1//===-- DependenceAnalysis.cpp - DA Implementation --------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// DependenceAnalysis is an LLVM pass that analyses dependences between memory
10// accesses. Currently, it is an (incomplete) implementation of the approach
11// described in
12//
13//            Practical Dependence Testing
14//            Goff, Kennedy, Tseng
15//            PLDI 1991
16//
17// There's a single entry point that analyzes the dependence between a pair
18// of memory references in a function, returning either NULL, for no dependence,
19// or a more-or-less detailed description of the dependence between them.
20//
21// Currently, the implementation cannot propagate constraints between
22// coupled RDIV subscripts and lacks a multi-subscript MIV test.
23// Both of these are conservative weaknesses;
24// that is, not a source of correctness problems.
25//
26// Since Clang linearizes some array subscripts, the dependence
27// analysis is using SCEV->delinearize to recover the representation of multiple
28// subscripts, and thus avoid the more expensive and less precise MIV tests. The
29// delinearization is controlled by the flag -da-delinearize.
30//
31// We should pay some careful attention to the possibility of integer overflow
32// in the implementation of the various tests. This could happen with Add,
33// Subtract, or Multiply, with both APInt's and SCEV's.
34//
35// Some non-linear subscript pairs can be handled by the GCD test
36// (and perhaps other tests).
37// Should explore how often these things occur.
38//
39// Finally, it seems like certain test cases expose weaknesses in the SCEV
40// simplification, especially in the handling of sign and zero extensions.
41// It could be useful to spend time exploring these.
42//
43// Please note that this is work in progress and the interface is subject to
44// change.
45//
46//===----------------------------------------------------------------------===//
47//                                                                            //
48//                   In memory of Ken Kennedy, 1945 - 2007                    //
49//                                                                            //
50//===----------------------------------------------------------------------===//
51
52#include "llvm/Analysis/DependenceAnalysis.h"
53#include "llvm/ADT/Statistic.h"
54#include "llvm/Analysis/AliasAnalysis.h"
55#include "llvm/Analysis/Delinearization.h"
56#include "llvm/Analysis/LoopInfo.h"
57#include "llvm/Analysis/ScalarEvolution.h"
58#include "llvm/Analysis/ScalarEvolutionExpressions.h"
59#include "llvm/Analysis/ValueTracking.h"
60#include "llvm/IR/InstIterator.h"
61#include "llvm/IR/Module.h"
62#include "llvm/InitializePasses.h"
63#include "llvm/Support/CommandLine.h"
64#include "llvm/Support/Debug.h"
65#include "llvm/Support/ErrorHandling.h"
66#include "llvm/Support/raw_ostream.h"
67
68using namespace llvm;
69
70#define DEBUG_TYPE "da"
71
72//===----------------------------------------------------------------------===//
73// statistics
74
75STATISTIC(TotalArrayPairs, "Array pairs tested");
76STATISTIC(SeparableSubscriptPairs, "Separable subscript pairs");
77STATISTIC(CoupledSubscriptPairs, "Coupled subscript pairs");
78STATISTIC(NonlinearSubscriptPairs, "Nonlinear subscript pairs");
79STATISTIC(ZIVapplications, "ZIV applications");
80STATISTIC(ZIVindependence, "ZIV independence");
81STATISTIC(StrongSIVapplications, "Strong SIV applications");
82STATISTIC(StrongSIVsuccesses, "Strong SIV successes");
83STATISTIC(StrongSIVindependence, "Strong SIV independence");
84STATISTIC(WeakCrossingSIVapplications, "Weak-Crossing SIV applications");
85STATISTIC(WeakCrossingSIVsuccesses, "Weak-Crossing SIV successes");
86STATISTIC(WeakCrossingSIVindependence, "Weak-Crossing SIV independence");
87STATISTIC(ExactSIVapplications, "Exact SIV applications");
88STATISTIC(ExactSIVsuccesses, "Exact SIV successes");
89STATISTIC(ExactSIVindependence, "Exact SIV independence");
90STATISTIC(WeakZeroSIVapplications, "Weak-Zero SIV applications");
91STATISTIC(WeakZeroSIVsuccesses, "Weak-Zero SIV successes");
92STATISTIC(WeakZeroSIVindependence, "Weak-Zero SIV independence");
93STATISTIC(ExactRDIVapplications, "Exact RDIV applications");
94STATISTIC(ExactRDIVindependence, "Exact RDIV independence");
95STATISTIC(SymbolicRDIVapplications, "Symbolic RDIV applications");
96STATISTIC(SymbolicRDIVindependence, "Symbolic RDIV independence");
97STATISTIC(DeltaApplications, "Delta applications");
98STATISTIC(DeltaSuccesses, "Delta successes");
99STATISTIC(DeltaIndependence, "Delta independence");
100STATISTIC(DeltaPropagations, "Delta propagations");
101STATISTIC(GCDapplications, "GCD applications");
102STATISTIC(GCDsuccesses, "GCD successes");
103STATISTIC(GCDindependence, "GCD independence");
104STATISTIC(BanerjeeApplications, "Banerjee applications");
105STATISTIC(BanerjeeIndependence, "Banerjee independence");
106STATISTIC(BanerjeeSuccesses, "Banerjee successes");
107
108static cl::opt<bool>
109    Delinearize("da-delinearize", cl::init(true), cl::Hidden,
110                cl::desc("Try to delinearize array references."));
111static cl::opt<bool> DisableDelinearizationChecks(
112    "da-disable-delinearization-checks", cl::Hidden,
113    cl::desc(
114        "Disable checks that try to statically verify validity of "
115        "delinearized subscripts. Enabling this option may result in incorrect "
116        "dependence vectors for languages that allow the subscript of one "
117        "dimension to underflow or overflow into another dimension."));
118
119static cl::opt<unsigned> MIVMaxLevelThreshold(
120    "da-miv-max-level-threshold", cl::init(7), cl::Hidden,
121    cl::desc("Maximum depth allowed for the recursive algorithm used to "
122             "explore MIV direction vectors."));
123
124//===----------------------------------------------------------------------===//
125// basics
126
127DependenceAnalysis::Result
128DependenceAnalysis::run(Function &F, FunctionAnalysisManager &FAM) {
129  auto &AA = FAM.getResult<AAManager>(F);
130  auto &SE = FAM.getResult<ScalarEvolutionAnalysis>(F);
131  auto &LI = FAM.getResult<LoopAnalysis>(F);
132  return DependenceInfo(&F, &AA, &SE, &LI);
133}
134
135AnalysisKey DependenceAnalysis::Key;
136
137INITIALIZE_PASS_BEGIN(DependenceAnalysisWrapperPass, "da",
138                      "Dependence Analysis", true, true)
139INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
140INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
141INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
142INITIALIZE_PASS_END(DependenceAnalysisWrapperPass, "da", "Dependence Analysis",
143                    true, true)
144
145char DependenceAnalysisWrapperPass::ID = 0;
146
147DependenceAnalysisWrapperPass::DependenceAnalysisWrapperPass()
148    : FunctionPass(ID) {
149  initializeDependenceAnalysisWrapperPassPass(*PassRegistry::getPassRegistry());
150}
151
152FunctionPass *llvm::createDependenceAnalysisWrapperPass() {
153  return new DependenceAnalysisWrapperPass();
154}
155
156bool DependenceAnalysisWrapperPass::runOnFunction(Function &F) {
157  auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
158  auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
159  auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
160  info.reset(new DependenceInfo(&F, &AA, &SE, &LI));
161  return false;
162}
163
164DependenceInfo &DependenceAnalysisWrapperPass::getDI() const { return *info; }
165
166void DependenceAnalysisWrapperPass::releaseMemory() { info.reset(); }
167
168void DependenceAnalysisWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
169  AU.setPreservesAll();
170  AU.addRequiredTransitive<AAResultsWrapperPass>();
171  AU.addRequiredTransitive<ScalarEvolutionWrapperPass>();
172  AU.addRequiredTransitive<LoopInfoWrapperPass>();
173}
174
175// Used to test the dependence analyzer.
176// Looks through the function, noting instructions that may access memory.
177// Calls depends() on every possible pair and prints out the result.
178// Ignores all other instructions.
179static void dumpExampleDependence(raw_ostream &OS, DependenceInfo *DA,
180                                  ScalarEvolution &SE, bool NormalizeResults) {
181  auto *F = DA->getFunction();
182  for (inst_iterator SrcI = inst_begin(F), SrcE = inst_end(F); SrcI != SrcE;
183       ++SrcI) {
184    if (SrcI->mayReadOrWriteMemory()) {
185      for (inst_iterator DstI = SrcI, DstE = inst_end(F);
186           DstI != DstE; ++DstI) {
187        if (DstI->mayReadOrWriteMemory()) {
188          OS << "Src:" << *SrcI << " --> Dst:" << *DstI << "\n";
189          OS << "  da analyze - ";
190          if (auto D = DA->depends(&*SrcI, &*DstI, true)) {
191            // Normalize negative direction vectors if required by clients.
192            if (NormalizeResults && D->normalize(&SE))
193                OS << "normalized - ";
194            D->dump(OS);
195            for (unsigned Level = 1; Level <= D->getLevels(); Level++) {
196              if (D->isSplitable(Level)) {
197                OS << "  da analyze - split level = " << Level;
198                OS << ", iteration = " << *DA->getSplitIteration(*D, Level);
199                OS << "!\n";
200              }
201            }
202          }
203          else
204            OS << "none!\n";
205        }
206      }
207    }
208  }
209}
210
211void DependenceAnalysisWrapperPass::print(raw_ostream &OS,
212                                          const Module *) const {
213  dumpExampleDependence(OS, info.get(),
214                        getAnalysis<ScalarEvolutionWrapperPass>().getSE(), false);
215}
216
217PreservedAnalyses
218DependenceAnalysisPrinterPass::run(Function &F, FunctionAnalysisManager &FAM) {
219  OS << "'Dependence Analysis' for function '" << F.getName() << "':\n";
220  dumpExampleDependence(OS, &FAM.getResult<DependenceAnalysis>(F),
221                        FAM.getResult<ScalarEvolutionAnalysis>(F),
222                        NormalizeResults);
223  return PreservedAnalyses::all();
224}
225
226//===----------------------------------------------------------------------===//
227// Dependence methods
228
229// Returns true if this is an input dependence.
230bool Dependence::isInput() const {
231  return Src->mayReadFromMemory() && Dst->mayReadFromMemory();
232}
233
234
235// Returns true if this is an output dependence.
236bool Dependence::isOutput() const {
237  return Src->mayWriteToMemory() && Dst->mayWriteToMemory();
238}
239
240
241// Returns true if this is an flow (aka true)  dependence.
242bool Dependence::isFlow() const {
243  return Src->mayWriteToMemory() && Dst->mayReadFromMemory();
244}
245
246
247// Returns true if this is an anti dependence.
248bool Dependence::isAnti() const {
249  return Src->mayReadFromMemory() && Dst->mayWriteToMemory();
250}
251
252
253// Returns true if a particular level is scalar; that is,
254// if no subscript in the source or destination mention the induction
255// variable associated with the loop at this level.
256// Leave this out of line, so it will serve as a virtual method anchor
257bool Dependence::isScalar(unsigned level) const {
258  return false;
259}
260
261
262//===----------------------------------------------------------------------===//
263// FullDependence methods
264
265FullDependence::FullDependence(Instruction *Source, Instruction *Destination,
266                               bool PossiblyLoopIndependent,
267                               unsigned CommonLevels)
268    : Dependence(Source, Destination), Levels(CommonLevels),
269      LoopIndependent(PossiblyLoopIndependent) {
270  Consistent = true;
271  if (CommonLevels)
272    DV = std::make_unique<DVEntry[]>(CommonLevels);
273}
274
275// FIXME: in some cases the meaning of a negative direction vector
276// may not be straightforward, e.g.,
277// for (int i = 0; i < 32; ++i) {
278//   Src:    A[i] = ...;
279//   Dst:    use(A[31 - i]);
280// }
281// The dependency is
282//   flow { Src[i] -> Dst[31 - i] : when i >= 16 } and
283//   anti { Dst[i] -> Src[31 - i] : when i < 16 },
284// -- hence a [<>].
285// As long as a dependence result contains '>' ('<>', '<=>', "*"), it
286// means that a reversed/normalized dependence needs to be considered
287// as well. Nevertheless, current isDirectionNegative() only returns
288// true with a '>' or '>=' dependency for ease of canonicalizing the
289// dependency vector, since the reverse of '<>', '<=>' and "*" is itself.
290bool FullDependence::isDirectionNegative() const {
291  for (unsigned Level = 1; Level <= Levels; ++Level) {
292    unsigned char Direction = DV[Level - 1].Direction;
293    if (Direction == Dependence::DVEntry::EQ)
294      continue;
295    if (Direction == Dependence::DVEntry::GT ||
296        Direction == Dependence::DVEntry::GE)
297      return true;
298    return false;
299  }
300  return false;
301}
302
303bool FullDependence::normalize(ScalarEvolution *SE) {
304  if (!isDirectionNegative())
305    return false;
306
307  LLVM_DEBUG(dbgs() << "Before normalizing negative direction vectors:\n";
308             dump(dbgs()););
309  std::swap(Src, Dst);
310  for (unsigned Level = 1; Level <= Levels; ++Level) {
311    unsigned char Direction = DV[Level - 1].Direction;
312    // Reverse the direction vector, this means LT becomes GT
313    // and GT becomes LT.
314    unsigned char RevDirection = Direction & Dependence::DVEntry::EQ;
315    if (Direction & Dependence::DVEntry::LT)
316      RevDirection |= Dependence::DVEntry::GT;
317    if (Direction & Dependence::DVEntry::GT)
318      RevDirection |= Dependence::DVEntry::LT;
319    DV[Level - 1].Direction = RevDirection;
320    // Reverse the dependence distance as well.
321    if (DV[Level - 1].Distance != nullptr)
322      DV[Level - 1].Distance =
323          SE->getNegativeSCEV(DV[Level - 1].Distance);
324  }
325
326  LLVM_DEBUG(dbgs() << "After normalizing negative direction vectors:\n";
327             dump(dbgs()););
328  return true;
329}
330
331// The rest are simple getters that hide the implementation.
332
333// getDirection - Returns the direction associated with a particular level.
334unsigned FullDependence::getDirection(unsigned Level) const {
335  assert(0 < Level && Level <= Levels && "Level out of range");
336  return DV[Level - 1].Direction;
337}
338
339
340// Returns the distance (or NULL) associated with a particular level.
341const SCEV *FullDependence::getDistance(unsigned Level) const {
342  assert(0 < Level && Level <= Levels && "Level out of range");
343  return DV[Level - 1].Distance;
344}
345
346
347// Returns true if a particular level is scalar; that is,
348// if no subscript in the source or destination mention the induction
349// variable associated with the loop at this level.
350bool FullDependence::isScalar(unsigned Level) const {
351  assert(0 < Level && Level <= Levels && "Level out of range");
352  return DV[Level - 1].Scalar;
353}
354
355
356// Returns true if peeling the first iteration from this loop
357// will break this dependence.
358bool FullDependence::isPeelFirst(unsigned Level) const {
359  assert(0 < Level && Level <= Levels && "Level out of range");
360  return DV[Level - 1].PeelFirst;
361}
362
363
364// Returns true if peeling the last iteration from this loop
365// will break this dependence.
366bool FullDependence::isPeelLast(unsigned Level) const {
367  assert(0 < Level && Level <= Levels && "Level out of range");
368  return DV[Level - 1].PeelLast;
369}
370
371
372// Returns true if splitting this loop will break the dependence.
373bool FullDependence::isSplitable(unsigned Level) const {
374  assert(0 < Level && Level <= Levels && "Level out of range");
375  return DV[Level - 1].Splitable;
376}
377
378
379//===----------------------------------------------------------------------===//
380// DependenceInfo::Constraint methods
381
382// If constraint is a point <X, Y>, returns X.
383// Otherwise assert.
384const SCEV *DependenceInfo::Constraint::getX() const {
385  assert(Kind == Point && "Kind should be Point");
386  return A;
387}
388
389
390// If constraint is a point <X, Y>, returns Y.
391// Otherwise assert.
392const SCEV *DependenceInfo::Constraint::getY() const {
393  assert(Kind == Point && "Kind should be Point");
394  return B;
395}
396
397
398// If constraint is a line AX + BY = C, returns A.
399// Otherwise assert.
400const SCEV *DependenceInfo::Constraint::getA() const {
401  assert((Kind == Line || Kind == Distance) &&
402         "Kind should be Line (or Distance)");
403  return A;
404}
405
406
407// If constraint is a line AX + BY = C, returns B.
408// Otherwise assert.
409const SCEV *DependenceInfo::Constraint::getB() const {
410  assert((Kind == Line || Kind == Distance) &&
411         "Kind should be Line (or Distance)");
412  return B;
413}
414
415
416// If constraint is a line AX + BY = C, returns C.
417// Otherwise assert.
418const SCEV *DependenceInfo::Constraint::getC() const {
419  assert((Kind == Line || Kind == Distance) &&
420         "Kind should be Line (or Distance)");
421  return C;
422}
423
424
425// If constraint is a distance, returns D.
426// Otherwise assert.
427const SCEV *DependenceInfo::Constraint::getD() const {
428  assert(Kind == Distance && "Kind should be Distance");
429  return SE->getNegativeSCEV(C);
430}
431
432
433// Returns the loop associated with this constraint.
434const Loop *DependenceInfo::Constraint::getAssociatedLoop() const {
435  assert((Kind == Distance || Kind == Line || Kind == Point) &&
436         "Kind should be Distance, Line, or Point");
437  return AssociatedLoop;
438}
439
440void DependenceInfo::Constraint::setPoint(const SCEV *X, const SCEV *Y,
441                                          const Loop *CurLoop) {
442  Kind = Point;
443  A = X;
444  B = Y;
445  AssociatedLoop = CurLoop;
446}
447
448void DependenceInfo::Constraint::setLine(const SCEV *AA, const SCEV *BB,
449                                         const SCEV *CC, const Loop *CurLoop) {
450  Kind = Line;
451  A = AA;
452  B = BB;
453  C = CC;
454  AssociatedLoop = CurLoop;
455}
456
457void DependenceInfo::Constraint::setDistance(const SCEV *D,
458                                             const Loop *CurLoop) {
459  Kind = Distance;
460  A = SE->getOne(D->getType());
461  B = SE->getNegativeSCEV(A);
462  C = SE->getNegativeSCEV(D);
463  AssociatedLoop = CurLoop;
464}
465
466void DependenceInfo::Constraint::setEmpty() { Kind = Empty; }
467
468void DependenceInfo::Constraint::setAny(ScalarEvolution *NewSE) {
469  SE = NewSE;
470  Kind = Any;
471}
472
473#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
474// For debugging purposes. Dumps the constraint out to OS.
475LLVM_DUMP_METHOD void DependenceInfo::Constraint::dump(raw_ostream &OS) const {
476  if (isEmpty())
477    OS << " Empty\n";
478  else if (isAny())
479    OS << " Any\n";
480  else if (isPoint())
481    OS << " Point is <" << *getX() << ", " << *getY() << ">\n";
482  else if (isDistance())
483    OS << " Distance is " << *getD() <<
484      " (" << *getA() << "*X + " << *getB() << "*Y = " << *getC() << ")\n";
485  else if (isLine())
486    OS << " Line is " << *getA() << "*X + " <<
487      *getB() << "*Y = " << *getC() << "\n";
488  else
489    llvm_unreachable("unknown constraint type in Constraint::dump");
490}
491#endif
492
493
494// Updates X with the intersection
495// of the Constraints X and Y. Returns true if X has changed.
496// Corresponds to Figure 4 from the paper
497//
498//            Practical Dependence Testing
499//            Goff, Kennedy, Tseng
500//            PLDI 1991
501bool DependenceInfo::intersectConstraints(Constraint *X, const Constraint *Y) {
502  ++DeltaApplications;
503  LLVM_DEBUG(dbgs() << "\tintersect constraints\n");
504  LLVM_DEBUG(dbgs() << "\t    X ="; X->dump(dbgs()));
505  LLVM_DEBUG(dbgs() << "\t    Y ="; Y->dump(dbgs()));
506  assert(!Y->isPoint() && "Y must not be a Point");
507  if (X->isAny()) {
508    if (Y->isAny())
509      return false;
510    *X = *Y;
511    return true;
512  }
513  if (X->isEmpty())
514    return false;
515  if (Y->isEmpty()) {
516    X->setEmpty();
517    return true;
518  }
519
520  if (X->isDistance() && Y->isDistance()) {
521    LLVM_DEBUG(dbgs() << "\t    intersect 2 distances\n");
522    if (isKnownPredicate(CmpInst::ICMP_EQ, X->getD(), Y->getD()))
523      return false;
524    if (isKnownPredicate(CmpInst::ICMP_NE, X->getD(), Y->getD())) {
525      X->setEmpty();
526      ++DeltaSuccesses;
527      return true;
528    }
529    // Hmmm, interesting situation.
530    // I guess if either is constant, keep it and ignore the other.
531    if (isa<SCEVConstant>(Y->getD())) {
532      *X = *Y;
533      return true;
534    }
535    return false;
536  }
537
538  // At this point, the pseudo-code in Figure 4 of the paper
539  // checks if (X->isPoint() && Y->isPoint()).
540  // This case can't occur in our implementation,
541  // since a Point can only arise as the result of intersecting
542  // two Line constraints, and the right-hand value, Y, is never
543  // the result of an intersection.
