "\n    And   : " << *SVI
416                      << "\n  With    : " << *NewSVI1 << "\n    And   : "
417                      << *NewSVI2 << "\n    And   : " << *NewBI << "\n");
418    RecursivelyDeleteTriviallyDeadInstructions(SVI);
419    if (NewSVI1->getOperand(0) == LI)
420      Shuffles.push_back(NewSVI1);
421    if (NewSVI2->getOperand(0) == LI)
422      Shuffles.push_back(NewSVI2);
423  }
424
425  return !BinOpShuffles.empty();
426}
427
428bool InterleavedAccess::tryReplaceExtracts(
429    ArrayRef<ExtractElementInst *> Extracts,
430    ArrayRef<ShuffleVectorInst *> Shuffles) {
431  // If there aren't any extractelement instructions to modify, there's nothing
432  // to do.
433  if (Extracts.empty())
434    return true;
435
436  // Maps extractelement instructions to vector-index pairs. The extractlement
437  // instructions will be modified to use the new vector and index operands.
438  DenseMap<ExtractElementInst *, std::pair<Value *, int>> ReplacementMap;
439
440  for (auto *Extract : Extracts) {
441    // The vector index that is extracted.
442    auto *IndexOperand = cast<ConstantInt>(Extract->getIndexOperand());
443    auto Index = IndexOperand->getSExtValue();
444
445    // Look for a suitable shufflevector instruction. The goal is to modify the
446    // extractelement instruction (which uses an interleaved load) to use one
447    // of the shufflevector instructions instead of the load.
448    for (auto *Shuffle : Shuffles) {
449      // If the shufflevector instruction doesn't dominate the extract, we
450      // can't create a use of it.
451      if (!DT->dominates(Shuffle, Extract))
452        continue;
453
454      // Inspect the indices of the shufflevector instruction. If the shuffle
455      // selects the same index that is extracted, we can modify the
456      // extractelement instruction.
457      SmallVector<int, 4> Indices;
458      Shuffle->getShuffleMask(Indices);
459      for (unsigned I = 0; I < Indices.size(); ++I)
460        if (Indices[I] == Index) {
461          assert(Extract->getOperand(0) == Shuffle->getOperand(0) &&
462                 "Vector operations do not match");
463          ReplacementMap[Extract] = std::make_pair(Shuffle, I);
464          break;
465        }
466
467      // If we found a suitable shufflevector instruction, stop looking.
468      if (ReplacementMap.count(Extract))
469        break;
470    }
471
472    // If we did not find a suitable shufflevector instruction, the
473    // extractelement instruction cannot be modified, so we must give up.
474    if (!ReplacementMap.count(Extract))
475      return false;
476  }
477
478  // Finally, perform the replacements.
479  IRBuilder<> Builder(Extracts[0]->getContext());
480  for (auto &Replacement : ReplacementMap) {
481    auto *Extract = Replacement.first;
482    auto *Vector = Replacement.second.first;
483    auto Index = Replacement.second.second;
484    Builder.SetInsertPoint(Extract);
485    Extract->replaceAllUsesWith(Builder.CreateExtractElement(Vector, Index));
486    Extract->eraseFromParent();
487  }
488
489  return true;
490}
491
492bool InterleavedAccess::lowerInterleavedStore(
493    StoreInst *SI, SmallVector<Instruction *, 32> &DeadInsts) {
494  if (!SI->isSimple())
495    return false;
496
497  auto *SVI = dyn_cast<ShuffleVectorInst>(SI->getValueOperand());
498  if (!SVI || !SVI->hasOneUse() || isa<ScalableVectorType>(SVI->getType()))
499    return false;
500
501  // Check if the shufflevector is RE-interleave shuffle.
502  unsigned Factor;
503  unsigned OpNumElts =
504      cast<FixedVectorType>(SVI->getOperand(0)->getType())->getNumElements();
505  if (!isReInterleaveMask(SVI->getShuffleMask(), Factor, MaxFactor, OpNumElts))
506    return false;
507
508  LLVM_DEBUG(dbgs() << "IA: Found an interleaved store: " << *SI << "\n");
509
510  // Try to create target specific intrinsics to replace the store and shuffle.
511  if (!TLI->lowerInterleavedStore(SI, SVI, Factor))
512    return false;
513
514  // Already have a new target specific interleaved store. Erase the old store.
515  DeadInsts.push_back(SI);
516  DeadInsts.push_back(SVI);
517  return true;
518}
519
520bool InterleavedAccess::runOnFunction(Function &F) {
521  auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
522  if (!TPC || !LowerInterleavedAccesses)
523    return false;
524
525  LLVM_DEBUG(dbgs() << "*** " << getPassName() << ": " << F.getName() << "\n");
526
527  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
528  auto &TM = TPC->getTM<TargetMachine>();
529  TLI = TM.getSubtargetImpl(F)->getTargetLowering();
530  MaxFactor = TLI->getMaxSupportedInterleaveFactor();
531
532  // Holds dead instructions that will be erased later.
533  SmallVector<Instruction *, 32> DeadInsts;
534  bool Changed = false;
535
536  for (auto &I : instructions(F)) {
537    if (auto *LI = dyn_cast<LoadInst>(&I))
538      Changed |= lowerInterleavedLoad(LI, DeadInsts);
539
540    if (auto *SI = dyn_cast<StoreInst>(&I))
541      Changed |= lowerInterleavedStore(SI, DeadInsts);
542  }
543
544  for (auto *I : DeadInsts)
545    I->eraseFromParent();
546
547  return Changed;
548}
549