544  assert(!(X->isPoint() && Y->isPoint()) &&
545         "We shouldn't ever see X->isPoint() && Y->isPoint()");
546
547  if (X->isLine() && Y->isLine()) {
548    LLVM_DEBUG(dbgs() << "\t    intersect 2 lines\n");
549    const SCEV *Prod1 = SE->getMulExpr(X->getA(), Y->getB());
550    const SCEV *Prod2 = SE->getMulExpr(X->getB(), Y->getA());
551    if (isKnownPredicate(CmpInst::ICMP_EQ, Prod1, Prod2)) {
552      // slopes are equal, so lines are parallel
553      LLVM_DEBUG(dbgs() << "\t\tsame slope\n");
554      Prod1 = SE->getMulExpr(X->getC(), Y->getB());
555      Prod2 = SE->getMulExpr(X->getB(), Y->getC());
556      if (isKnownPredicate(CmpInst::ICMP_EQ, Prod1, Prod2))
557        return false;
558      if (isKnownPredicate(CmpInst::ICMP_NE, Prod1, Prod2)) {
559        X->setEmpty();
560        ++DeltaSuccesses;
561        return true;
562      }
563      return false;
564    }
565    if (isKnownPredicate(CmpInst::ICMP_NE, Prod1, Prod2)) {
566      // slopes differ, so lines intersect
567      LLVM_DEBUG(dbgs() << "\t\tdifferent slopes\n");
568      const SCEV *C1B2 = SE->getMulExpr(X->getC(), Y->getB());
569      const SCEV *C1A2 = SE->getMulExpr(X->getC(), Y->getA());
570      const SCEV *C2B1 = SE->getMulExpr(Y->getC(), X->getB());
571      const SCEV *C2A1 = SE->getMulExpr(Y->getC(), X->getA());
572      const SCEV *A1B2 = SE->getMulExpr(X->getA(), Y->getB());
573      const SCEV *A2B1 = SE->getMulExpr(Y->getA(), X->getB());
574      const SCEVConstant *C1A2_C2A1 =
575        dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1A2, C2A1));
576      const SCEVConstant *C1B2_C2B1 =
577        dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1B2, C2B1));
578      const SCEVConstant *A1B2_A2B1 =
579        dyn_cast<SCEVConstant>(SE->getMinusSCEV(A1B2, A2B1));
580      const SCEVConstant *A2B1_A1B2 =
581        dyn_cast<SCEVConstant>(SE->getMinusSCEV(A2B1, A1B2));
582      if (!C1B2_C2B1 || !C1A2_C2A1 ||
583          !A1B2_A2B1 || !A2B1_A1B2)
584        return false;
585      APInt Xtop = C1B2_C2B1->getAPInt();
586      APInt Xbot = A1B2_A2B1->getAPInt();
587      APInt Ytop = C1A2_C2A1->getAPInt();
588      APInt Ybot = A2B1_A1B2->getAPInt();
589      LLVM_DEBUG(dbgs() << "\t\tXtop = " << Xtop << "\n");
590      LLVM_DEBUG(dbgs() << "\t\tXbot = " << Xbot << "\n");
591      LLVM_DEBUG(dbgs() << "\t\tYtop = " << Ytop << "\n");
592      LLVM_DEBUG(dbgs() << "\t\tYbot = " << Ybot << "\n");
593      APInt Xq = Xtop; // these need to be initialized, even
594      APInt Xr = Xtop; // though they're just going to be overwritten
595      APInt::sdivrem(Xtop, Xbot, Xq, Xr);
596      APInt Yq = Ytop;
597      APInt Yr = Ytop;
598      APInt::sdivrem(Ytop, Ybot, Yq, Yr);
599      if (Xr != 0 || Yr != 0) {
600        X->setEmpty();
601        ++DeltaSuccesses;
602        return true;
603      }
604      LLVM_DEBUG(dbgs() << "\t\tX = " << Xq << ", Y = " << Yq << "\n");
605      if (Xq.slt(0) || Yq.slt(0)) {
606        X->setEmpty();
607        ++DeltaSuccesses;
608        return true;
609      }
610      if (const SCEVConstant *CUB =
611          collectConstantUpperBound(X->getAssociatedLoop(), Prod1->getType())) {
612        const APInt &UpperBound = CUB->getAPInt();
613        LLVM_DEBUG(dbgs() << "\t\tupper bound = " << UpperBound << "\n");
614        if (Xq.sgt(UpperBound) || Yq.sgt(UpperBound)) {
615          X->setEmpty();
616          ++DeltaSuccesses;
617          return true;
618        }
619      }
620      X->setPoint(SE->getConstant(Xq),
621                  SE->getConstant(Yq),
622                  X->getAssociatedLoop());
623      ++DeltaSuccesses;
624      return true;
625    }
626    return false;
627  }
628
629  // if (X->isLine() && Y->isPoint()) This case can't occur.
630  assert(!(X->isLine() && Y->isPoint()) && "This case should never occur");
631
632  if (X->isPoint() && Y->isLine()) {
633    LLVM_DEBUG(dbgs() << "\t    intersect Point and Line\n");
634    const SCEV *A1X1 = SE->getMulExpr(Y->getA(), X->getX());
635    const SCEV *B1Y1 = SE->getMulExpr(Y->getB(), X->getY());
636    const SCEV *Sum = SE->getAddExpr(A1X1, B1Y1);
637    if (isKnownPredicate(CmpInst::ICMP_EQ, Sum, Y->getC()))
638      return false;
639    if (isKnownPredicate(CmpInst::ICMP_NE, Sum, Y->getC())) {
640      X->setEmpty();
641      ++DeltaSuccesses;
642      return true;
643    }
644    return false;
645  }
646
647  llvm_unreachable("shouldn't reach the end of Constraint intersection");
648  return false;
649}
650
651
652//===----------------------------------------------------------------------===//
653// DependenceInfo methods
654
655// For debugging purposes. Dumps a dependence to OS.
656void Dependence::dump(raw_ostream &OS) const {
657  bool Splitable = false;
658  if (isConfused())
659    OS << "confused";
660  else {
661    if (isConsistent())
662      OS << "consistent ";
663    if (isFlow())
664      OS << "flow";
665    else if (isOutput())
666      OS << "output";
667    else if (isAnti())
668      OS << "anti";
669    else if (isInput())
670      OS << "input";
671    unsigned Levels = getLevels();
672    OS << " [";
673    for (unsigned II = 1; II <= Levels; ++II) {
674      if (isSplitable(II))
675        Splitable = true;
676      if (isPeelFirst(II))
677        OS << 'p';
678      const SCEV *Distance = getDistance(II);
679      if (Distance)
680        OS << *Distance;
681      else if (isScalar(II))
682        OS << "S";
683      else {
684        unsigned Direction = getDirection(II);
685        if (Direction == DVEntry::ALL)
686          OS << "*";
687        else {
688          if (Direction & DVEntry::LT)
689            OS << "<";
690          if (Direction & DVEntry::EQ)
691            OS << "=";
692          if (Direction & DVEntry::GT)
693            OS << ">";
694        }
695      }
696      if (isPeelLast(II))
697        OS << 'p';
698      if (II < Levels)
699        OS << " ";
700    }
701    if (isLoopIndependent())
702      OS << "|<";
703    OS << "]";
704    if (Splitable)
705      OS << " splitable";
706  }
707  OS << "!\n";
708}
709
710// Returns NoAlias/MayAliass/MustAlias for two memory locations based upon their
711// underlaying objects. If LocA and LocB are known to not alias (for any reason:
712// tbaa, non-overlapping regions etc), then it is known there is no dependecy.
713// Otherwise the underlying objects are checked to see if they point to
714// different identifiable objects.
715static AliasResult underlyingObjectsAlias(AAResults *AA,
716                                          const DataLayout &DL,
717                                          const MemoryLocation &LocA,
718                                          const MemoryLocation &LocB) {
719  // Check the original locations (minus size) for noalias, which can happen for
720  // tbaa, incompatible underlying object locations, etc.
721  MemoryLocation LocAS =
722      MemoryLocation::getBeforeOrAfter(LocA.Ptr, LocA.AATags);
723  MemoryLocation LocBS =
724      MemoryLocation::getBeforeOrAfter(LocB.Ptr, LocB.AATags);
725  if (AA->isNoAlias(LocAS, LocBS))
726    return AliasResult::NoAlias;
727
728  // Check the underlying objects are the same
729  const Value *AObj = getUnderlyingObject(LocA.Ptr);
730  const Value *BObj = getUnderlyingObject(LocB.Ptr);
731
732  // If the underlying objects are the same, they must alias
733  if (AObj == BObj)
734    return AliasResult::MustAlias;
735
736  // We may have hit the recursion limit for underlying objects, or have
737  // underlying objects where we don't know they will alias.
738  if (!isIdentifiedObject(AObj) || !isIdentifiedObject(BObj))
739    return AliasResult::MayAlias;
740
741  // Otherwise we know the objects are different and both identified objects so
742  // must not alias.
743  return AliasResult::NoAlias;
744}
745
746
747// Returns true if the load or store can be analyzed. Atomic and volatile
748// operations have properties which this analysis does not understand.
749static
750bool isLoadOrStore(const Instruction *I) {
751  if (const LoadInst *LI = dyn_cast<LoadInst>(I))
752    return LI->isUnordered();
753  else if (const StoreInst *SI = dyn_cast<StoreInst>(I))
754    return SI->isUnordered();
755  return false;
756}
757
758
759// Examines the loop nesting of the Src and Dst
760// instructions and establishes their shared loops. Sets the variables
761// CommonLevels, SrcLevels, and MaxLevels.
762// The source and destination instructions needn't be contained in the same
763// loop. The routine establishNestingLevels finds the level of most deeply
764// nested loop that contains them both, CommonLevels. An instruction that's
765// not contained in a loop is at level = 0. MaxLevels is equal to the level
766// of the source plus the level of the destination, minus CommonLevels.
767// This lets us allocate vectors MaxLevels in length, with room for every
768// distinct loop referenced in both the source and destination subscripts.
769// The variable SrcLevels is the nesting depth of the source instruction.
770// It's used to help calculate distinct loops referenced by the destination.
771// Here's the map from loops to levels:
772//            0 - unused
773//            1 - outermost common loop
774//          ... - other common loops
775// CommonLevels - innermost common loop
776//          ... - loops containing Src but not Dst
777//    SrcLevels - innermost loop containing Src but not Dst
778//          ... - loops containing Dst but not Src
779//    MaxLevels - innermost loops containing Dst but not Src
780// Consider the follow code fragment:
781//   for (a = ...) {
782//     for (b = ...) {
783//       for (c = ...) {
784//         for (d = ...) {
785//           A[] = ...;
786//         }
787//       }
788//       for (e = ...) {
789//         for (f = ...) {
790//           for (g = ...) {
791//             ... = A[];
792//           }
793//         }
794//       }
795//     }
796//   }
797// If we're looking at the possibility of a dependence between the store
798// to A (the Src) and the load from A (the Dst), we'll note that they
799// have 2 loops in common, so CommonLevels will equal 2 and the direction
800// vector for Result will have 2 entries. SrcLevels = 4 and MaxLevels = 7.
801// A map from loop names to loop numbers would look like
802//     a - 1
803//     b - 2 = CommonLevels
804//     c - 3
805//     d - 4 = SrcLevels
806//     e - 5
807//     f - 6
808//     g - 7 = MaxLevels
809void DependenceInfo::establishNestingLevels(const Instruction *Src,
810                                            const Instruction *Dst) {
811  const BasicBlock *SrcBlock = Src->getParent();
812  const BasicBlock *DstBlock = Dst->getParent();
813  unsigned SrcLevel = LI->getLoopDepth(SrcBlock);
814  unsigned DstLevel = LI->getLoopDepth(DstBlock);
815  const Loop *SrcLoop = LI->getLoopFor(SrcBlock);
816  const Loop *DstLoop = LI->getLoopFor(DstBlock);
817  SrcLevels = SrcLevel;
818  MaxLevels = SrcLevel + DstLevel;
819  while (SrcLevel > DstLevel) {
820    SrcLoop = SrcLoop->getParentLoop();
821    SrcLevel--;
822  }
823  while (DstLevel > SrcLevel) {
824    DstLoop = DstLoop->getParentLoop();
825    DstLevel--;
826  }
827  while (SrcLoop != DstLoop) {
828    SrcLoop = SrcLoop->getParentLoop();
829    DstLoop = DstLoop->getParentLoop();
830    SrcLevel--;
831  }
832  CommonLevels = SrcLevel;
833  MaxLevels -= CommonLevels;
834}
835
836
837// Given one of the loops containing the source, return
838// its level index in our numbering scheme.
839unsigned DependenceInfo::mapSrcLoop(const Loop *SrcLoop) const {
840  return SrcLoop->getLoopDepth();
841}
842
843
844// Given one of the loops containing the destination,
845// return its level index in our numbering scheme.
846unsigned DependenceInfo::mapDstLoop(const Loop *DstLoop) const {
847  unsigned D = DstLoop->getLoopDepth();
848  if (D > CommonLevels)
849    // This tries to make sure that we assign unique numbers to src and dst when
850    // the memory accesses reside in different loops that have the same depth.
851    return D - CommonLevels + SrcLevels;
852  else
853    return D;
854}
855
856
857// Returns true if Expression is loop invariant in LoopNest.
858bool DependenceInfo::isLoopInvariant(const SCEV *Expression,
859                                     const Loop *LoopNest) const {
860  // Unlike ScalarEvolution::isLoopInvariant() we consider an access outside of
861  // any loop as invariant, because we only consier expression evaluation at a
862  // specific position (where the array access takes place), and not across the
863  // entire function.
864  if (!LoopNest)
865    return true;
866
867  // If the expression is invariant in the outermost loop of the loop nest, it
868  // is invariant anywhere in the loop nest.
869  return SE->isLoopInvariant(Expression, LoopNest->getOutermostLoop());
870}
871
872
873
874// Finds the set of loops from the LoopNest that
875// have a level <= CommonLevels and are referred to by the SCEV Expression.
876void DependenceInfo::collectCommonLoops(const SCEV *Expression,
877                                        const Loop *LoopNest,
878                                        SmallBitVector &Loops) const {
879  while (LoopNest) {
880    unsigned Level = LoopNest->getLoopDepth();
881    if (Level <= CommonLevels && !SE->isLoopInvariant(Expression, LoopNest))
882      Loops.set(Level);
883    LoopNest = LoopNest->getParentLoop();
884  }
885}
886
887void DependenceInfo::unifySubscriptType(ArrayRef<Subscript *> Pairs) {
888
889  unsigned widestWidthSeen = 0;
890  Type *widestType;
891
892  // Go through each pair and find the widest bit to which we need
893  // to extend all of them.
894  for (Subscript *Pair : Pairs) {
895    const SCEV *Src = Pair->Src;
896    const SCEV *Dst = Pair->Dst;
897    IntegerType *SrcTy = dyn_cast<IntegerType>(Src->getType());
898    IntegerType *DstTy = dyn_cast<IntegerType>(Dst->getType());
899    if (SrcTy == nullptr || DstTy == nullptr) {
900      assert(SrcTy == DstTy && "This function only unify integer types and "
901             "expect Src and Dst share the same type "
902             "otherwise.");
903      continue;
904    }
905    if (SrcTy->getBitWidth() > widestWidthSeen) {
906      widestWidthSeen = SrcTy->getBitWidth();
907      widestType = SrcTy;
908    }
909    if (DstTy->getBitWidth() > widestWidthSeen) {
910      widestWidthSeen = DstTy->getBitWidth();
911      widestType = DstTy;
912    }
913  }
914
915
916  assert(widestWidthSeen > 0);
917
918  // Now extend each pair to the widest seen.
919  for (Subscript *Pair : Pairs) {
920    const SCEV *Src = Pair->Src;
921    const SCEV *Dst = Pair->Dst;
922    IntegerType *SrcTy = dyn_cast<IntegerType>(Src->getType());
923    IntegerType *DstTy = dyn_cast<IntegerType>(Dst->getType());
924    if (SrcTy == nullptr || DstTy == nullptr) {
925      assert(SrcTy == DstTy && "This function only unify integer types and "
926             "expect Src and Dst share the same type "
927             "otherwise.");
928      continue;
929    }
930    if (SrcTy->getBitWidth() < widestWidthSeen)
931      // Sign-extend Src to widestType
932      Pair->Src = SE->getSignExtendExpr(Src, widestType);
933    if (DstTy->getBitWidth() < widestWidthSeen) {
934      // Sign-extend Dst to widestType
935      Pair->Dst = SE->getSignExtendExpr(Dst, widestType);
936    }
937  }
938}
939
940// removeMatchingExtensions - Examines a subscript pair.
941// If the source and destination are identically sign (or zero)
942// extended, it strips off the extension in an effect to simplify
943// the actual analysis.
944void DependenceInfo::removeMatchingExtensions(Subscript *Pair) {
945  const SCEV *Src = Pair->Src;
946  const SCEV *Dst = Pair->Dst;
947  if ((isa<SCEVZeroExtendExpr>(Src) && isa<SCEVZeroExtendExpr>(Dst)) ||
948      (isa<SCEVSignExtendExpr>(Src) && isa<SCEVSignExtendExpr>(Dst))) {
949    const SCEVIntegralCastExpr *SrcCast = cast<SCEVIntegralCastExpr>(Src);
950    const SCEVIntegralCastExpr *DstCast = cast<SCEVIntegralCastExpr>(Dst);
951    const SCEV *SrcCastOp = SrcCast->getOperand();
952    const SCEV *DstCastOp = DstCast->getOperand();
953    if (SrcCastOp->getType() == DstCastOp->getType()) {
954      Pair->Src = SrcCastOp;
955      Pair->Dst = DstCastOp;
956    }
957  }
958}
959
960// Examine the scev and return true iff it's affine.
961// Collect any loops mentioned in the set of "Loops".
962bool DependenceInfo::checkSubscript(const SCEV *Expr, const Loop *LoopNest,
963                                    SmallBitVector &Loops, bool IsSrc) {
964  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
965  if (!AddRec)
966    return isLoopInvariant(Expr, LoopNest);
967
968  // The AddRec must depend on one of the containing loops. Otherwise,
969  // mapSrcLoop and mapDstLoop return indices outside the intended range. This
970  // can happen when a subscript in one loop references an IV from a sibling
971  // loop that could not be replaced with a concrete exit value by
972  // getSCEVAtScope.
973  const Loop *L = LoopNest;
974  while (L && AddRec->getLoop() != L)
975    L = L->getParentLoop();
976  if (!L)
977    return false;
978
979  const SCEV *Start = AddRec->getStart();
980  const SCEV *Step = AddRec->getStepRecurrence(*SE);
981  const SCEV *UB = SE->getBackedgeTakenCount(AddRec->getLoop());
982  if (!isa<SCEVCouldNotCompute>(UB)) {
983    if (SE->getTypeSizeInBits(Start->getType()) <
984        SE->getTypeSizeInBits(UB->getType())) {
985      if (!AddRec->getNoWrapFlags())
986        return false;
987    }
988  }
989  if (!isLoopInvariant(Step, LoopNest))
990    return false;
991  if (IsSrc)
992    Loops.set(mapSrcLoop(AddRec->getLoop()));
993  else
994    Loops.set(mapDstLoop(AddRec->getLoop()));
995  return checkSubscript(Start, LoopNest, Loops, IsSrc);
996}
997
998// Examine the scev and return true iff it's linear.
999// Collect any loops mentioned in the set of "Loops".
1000bool DependenceInfo::checkSrcSubscript(const SCEV *Src, const Loop *LoopNest,
1001                                       SmallBitVector &Loops) {
1002  return checkSubscript(Src, LoopNest, Loops, true);
1003}
1004
1005// Examine the scev and return true iff it's linear.
1006// Collect any loops mentioned in the set of "Loops".
1007bool DependenceInfo::checkDstSubscript(const SCEV *Dst, const Loop *LoopNest,
1008                                       SmallBitVector &Loops) {
1009  return checkSubscript(Dst, LoopNest, Loops, false);
1010}
1011
1012
1013// Examines the subscript pair (the Src and Dst SCEVs)
1014// and classifies it as either ZIV, SIV, RDIV, MIV, or Nonlinear.
1015// Collects the associated loops in a set.
1016DependenceInfo::Subscript::ClassificationKind
1017DependenceInfo::classifyPair(const SCEV *Src, const Loop *SrcLoopNest,
1018                             const SCEV *Dst, const Loop *DstLoopNest,
1019                             SmallBitVector &Loops) {
1020  SmallBitVector SrcLoops(MaxLevels + 1);
1021  SmallBitVector DstLoops(MaxLevels + 1);
1022  if (!checkSrcSubscript(Src, SrcLoopNest, SrcLoops))
1023    return Subscript::NonLinear;
1024  if (!checkDstSubscript(Dst, DstLoopNest, DstLoops))
1025    return Subscript::NonLinear;
1026  Loops = SrcLoops;
1027  Loops |= DstLoops;
1028  unsigned N = Loops.count();
1029  if (N == 0)
1030    return Subscript::ZIV;
1031  if (N == 1)
1032    return Subscript::SIV;
1033  if (N == 2 && (SrcLoops.count() == 0 ||
1034                 DstLoops.count() == 0 ||
1035                 (SrcLoops.count() == 1 && DstLoops.count() == 1)))
1036    return Subscript::RDIV;
1037  return Subscript::MIV;
1038}
1039
1040
1041// A wrapper around SCEV::isKnownPredicate.
1042// Looks for cases where we're interested in comparing for equality.
1043// If both X and Y have been identically sign or zero extended,
1044// it strips off the (confusing) extensions before invoking
1045// SCEV::isKnownPredicate. Perhaps, someday, the ScalarEvolution package
1046// will be similarly updated.
1047//
1048// If SCEV::isKnownPredicate can't prove the predicate,
1049// we try simple subtraction, which seems to help in some cases
1050// involving symbolics.
1051bool DependenceInfo::isKnownPredicate(ICmpInst::Predicate Pred, const SCEV *X,
1052                                      const SCEV *Y) const {
1053  if (Pred == CmpInst::ICMP_EQ ||
1054      Pred == CmpInst::ICMP_NE) {
1055    if ((isa<SCEVSignExtendExpr>(X) &&
1056         isa<SCEVSignExtendExpr>(Y)) ||
1057        (isa<SCEVZeroExtendExpr>(X) &&
1058         isa<SCEVZeroExtendExpr>(Y))) {
1059      const SCEVIntegralCastExpr *CX = cast<SCEVIntegralCastExpr>(X);
1060      const SCEVIntegralCastExpr *CY = cast<SCEVIntegralCastExpr>(Y);
1061      const SCEV *Xop = CX->getOperand();
1062      const SCEV *Yop = CY->getOperand();
1063      if (Xop->getType() == Yop->getType()) {
1064        X = Xop;
1065        Y = Yop;
1066      }
1067    }
1068  }
1069  if (SE->isKnownPredicate(Pred, X, Y))
1070    return true;
1071  // If SE->isKnownPredicate can't prove the condition,
1072  // we try the brute-force approach of subtracting
1073  // and testing the difference.
1074  // By testing with SE->isKnownPredicate first, we avoid
1075  // the possibility of overflow when the arguments are constants.
1076  const SCEV *Delta = SE->getMinusSCEV(X, Y);
1077  switch (Pred) {
1078  case CmpInst::ICMP_EQ:
1079    return Delta->isZero();
1080  case CmpInst::ICMP_NE:
1081    return SE->isKnownNonZero(Delta);
1082  case CmpInst::ICMP_SGE:
1083    return SE->isKnownNonNegative(Delta);
1084  case CmpInst::ICMP_SLE:
1085    return SE->isKnownNonPositive(Delta);
1086  case CmpInst::ICMP_SGT:
1087    return SE->isKnownPositive(Delta);
1088  case CmpInst::ICMP_SLT:
1089    return SE->isKnownNegative(Delta);
1090  default:
1091    llvm_unreachable("unexpected predicate in isKnownPredicate");
1092  }
1093}
1094
1095/// Compare to see if S is less than Size, using isKnownNegative(S - max(Size, 1))
1096/// with some extra checking if S is an AddRec and we can prove less-than using
1097/// the loop bounds.
1098bool DependenceInfo::isKnownLessThan(const SCEV *S, const SCEV *Size) const {
1099  // First unify to the same type
1100  auto *SType = dyn_cast<IntegerType>(S->getType());
1101  auto *SizeType = dyn_cast<IntegerType>(Size->getType());
1102  if (!SType || !SizeType)
1103    return false;
1104  Type *MaxType =
1105      (SType->getBitWidth() >= SizeType->getBitWidth()) ? SType : SizeType;
1106  S = SE->getTruncateOrZeroExtend(S, MaxType);
1107  Size = SE->getTruncateOrZeroExtend(Size, MaxType);
1108
1109  // Special check for addrecs using BE taken count
1110  const SCEV *Bound = SE->getMinusSCEV(S, Size);
1111  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Bound)) {
1112    if (AddRec->isAffine()) {
1113      const SCEV *BECount = SE->getBackedgeTakenCount(AddRec->getLoop());
1114      if (!isa<SCEVCouldNotCompute>(BECount)) {
1115        const SCEV *Limit = AddRec->evaluateAtIteration(BECount, *SE);
1116        if (SE->isKnownNegative(Limit))
1117          return true;
1118      }
1119    }
1120  }
1121
1122  // Check using normal isKnownNegative
1123  const SCEV *LimitedBound =
1124      SE->getMinusSCEV(S, SE->getSMaxExpr(Size, SE->getOne(Size->getType())));
1125  return SE->isKnownNegative(LimitedBound);
1126}
1127
1128bool DependenceInfo::isKnownNonNegative(const SCEV *S, const Value *Ptr) const {
1129  bool Inbounds = false;
1130  if (auto *SrcGEP = dyn_cast<GetElementPtrInst>(Ptr))
1131    Inbounds = SrcGEP->isInBounds();
1132  if (Inbounds) {
1133    if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
1134      if (AddRec->isAffine()) {
1135        // We know S is for Ptr, the operand on a load/store, so doesn't wrap.
1136        // If both parts are NonNegative, the end result will be NonNegative
1137        if (SE->isKnownNonNegative(AddRec->getStart()) &&
1138            SE->isKnownNonNegative(AddRec->getOperand(1)))
1139          return true;
1140      }
1141    }
1142  }
1143
1144  return SE->isKnownNonNegative(S);
1145}
1146
1147// All subscripts are all the same type.
1148// Loop bound may be smaller (e.g., a char).
1149// Should zero extend loop bound, since it's always >= 0.
1150// This routine collects upper bound and extends or truncates if needed.
1151// Truncating is safe when subscripts are known not to wrap. Cases without
1152// nowrap flags should have been rejected earlier.
1153// Return null if no bound available.
1154const SCEV *DependenceInfo::collectUpperBound(const Loop *L, Type *T) const {
1155  if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
1156    const SCEV *UB = SE->getBackedgeTakenCount(L);
1157    return SE->getTruncateOrZeroExtend(UB, T);
1158  }
1159  return nullptr;
1160}
1161
1162
1163// Calls collectUpperBound(), then attempts to cast it to SCEVConstant.
1164// If the cast fails, returns NULL.
1165const SCEVConstant *DependenceInfo::collectConstantUpperBound(const Loop *L,
1166                                                              Type *T) const {
1167  if (const SCEV *UB = collectUpperBound(L, T))
1168    return dyn_cast<SCEVConstant>(UB);
1169  return nullptr;
1170}
1171
1172
1173// testZIV -
1174// When we have a pair of subscripts of the form [c1] and [c2],
1175// where c1 and c2 are both loop invariant, we attack it using
1176// the ZIV test. Basically, we test by comparing the two values,
1177// but there are actually three possible results:
1178// 1) the values are equal, so there's a dependence
1179// 2) the values are different, so there's no dependence
1180// 3) the values might be equal, so we have to assume a dependence.
1181//
1182// Return true if dependence disproved.
1183bool DependenceInfo::testZIV(const SCEV *Src, const SCEV *Dst,
1184                             FullDependence &Result) const {
1185  LLVM_DEBUG(dbgs() << "    src = " << *Src << "\n");
1186  LLVM_DEBUG(dbgs() << "    dst = " << *Dst << "\n");
1187  ++ZIVapplications;
1188  if (isKnownPredicate(CmpInst::ICMP_EQ, Src, Dst)) {
1189    LLVM_DEBUG(dbgs() << "    provably dependent\n");
1190    return false; // provably dependent
1191  }
1192  if (isKnownPredicate(CmpInst::ICMP_NE, Src, Dst)) {
1193    LLVM_DEBUG(dbgs() << "    provably independent\n");
1194    ++ZIVindependence;
1195    return true; // provably independent
1196  }
1197  LLVM_DEBUG(dbgs() << "    possibly dependent\n");
1198  Result.Consistent = false;
1199  return false; // possibly dependent
1200}
1201
1202
1203// strongSIVtest -
1204// From the paper, Practical Dependence Testing, Section 4.2.1
1205//
1206// When we have a pair of subscripts of the form [c1 + a*i] and [c2 + a*i],
1207// where i is an induction variable, c1 and c2 are loop invariant,
1208//  and a is a constant, we can solve it exactly using the Strong SIV test.
1209//
1210// Can prove independence. Failing that, can compute distance (and direction).
1211// In the presence of symbolic terms, we can sometimes make progress.
1212//
1213// If there's a dependence,
1214//
1215//    c1 + a*i = c2 + a*i'
1216//
1217// The dependence distance is
1218//
1219//    d = i' - i = (c1 - c2)/a
1220//
1221// A dependence only exists if d is an integer and abs(d) <= U, where U is the
1222// loop's upper bound. If a dependence exists, the dependence direction is
1223// defined as
1224//
1225//                { < if d > 0
1226//    direction = { = if d = 0
1227//                { > if d < 0
1228//
1229// Return true if dependence disproved.
1230bool DependenceInfo::strongSIVtest(const SCEV *Coeff, const SCEV *SrcConst,
1231                                   const SCEV *DstConst, const Loop *CurLoop,
1232                                   unsigned Level, FullDependence &Result,
1233                                   Constraint &NewConstraint) const {
1234  LLVM_DEBUG(dbgs() << "\tStrong SIV test\n");
1235  LLVM_DEBUG(dbgs() << "\t    Coeff = " << *Coeff);
1236  LLVM_DEBUG(dbgs() << ", " << *Coeff->getType() << "\n");
1237  LLVM_DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst);
1238  LLVM_DEBUG(dbgs() << ", " << *SrcConst->getType() << "\n");
1239  LLVM_DEBUG(dbgs() << "\t    DstConst = " << *DstConst);
1240  LLVM_DEBUG(dbgs() << ", " << *DstConst->getType() << "\n");
1241  ++StrongSIVapplications;
1242  assert(0 < Level && Level <= CommonLevels && "level out of range");
1243  Level--;
1244
1245  const SCEV *Delta = SE->getMinusSCEV(SrcConst, DstConst);
1246  LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta);
1247  LLVM_DEBUG(dbgs() << ", " << *Delta->getType() << "\n");
1248
1249  // check that |Delta| < iteration count
1250  if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1251    LLVM_DEBUG(dbgs() << "\t    UpperBound = " << *UpperBound);
1252    LLVM_DEBUG(dbgs() << ", " << *UpperBound->getType() << "\n");
1253    const SCEV *AbsDelta =
1254      SE->isKnownNonNegative(Delta) ? Delta : SE->getNegativeSCEV(Delta);
1255    const SCEV *AbsCoeff =
1256      SE->isKnownNonNegative(Coeff) ? Coeff : SE->getNegativeSCEV(Coeff);
1257    const SCEV *Product = SE->getMulExpr(UpperBound, AbsCoeff);
1258    if (isKnownPredicate(CmpInst::ICMP_SGT, AbsDelta, Product)) {
1259      // Distance greater than trip count - no dependence
1260      ++StrongSIVindependence;
1261      ++StrongSIVsuccesses;
1262      return true;
1263    }
1264  }
1265
1266  // Can we compute distance?
1267  if (isa<SCEVConstant>(Delta) && isa<SCEVConstant>(Coeff)) {
1268    APInt ConstDelta = cast<SCEVConstant>(Delta)->getAPInt();
1269    APInt ConstCoeff = cast<SCEVConstant>(Coeff)->getAPInt();
1270    APInt Distance  = ConstDelta; // these need to be initialized
1271    APInt Remainder = ConstDelta;
1272    APInt::sdivrem(ConstDelta, ConstCoeff, Distance, Remainder);
1273    LLVM_DEBUG(dbgs() << "\t    Distance = " << Distance << "\n");
1274    LLVM_DEBUG(dbgs() << "\t    Remainder = " << Remainder << "\n");
1275    // Make sure Coeff divides Delta exactly
1276    if (Remainder != 0) {
1277      // Coeff doesn't divide Distance, no dependence
1278      ++StrongSIVindependence;
1279      ++StrongSIVsuccesses;
1280      return true;
1281    }
1282    Result.DV[Level].Distance = SE->getConstant(Distance);
1283    NewConstraint.setDistance(SE->getConstant(Distance), CurLoop);
1284    if (Distance.sgt(0))
1285      Result.DV[Level].Direction &= Dependence::DVEntry::LT;
1286    else if (Distance.slt(0))
1287      Result.DV[Level].Direction &= Dependence::DVEntry::GT;
1288    else
1289      Result.DV[Level].Direction &= Dependence::DVEntry::EQ;
1290    ++StrongSIVsuccesses;
1291  }
1292  else if (Delta->isZero()) {
1293    // since 0/X == 0
1294    Result.DV[Level].Distance = Delta;
1295    NewConstraint.setDistance(Delta, CurLoop);
1296    Result.DV[Level].Direction &= Dependence::DVEntry::EQ;
1297    ++StrongSIVsuccesses;
1298  }
1299  else {
1300    if (Coeff->isOne()) {
1301      LLVM_DEBUG(dbgs() << "\t    Distance = " << *Delta << "\n");
1302      Result.DV[Level].Distance = Delta; // since X/1 == X
1303      NewConstraint.setDistance(Delta, CurLoop);
1304    }
1305    else {
1306      Result.Consistent = false;
1307      NewConstraint.setLine(Coeff,
1308                            SE->getNegativeSCEV(Coeff),
1309                            SE->getNegativeSCEV(Delta), CurLoop);
1310    }
1311
1312    // maybe we can get a useful direction
1313    bool DeltaMaybeZero     = !SE->isKnownNonZero(Delta);
1314    bool DeltaMaybePositive = !SE->isKnownNonPositive(Delta);
1315    bool DeltaMaybeNegative = !SE->isKnownNonNegative(Delta);
1316    bool CoeffMaybePositive = !SE->isKnownNonPositive(Coeff);
1317    bool CoeffMaybeNegative = !SE->isKnownNonNegative(Coeff);
1318    // The double negatives above are confusing.
1319    // It helps to read !SE->isKnownNonZero(Delta)
1320    // as "Delta might be Zero"
1321    unsigned NewDirection = Dependence::DVEntry::NONE;
1322    if ((DeltaMaybePositive && CoeffMaybePositive) ||
1323        (DeltaMaybeNegative && CoeffMaybeNegative))
1324      NewDirection = Dependence::DVEntry::LT;
1325    if (DeltaMaybeZero)
1326      NewDirection |= Dependence::DVEntry::EQ;
1327    if ((DeltaMaybeNegative && CoeffMaybePositive) ||
1328        (DeltaMaybePositive && CoeffMaybeNegative))
1329      NewDirection |= Dependence::DVEntry::GT;
1330    if (NewDirection < Result.DV[Level].Direction)
1331      ++StrongSIVsuccesses;
1332    Result.DV[Level].Direction &= NewDirection;
1333  }
1334  return false;
1335}
1336
1337
1338// weakCrossingSIVtest -
1339// From the paper, Practical Dependence Testing, Section 4.2.2
1340//
1341// When we have a pair of subscripts of the form [c1 + a*i] and [c2 - a*i],
1342// where i is an induction variable, c1 and c2 are loop invariant,
1343// and a is a constant, we can solve it exactly using the
1344// Weak-Crossing SIV test.
1345//
1346// Given c1 + a*i = c2 - a*i', we can look for the intersection of
1347// the two lines, where i = i', yielding
1348//
1349//    c1 + a*i = c2 - a*i
1350//    2a*i = c2 - c1
1351//    i = (c2 - c1)/2a
1352//
1353// If i < 0, there is no dependence.
1354// If i > upperbound, there is no dependence.
1355// If i = 0 (i.e., if c1 = c2), there's a dependence with distance = 0.
1356// If i = upperbound, there's a dependence with distance = 0.
1357// If i is integral, there's a dependence (all directions).
1358// If the non-integer part = 1/2, there's a dependence (<> directions).
1359// Otherwise, there's no dependence.
1360//
1361// Can prove independence. Failing that,
1362// can sometimes refine the directions.
1363// Can determine iteration for splitting.
1364//
1365// Return true if dependence disproved.
1366bool DependenceInfo::weakCrossingSIVtest(
1367    const SCEV *Coeff, const SCEV *SrcConst, const SCEV *DstConst,
1368    const Loop *CurLoop, unsigned Level, FullDependence &Result,
1369    Constraint &NewConstraint, const SCEV *&SplitIter) const {
1370  LLVM_DEBUG(dbgs() << "\tWeak-Crossing SIV test\n");
1371  LLVM_DEBUG(dbgs() << "\t    Coeff = " << *Coeff << "\n");
1372  LLVM_DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
1373  LLVM_DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
1374  ++WeakCrossingSIVapplications;
1375  assert(0 < Level && Level <= CommonLevels && "Level out of range");
1376  Level--;
1377  Result.Consistent = false;
1378  const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1379  LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
1380  NewConstraint.setLine(Coeff, Coeff, Delta, CurLoop);
1381  if (Delta->isZero()) {
1382    Result.DV[Level].Direction &= ~Dependence::DVEntry::LT;
1383    Result.DV[Level].Direction &= ~Dependence::DVEntry::GT;
1384    ++WeakCrossingSIVsuccesses;
1385    if (!Result.DV[Level].Direction) {
1386      ++WeakCrossingSIVindependence;
1387      return true;
1388    }
1389    Result.DV[Level].Distance = Delta; // = 0
1390    return false;
1391  }
1392  const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(Coeff);
1393  if (!ConstCoeff)
1394    return false;
1395
1396  Result.DV[Level].Splitable = true;
1397  if (SE->isKnownNegative(ConstCoeff)) {
1398    ConstCoeff = dyn_cast<SCEVConstant>(SE->getNegativeSCEV(ConstCoeff));
1399    assert(ConstCoeff &&
1400           "dynamic cast of negative of ConstCoeff should yield constant");
1401    Delta = SE->getNegativeSCEV(Delta);
1402  }
1403  assert(SE->isKnownPositive(ConstCoeff) && "ConstCoeff should be positive");
1404
1405  // compute SplitIter for use by DependenceInfo::getSplitIteration()
1406  SplitIter = SE->getUDivExpr(
1407      SE->getSMaxExpr(SE->getZero(Delta->getType()), Delta),
1408      SE->getMulExpr(SE->getConstant(Delta->getType(), 2), ConstCoeff));
1409  LLVM_DEBUG(dbgs() << "\t    Split iter = " << *SplitIter << "\n");
1410
1411  const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
1412  if (!ConstDelta)
1413    return false;
1414
1415  // We're certain that ConstCoeff > 0; therefore,
1416  // if Delta < 0, then no dependence.
1417  LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
1418  LLVM_DEBUG(dbgs() << "\t    ConstCoeff = " << *ConstCoeff << "\n");
1419  if (SE->isKnownNegative(Delta)) {
1420    // No dependence, Delta < 0
1421    ++WeakCrossingSIVindependence;
1422    ++WeakCrossingSIVsuccesses;
1423    return true;
1424  }
1425
1426  // We're certain that Delta > 0 and ConstCoeff > 0.
1427  // Check Delta/(2*ConstCoeff) against upper loop bound
1428  if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1429    LLVM_DEBUG(dbgs() << "\t    UpperBound = " << *UpperBound << "\n");
1430    const SCEV *ConstantTwo = SE->getConstant(UpperBound->getType(), 2);
1431    const SCEV *ML = SE->getMulExpr(SE->getMulExpr(ConstCoeff, UpperBound),
1432                                    ConstantTwo);
1433    LLVM_DEBUG(dbgs() << "\t    ML = " << *ML << "\n");
1434    if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, ML)) {
1435      // Delta too big, no dependence
1436      ++WeakCrossingSIVindependence;
1437      ++WeakCrossingSIVsuccesses;
1438      return true;
1439    }
1440    if (isKnownPredicate(CmpInst::ICMP_EQ, Delta, ML)) {
1441      // i = i' = UB
1442      Result.DV[Level].Direction &= ~Dependence::DVEntry::LT;
1443      Result.DV[Level].Direction &= ~Dependence::DVEntry::GT;
1444      ++WeakCrossingSIVsuccesses;
1445      if (!Result.DV[Level].Direction) {
1446        ++WeakCrossingSIVindependence;
1447        return true;
1448      }
1449      Result.DV[Level].Splitable = false;
1450      Result.DV[Level].Distance = SE->getZero(Delta->getType());
1451      return false;
1452    }
1453  }
1454
1455  // check that Coeff divides Delta
1456  APInt APDelta = ConstDelta->getAPInt();
1457  APInt APCoeff = ConstCoeff->getAPInt();
1458  APInt Distance = APDelta; // these need to be initialzed
1459  APInt Remainder = APDelta;
1460  APInt::sdivrem(APDelta, APCoeff, Distance, Remainder);
1461  LLVM_DEBUG(dbgs() << "\t    Remainder = " << Remainder << "\n");
1462  if (Remainder != 0) {
1463    // Coeff doesn't divide Delta, no dependence
1464    ++WeakCrossingSIVindependence;
1465    ++WeakCrossingSIVsuccesses;
1466    return true;
1467  }
1468  LLVM_DEBUG(dbgs() << "\t    Distance = " << Distance << "\n");
1469
1470  // if 2*Coeff doesn't divide Delta, then the equal direction isn't possible
1471  APInt Two = APInt(Distance.getBitWidth(), 2, true);
1472  Remainder = Distance.srem(Two);
1473  LLVM_DEBUG(dbgs() << "\t    Remainder = " << Remainder << "\n");
1474  if (Remainder != 0) {
1475    // Equal direction isn't possible
1476    Result.DV[Level].Direction &= ~Dependence::DVEntry::EQ;
1477    ++WeakCrossingSIVsuccesses;
1478  }
1479  return false;
1480}
1481
1482
1483// Kirch's algorithm, from
1484//
1485//        Optimizing Supercompilers for Supercomputers
1486//        Michael Wolfe
1487//        MIT Press, 1989
1488//
1489// Program 2.1, page 29.
1490// Computes the GCD of AM and BM.
1491// Also finds a solution to the equation ax - by = gcd(a, b).
1492// Returns true if dependence disproved; i.e., gcd does not divide Delta.
1493static bool findGCD(unsigned Bits, const APInt &AM, const APInt &BM,
1494                    const APInt &Delta, APInt &G, APInt &X, APInt &Y) {
1495  APInt A0(Bits, 1, true), A1(Bits, 0, true);
1496  APInt B0(Bits, 0, true), B1(Bits, 1, true);
1497  APInt G0 = AM.abs();
1498  APInt G1 = BM.abs();
1499  APInt Q = G0; // these need to be initialized
1500  APInt R = G0;
1501  APInt::sdivrem(G0, G1, Q, R);
1502  while (R != 0) {
1503    APInt A2 = A0 - Q*A1; A0 = A1; A1 = A2;
1504    APInt B2 = B0 - Q*B1; B0 = B1; B1 = B2;
1505    G0 = G1; G1 = R;
1506    APInt::sdivrem(G0, G1, Q, R);
1507  }
1508  G = G1;
1509  LLVM_DEBUG(dbgs() << "\t    GCD = " << G << "\n");
1510  X = AM.slt(0) ? -A1 : A1;
1511  Y = BM.slt(0) ? B1 : -B1;
1512
1513  // make sure gcd divides Delta
1514  R = Delta.srem(G);
1515  if (R != 0)
1516    return true; // gcd doesn't divide Delta, no dependence
1517  Q = Delta.sdiv(G);
1518  return false;
1519}
1520
1521static APInt floorOfQuotient(const APInt &A, const APInt &B) {
1522  APInt Q = A; // these need to be initialized
1523  APInt R = A;
1524  APInt::sdivrem(A, B, Q, R);
1525  if (R == 0)
1526    return Q;
1527  if ((A.sgt(0) && B.sgt(0)) ||
1528      (A.slt(0) && B.slt(0)))
1529    return Q;
1530  else
1531    return Q - 1;
1532}
1533
1534static APInt ceilingOfQuotient(const APInt &A, const APInt &B) {
1535  APInt Q = A; // these need to be initialized
1536  APInt R = A;
1537  APInt::sdivrem(A, B, Q, R);
1538  if (R == 0)
1539    return Q;
1540  if ((A.sgt(0) && B.sgt(0)) ||
1541      (A.slt(0) && B.slt(0)))
1542    return Q + 1;
1543  else
1544    return Q;
1545}
1546
1547// exactSIVtest -
1548// When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*i],
1549// where i is an induction variable, c1 and c2 are loop invariant, and a1
1550// and a2 are constant, we can solve it exactly using an algorithm developed
1551// by Banerjee and Wolfe. See Algorithm 6.2.1 (case 2.5) in:
1552//
1553//        Dependence Analysis for Supercomputing
1554//        Utpal Banerjee
1555//        Kluwer Academic Publishers, 1988
1556//
1557// It's slower than the specialized tests (strong SIV, weak-zero SIV, etc),
1558// so use them if possible. They're also a bit better with symbolics and,
1559// in the case of the strong SIV test, can compute Distances.
1560//
1561// Return true if dependence disproved.
1562//
1563// This is a modified version of the original Banerjee algorithm. The original
1564// only tested whether Dst depends on Src. This algorithm extends that and
1565// returns all the dependencies that exist between Dst and Src.
1566bool DependenceInfo::exactSIVtest(const SCEV *SrcCoeff, const SCEV *DstCoeff,
1567                                  const SCEV *SrcConst, const SCEV *DstConst,
1568                                  const Loop *CurLoop, unsigned Level,
1569                                  FullDependence &Result,
1570                                  Constraint &NewConstraint) const {
1571  LLVM_DEBUG(dbgs() << "\tExact SIV test\n");
1572  LLVM_DEBUG(dbgs() << "\t    SrcCoeff = " << *SrcCoeff << " = AM\n");
1573  LLVM_DEBUG(dbgs() << "\t    DstCoeff = " << *DstCoeff << " = BM\n");
1574  LLVM_DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
1575  LLVM_DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
1576  ++ExactSIVapplications;
1577  assert(0 < Level && Level <= CommonLevels && "Level out of range");
1578  Level--;
1579  Result.Consistent = false;
1580  const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1581  LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
1582  NewConstraint.setLine(SrcCoeff, SE->getNegativeSCEV(DstCoeff), Delta,
1583                        CurLoop);
1584  const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
1585  const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
1586  const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
1587  if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff)
1588    return false;
1589
1590  // find gcd
1591  APInt G, X, Y;
1592  APInt AM = ConstSrcCoeff->getAPInt();
1593  APInt BM = ConstDstCoeff->getAPInt();
1594  APInt CM = ConstDelta->getAPInt();
1595  unsigned Bits = AM.getBitWidth();
1596  if (findGCD(Bits, AM, BM, CM, G, X, Y)) {
1597    // gcd doesn't divide Delta, no dependence
1598    ++ExactSIVindependence;
1599    ++ExactSIVsuccesses;
1600    return true;
1601  }
1602
1603  LLVM_DEBUG(dbgs() << "\t    X = " << X << ", Y = " << Y << "\n");
1604
1605  // since SCEV construction normalizes, LM = 0
1606  APInt UM(Bits, 1, true);
1607  bool UMValid = false;
1608  // UM is perhaps unavailable, let's check
1609  if (const SCEVConstant *CUB =
1610          collectConstantUpperBound(CurLoop, Delta->getType())) {
1611    UM = CUB->getAPInt();
1612    LLVM_DEBUG(dbgs() << "\t    UM = " << UM << "\n");
1613    UMValid = true;
1614  }
1615
1616  APInt TU(APInt::getSignedMaxValue(Bits));
1617  APInt TL(APInt::getSignedMinValue(Bits));
1618  APInt TC = CM.sdiv(G);
1619  APInt TX = X * TC;
1620  APInt TY = Y * TC;
1621  LLVM_DEBUG(dbgs() << "\t    TC = " << TC << "\n");
1622  LLVM_DEBUG(dbgs() << "\t    TX = " << TX << "\n");
1623  LLVM_DEBUG(dbgs() << "\t    TY = " << TY << "\n");
1624
1625  SmallVector<APInt, 2> TLVec, TUVec;
1626  APInt TB = BM.sdiv(G);
1627  if (TB.sgt(0)) {
1628    TLVec.push_back(ceilingOfQuotient(-TX, TB));
1629    LLVM_DEBUG(dbgs() << "\t    Possible TL = " << TLVec.back() << "\n");
1630    // New bound check - modification to Banerjee's e3 check
1631    if (UMValid) {
1632      TUVec.push_back(floorOfQuotient(UM - TX, TB));
1633      LLVM_DEBUG(dbgs() << "\t    Possible TU = " << TUVec.back() << "\n");
1634    }
1635  } else {
1636    TUVec.push_back(floorOfQuotient(-TX, TB));
1637    LLVM_DEBUG(dbgs() << "\t    Possible TU = " << TUVec.back() << "\n");
1638    // New bound check - modification to Banerjee's e3 check
1639    if (UMValid) {
1640      TLVec.push_back(ceilingOfQuotient(UM - TX, TB));
1641      LLVM_DEBUG(dbgs() << "\t    Possible TL = " << TLVec.back() << "\n");
1642    }
1643  }
1644
1645  APInt TA = AM.sdiv(G);
1646  if (TA.sgt(0)) {
1647    if (UMValid) {
1648      TUVec.push_back(floorOfQuotient(UM - TY, TA));
1649      LLVM_DEBUG(dbgs() << "\t    Possible TU = " << TUVec.back() << "\n");
1650    }
1651    // New bound check - modification to Banerjee's e3 check
1652    TLVec.push_back(ceilingOfQuotient(-TY, TA));
1653    LLVM_DEBUG(dbgs() << "\t    Possible TL = " << TLVec.back() << "\n");
1654  } else {
1655    if (UMValid) {
1656      TLVec.push_back(ceilingOfQuotient(UM - TY, TA));
1657      LLVM_DEBUG(dbgs() << "\t    Possible TL = " << TLVec.back() << "\n");
1658    }
1659    // New bound check - modification to Banerjee's e3 check
1660    TUVec.push_back(floorOfQuotient(-TY, TA));
1661    LLVM_DEBUG(dbgs() << "\t    Possible TU = " << TUVec.back() << "\n");
1662  }
1663
1664  LLVM_DEBUG(dbgs() << "\t    TA = " << TA << "\n");
1665  LLVM_DEBUG(dbgs() << "\t    TB = " << TB << "\n");
1666
1667  if (TLVec.empty() || TUVec.empty())
1668    return false;
1669  TL = APIntOps::smax(TLVec.front(), TLVec.back());
1670  TU = APIntOps::smin(TUVec.front(), TUVec.back());
1671  LLVM_DEBUG(dbgs() << "\t    TL = " << TL << "\n");
1672  LLVM_DEBUG(dbgs() << "\t    TU = " << TU << "\n");
1673
1674  if (TL.sgt(TU)) {
1675    ++ExactSIVindependence;
1676    ++ExactSIVsuccesses;
1677    return true;
1678  }
1679
1680  // explore directions
1681  unsigned NewDirection = Dependence::DVEntry::NONE;
1682  APInt LowerDistance, UpperDistance;
1683  if (TA.sgt(TB)) {
1684    LowerDistance = (TY - TX) + (TA - TB) * TL;
1685    UpperDistance = (TY - TX) + (TA - TB) * TU;
1686  } else {
1687    LowerDistance = (TY - TX) + (TA - TB) * TU;
1688    UpperDistance = (TY - TX) + (TA - TB) * TL;
1689  }
1690
1691  LLVM_DEBUG(dbgs() << "\t    LowerDistance = " << LowerDistance << "\n");
1692  LLVM_DEBUG(dbgs() << "\t    UpperDistance = " << UpperDistance << "\n");
1693
1694  APInt Zero(Bits, 0, true);
1695  if (LowerDistance.sle(Zero) && UpperDistance.sge(Zero)) {
1696    NewDirection |= Dependence::DVEntry::EQ;
1697    ++ExactSIVsuccesses;
1698  }
1699  if (LowerDistance.slt(0)) {
1700    NewDirection |= Dependence::DVEntry::GT;
1701    ++ExactSIVsuccesses;
1702  }
1703  if (UpperDistance.sgt(0)) {
1704    NewDirection |= Dependence::DVEntry::LT;
1705    ++ExactSIVsuccesses;
1706  }
1707
1708  // finished
1709  Result.DV[Level].Direction &= NewDirection;
1710  if (Result.DV[Level].Direction == Dependence::DVEntry::NONE)
1711    ++ExactSIVindependence;
1712  LLVM_DEBUG(dbgs() << "\t    Result = ");
1713  LLVM_DEBUG(Result.dump(dbgs()));
1714  return Result.DV[Level].Direction == Dependence::DVEntry::NONE;
1715}
1716
1717
1718// Return true if the divisor evenly divides the dividend.
1719static
1720bool isRemainderZero(const SCEVConstant *Dividend,
1721                     const SCEVConstant *Divisor) {
1722  const APInt &ConstDividend = Dividend->getAPInt();
1723  const APInt &ConstDivisor = Divisor->getAPInt();
1724  return ConstDividend.srem(ConstDivisor) == 0;
1725}
1726
1727
1728// weakZeroSrcSIVtest -
1729// From the paper, Practical Dependence Testing, Section 4.2.2
1730//
1731// When we have a pair of subscripts of the form [c1] and [c2 + a*i],
1732// where i is an induction variable, c1 and c2 are loop invariant,
1733// and a is a constant, we can solve it exactly using the
1734// Weak-Zero SIV test.
1735//
1736// Given
1737//
1738//    c1 = c2 + a*i
1739//
1740// we get
1741//
1742//    (c1 - c2)/a = i
1743//
1744// If i is not an integer, there's no dependence.
1745// If i < 0 or > UB, there's no dependence.
1746// If i = 0, the direction is >= and peeling the
1747// 1st iteration will break the dependence.
1748// If i = UB, the direction is <= and peeling the
1749// last iteration will break the dependence.
1750// Otherwise, the direction is *.
1751//
1752// Can prove independence. Failing that, we can sometimes refine
1753// the directions. Can sometimes show that first or last
1754// iteration carries all the dependences (so worth peeling).
1755//
1756// (see also weakZeroDstSIVtest)
1757//
1758// Return true if dependence disproved.
1759bool DependenceInfo::weakZeroSrcSIVtest(const SCEV *DstCoeff,
1760                                        const SCEV *SrcConst,
1761                                        const SCEV *DstConst,
1762                                        const Loop *CurLoop, unsigned Level,
1763                                        FullDependence &Result,
1764                                        Constraint &NewConstraint) const {
1765  // For the WeakSIV test, it's possible the loop isn't common to
1766  // the Src and Dst loops. If it isn't, then there's no need to
1767  // record a direction.
1768  LLVM_DEBUG(dbgs() << "\tWeak-Zero (src) SIV test\n");
1769  LLVM_DEBUG(dbgs() << "\t    DstCoeff = " << *DstCoeff << "\n");
1770  LLVM_DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
1771  LLVM_DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
1772  ++WeakZeroSIVapplications;
1773  assert(0 < Level && Level <= MaxLevels && "Level out of range");
1774  Level--;
1775  Result.Consistent = false;
1776  const SCEV *Delta = SE->getMinusSCEV(SrcConst, DstConst);
1777  NewConstraint.setLine(SE->getZero(Delta->getType()), DstCoeff, Delta,
1778                        CurLoop);
1779  LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
1780  if (isKnownPredicate(CmpInst::ICMP_EQ, SrcConst, DstConst)) {
1781    if (Level < CommonLevels) {
1782      Result.DV[Level].Direction &= Dependence::DVEntry::GE;
1783      Result.DV[Level].PeelFirst = true;
1784      ++WeakZeroSIVsuccesses;
1785    }
1786    return false; // dependences caused by first iteration
1787  }
1788  const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
1789  if (!ConstCoeff)
1790    return false;
1791  const SCEV *AbsCoeff =
1792    SE->isKnownNegative(ConstCoeff) ?
1793    SE->getNegativeSCEV(ConstCoeff) : ConstCoeff;
1794  const SCEV *NewDelta =
1795    SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta;
1796
1797  // check that Delta/SrcCoeff < iteration count
1798  // really check NewDelta < count*AbsCoeff
1799  if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1800    LLVM_DEBUG(dbgs() << "\t    UpperBound = " << *UpperBound << "\n");
1801    const SCEV *Product = SE->getMulExpr(AbsCoeff, UpperBound);
1802    if (isKnownPredicate(CmpInst::ICMP_SGT, NewDelta, Product)) {
1803      ++WeakZeroSIVindependence;
1804      ++WeakZeroSIVsuccesses;
1805      return true;
1806    }
1807    if (isKnownPredicate(CmpInst::ICMP_EQ, NewDelta, Product)) {
1808      // dependences caused by last iteration
1809      if (Level < CommonLevels) {
1810        Result.DV[Level].Direction &= Dependence::DVEntry::LE;
1811        Result.DV[Level].PeelLast = true;
1812        ++WeakZeroSIVsuccesses;
1813      }
1814      return false;
1815    }
1816  }
1817
1818  // check that Delta/SrcCoeff >= 0
1819  // really check that NewDelta >= 0
1820  if (SE->isKnownNegative(NewDelta)) {
1821    // No dependence, newDelta < 0
1822    ++WeakZeroSIVindependence;
1823    ++WeakZeroSIVsuccesses;
1824    return true;
1825  }
1826
1827  // if SrcCoeff doesn't divide Delta, then no dependence
1828  if (isa<SCEVConstant>(Delta) &&
1829      !isRemainderZero(cast<SCEVConstant>(Delta), ConstCoeff)) {
1830    ++WeakZeroSIVindependence;
1831    ++WeakZeroSIVsuccesses;
1832    return true;
1833  }
1834  return false;
1835}
1836
1837
1838// weakZeroDstSIVtest -
1839// From the paper, Practical Dependence Testing, Section 4.2.2
1840//
1841// When we have a pair of subscripts of the form [c1 + a*i] and [c2],
1842// where i is an induction variable, c1 and c2 are loop invariant,
1843// and a is a constant, we can solve it exactly using the
1844// Weak-Zero SIV test.
1845//
1846// Given
1847//
1848//    c1 + a*i = c2
1849//
1850// we get
1851//
1852//    i = (c2 - c1)/a
1853//
1854// If i is not an integer, there's no dependence.
1855// If i < 0 or > UB, there's no dependence.
1856// If i = 0, the direction is <= and peeling the
1857// 1st iteration will break the dependence.
1858// If i = UB, the direction is >= and peeling the
1859// last iteration will break the dependence.
1860// Otherwise, the direction is *.
1861//
1862// Can prove independence. Failing that, we can sometimes refine
1863// the directions. Can sometimes show that first or last
1864// iteration carries all the dependences (so worth peeling).
1865//
1866// (see also weakZeroSrcSIVtest)
1867//
1868// Return true if dependence disproved.
1869bool DependenceInfo::weakZeroDstSIVtest(const SCEV *SrcCoeff,
1870                                        const SCEV *SrcConst,
1871                                        const SCEV *DstConst,
1872                                        const Loop *CurLoop, unsigned Level,
1873                                        FullDependence &Result,
1874                                        Constraint &NewConstraint) const {
1875  // For the WeakSIV test, it's possible the loop isn't common to the
1876  // Src and Dst loops. If it isn't, then there's no need to record a direction.
1877  LLVM_DEBUG(dbgs() << "\tWeak-Zero (dst) SIV test\n");
1878  LLVM_DEBUG(dbgs() << "\t    SrcCoeff = " << *SrcCoeff << "\n");
1879  LLVM_DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
1880  LLVM_DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
1881  ++WeakZeroSIVapplications;
1882  assert(0 < Level && Level <= SrcLevels && "Level out of range");
1883  Level--;
1884  Result.Consistent = false;
1885  const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1886  NewConstraint.setLine(SrcCoeff, SE->getZero(Delta->getType()), Delta,
1887                        CurLoop);
1888  LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
1889  if (isKnownPredicate(CmpInst::ICMP_EQ, DstConst, SrcConst)) {
1890    if (Level < CommonLevels) {
1891      Result.DV[Level].Direction &= Dependence::DVEntry::LE;
1892      Result.DV[Level].PeelFirst = true;
1893      ++WeakZeroSIVsuccesses;
1894    }
1895    return false; // dependences caused by first iteration
1896  }
1897  const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
1898  if (!ConstCoeff)
1899    return false;
1900  const SCEV *AbsCoeff =
1901    SE->isKnownNegative(ConstCoeff) ?
1902    SE->getNegativeSCEV(ConstCoeff) : ConstCoeff;
1903  const SCEV *NewDelta =
1904    SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta;
1905
1906  // check that Delta/SrcCoeff < iteration count
1907  // really check NewDelta < count*AbsCoeff
1908  if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1909    LLVM_DEBUG(dbgs() << "\t    UpperBound = " << *UpperBound << "\n");
1910    const SCEV *Product = SE->getMulExpr(AbsCoeff, UpperBound);
1911    if (isKnownPredicate(CmpInst::ICMP_SGT, NewDelta, Product)) {
1912      ++WeakZeroSIVindependence;
1913      ++WeakZeroSIVsuccesses;
1914      return true;
1915    }
1916    if (isKnownPredicate(CmpInst::ICMP_EQ, NewDelta, Product)) {
1917      // dependences caused by last iteration
1918      if (Level < CommonLevels) {
1919        Result.DV[Level].Direction &= Dependence::DVEntry::GE;
1920        Result.DV[Level].PeelLast = true;
1921        ++WeakZeroSIVsuccesses;
1922      }
1923      return false;
1924    }
1925  }
1926
1927  // check that Delta/SrcCoeff >= 0
1928  // really check that NewDelta >= 0
1929  if (SE->isKnownNegative(NewDelta)) {
1930    // No dependence, newDelta < 0
1931    ++WeakZeroSIVindependence;
1932    ++WeakZeroSIVsuccesses;
1933    return true;
1934  }
1935
1936  // if SrcCoeff doesn't divide Delta, then no dependence
1937  if (isa<SCEVConstant>(Delta) &&
1938      !isRemainderZero(cast<SCEVConstant>(Delta), ConstCoeff)) {
1939    ++WeakZeroSIVindependence;
1940    ++WeakZeroSIVsuccesses;
1941    return true;
1942  }
1943  return false;
1944}
1945
1946
1947// exactRDIVtest - Tests the RDIV subscript pair for dependence.
1948// Things of the form [c1 + a*i] and [c2 + b*j],
1949// where i and j are induction variable, c1 and c2 are loop invariant,
1950// and a and b are constants.
1951// Returns true if any possible dependence is disproved.
1952// Marks the result as inconsistent.
1953// Works in some cases that symbolicRDIVtest doesn't, and vice versa.
1954bool DependenceInfo::exactRDIVtest(const SCEV *SrcCoeff, const SCEV *DstCoeff,
1955                                   const SCEV *SrcConst, const SCEV *DstConst,
1956                                   const Loop *SrcLoop, const Loop *DstLoop,
1957                                   FullDependence &Result) const {
1958  LLVM_DEBUG(dbgs() << "\tExact RDIV test\n");
1959  LLVM_DEBUG(dbgs() << "\t    SrcCoeff = " << *SrcCoeff << " = AM\n");
1960  LLVM_DEBUG(dbgs() << "\t    DstCoeff = " << *DstCoeff << " = BM\n");
1961  LLVM_DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
1962  LLVM_DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
1963  ++ExactRDIVapplications;
1964  Result.Consistent = false;
1965  const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1966  LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
1967  const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
1968  const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
1969  const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
1970  if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff)
1971    return false;
1972
1973  // find gcd
1974  APInt G, X, Y;
1975  APInt AM = ConstSrcCoeff->getAPInt();
1976  APInt BM = ConstDstCoeff->getAPInt();
1977  APInt CM = ConstDelta->getAPInt();
1978  unsigned Bits = AM.getBitWidth();
1979  if (findGCD(Bits, AM, BM, CM, G, X, Y)) {
1980    // gcd doesn't divide Delta, no dependence
1981    ++ExactRDIVindependence;
1982    return true;
1983  }
1984
1985  LLVM_DEBUG(dbgs() << "\t    X = " << X << ", Y = " << Y << "\n");
1986
1987  // since SCEV construction seems to normalize, LM = 0
1988  APInt SrcUM(Bits, 1, true);
1989  bool SrcUMvalid = false;
1990  // SrcUM is perhaps unavailable, let's check
1991  if (const SCEVConstant *UpperBound =
1992          collectConstantUpperBound(SrcLoop, Delta->getType())) {
1993    SrcUM = UpperBound->getAPInt();
1994    LLVM_DEBUG(dbgs() << "\t    SrcUM = " << SrcUM << "\n");
1995    SrcUMvalid = true;
1996  }
1997
1998  APInt DstUM(Bits, 1, true);
1999  bool DstUMvalid = false;
2000  // UM is perhaps unavailable, let's check
2001  if (const SCEVConstant *UpperBound =
2002          collectConstantUpperBound(DstLoop, Delta->getType())) {
2003    DstUM = UpperBound->getAPInt();
2004    LLVM_DEBUG(dbgs() << "\t    DstUM = " << DstUM << "\n");
2005    DstUMvalid = true;
2006  }
2007
2008  APInt TU(APInt::getSignedMaxValue(Bits));
2009  APInt TL(APInt::getSignedMinValue(Bits));
2010  APInt TC = CM.sdiv(G);
2011  APInt TX = X * TC;
2012  APInt TY = Y * TC;
2013  LLVM_DEBUG(dbgs() << "\t    TC = " << TC << "\n");
2014  LLVM_DEBUG(dbgs() << "\t    TX = " << TX << "\n");
2015  LLVM_DEBUG(dbgs() << "\t    TY = " << TY << "\n");
2016
2017  SmallVector<APInt, 2> TLVec, TUVec;
2018  APInt TB = BM.sdiv(G);
2019  if (TB.sgt(0)) {
2020    TLVec.push_back(ceilingOfQuotient(-TX, TB));
2021    LLVM_DEBUG(dbgs() << "\t    Possible TL = " << TLVec.back() << "\n");
2022    if (SrcUMvalid) {
2023      TUVec.push_back(floorOfQuotient(SrcUM - TX, TB));
2024      LLVM_DEBUG(dbgs() << "\t    Possible TU = " << TUVec.back() << "\n");
2025    }
2026  } else {
2027    TUVec.push_back(floorOfQuotient(-TX, TB));
2028    LLVM_DEBUG(dbgs() << "\t    Possible TU = " << TUVec.back() << "\n");
2029    if (SrcUMvalid) {
2030      TLVec.push_back(ceilingOfQuotient(SrcUM - TX, TB));
2031      LLVM_DEBUG(dbgs() << "\t    Possible TL = " << TLVec.back() << "\n");
2032    }
2033  }
2034
2035  APInt TA = AM.sdiv(G);
2036  if (TA.sgt(0)) {
2037    TLVec.push_back(ceilingOfQuotient(-TY, TA));
2038    LLVM_DEBUG(dbgs() << "\t    Possible TL = " << TLVec.back() << "\n");
2039    if (DstUMvalid) {
2040      TUVec.push_back(floorOfQuotient(DstUM - TY, TA));
2041      LLVM_DEBUG(dbgs() << "\t    Possible TU = " << TUVec.back() << "\n");
2042    }
2043  } else {
2044    TUVec.push_back(floorOfQuotient(-TY, TA));
2045    LLVM_DEBUG(dbgs() << "\t    Possible TU = " << TUVec.back() << "\n");
2046    if (DstUMvalid) {
2047      TLVec.push_back(ceilingOfQuotient(DstUM - TY, TA));
2048      LLVM_DEBUG(dbgs() << "\t    Possible TL = " << TLVec.back() << "\n");
2049    }
2050  }
2051
2052  if (TLVec.empty() || TUVec.empty())
2053    return false;
2054
2055  LLVM_DEBUG(dbgs() << "\t    TA = " << TA << "\n");
2056  LLVM_DEBUG(dbgs() << "\t    TB = " << TB << "\n");
2057
2058  TL = APIntOps::smax(TLVec.front(), TLVec.back());
2059  TU = APIntOps::smin(TUVec.front(), TUVec.back());
2060  LLVM_DEBUG(dbgs() << "\t    TL = " << TL << "\n");
2061  LLVM_DEBUG(dbgs() << "\t    TU = " << TU << "\n");
2062
2063  if (TL.sgt(TU))
2064    ++ExactRDIVindependence;
2065  return TL.sgt(TU);
2066}
2067
2068
2069// symbolicRDIVtest -
2070// In Section 4.5 of the Practical Dependence Testing paper,the authors
2071// introduce a special case of Banerjee's Inequalities (also called the
2072// Extreme-Value Test) that can handle some of the SIV and RDIV cases,
2073// particularly cases with symbolics. Since it's only able to disprove
2074// dependence (not compute distances or directions), we'll use it as a
2075// fall back for the other tests.
2076//
2077// When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j]
2078// where i and j are induction variables and c1 and c2 are loop invariants,
2079// we can use the symbolic tests to disprove some dependences, serving as a
2080// backup for the RDIV test. Note that i and j can be the same variable,
2081// letting this test serve as a backup for the various SIV tests.
2082//
2083// For a dependence to exist, c1 + a1*i must equal c2 + a2*j for some
2084//  0 <= i <= N1 and some 0 <= j <= N2, where N1 and N2 are the (normalized)
2085// loop bounds for the i and j loops, respectively. So, ...
2086//
2087// c1 + a1*i = c2 + a2*j
2088// a1*i - a2*j = c2 - c1
2089//
2090// To test for a dependence, we compute c2 - c1 and make sure it's in the
2091// range of the maximum and minimum possible values of a1*i - a2*j.
2092// Considering the signs of a1 and a2, we have 4 possible cases:
2093//
2094// 1) If a1 >= 0 and a2 >= 0, then
2095//        a1*0 - a2*N2 <= c2 - c1 <= a1*N1 - a2*0
2096//              -a2*N2 <= c2 - c1 <= a1*N1
2097//
2098// 2) If a1 >= 0 and a2 <= 0, then
2099//        a1*0 - a2*0 <= c2 - c1 <= a1*N1 - a2*N2
2100//                  0 <= c2 - c1 <= a1*N1 - a2*N2
2101//
2102// 3) If a1 <= 0 and a2 >= 0, then
2103//        a1*N1 - a2*N2 <= c2 - c1 <= a1*0 - a2*0
2104//        a1*N1 - a2*N2 <= c2 - c1 <= 0
2105//
2106// 4) If a1 <= 0 and a2 <= 0, then
2107//        a1*N1 - a2*0  <= c2 - c1 <= a1*0 - a2*N2
2108//        a1*N1         <= c2 - c1 <=       -a2*N2
2109//
2110// return true if dependence disproved
2111bool DependenceInfo::symbolicRDIVtest(const SCEV *A1, const SCEV *A2,
2112                                      const SCEV *C1, const SCEV *C2,
2113                                      const Loop *Loop1,
2114                                      const Loop *Loop2) const {
2115  ++SymbolicRDIVapplications;
2116  LLVM_DEBUG(dbgs() << "\ttry symbolic RDIV test\n");
2117  LLVM_DEBUG(dbgs() << "\t    A1 = " << *A1);
2118  LLVM_DEBUG(dbgs() << ", type = " << *A1->getType() << "\n");
2119  LLVM_DEBUG(dbgs() << "\t    A2 = " << *A2 << "\n");
2120  LLVM_DEBUG(dbgs() << "\t    C1 = " << *C1 << "\n");
2121  LLVM_DEBUG(dbgs() << "\t    C2 = " << *C2 << "\n");
2122  const SCEV *N1 = collectUpperBound(Loop1, A1->getType());
2123  const SCEV *N2 = collectUpperBound(Loop2, A1->getType());
2124  LLVM_DEBUG(if (N1) dbgs() << "\t    N1 = " << *N1 << "\n");
2125  LLVM_DEBUG(if (N2) dbgs() << "\t    N2 = " << *N2 << "\n");
2126  const SCEV *C2_C1 = SE->getMinusSCEV(C2, C1);
2127  const SCEV *C1_C2 = SE->getMinusSCEV(C1, C2);
2128  LLVM_DEBUG(dbgs() << "\t    C2 - C1 = " << *C2_C1 << "\n");
2129  LLVM_DEBUG(dbgs() << "\t    C1 - C2 = " << *C1_C2 << "\n");
2130  if (SE->isKnownNonNegative(A1)) {
2131    if (SE->isKnownNonNegative(A2)) {
2132      // A1 >= 0 && A2 >= 0
2133      if (N1) {
2134        // make sure that c2 - c1 <= a1*N1
2135        const SCEV *A1N1 = SE->getMulExpr(A1, N1);
2136        LLVM_DEBUG(dbgs() << "\t    A1*N1 = " << *A1N1 << "\n");
2137        if (isKnownPredicate(CmpInst::ICMP_SGT, C2_C1, A1N1)) {
2138          ++SymbolicRDIVindependence;
2139          return true;
2140        }
2141      }
2142      if (N2) {
2143        // make sure that -a2*N2 <= c2 - c1, or a2*N2 >= c1 - c2
2144        const SCEV *A2N2 = SE->getMulExpr(A2, N2);
2145        LLVM_DEBUG(dbgs() << "\t    A2*N2 = " << *A2N2 << "\n");
2146        if (isKnownPredicate(CmpInst::ICMP_SLT, A2N2, C1_C2)) {
2147          ++SymbolicRDIVindependence;
2148          return true;
2149        }
2150      }
2151    }
2152    else if (SE->isKnownNonPositive(A2)) {
2153      // a1 >= 0 && a2 <= 0
2154      if (N1 && N2) {
2155        // make sure that c2 - c1 <= a1*N1 - a2*N2
2156        const SCEV *A1N1 = SE->getMulExpr(A1, N1);
2157        const SCEV *A2N2 = SE->getMulExpr(A2, N2);
2158        const SCEV *A1N1_A2N2 = SE->getMinusSCEV(A1N1, A2N2);
2159        LLVM_DEBUG(dbgs() << "\t    A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n");
2160        if (isKnownPredicate(CmpInst::ICMP_SGT, C2_C1, A1N1_A2N2)) {
2161          ++SymbolicRDIVindependence;
2162          return true;
2163        }
2164      }
2165      // make sure that 0 <= c2 - c1
2166      if (SE->isKnownNegative(C2_C1)) {
2167        ++SymbolicRDIVindependence;
2168        return true;
2169      }
2170    }
2171  }
2172  else if (SE->isKnownNonPositive(A1)) {
2173    if (SE->isKnownNonNegative(A2)) {
2174      // a1 <= 0 && a2 >= 0
2175      if (N1 && N2) {
2176        // make sure that a1*N1 - a2*N2 <= c2 - c1
2177        const SCEV *A1N1 = SE->getMulExpr(A1, N1);
2178        const SCEV *A2N2 = SE->getMulExpr(A2, N2);
2179        const SCEV *A1N1_A2N2 = SE->getMinusSCEV(A1N1, A2N2);
2180        LLVM_DEBUG(dbgs() << "\t    A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n");
2181        if (isKnownPredicate(CmpInst::ICMP_SGT, A1N1_A2N2, C2_C1)) {
2182          ++SymbolicRDIVindependence;
2183          return true;
2184        }
2185      }
2186      // make sure that c2 - c1 <= 0
2187      if (SE->isKnownPositive(C2_C1)) {
2188        ++SymbolicRDIVindependence;
2189        return true;
2190      }
2191    }
2192    else if (SE->isKnownNonPositive(A2)) {
2193      // a1 <= 0 && a2 <= 0
2194      if (N1) {
2195        // make sure that a1*N1 <= c2 - c1
2196        const SCEV *A1N1 = SE->getMulExpr(A1, N1);
2197        LLVM_DEBUG(dbgs() << "\t    A1*N1 = " << *A1N1 << "\n");
2198        if (isKnownPredicate(CmpInst::ICMP_SGT, A1N1, C2_C1)) {
2199          ++SymbolicRDIVindependence;
2200          return true;
2201        }
2202      }
2203      if (N2) {
2204        // make sure that c2 - c1 <= -a2*N2, or c1 - c2 >= a2*N2
2205        const SCEV *A2N2 = SE->getMulExpr(A2, N2);
2206        LLVM_DEBUG(dbgs() << "\t    A2*N2 = " << *A2N2 << "\n");
2207        if (isKnownPredicate(CmpInst::ICMP_SLT, C1_C2, A2N2)) {
2208          ++SymbolicRDIVindependence;
2209          return true;
2210        }
2211      }
2212    }
2213  }
2214  return false;
2215}
2216
2217
2218// testSIV -
2219// When we have a pair of subscripts of the form [c1 + a1*i] and [c2 - a2*i]
2220// where i is an induction variable, c1 and c2 are loop invariant, and a1 and
2221// a2 are constant, we attack it with an SIV test. While they can all be
2222// solved with the Exact SIV test, it's worthwhile to use simpler tests when
2223// they apply; they're cheaper and sometimes more precise.
2224//
2225// Return true if dependence disproved.
2226bool DependenceInfo::testSIV(const SCEV *Src, const SCEV *Dst, unsigned &Level,
2227                             FullDependence &Result, Constraint &NewConstraint,
2228                             const SCEV *&SplitIter) const {
2229  LLVM_DEBUG(dbgs() << "    src = " << *Src << "\n");
2230  LLVM_DEBUG(dbgs() << "    dst = " << *Dst << "\n");
2231  const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Src);
2232  const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Dst);
2233  if (SrcAddRec && DstAddRec) {
2234    const SCEV *SrcConst = SrcAddRec->getStart();
2235    const SCEV *DstConst = DstAddRec->getStart();
2236    const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
2237    const SCEV *DstCoeff = DstAddRec->getStepRecurrence(*SE);
2238    const Loop *CurLoop = SrcAddRec->getLoop();
2239    assert(CurLoop == DstAddRec->getLoop() &&
2240           "both loops in SIV should be same");
2241    Level = mapSrcLoop(CurLoop);
2242    bool disproven;
2243    if (SrcCoeff == DstCoeff)
2244      disproven = strongSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
2245                                Level, Result, NewConstraint);
2246    else if (SrcCoeff == SE->getNegativeSCEV(DstCoeff))
2247      disproven = weakCrossingSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
2248                                      Level, Result, NewConstraint, SplitIter);
2249    else
2250      disproven = exactSIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop,
2251                               Level, Result, NewConstraint);
2252    return disproven ||
2253      gcdMIVtest(Src, Dst, Result) ||
2254      symbolicRDIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop, CurLoop);
2255  }
2256  if (SrcAddRec) {
2257    const SCEV *SrcConst = SrcAddRec->getStart();
2258    const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
2259    const SCEV *DstConst = Dst;
2260    const Loop *CurLoop = SrcAddRec->getLoop();
2261    Level = mapSrcLoop(CurLoop);
2262    return weakZeroDstSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
2263                              Level, Result, NewConstraint) ||
2264      gcdMIVtest(Src, Dst, Result);
2265  }
2266  if (DstAddRec) {
2267    const SCEV *DstConst = DstAddRec->getStart();
2268    const SCEV *DstCoeff = DstAddRec->getStepRecurrence(*SE);
2269    const SCEV *SrcConst = Src;
2270    const Loop *CurLoop = DstAddRec->getLoop();
2271    Level = mapDstLoop(CurLoop);
2272    return weakZeroSrcSIVtest(DstCoeff, SrcConst, DstConst,
2273                              CurLoop, Level, Result, NewConstraint) ||
2274      gcdMIVtest(Src, Dst, Result);
2275  }
2276  llvm_unreachable("SIV test expected at least one AddRec");
2277  return false;
2278}
2279
2280
2281// testRDIV -
2282// When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j]
2283// where i and j are induction variables, c1 and c2 are loop invariant,
2284// and a1 and a2 are constant, we can solve it exactly with an easy adaptation
2285// of the Exact SIV test, the Restricted Double Index Variable (RDIV) test.
2286// It doesn't make sense to talk about distance or direction in this case,
2287// so there's no point in making special versions of the Strong SIV test or
2288// the Weak-crossing SIV test.
2289//
2290// With minor algebra, this test can also be used for things like
2291// [c1 + a1*i + a2*j][c2].
2292//
2293// Return true if dependence disproved.
2294bool DependenceInfo::testRDIV(const SCEV *Src, const SCEV *Dst,
2295                              FullDependence &Result) const {
2296  // we have 3 possible situations here:
2297  //   1) [a*i + b] and [c*j + d]
2298  //   2) [a*i + c*j + b] and [d]
2299  //   3) [b] and [a*i + c*j + d]
2300  // We need to find what we've got and get organized
2301
2302  const SCEV *SrcConst, *DstConst;
2303  const SCEV *SrcCoeff, *DstCoeff;
2304  const Loop *SrcLoop, *DstLoop;
2305
2306  LLVM_DEBUG(dbgs() << "    src = " << *Src << "\n");
2307  LLVM_DEBUG(dbgs() << "    dst = " << *Dst << "\n");
2308  const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Src);
2309  const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Dst);
2310  if (SrcAddRec && DstAddRec) {
2311    SrcConst = SrcAddRec->getStart();
2312    SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
2313    SrcLoop = SrcAddRec->getLoop();
2314    DstConst = DstAddRec->getStart();
2315    DstCoeff = DstAddRec->getStepRecurrence(*SE);
2316    DstLoop = DstAddRec->getLoop();
2317  }
2318  else if (SrcAddRec) {
2319    if (const SCEVAddRecExpr *tmpAddRec =
2320        dyn_cast<SCEVAddRecExpr>(SrcAddRec->getStart())) {
2321      SrcConst = tmpAddRec->getStart();
2322      SrcCoeff = tmpAddRec->getStepRecurrence(*SE);
2323      SrcLoop = tmpAddRec->getLoop();
2324      DstConst = Dst;
2325      DstCoeff = SE->getNegativeSCEV(SrcAddRec->getStepRecurrence(*SE));
2326      DstLoop = SrcAddRec->getLoop();
2327    }
2328    else
2329      llvm_unreachable("RDIV reached by surprising SCEVs");
2330  }
2331  else if (DstAddRec) {
2332    if (const SCEVAddRecExpr *tmpAddRec =
2333        dyn_cast<SCEVAddRecExpr>(DstAddRec->getStart())) {
2334      DstConst = tmpAddRec->getStart();
2335      DstCoeff = tmpAddRec->getStepRecurrence(*SE);
2336      DstLoop = tmpAddRec->getLoop();
2337      SrcConst = Src;
2338      SrcCoeff = SE->getNegativeSCEV(DstAddRec->getStepRecurrence(*SE));
2339      SrcLoop = DstAddRec->getLoop();
2340    }
2341    else
2342      llvm_unreachable("RDIV reached by surprising SCEVs");
2343  }
2344  else
2345    llvm_unreachable("RDIV expected at least one AddRec");
2346  return exactRDIVtest(SrcCoeff, DstCoeff,
2347                       SrcConst, DstConst,
2348                       SrcLoop, DstLoop,
2349                       Result) ||
2350    gcdMIVtest(Src, Dst, Result) ||
2351    symbolicRDIVtest(SrcCoeff, DstCoeff,
2352                     SrcConst, DstConst,
2353                     SrcLoop, DstLoop);
2354}
2355
2356
2357// Tests the single-subscript MIV pair (Src and Dst) for dependence.
2358// Return true if dependence disproved.
2359// Can sometimes refine direction vectors.
2360bool DependenceInfo::testMIV(const SCEV *Src, const SCEV *Dst,
2361                             const SmallBitVector &Loops,
2362                             FullDependence &Result) const {
2363  LLVM_DEBUG(dbgs() << "    src = " << *Src << "\n");
2364  LLVM_DEBUG(dbgs() << "    dst = " << *Dst << "\n");
2365  Result.Consistent = false;
2366  return gcdMIVtest(Src, Dst, Result) ||
2367    banerjeeMIVtest(Src, Dst, Loops, Result);
2368}
2369
2370
2371// Given a product, e.g., 10*X*Y, returns the first constant operand,
2372// in this case 10. If there is no constant part, returns NULL.
2373static
2374const SCEVConstant *getConstantPart(const SCEV *Expr) {
2375  if (const auto *Constant = dyn_cast<SCEVConstant>(Expr))
2376    return Constant;
2377  else if (const auto *Product = dyn_cast<SCEVMulExpr>(Expr))
2378    if (const auto *Constant = dyn_cast<SCEVConstant>(Product->getOperand(0)))
2379      return Constant;
2380  return nullptr;
2381}
2382
2383
2384//===----------------------------------------------------------------------===//
2385// gcdMIVtest -
2386// Tests an MIV subscript pair for dependence.
2387// Returns true if any possible dependence is disproved.
2388// Marks the result as inconsistent.
2389// Can sometimes disprove the equal direction for 1 or more loops,
2390// as discussed in Michael Wolfe's book,
2391// High Performance Compilers for Parallel Computing, page 235.
2392//
2393// We spend some effort (code!) to handle cases like
2394// [10*i + 5*N*j + 15*M + 6], where i and j are induction variables,
2395// but M and N are just loop-invariant variables.
2396// This should help us handle linearized subscripts;
2397// also makes this test a useful backup to the various SIV tests.
2398//
2399// It occurs to me that the presence of loop-invariant variables
2400// changes the nature of the test from "greatest common divisor"
2401// to "a common divisor".
2402bool DependenceInfo::gcdMIVtest(const SCEV *Src, const SCEV *Dst,
2403                                FullDependence &Result) const {
2404  LLVM_DEBUG(dbgs() << "starting gcd\n");
2405  ++GCDapplications;
2406  unsigned BitWidth = SE->getTypeSizeInBits(Src->getType());
2407  APInt RunningGCD = APInt::getZero(BitWidth);
2408
2409  // Examine Src coefficients.
2410  // Compute running GCD and record source constant.
2411  // Because we're looking for the constant at the end of the chain,
2412  // we can't quit the loop just because the GCD == 1.
2413  const SCEV *Coefficients = Src;
2414  while (const SCEVAddRecExpr *AddRec =
2415         dyn_cast<SCEVAddRecExpr>(Coefficients)) {
2416    const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2417    // If the coefficient is the product of a constant and other stuff,
2418    // we can use the constant in the GCD computation.
2419    const auto *Constant = getConstantPart(Coeff);
2420    if (!Constant)
2421      return false;
2422    APInt ConstCoeff = Constant->getAPInt();
2423    RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2424    Coefficients = AddRec->getStart();
2425  }
2426  const SCEV *SrcConst = Coefficients;
2427
2428  // Examine Dst coefficients.
2429  // Compute running GCD and record destination constant.
2430  // Because we're looking for the constant at the end of the chain,
2431  // we can't quit the loop just because the GCD == 1.
2432  Coefficients = Dst;
2433  while (const SCEVAddRecExpr *AddRec =
2434         dyn_cast<SCEVAddRecExpr>(Coefficients)) {
2435    const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2436    // If the coefficient is the product of a constant and other stuff,
2437    // we can use the constant in the GCD computation.
2438    const auto *Constant = getConstantPart(Coeff);
2439    if (!Constant)
2440      return false;
2441    APInt ConstCoeff = Constant->getAPInt();
2442    RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2443    Coefficients = AddRec->getStart();
2444  }
2445  const SCEV *DstConst = Coefficients;
2446
2447  APInt ExtraGCD = APInt::getZero(BitWidth);
2448  const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
2449  LLVM_DEBUG(dbgs() << "    Delta = " << *Delta << "\n");
2450  const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Delta);
2451  if (const SCEVAddExpr *Sum = dyn_cast<SCEVAddExpr>(Delta)) {
2452    // If Delta is a sum of products, we may be able to make further progress.
2453    for (unsigned Op = 0, Ops = Sum->getNumOperands(); Op < Ops; Op++) {
2454      const SCEV *Operand = Sum->getOperand(Op);
2455      if (isa<SCEVConstant>(Operand)) {
2456        assert(!Constant && "Surprised to find multiple constants");
2457        Constant = cast<SCEVConstant>(Operand);
2458      }
2459      else if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Operand)) {
2460        // Search for constant operand to participate in GCD;
2461        // If none found; return false.
2462        const SCEVConstant *ConstOp = getConstantPart(Product);
2463        if (!ConstOp)
2464          return false;
2465        APInt ConstOpValue = ConstOp->getAPInt();
2466        ExtraGCD = APIntOps::GreatestCommonDivisor(ExtraGCD,
2467                                                   ConstOpValue.abs());
2468      }
2469      else
2470        return false;
2471    }
2472  }
2473  if (!Constant)
2474    return false;
2475  APInt ConstDelta = cast<SCEVConstant>(Constant)->getAPInt();
2476  LLVM_DEBUG(dbgs() << "    ConstDelta = " << ConstDelta << "\n");
2477  if (ConstDelta == 0)
2478    return false;
2479  RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ExtraGCD);
2480  LLVM_DEBUG(dbgs() << "    RunningGCD = " << RunningGCD << "\n");
2481  APInt Remainder = ConstDelta.srem(RunningGCD);
2482  if (Remainder != 0) {
2483    ++GCDindependence;
2484    return true;
2485  }
2486
2487  // Try to disprove equal directions.
2488  // For example, given a subscript pair [3*i + 2*j] and [i' + 2*j' - 1],
2489  // the code above can't disprove the dependence because the GCD = 1.
2490  // So we consider what happen if i = i' and what happens if j = j'.
2491  // If i = i', we can simplify the subscript to [2*i + 2*j] and [2*j' - 1],
2492  // which is infeasible, so we can disallow the = direction for the i level.
2493  // Setting j = j' doesn't help matters, so we end up with a direction vector
2494  // of [<>, *]
2495  //
2496  // Given A[5*i + 10*j*M + 9*M*N] and A[15*i + 20*j*M - 21*N*M + 5],
2497  // we need to remember that the constant part is 5 and the RunningGCD should
2498  // be initialized to ExtraGCD = 30.
2499  LLVM_DEBUG(dbgs() << "    ExtraGCD = " << ExtraGCD << '\n');
2500
2501  bool Improved = false;
2502  Coefficients = Src;
2503  while (const SCEVAddRecExpr *AddRec =
2504         dyn_cast<SCEVAddRecExpr>(Coefficients)) {
2505    Coefficients = AddRec->getStart();
2506    const Loop *CurLoop = AddRec->getLoop();
2507    RunningGCD = ExtraGCD;
2508    const SCEV *SrcCoeff = AddRec->getStepRecurrence(*SE);
2509    const SCEV *DstCoeff = SE->getMinusSCEV(SrcCoeff, SrcCoeff);
2510    const SCEV *Inner = Src;
2511    while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Inner)) {
2512      AddRec = cast<SCEVAddRecExpr>(Inner);
2513      const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2514      if (CurLoop == AddRec->getLoop())
2515        ; // SrcCoeff == Coeff
2516      else {
2517        // If the coefficient is the product of a constant and other stuff,
2518        // we can use the constant in the GCD computation.
2519        Constant = getConstantPart(Coeff);
2520        if (!Constant)
2521          return false;
2522        APInt ConstCoeff = Constant->getAPInt();
2523        RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2524      }
2525      Inner = AddRec->getStart();
2526    }
2527    Inner = Dst;
2528    while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Inner)) {
2529      AddRec = cast<SCEVAddRecExpr>(Inner);
2530      const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2531      if (CurLoop == AddRec->getLoop())
2532        DstCoeff = Coeff;
2533      else {
2534        // If the coefficient is the product of a constant and other stuff,
2535        // we can use the constant in the GCD computation.
2536        Constant = getConstantPart(Coeff);
2537        if (!Constant)
2538          return false;
2539        APInt ConstCoeff = Constant->getAPInt();
2540        RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2541      }
2542      Inner = AddRec->getStart();
2543    }
2544    Delta = SE->getMinusSCEV(SrcCoeff, DstCoeff);
2545    // If the coefficient is the product of a constant and other stuff,
2546    // we can use the constant in the GCD computation.
2547    Constant = getConstantPart(Delta);
2548    if (!Constant)
2549      // The difference of the two coefficients might not be a product
2550      // or constant, in which case we give up on this direction.
2551      continue;
2552    APInt ConstCoeff = Constant->getAPInt();
2553    RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2554    LLVM_DEBUG(dbgs() << "\tRunningGCD = " << RunningGCD << "\n");
2555    if (RunningGCD != 0) {
2556      Remainder = ConstDelta.srem(RunningGCD);
2557      LLVM_DEBUG(dbgs() << "\tRemainder = " << Remainder << "\n");
2558      if (Remainder != 0) {
2559        unsigned Level = mapSrcLoop(CurLoop);
2560        Result.DV[Level - 1].Direction &= ~Dependence::DVEntry::EQ;
2561        Improved = true;
2562      }
2563    }
2564  }
2565  if (Improved)
2566    ++GCDsuccesses;
2567  LLVM_DEBUG(dbgs() << "all done\n");
2568  return false;
2569}
2570
2571
2572//===----------------------------------------------------------------------===//
2573// banerjeeMIVtest -
2574// Use Banerjee's Inequalities to test an MIV subscript pair.
2575// (Wolfe, in the race-car book, calls this the Extreme Value Test.)
2576// Generally follows the discussion in Section 2.5.2 of
2577//
2578//    Optimizing Supercompilers for Supercomputers
2579//    Michael Wolfe
2580//
2581// The inequalities given on page 25 are simplified in that loops are
2582// normalized so that the lower bound is always 0 and the stride is always 1.
2583// For example, Wolfe gives
2584//
2585//     LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2586//
2587// where A_k is the coefficient of the kth index in the source subscript,
2588// B_k is the coefficient of the kth index in the destination subscript,
2589// U_k is the upper bound of the kth index, L_k is the lower bound of the Kth
2590// index, and N_k is the stride of the kth index. Since all loops are normalized
2591// by the SCEV package, N_k = 1 and L_k = 0, allowing us to simplify the
2592// equation to
2593//
2594//     LB^<_k = (A^-_k - B_k)^- (U_k - 0 - 1) + (A_k - B_k)0 - B_k 1
2595//            = (A^-_k - B_k)^- (U_k - 1)  - B_k
2596//
2597// Similar simplifications are possible for the other equations.
2598//
2599// When we can't determine the number of iterations for a loop,
2600// we use NULL as an indicator for the worst case, infinity.
2601// When computing the upper bound, NULL denotes +inf;
2602// for the lower bound, NULL denotes -inf.
2603//
2604// Return true if dependence disproved.
2605bool DependenceInfo::banerjeeMIVtest(const SCEV *Src, const SCEV *Dst,
2606                                     const SmallBitVector &Loops,
2607                                     FullDependence &Result) const {
2608  LLVM_DEBUG(dbgs() << "starting Banerjee\n");
2609  ++BanerjeeApplications;
2610  LLVM_DEBUG(dbgs() << "    Src = " << *Src << '\n');
2611  const SCEV *A0;
2612  CoefficientInfo *A = collectCoeffInfo(Src, true, A0);
2613  LLVM_DEBUG(dbgs() << "    Dst = " << *Dst << '\n');
2614  const SCEV *B0;
2615  CoefficientInfo *B = collectCoeffInfo(Dst, false, B0);
2616  BoundInfo *Bound = new BoundInfo[MaxLevels + 1];
2617  const SCEV *Delta = SE->getMinusSCEV(B0, A0);
2618  LLVM_DEBUG(dbgs() << "\tDelta = " << *Delta << '\n');
2619
2620  // Compute bounds for all the * directions.
2621  LLVM_DEBUG(dbgs() << "\tBounds[*]\n");
2622  for (unsigned K = 1; K <= MaxLevels; ++K) {
2623    Bound[K].Iterations = A[K].Iterations ? A[K].Iterations : B[K].Iterations;
2624    Bound[K].Direction = Dependence::DVEntry::ALL;
2625    Bound[K].DirSet = Dependence::DVEntry::NONE;
2626    findBoundsALL(A, B, Bound, K);
2627#ifndef NDEBUG
2628    LLVM_DEBUG(dbgs() << "\t    " << K << '\t');
2629    if (Bound[K].Lower[Dependence::DVEntry::ALL])
2630      LLVM_DEBUG(dbgs() << *Bound[K].Lower[Dependence::DVEntry::ALL] << '\t');
2631    else
2632      LLVM_DEBUG(dbgs() << "-inf\t");
2633    if (Bound[K].Upper[Dependence::DVEntry::ALL])
2634      LLVM_DEBUG(dbgs() << *Bound[K].Upper[Dependence::DVEntry::ALL] << '\n');
2635    else
2636      LLVM_DEBUG(dbgs() << "+inf\n");
2637#endif
2638  }
2639
2640  // Test the *, *, *, ... case.
2641  bool Disproved = false;
2642  if (testBounds(Dependence::DVEntry::ALL, 0, Bound, Delta)) {
2643    // Explore the direction vector hierarchy.
2644    unsigned DepthExpanded = 0;
2645    unsigned NewDeps = exploreDirections(1, A, B, Bound,
2646                                         Loops, DepthExpanded, Delta);
2647    if (NewDeps > 0) {
2648      bool Improved = false;
2649      for (unsigned K = 1; K <= CommonLevels; ++K) {
2650        if (Loops[K]) {
2651          unsigned Old = Result.DV[K - 1].Direction;
2652          Result.DV[K - 1].Direction = Old & Bound[K].DirSet;
2653          Improved |= Old != Result.DV[K - 1].Direction;
2654          if (!Result.DV[K - 1].Direction) {
2655            Improved = false;
2656            Disproved = true;
2657            break;
2658          }
2659        }
2660      }
2661      if (Improved)
2662        ++BanerjeeSuccesses;
2663    }
2664    else {
2665      ++BanerjeeIndependence;
2666      Disproved = true;
2667    }
2668  }
2669  else {
2670    ++BanerjeeIndependence;
2671    Disproved = true;
2672  }
2673  delete [] Bound;
2674  delete [] A;
2675  delete [] B;
2676  return Disproved;
2677}
2678
2679
2680// Hierarchically expands the direction vector
2681// search space, combining the directions of discovered dependences
2682// in the DirSet field of Bound. Returns the number of distinct
2683// dependences discovered. If the dependence is disproved,
2684// it will return 0.
2685unsigned DependenceInfo::exploreDirections(unsigned Level, CoefficientInfo *A,
2686                                           CoefficientInfo *B, BoundInfo *Bound,
2687                                           const SmallBitVector &Loops,
2688                                           unsigned &DepthExpanded,
2689                                           const SCEV *Delta) const {
2690  // This algorithm has worst case complexity of O(3^n), where 'n' is the number
2691  // of common loop levels. To avoid excessive compile-time, pessimize all the
2692  // results and immediately return when the number of common levels is beyond
2693  // the given threshold.
2694  if (CommonLevels > MIVMaxLevelThreshold) {
2695    LLVM_DEBUG(dbgs() << "Number of common levels exceeded the threshold. MIV "
2696                         "direction exploration is terminated.\n");
2697    for (unsigned K = 1; K <= CommonLevels; ++K)
2698      if (Loops[K])
2699        Bound[K].DirSet = Dependence::DVEntry::ALL;
2700    return 1;
2701  }
2702
2703  if (Level > CommonLevels) {
2704    // record result
2705    LLVM_DEBUG(dbgs() << "\t[");
2706    for (unsigned K = 1; K <= CommonLevels; ++K) {
2707      if (Loops[K]) {
2708        Bound[K].DirSet |= Bound[K].Direction;
2709#ifndef NDEBUG
2710        switch (Bound[K].Direction) {
2711        case Dependence::DVEntry::LT:
2712          LLVM_DEBUG(dbgs() << " <");
2713          break;
2714        case Dependence::DVEntry::EQ:
2715          LLVM_DEBUG(dbgs() << " =");
2716          break;
2717        case Dependence::DVEntry::GT:
2718          LLVM_DEBUG(dbgs() << " >");
2719          break;
2720        case Dependence::DVEntry::ALL:
2721          LLVM_DEBUG(dbgs() << " *");
2722          break;
2723        default:
2724          llvm_unreachable("unexpected Bound[K].Direction");
2725        }
2726#endif
2727      }
2728    }
2729    LLVM_DEBUG(dbgs() << " ]\n");
2730    return 1;
2731  }
2732  if (Loops[Level]) {
2733    if (Level > DepthExpanded) {
2734      DepthExpanded = Level;
2735      // compute bounds for <, =, > at current level
2736      findBoundsLT(A, B, Bound, Level);
2737      findBoundsGT(A, B, Bound, Level);
2738      findBoundsEQ(A, B, Bound, Level);
2739#ifndef NDEBUG
2740      LLVM_DEBUG(dbgs() << "\tBound for level = " << Level << '\n');
2741      LLVM_DEBUG(dbgs() << "\t    <\t");
2742      if (Bound[Level].Lower[Dependence::DVEntry::LT])
2743        LLVM_DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::LT]
2744                          << '\t');
2745      else
2746        LLVM_DEBUG(dbgs() << "-inf\t");
2747      if (Bound[Level].Upper[Dependence::DVEntry::LT])
2748        LLVM_DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::LT]
2749                          << '\n');
2750      else
2751        LLVM_DEBUG(dbgs() << "+inf\n");
2752      LLVM_DEBUG(dbgs() << "\t    =\t");
2753      if (Bound[Level].Lower[Dependence::DVEntry::EQ])
2754        LLVM_DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::EQ]
2755                          << '\t');
2756      else
2757        LLVM_DEBUG(dbgs() << "-inf\t");
2758      if (Bound[Level].Upper[Dependence::DVEntry::EQ])
2759        LLVM_DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::EQ]
2760                          << '\n');
2761      else
2762        LLVM_DEBUG(dbgs() << "+inf\n");
2763      LLVM_DEBUG(dbgs() << "\t    >\t");
2764      if (Bound[Level].Lower[Dependence::DVEntry::GT])
2765        LLVM_DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::GT]
2766                          << '\t');
2767      else
2768        LLVM_DEBUG(dbgs() << "-inf\t");
2769      if (Bound[Level].Upper[Dependence::DVEntry::GT])
2770        LLVM_DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::GT]
2771                          << '\n');
2772      else
2773        LLVM_DEBUG(dbgs() << "+inf\n");
2774#endif
2775    }
2776
2777    unsigned NewDeps = 0;
2778
2779    // test bounds for <, *, *, ...
2780    if (testBounds(Dependence::DVEntry::LT, Level, Bound, Delta))
2781      NewDeps += exploreDirections(Level + 1, A, B, Bound,
2782                                   Loops, DepthExpanded, Delta);
2783
2784    // Test bounds for =, *, *, ...
2785    if (testBounds(Dependence::DVEntry::EQ, Level, Bound, Delta))
2786      NewDeps += exploreDirections(Level + 1, A, B, Bound,
2787                                   Loops, DepthExpanded, Delta);
2788
2789    // test bounds for >, *, *, ...
2790    if (testBounds(Dependence::DVEntry::GT, Level, Bound, Delta))
2791      NewDeps += exploreDirections(Level + 1, A, B, Bound,
2792                                   Loops, DepthExpanded, Delta);
2793
2794    Bound[Level].Direction = Dependence::DVEntry::ALL;
2795    return NewDeps;
2796  }
2797  else
2798    return exploreDirections(Level + 1, A, B, Bound, Loops, DepthExpanded, Delta);
2799}
2800
2801
2802// Returns true iff the current bounds are plausible.
2803bool DependenceInfo::testBounds(unsigned char DirKind, unsigned Level,
2804                                BoundInfo *Bound, const SCEV *Delta) const {
2805  Bound[Level].Direction = DirKind;
2806  if (const SCEV *LowerBound = getLowerBound(Bound))
2807    if (isKnownPredicate(CmpInst::ICMP_SGT, LowerBound, Delta))
2808      return false;
2809  if (const SCEV *UpperBound = getUpperBound(Bound))
2810    if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, UpperBound))
2811      return false;
2812  return true;
2813}
2814
2815
2816// Computes the upper and lower bounds for level K
2817// using the * direction. Records them in Bound.
2818// Wolfe gives the equations
2819//
2820//    LB^*_k = (A^-_k - B^+_k)(U_k - L_k) + (A_k - B_k)L_k
2821//    UB^*_k = (A^+_k - B^-_k)(U_k - L_k) + (A_k - B_k)L_k
2822//
2823// Since we normalize loops, we can simplify these equations to
2824//
2825//    LB^*_k = (A^-_k - B^+_k)U_k
2826//    UB^*_k = (A^+_k - B^-_k)U_k
2827//
2828// We must be careful to handle the case where the upper bound is unknown.
2829// Note that the lower bound is always <= 0
2830// and the upper bound is always >= 0.
2831void DependenceInfo::findBoundsALL(CoefficientInfo *A, CoefficientInfo *B,
2832                                   BoundInfo *Bound, unsigned K) const {
2833  Bound[K].Lower[Dependence::DVEntry::ALL] = nullptr; // Default value = -infinity.
2834  Bound[K].Upper[Dependence::DVEntry::ALL] = nullptr; // Default value = +infinity.
2835  if (Bound[K].Iterations) {
2836    Bound[K].Lower[Dependence::DVEntry::ALL] =
2837      SE->getMulExpr(SE->getMinusSCEV(A[K].NegPart, B[K].PosPart),
2838                     Bound[K].Iterations);
2839    Bound[K].Upper[Dependence::DVEntry::ALL] =
2840      SE->getMulExpr(SE->getMinusSCEV(A[K].PosPart, B[K].NegPart),
2841                     Bound[K].Iterations);
2842  }
2843  else {
2844    // If the difference is 0, we won't need to know the number of iterations.
2845    if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].NegPart, B[K].PosPart))
2846      Bound[K].Lower[Dependence::DVEntry::ALL] =
2847          SE->getZero(A[K].Coeff->getType());
2848    if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].PosPart, B[K].NegPart))
2849      Bound[K].Upper[Dependence::DVEntry::ALL] =
2850          SE->getZero(A[K].Coeff->getType());
2851  }
2852}
2853
2854
2855// Computes the upper and lower bounds for level K
2856// using the = direction. Records them in Bound.
2857// Wolfe gives the equations
2858//
2859//    LB^=_k = (A_k - B_k)^- (U_k - L_k) + (A_k - B_k)L_k
2860//    UB^=_k = (A_k - B_k)^+ (U_k - L_k) + (A_k - B_k)L_k
2861//
2862// Since we normalize loops, we can simplify these equations to
2863//
2864//    LB^=_k = (A_k - B_k)^- U_k
2865//    UB^=_k = (A_k - B_k)^+ U_k
2866//
2867// We must be careful to handle the case where the upper bound is unknown.
2868// Note that the lower bound is always <= 0
2869// and the upper bound is always >= 0.
2870void DependenceInfo::findBoundsEQ(CoefficientInfo *A, CoefficientInfo *B,
2871                                  BoundInfo *Bound, unsigned K) const {
2872  Bound[K].Lower[Dependence::DVEntry::EQ] = nullptr; // Default value = -infinity.
2873  Bound[K].Upper[Dependence::DVEntry::EQ] = nullptr; // Default value = +infinity.
2874  if (Bound[K].Iterations) {
2875    const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff);
2876    const SCEV *NegativePart = getNegativePart(Delta);
2877    Bound[K].Lower[Dependence::DVEntry::EQ] =
2878      SE->getMulExpr(NegativePart, Bound[K].Iterations);
2879    const SCEV *PositivePart = getPositivePart(Delta);
2880    Bound[K].Upper[Dependence::DVEntry::EQ] =
2881      SE->getMulExpr(PositivePart, Bound[K].Iterations);
2882  }
2883  else {
2884    // If the positive/negative part of the difference is 0,
2885    // we won't need to know the number of iterations.
2886    const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff);
2887    const SCEV *NegativePart = getNegativePart(Delta);
2888    if (NegativePart->isZero())
2889      Bound[K].Lower[Dependence::DVEntry::EQ] = NegativePart; // Zero
2890    const SCEV *PositivePart = getPositivePart(Delta);
2891    if (PositivePart->isZero())
2892      Bound[K].Upper[Dependence::DVEntry::EQ] = PositivePart; // Zero
2893  }
2894}
2895
2896
2897// Computes the upper and lower bounds for level K
2898// using the < direction. Records them in Bound.
2899// Wolfe gives the equations
2900//
2901//    LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2902//    UB^<_k = (A^+_k - B_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2903//
2904// Since we normalize loops, we can simplify these equations to
2905//
2906//    LB^<_k = (A^-_k - B_k)^- (U_k - 1) - B_k
2907//    UB^<_k = (A^+_k - B_k)^+ (U_k - 1) - B_k
2908//
2909// We must be careful to handle the case where the upper bound is unknown.
2910void DependenceInfo::findBoundsLT(CoefficientInfo *A, CoefficientInfo *B,
2911                                  BoundInfo *Bound, unsigned K) const {
2912  Bound[K].Lower[Dependence::DVEntry::LT] = nullptr; // Default value = -infinity.
2913  Bound[K].Upper[Dependence::DVEntry::LT] = nullptr; // Default value = +infinity.
2914  if (Bound[K].Iterations) {
2915    const SCEV *Iter_1 = SE->getMinusSCEV(
2916        Bound[K].Iterations, SE->getOne(Bound[K].Iterations->getType()));
2917    const SCEV *NegPart =
2918      getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff));
2919    Bound[K].Lower[Dependence::DVEntry::LT] =
2920      SE->getMinusSCEV(SE->getMulExpr(NegPart, Iter_1), B[K].Coeff);
2921    const SCEV *PosPart =
2922      getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff));
2923    Bound[K].Upper[Dependence::DVEntry::LT] =
2924      SE->getMinusSCEV(SE->getMulExpr(PosPart, Iter_1), B[K].Coeff);
2925  }
2926  else {
2927    // If the positive/negative part of the difference is 0,
2928    // we won't need to know the number of iterations.
2929    const SCEV *NegPart =
2930      getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff));
2931    if (NegPart->isZero())
2932      Bound[K].Lower[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff);
2933    const SCEV *PosPart =
2934      getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff));
2935    if (PosPart->isZero())
2936      Bound[K].Upper[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff);
2937  }
2938}
2939
2940
2941// Computes the upper and lower bounds for level K
2942// using the > direction. Records them in Bound.
2943// Wolfe gives the equations
2944//
2945//    LB^>_k = (A_k - B^+_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k
2946//    UB^>_k = (A_k - B^-_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k
2947//
2948// Since we normalize loops, we can simplify these equations to
2949//
2950//    LB^>_k = (A_k - B^+_k)^- (U_k - 1) + A_k
2951//    UB^>_k = (A_k - B^-_k)^+ (U_k - 1) + A_k
2952//
2953// We must be careful to handle the case where the upper bound is unknown.
2954void DependenceInfo::findBoundsGT(CoefficientInfo *A, CoefficientInfo *B,
2955                                  BoundInfo *Bound, unsigned K) const {
2956  Bound[K].Lower[Dependence::DVEntry::GT] = nullptr; // Default value = -infinity.
2957  Bound[K].Upper[Dependence::DVEntry::GT] = nullptr; // Default value = +infinity.
2958  if (Bound[K].Iterations) {
2959    const SCEV *Iter_1 = SE->getMinusSCEV(
2960        Bound[K].Iterations, SE->getOne(Bound[K].Iterations->getType()));
2961    const SCEV *NegPart =
2962      getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart));
2963    Bound[K].Lower[Dependence::DVEntry::GT] =
2964      SE->getAddExpr(SE->getMulExpr(NegPart, Iter_1), A[K].Coeff);
2965    const SCEV *PosPart =
2966      getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart));
2967    Bound[K].Upper[Dependence::DVEntry::GT] =
2968      SE->getAddExpr(SE->getMulExpr(PosPart, Iter_1), A[K].Coeff);
2969  }
2970  else {
2971    // If the positive/negative part of the difference is 0,
2972    // we won't need to know the number of iterations.
2973    const SCEV *NegPart = getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart));
2974    if (NegPart->isZero())
2975      Bound[K].Lower[Dependence::DVEntry::GT] = A[K].Coeff;
2976    const SCEV *PosPart = getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart));
2977    if (PosPart->isZero())
2978      Bound[K].Upper[Dependence::DVEntry::GT] = A[K].Coeff;
2979  }
2980}
2981
2982
2983// X^+ = max(X, 0)
2984const SCEV *DependenceInfo::getPositivePart(const SCEV *X) const {
2985  return SE->getSMaxExpr(X, SE->getZero(X->getType()));
2986}
2987
2988
2989// X^- = min(X, 0)
2990const SCEV *DependenceInfo::getNegativePart(const SCEV *X) const {
2991  return SE->getSMinExpr(X, SE->getZero(X->getType()));
2992}
2993
2994
2995// Walks through the subscript,
2996// collecting each coefficient, the associated loop bounds,
2997// and recording its positive and negative parts for later use.
2998DependenceInfo::CoefficientInfo *
2999DependenceInfo::collectCoeffInfo(const SCEV *Subscript, bool SrcFlag,
3000                                 const SCEV *&Constant) const {
3001  const SCEV *Zero = SE->getZero(Subscript->getType());
3002  CoefficientInfo *CI = new CoefficientInfo[MaxLevels + 1];
3003  for (unsigned K = 1; K <= MaxLevels; ++K) {
3004    CI[K].Coeff = Zero;
3005    CI[K].PosPart = Zero;
3006    CI[K].NegPart = Zero;
3007    CI[K].Iterations = nullptr;
3008  }
3009  while (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Subscript)) {
3010    const Loop *L = AddRec->getLoop();
3011    unsigned K = SrcFlag ? mapSrcLoop(L) : mapDstLoop(L);
3012    CI[K].Coeff = AddRec->getStepRecurrence(*SE);
3013    CI[K].PosPart = getPositivePart(CI[K].Coeff);
3014    CI[K].NegPart = getNegativePart(CI[K].Coeff);
3015    CI[K].Iterations = collectUpperBound(L, Subscript->getType());
3016    Subscript = AddRec->getStart();
3017  }
3018  Constant = Subscript;
3019#ifndef NDEBUG
3020  LLVM_DEBUG(dbgs() << "\tCoefficient Info\n");
3021  for (unsigned K = 1; K <= MaxLevels; ++K) {
3022    LLVM_DEBUG(dbgs() << "\t    " << K << "\t" << *CI[K].Coeff);
3023    LLVM_DEBUG(dbgs() << "\tPos Part = ");
3024    LLVM_DEBUG(dbgs() << *CI[K].PosPart);
3025    LLVM_DEBUG(dbgs() << "\tNeg Part = ");
3026    LLVM_DEBUG(dbgs() << *CI[K].NegPart);
3027    LLVM_DEBUG(dbgs() << "\tUpper Bound = ");
3028    if (CI[K].Iterations)
3029      LLVM_DEBUG(dbgs() << *CI[K].Iterations);
3030    else
3031      LLVM_DEBUG(dbgs() << "+inf");
3032    LLVM_DEBUG(dbgs() << '\n');
3033  }
3034  LLVM_DEBUG(dbgs() << "\t    Constant = " << *Subscript << '\n');
3035#endif
3036  return CI;
3037}
3038
3039
3040// Looks through all the bounds info and
3041// computes the lower bound given the current direction settings
3042// at each level. If the lower bound for any level is -inf,
3043// the result is -inf.
3044const SCEV *DependenceInfo::getLowerBound(BoundInfo *Bound) const {
3045  const SCEV *Sum = Bound[1].Lower[Bound[1].Direction];
3046  for (unsigned K = 2; Sum && K <= MaxLevels; ++K) {
3047    if (Bound[K].Lower[Bound[K].Direction])
3048      Sum = SE->getAddExpr(Sum, Bound[K].Lower[Bound[K].Direction]);
3049    else
3050      Sum = nullptr;
3051  }
3052  return Sum;
3053}
3054
3055
3056// Looks through all the bounds info and
3057// computes the upper bound given the current direction settings
3058// at each level. If the upper bound at any level is +inf,
3059// the result is +inf.
3060const SCEV *DependenceInfo::getUpperBound(BoundInfo *Bound) const {
3061  const SCEV *Sum = Bound[1].Upper[Bound[1].Direction];
3062  for (unsigned K = 2; Sum && K <= MaxLevels; ++K) {
3063    if (Bound[K].Upper[Bound[K].Direction])
3064      Sum = SE->getAddExpr(Sum, Bound[K].Upper[Bound[K].Direction]);
3065    else
3066      Sum = nullptr;
3067  }
3068  return Sum;
3069}
3070
3071
3072//===----------------------------------------------------------------------===//
3073// Constraint manipulation for Delta test.
3074
3075// Given a linear SCEV,
3076// return the coefficient (the step)
3077// corresponding to the specified loop.
3078// If there isn't one, return 0.
3079// For example, given a*i + b*j + c*k, finding the coefficient
3080// corresponding to the j loop would yield b.
3081const SCEV *DependenceInfo::findCoefficient(const SCEV *Expr,
3082                                            const Loop *TargetLoop) const {
3083  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
3084  if (!AddRec)
3085    return SE->getZero(Expr->getType());
3086  if (AddRec->getLoop() == TargetLoop)
3087    return AddRec->getStepRecurrence(*SE);
3088  return findCoefficient(AddRec->getStart(), TargetLoop);
3089}
3090
3091
3092// Given a linear SCEV,
3093// return the SCEV given by zeroing out the coefficient
3094// corresponding to the specified loop.
3095// For example, given a*i + b*j + c*k, zeroing the coefficient
3096// corresponding to the j loop would yield a*i + c*k.
3097const SCEV *DependenceInfo::zeroCoefficient(const SCEV *Expr,
3098                                            const Loop *TargetLoop) const {
3099  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
3100  if (!AddRec)
3101    return Expr; // ignore
3102  if (AddRec->getLoop() == TargetLoop)
3103    return AddRec->getStart();
3104  return SE->getAddRecExpr(zeroCoefficient(AddRec->getStart(), TargetLoop),
3105                           AddRec->getStepRecurrence(*SE),
3106                           AddRec->getLoop(),
3107                           AddRec->getNoWrapFlags());
3108}
3109
3110
3111// Given a linear SCEV Expr,
3112// return the SCEV given by adding some Value to the
3113// coefficient corresponding to the specified TargetLoop.
3114// For example, given a*i + b*j + c*k, adding 1 to the coefficient
3115// corresponding to the j loop would yield a*i + (b+1)*j + c*k.
3116const SCEV *DependenceInfo::addToCoefficient(const SCEV *Expr,
3117                                             const Loop *TargetLoop,
3118                                             const SCEV *Value) const {
3119  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
3120  if (!AddRec) // create a new addRec
3121    return SE->getAddRecExpr(Expr,
3122                             Value,
3123                             TargetLoop,
3124                             SCEV::FlagAnyWrap); // Worst case, with no info.
3125  if (AddRec->getLoop() == TargetLoop) {
3126    const SCEV *Sum = SE->getAddExpr(AddRec->getStepRecurrence(*SE), Value);
3127    if (Sum->isZero())
3128      return AddRec->getStart();
3129    return SE->getAddRecExpr(AddRec->getStart(),
3130                             Sum,
3131                             AddRec->getLoop(),
3132                             AddRec->getNoWrapFlags());
3133  }
3134  if (SE->isLoopInvariant(AddRec, TargetLoop))
3135    return SE->getAddRecExpr(AddRec, Value, TargetLoop, SCEV::FlagAnyWrap);
3136  return SE->getAddRecExpr(
3137      addToCoefficient(AddRec->getStart(), TargetLoop, Value),
3138      AddRec->getStepRecurrence(*SE), AddRec->getLoop(),
3139      AddRec->getNoWrapFlags());
3140}
3141
3142
3143// Review the constraints, looking for opportunities
3144// to simplify a subscript pair (Src and Dst).
3145// Return true if some simplification occurs.
3146// If the simplification isn't exact (that is, if it is conservative
3147// in terms of dependence), set consistent to false.
3148// Corresponds to Figure 5 from the paper
3149//
3150//            Practical Dependence Testing
3151//            Goff, Kennedy, Tseng
3152//            PLDI 1991
3153bool DependenceInfo::propagate(const SCEV *&Src, const SCEV *&Dst,
3154                               SmallBitVector &Loops,
3155                               SmallVectorImpl<Constraint> &Constraints,
3156                               bool &Consistent) {
3157  bool Result = false;
3158  for (unsigned LI : Loops.set_bits()) {
3159    LLVM_DEBUG(dbgs() << "\t    Constraint[" << LI << "] is");
3160    LLVM_DEBUG(Constraints[LI].dump(dbgs()));
3161    if (Constraints[LI].isDistance())
3162      Result |= propagateDistance(Src, Dst, Constraints[LI], Consistent);
3163    else if (Constraints[LI].isLine())
3164      Result |= propagateLine(Src, Dst, Constraints[LI], Consistent);
3165    else if (Constraints[LI].isPoint())
3166      Result |= propagatePoint(Src, Dst, Constraints[LI]);
3167  }
3168  return Result;
3169}
3170
3171
3172// Attempt to propagate a distance
3173// constraint into a subscript pair (Src and Dst).
3174// Return true if some simplification occurs.
3175// If the simplification isn't exact (that is, if it is conservative
3176// in terms of dependence), set consistent to false.
3177bool DependenceInfo::propagateDistance(const SCEV *&Src, const SCEV *&Dst,
3178                                       Constraint &CurConstraint,
3179                                       bool &Consistent) {
3180  const Loop *CurLoop = CurConstraint.getAssociatedLoop();
3181  LLVM_DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n");
3182  const SCEV *A_K = findCoefficient(Src, CurLoop);
3183  if (A_K->isZero())
3184    return false;
3185  const SCEV *DA_K = SE->getMulExpr(A_K, CurConstraint.getD());
3186  Src = SE->getMinusSCEV(Src, DA_K);
3187  Src = zeroCoefficient(Src, CurLoop);
3188  LLVM_DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n");
3189  LLVM_DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n");
3190  Dst = addToCoefficient(Dst, CurLoop, SE->getNegativeSCEV(A_K));
3191  LLVM_DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n");
3192  if (!findCoefficient(Dst, CurLoop)->isZero())
3193    Consistent = false;
3194  return true;
3195}
3196
3197
3198// Attempt to propagate a line
3199// constraint into a subscript pair (Src and Dst).
3200// Return true if some simplification occurs.
3201// If the simplification isn't exact (that is, if it is conservative
3202// in terms of dependence), set consistent to false.
3203bool DependenceInfo::propagateLine(const SCEV *&Src, const SCEV *&Dst,
3204                                   Constraint &CurConstraint,
3205                                   bool &Consistent) {
3206  const Loop *CurLoop = CurConstraint.getAssociatedLoop();
3207  const SCEV *A = CurConstraint.getA();
3208  const SCEV *B = CurConstraint.getB();
3209  const SCEV *C = CurConstraint.getC();
3210  LLVM_DEBUG(dbgs() << "\t\tA = " << *A << ", B = " << *B << ", C = " << *C
3211                    << "\n");
3212  LLVM_DEBUG(dbgs() << "\t\tSrc = " << *Src << "\n");
3213  LLVM_DEBUG(dbgs() << "\t\tDst = " << *Dst << "\n");
3214  if (A->isZero()) {
3215    const SCEVConstant *Bconst = dyn_cast<SCEVConstant>(B);
3216    const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
3217    if (!Bconst || !Cconst) return false;
3218    APInt Beta = Bconst->getAPInt();
3219    APInt Charlie = Cconst->getAPInt();
3220    APInt CdivB = Charlie.sdiv(Beta);
3221    assert(Charlie.srem(Beta) == 0 && "C should be evenly divisible by B");
3222    const SCEV *AP_K = findCoefficient(Dst, CurLoop);
3223    //    Src = SE->getAddExpr(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB)));
3224    Src = SE->getMinusSCEV(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB)));
3225    Dst = zeroCoefficient(Dst, CurLoop);
3226    if (!findCoefficient(Src, CurLoop)->isZero())
3227      Consistent = false;
3228  }
3229  else if (B->isZero()) {
3230    const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A);
3231    const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
3232    if (!Aconst || !Cconst) return false;
3233    APInt Alpha = Aconst->getAPInt();
3234    APInt Charlie = Cconst->getAPInt();
3235    APInt CdivA = Charlie.sdiv(Alpha);
3236    assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A");
3237    const SCEV *A_K = findCoefficient(Src, CurLoop);
3238    Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, SE->getConstant(CdivA)));
3239    Src = zeroCoefficient(Src, CurLoop);
3240    if (!findCoefficient(Dst, CurLoop)->isZero())
3241      Consistent = false;
3242  }
3243  else if (isKnownPredicate(CmpInst::ICMP_EQ, A, B)) {
3244    const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A);
3245    const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
3246    if (!Aconst || !Cconst) return false;
3247    APInt Alpha = Aconst->getAPInt();
3248    APInt Charlie = Cconst->getAPInt();
3249    APInt CdivA = Charlie.sdiv(Alpha);
3250    assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A");
3251    const SCEV *A_K = findCoefficient(Src, CurLoop);
3252    Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, SE->getConstant(CdivA)));
3253    Src = zeroCoefficient(Src, CurLoop);
3254    Dst = addToCoefficient(Dst, CurLoop, A_K);
3255    if (!findCoefficient(Dst, CurLoop)->isZero())
3256      Consistent = false;
3257  }
3258  else {
3259    // paper is incorrect here, or perhaps just misleading
3260    const SCEV *A_K = findCoefficient(Src, CurLoop);
3261    Src = SE->getMulExpr(Src, A);
3262    Dst = SE->getMulExpr(Dst, A);
3263    Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, C));
3264    Src = zeroCoefficient(Src, CurLoop);
3265    Dst = addToCoefficient(Dst, CurLoop, SE->getMulExpr(A_K, B));
3266    if (!findCoefficient(Dst, CurLoop)->isZero())
3267      Consistent = false;
3268  }
3269  LLVM_DEBUG(dbgs() << "\t\tnew Src = " << *Src << "\n");
3270  LLVM_DEBUG(dbgs() << "\t\tnew Dst = " << *Dst << "\n");
3271  return true;
3272}
3273
3274
3275// Attempt to propagate a point
3276// constraint into a subscript pair (Src and Dst).
3277// Return true if some simplification occurs.
3278bool DependenceInfo::propagatePoint(const SCEV *&Src, const SCEV *&Dst,
3279                                    Constraint &CurConstraint) {
3280  const Loop *CurLoop = CurConstraint.getAssociatedLoop();
3281  const SCEV *A_K = findCoefficient(Src, CurLoop);
3282  const SCEV *AP_K = findCoefficient(Dst, CurLoop);
3283  const SCEV *XA_K = SE->getMulExpr(A_K, CurConstraint.getX());
3284  const SCEV *YAP_K = SE->getMulExpr(AP_K, CurConstraint.getY());
3285  LLVM_DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n");
3286  Src = SE->getAddExpr(Src, SE->getMinusSCEV(XA_K, YAP_K));
3287  Src = zeroCoefficient(Src, CurLoop);
3288  LLVM_DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n");
3289  LLVM_DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n");
3290  Dst = zeroCoefficient(Dst, CurLoop);
3291  LLVM_DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n");
3292  return true;
3293}
3294
3295
3296// Update direction vector entry based on the current constraint.
3297void DependenceInfo::updateDirection(Dependence::DVEntry &Level,
3298                                     const Constraint &CurConstraint) const {
3299  LLVM_DEBUG(dbgs() << "\tUpdate direction, constraint =");
3300  LLVM_DEBUG(CurConstraint.dump(dbgs()));
3301  if (CurConstraint.isAny())
3302    ; // use defaults
3303  else if (CurConstraint.isDistance()) {
3304    // this one is consistent, the others aren't
3305    Level.Scalar = false;
3306    Level.Distance = CurConstraint.getD();
3307    unsigned NewDirection = Dependence::DVEntry::NONE;
3308    if (!SE->isKnownNonZero(Level.Distance)) // if may be zero
3309      NewDirection = Dependence::DVEntry::EQ;
3310    if (!SE->isKnownNonPositive(Level.Distance)) // if may be positive
3311      NewDirection |= Dependence::DVEntry::LT;
3312    if (!SE->isKnownNonNegative(Level.Distance)) // if may be negative
3313      NewDirection |= Dependence::DVEntry::GT;
3314    Level.Direction &= NewDirection;
3315  }
3316  else if (CurConstraint.isLine()) {
3317    Level.Scalar = false;
3318    Level.Distance = nullptr;
3319    // direction should be accurate
3320  }
3321  else if (CurConstraint.isPoint()) {
3322    Level.Scalar = false;
3323    Level.Distance = nullptr;
3324    unsigned NewDirection = Dependence::DVEntry::NONE;
3325    if (!isKnownPredicate(CmpInst::ICMP_NE,
3326                          CurConstraint.getY(),
3327                          CurConstraint.getX()))
3328      // if X may be = Y
3329      NewDirection |= Dependence::DVEntry::EQ;
3330    if (!isKnownPredicate(CmpInst::ICMP_SLE,
3331                          CurConstraint.getY(),
3332                          CurConstraint.getX()))
3333      // if Y may be > X
3334      NewDirection |= Dependence::DVEntry::LT;
3335    if (!isKnownPredicate(CmpInst::ICMP_SGE,
3336                          CurConstraint.getY(),
3337                          CurConstraint.getX()))
3338      // if Y may be < X
3339      NewDirection |= Dependence::DVEntry::GT;
3340    Level.Direction &= NewDirection;
3341  }
3342  else
3343    llvm_unreachable("constraint has unexpected kind");
3344}
3345
3346/// Check if we can delinearize the subscripts. If the SCEVs representing the
3347/// source and destination array references are recurrences on a nested loop,
3348/// this function flattens the nested recurrences into separate recurrences
3349/// for each loop level.
3350bool DependenceInfo::tryDelinearize(Instruction *Src, Instruction *Dst,
3351                                    SmallVectorImpl<Subscript> &Pair) {
3352  assert(isLoadOrStore(Src) && "instruction is not load or store");
3353  assert(isLoadOrStore(Dst) && "instruction is not load or store");
3354  Value *SrcPtr = getLoadStorePointerOperand(Src);
3355  Value *DstPtr = getLoadStorePointerOperand(Dst);
3356  Loop *SrcLoop = LI->getLoopFor(Src->getParent());
3357  Loop *DstLoop = LI->getLoopFor(Dst->getParent());
3358  const SCEV *SrcAccessFn = SE->getSCEVAtScope(SrcPtr, SrcLoop);
3359  const SCEV *DstAccessFn = SE->getSCEVAtScope(DstPtr, DstLoop);
3360  const SCEVUnknown *SrcBase =
3361      dyn_cast<SCEVUnknown>(SE->getPointerBase(SrcAccessFn));
3362  const SCEVUnknown *DstBase =
3363      dyn_cast<SCEVUnknown>(SE->getPointerBase(DstAccessFn));
3364
3365  if (!SrcBase || !DstBase || SrcBase != DstBase)
3366    return false;
3367
3368  SmallVector<const SCEV *, 4> SrcSubscripts, DstSubscripts;
3369
3370  if (!tryDelinearizeFixedSize(Src, Dst, SrcAccessFn, DstAccessFn,
3371                               SrcSubscripts, DstSubscripts) &&
3372      !tryDelinearizeParametricSize(Src, Dst, SrcAccessFn, DstAccessFn,
3373                                    SrcSubscripts, DstSubscripts))
3374    return false;
3375
3376  int Size = SrcSubscripts.size();
3377  LLVM_DEBUG({
3378    dbgs() << "\nSrcSubscripts: ";
3379    for (int I = 0; I < Size; I++)
3380      dbgs() << *SrcSubscripts[I];
3381    dbgs() << "\nDstSubscripts: ";
3382    for (int I = 0; I < Size; I++)
3383      dbgs() << *DstSubscripts[I];
3384  });
3385
3386  // The delinearization transforms a single-subscript MIV dependence test into
3387  // a multi-subscript SIV dependence test that is easier to compute. So we
3388  // resize Pair to contain as many pairs of subscripts as the delinearization
3389  // has found, and then initialize the pairs following the delinearization.
3390  Pair.resize(Size);
3391  for (int I = 0; I < Size; ++I) {
3392    Pair[I].Src = SrcSubscripts[I];
3393    Pair[I].Dst = DstSubscripts[I];
3394    unifySubscriptType(&Pair[I]);
3395  }
3396
3397  return true;
3398}
3399
3400/// Try to delinearize \p SrcAccessFn and \p DstAccessFn if the underlying
3401/// arrays accessed are fixed-size arrays. Return true if delinearization was
3402/// successful.
3403bool DependenceInfo::tryDelinearizeFixedSize(
3404    Instruction *Src, Instruction *Dst, const SCEV *SrcAccessFn,
3405    const SCEV *DstAccessFn, SmallVectorImpl<const SCEV *> &SrcSubscripts,
3406    SmallVectorImpl<const SCEV *> &DstSubscripts) {
3407  LLVM_DEBUG({
3408    const SCEVUnknown *SrcBase =
3409        dyn_cast<SCEVUnknown>(SE->getPointerBase(SrcAccessFn));
3410    const SCEVUnknown *DstBase =
3411        dyn_cast<SCEVUnknown>(SE->getPointerBase(DstAccessFn));
3412    assert(SrcBase && DstBase && SrcBase == DstBase &&
3413           "expected src and dst scev unknowns to be equal");
3414    });
3415
3416  SmallVector<int, 4> SrcSizes;
3417  SmallVector<int, 4> DstSizes;
3418  if (!tryDelinearizeFixedSizeImpl(SE, Src, SrcAccessFn, SrcSubscripts,
3419                                   SrcSizes) ||
3420      !tryDelinearizeFixedSizeImpl(SE, Dst, DstAccessFn, DstSubscripts,
3421                                   DstSizes))
3422    return false;
3423
3424  // Check that the two size arrays are non-empty and equal in length and
3425  // value.
3426  if (SrcSizes.size() != DstSizes.size() ||
3427      !std::equal(SrcSizes.begin(), SrcSizes.end(), DstSizes.begin())) {
3428    SrcSubscripts.clear();
3429    DstSubscripts.clear();
3430    return false;
3431  }
3432
3433  assert(SrcSubscripts.size() == DstSubscripts.size() &&
3434         "Expected equal number of entries in the list of SrcSubscripts and "
3435         "DstSubscripts.");
3436
3437  Value *SrcPtr = getLoadStorePointerOperand(Src);
3438  Value *DstPtr = getLoadStorePointerOperand(Dst);
3439
3440  // In general we cannot safely assume that the subscripts recovered from GEPs
3441  // are in the range of values defined for their corresponding array
3442  // dimensions. For example some C language usage/interpretation make it
3443  // impossible to verify this at compile-time. As such we can only delinearize
3444  // iff the subscripts are positive and are less than the range of the
3445  // dimension.
3446  if (!DisableDelinearizationChecks) {
3447    auto AllIndiciesInRange = [&](SmallVector<int, 4> &DimensionSizes,
3448                                  SmallVectorImpl<const SCEV *> &Subscripts,
3449                                  Value *Ptr) {
3450      size_t SSize = Subscripts.size();
3451      for (size_t I = 1; I < SSize; ++I) {
3452        const SCEV *S = Subscripts[I];
3453        if (!isKnownNonNegative(S, Ptr))
3454          return false;
3455        if (auto *SType = dyn_cast<IntegerType>(S->getType())) {
3456          const SCEV *Range = SE->getConstant(
3457              ConstantInt::get(SType, DimensionSizes[I - 1], false));
3458          if (!isKnownLessThan(S, Range))
3459            return false;
3460        }
3461      }
3462      return true;
3463    };
3464
3465    if (!AllIndiciesInRange(SrcSizes, SrcSubscripts, SrcPtr) ||
3466        !AllIndiciesInRange(DstSizes, DstSubscripts, DstPtr)) {
3467      SrcSubscripts.clear();
3468      DstSubscripts.clear();
3469      return false;
3470    }
3471  }
3472  LLVM_DEBUG({
3473    dbgs() << "Delinearized subscripts of fixed-size array\n"
3474           << "SrcGEP:" << *SrcPtr << "\n"
3475           << "DstGEP:" << *DstPtr << "\n";
3476  });
3477  return true;
3478}
3479
3480bool DependenceInfo::tryDelinearizeParametricSize(
3481    Instruction *Src, Instruction *Dst, const SCEV *SrcAccessFn,
3482    const SCEV *DstAccessFn, SmallVectorImpl<const SCEV *> &SrcSubscripts,
3483    SmallVectorImpl<const SCEV *> &DstSubscripts) {
3484
3485  Value *SrcPtr = getLoadStorePointerOperand(Src);
3486  Value *DstPtr = getLoadStorePointerOperand(Dst);
3487  const SCEVUnknown *SrcBase =
3488      dyn_cast<SCEVUnknown>(SE->getPointerBase(SrcAccessFn));
3489  const SCEVUnknown *DstBase =
3490      dyn_cast<SCEVUnknown>(SE->getPointerBase(DstAccessFn));
3491  assert(SrcBase && DstBase && SrcBase == DstBase &&
3492         "expected src and dst scev unknowns to be equal");
3493
3494  const SCEV *ElementSize = SE->getElementSize(Src);
3495  if (ElementSize != SE->getElementSize(Dst))
3496    return false;
3497
3498  const SCEV *SrcSCEV = SE->getMinusSCEV(SrcAccessFn, SrcBase);
3499  const SCEV *DstSCEV = SE->getMinusSCEV(DstAccessFn, DstBase);
3500
3501  const SCEVAddRecExpr *SrcAR = dyn_cast<SCEVAddRecExpr>(SrcSCEV);
3502  const SCEVAddRecExpr *DstAR = dyn_cast<SCEVAddRecExpr>(DstSCEV);
3503  if (!SrcAR || !DstAR || !SrcAR->isAffine() || !DstAR->isAffine())
3504    return false;
3505
3506  // First step: collect parametric terms in both array references.
3507  SmallVector<const SCEV *, 4> Terms;
3508  collectParametricTerms(*SE, SrcAR, Terms);
3509  collectParametricTerms(*SE, DstAR, Terms);
3510
3511  // Second step: find subscript sizes.
3512  SmallVector<const SCEV *, 4> Sizes;
3513  findArrayDimensions(*SE, Terms, Sizes, ElementSize);
3514
3515  // Third step: compute the access functions for each subscript.
3516  computeAccessFunctions(*SE, SrcAR, SrcSubscripts, Sizes);
3517  computeAccessFunctions(*SE, DstAR, DstSubscripts, Sizes);
3518
3519  // Fail when there is only a subscript: that's a linearized access function.
3520  if (SrcSubscripts.size() < 2 || DstSubscripts.size() < 2 ||
3521      SrcSubscripts.size() != DstSubscripts.size())
3522    return false;
3523
3524  size_t Size = SrcSubscripts.size();
3525
3526  // Statically check that the array bounds are in-range. The first subscript we
3527  // don't have a size for and it cannot overflow into another subscript, so is
3528  // always safe. The others need to be 0 <= subscript[i] < bound, for both src
3529  // and dst.
3530  // FIXME: It may be better to record these sizes and add them as constraints
3531  // to the dependency checks.
3532  if (!DisableDelinearizationChecks)
3533    for (size_t I = 1; I < Size; ++I) {
3534      if (!isKnownNonNegative(SrcSubscripts[I], SrcPtr))
3535        return false;
3536
3537      if (!isKnownLessThan(SrcSubscripts[I], Sizes[I - 1]))
3538        return false;
3539
3540      if (!isKnownNonNegative(DstSubscripts[I], DstPtr))
3541        return false;
3542
3543      if (!isKnownLessThan(DstSubscripts[I], Sizes[I - 1]))
3544        return false;
3545    }
3546
3547  return true;
3548}
3549
3550//===----------------------------------------------------------------------===//
3551
3552#ifndef NDEBUG
3553// For debugging purposes, dump a small bit vector to dbgs().
3554static void dumpSmallBitVector(SmallBitVector &BV) {
3555  dbgs() << "{";
3556  for (unsigned VI : BV.set_bits()) {
3557    dbgs() << VI;
3558    if (BV.find_next(VI) >= 0)
3559      dbgs() << ' ';
3560  }
3561  dbgs() << "}\n";
3562}
3563#endif
3564
3565bool DependenceInfo::invalidate(Function &F, const PreservedAnalyses &PA,
3566                                FunctionAnalysisManager::Invalidator &Inv) {
3567  // Check if the analysis itself has been invalidated.
3568  auto PAC = PA.getChecker<DependenceAnalysis>();
3569  if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>())
3570    return true;
3571
3572  // Check transitive dependencies.
3573  return Inv.invalidate<AAManager>(F, PA) ||
3574         Inv.invalidate<ScalarEvolutionAnalysis>(F, PA) ||
3575         Inv.invalidate<LoopAnalysis>(F, PA);
3576}
3577
3578// depends -
3579// Returns NULL if there is no dependence.
3580// Otherwise, return a Dependence with as many details as possible.
3581// Corresponds to Section 3.1 in the paper
3582//
3583//            Practical Dependence Testing
3584//            Goff, Kennedy, Tseng
3585//            PLDI 1991
3586//
3587// Care is required to keep the routine below, getSplitIteration(),
3588// up to date with respect to this routine.
3589std::unique_ptr<Dependence>
3590DependenceInfo::depends(Instruction *Src, Instruction *Dst,
3591                        bool PossiblyLoopIndependent) {
3592  if (Src == Dst)
3593    PossiblyLoopIndependent = false;
3594
3595  if (!(Src->mayReadOrWriteMemory() && Dst->mayReadOrWriteMemory()))
3596    // if both instructions don't reference memory, there's no dependence
3597    return nullptr;
3598
3599  if (!isLoadOrStore(Src) || !isLoadOrStore(Dst)) {
3600    // can only analyze simple loads and stores, i.e., no calls, invokes, etc.
3601    LLVM_DEBUG(dbgs() << "can only handle simple loads and stores\n");
3602    return std::make_unique<Dependence>(Src, Dst);
3603  }
3604
3605  assert(isLoadOrStore(Src) && "instruction is not load or store");
3606  assert(isLoadOrStore(Dst) && "instruction is not load or store");
3607  Value *SrcPtr = getLoadStorePointerOperand(Src);
3608  Value *DstPtr = getLoadStorePointerOperand(Dst);
3609
3610  switch (underlyingObjectsAlias(AA, F->getParent()->getDataLayout(),
3611                                 MemoryLocation::get(Dst),
3612                                 MemoryLocation::get(Src))) {
3613  case AliasResult::MayAlias:
3614  case AliasResult::PartialAlias:
3615    // cannot analyse objects if we don't understand their aliasing.
3616    LLVM_DEBUG(dbgs() << "can't analyze may or partial alias\n");
3617    return std::make_unique<Dependence>(Src, Dst);
3618  case AliasResult::NoAlias:
3619    // If the objects noalias, they are distinct, accesses are independent.
3620    LLVM_DEBUG(dbgs() << "no alias\n");
3621    return nullptr;
3622  case AliasResult::MustAlias:
3623    break; // The underlying objects alias; test accesses for dependence.
3624  }
3625
3626  // establish loop nesting levels
3627  establishNestingLevels(Src, Dst);
3628  LLVM_DEBUG(dbgs() << "    common nesting levels = " << CommonLevels << "\n");
3629  LLVM_DEBUG(dbgs() << "    maximum nesting levels = " << MaxLevels << "\n");
3630
3631  FullDependence Result(Src, Dst, PossiblyLoopIndependent, CommonLevels);
3632  ++TotalArrayPairs;
3633
3634  unsigned Pairs = 1;
3635  SmallVector<Subscript, 2> Pair(Pairs);
3636  const SCEV *SrcSCEV = SE->getSCEV(SrcPtr);
3637  const SCEV *DstSCEV = SE->getSCEV(DstPtr);
3638  LLVM_DEBUG(dbgs() << "    SrcSCEV = " << *SrcSCEV << "\n");
3639  LLVM_DEBUG(dbgs() << "    DstSCEV = " << *DstSCEV << "\n");
3640  if (SE->getPointerBase(SrcSCEV) != SE->getPointerBase(DstSCEV)) {
3641    // If two pointers have different bases, trying to analyze indexes won't
3642    // work; we can't compare them to each other. This can happen, for example,
3643    // if one is produced by an LCSSA PHI node.
3644    //
3645    // We check this upfront so we don't crash in cases where getMinusSCEV()
3646    // returns a SCEVCouldNotCompute.
3647    LLVM_DEBUG(dbgs() << "can't analyze SCEV with different pointer base\n");
3648    return std::make_unique<Dependence>(Src, Dst);
3649  }
3650  Pair[0].Src = SrcSCEV;
3651  Pair[0].Dst = DstSCEV;
3652
3653  if (Delinearize) {
3654    if (tryDelinearize(Src, Dst, Pair)) {
3655      LLVM_DEBUG(dbgs() << "    delinearized\n");
3656      Pairs = Pair.size();
3657    }
3658  }
3659
3660  for (unsigned P = 0; P < Pairs; ++P) {
3661    Pair[P].Loops.resize(MaxLevels + 1);
3662    Pair[P].GroupLoops.resize(MaxLevels + 1);
3663    Pair[P].Group.resize(Pairs);
3664    removeMatchingExtensions(&Pair[P]);
3665    Pair[P].Classification =
3666      classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()),
3667                   Pair[P].Dst, LI->getLoopFor(Dst->getParent()),
3668                   Pair[P].Loops);
3669    Pair[P].GroupLoops = Pair[P].Loops;
3670    Pair[P].Group.set(P);
3671    LLVM_DEBUG(dbgs() << "    subscript " << P << "\n");
3672    LLVM_DEBUG(dbgs() << "\tsrc = " << *Pair[P].Src << "\n");
3673    LLVM_DEBUG(dbgs() << "\tdst = " << *Pair[P].Dst << "\n");
3674    LLVM_DEBUG(dbgs() << "\tclass = " << Pair[P].Classification << "\n");
3675    LLVM_DEBUG(dbgs() << "\tloops = ");
3676    LLVM_DEBUG(dumpSmallBitVector(Pair[P].Loops));
3677  }
3678
3679  SmallBitVector Separable(Pairs);
3680  SmallBitVector Coupled(Pairs);
3681
3682  // Partition subscripts into separable and minimally-coupled groups
3683  // Algorithm in paper is algorithmically better;
3684  // this may be faster in practice. Check someday.
3685  //
3686  // Here's an example of how it works. Consider this code:
3687  //
3688  //   for (i = ...) {
3689  //     for (j = ...) {
3690  //       for (k = ...) {
3691  //         for (l = ...) {
3692  //           for (m = ...) {
3693  //             A[i][j][k][m] = ...;
3694  //             ... = A[0][j][l][i + j];
3695  //           }
3696  //         }
3697  //       }
3698  //     }
3699  //   }
3700  //
3701  // There are 4 subscripts here:
3702  //    0 [i] and [0]
3703  //    1 [j] and [j]
3704  //    2 [k] and [l]
3705  //    3 [m] and [i + j]
3706  //
3707  // We've already classified each subscript pair as ZIV, SIV, etc.,
3708  // and collected all the loops mentioned by pair P in Pair[P].Loops.
3709  // In addition, we've initialized Pair[P].GroupLoops to Pair[P].Loops
3710  // and set Pair[P].Group = {P}.
3711  //
3712  //      Src Dst    Classification Loops  GroupLoops Group
3713  //    0 [i] [0]         SIV       {1}      {1}        {0}
3714  //    1 [j] [j]         SIV       {2}      {2}        {1}
3715  //    2 [k] [l]         RDIV      {3,4}    {3,4}      {2}
3716  //    3 [m] [i + j]     MIV       {1,2,5}  {1,2,5}    {3}
3717  //
3718  // For each subscript SI 0 .. 3, we consider each remaining subscript, SJ.
3719  // So, 0 is compared against 1, 2, and 3; 1 is compared against 2 and 3, etc.
3720  //
3721  // We begin by comparing 0 and 1. The intersection of the GroupLoops is empty.
3722  // Next, 0 and 2. Again, the intersection of their GroupLoops is empty.
3723  // Next 0 and 3. The intersection of their GroupLoop = {1}, not empty,
3724  // so Pair[3].Group = {0,3} and Done = false (that is, 0 will not be added
3725  // to either Separable or Coupled).
3726  //
3727  // Next, we consider 1 and 2. The intersection of the GroupLoops is empty.
3728  // Next, 1 and 3. The intersection of their GroupLoops = {2}, not empty,
3729  // so Pair[3].Group = {0, 1, 3} and Done = false.
3730  //
3731  // Next, we compare 2 against 3. The intersection of the GroupLoops is empty.
3732  // Since Done remains true, we add 2 to the set of Separable pairs.
3733  //
3734  // Finally, we consider 3. There's nothing to compare it with,
3735  // so Done remains true and we add it to the Coupled set.
3736  // Pair[3].Group = {0, 1, 3} and GroupLoops = {1, 2, 5}.
3737  //
3738  // In the end, we've got 1 separable subscript and 1 coupled group.
3739  for (unsigned SI = 0; SI < Pairs; ++SI) {
3740    if (Pair[SI].Classification == Subscript::NonLinear) {
3741      // ignore these, but collect loops for later
3742      ++NonlinearSubscriptPairs;
3743      collectCommonLoops(Pair[SI].Src,
3744                         LI->getLoopFor(Src->getParent()),
3745                         Pair[SI].Loops);
3746      collectCommonLoops(Pair[SI].Dst,
3747                         LI->getLoopFor(Dst->getParent()),
3748                         Pair[SI].Loops);
3749      Result.Consistent = false;
3750    } else if (Pair[SI].Classification == Subscript::ZIV) {
3751      // always separable
3752      Separable.set(SI);
3753    }
3754    else {
3755      // SIV, RDIV, or MIV, so check for coupled group
3756      bool Done = true;
3757      for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) {
3758        SmallBitVector Intersection = Pair[SI].GroupLoops;
3759        Intersection &= Pair[SJ].GroupLoops;
3760        if (Intersection.any()) {
3761          // accumulate set of all the loops in group
3762          Pair[SJ].GroupLoops |= Pair[SI].GroupLoops;
3763          // accumulate set of all subscripts in group
3764          Pair[SJ].Group |= Pair[SI].Group;
3765          Done = false;
3766        }
3767      }
3768      if (Done) {
3769        if (Pair[SI].Group.count() == 1) {
3770          Separable.set(SI);
3771          ++SeparableSubscriptPairs;
3772        }
3773        else {
3774          Coupled.set(SI);
3775          ++CoupledSubscriptPairs;
3776        }
3777      }
3778    }
3779  }
3780
3781  LLVM_DEBUG(dbgs() << "    Separable = ");
3782  LLVM_DEBUG(dumpSmallBitVector(Separable));
3783  LLVM_DEBUG(dbgs() << "    Coupled = ");
3784  LLVM_DEBUG(dumpSmallBitVector(Coupled));
3785
3786  Constraint NewConstraint;
3787  NewConstraint.setAny(SE);
3788
3789  // test separable subscripts
3790  for (unsigned SI : Separable.set_bits()) {
3791    LLVM_DEBUG(dbgs() << "testing subscript " << SI);
3792    switch (Pair[SI].Classification) {
3793    case Subscript::ZIV:
3794      LLVM_DEBUG(dbgs() << ", ZIV\n");
3795      if (testZIV(Pair[SI].Src, Pair[SI].Dst, Result))
3796        return nullptr;
3797      break;
3798    case Subscript::SIV: {
3799      LLVM_DEBUG(dbgs() << ", SIV\n");
3800      unsigned Level;
3801      const SCEV *SplitIter = nullptr;
3802      if (testSIV(Pair[SI].Src, Pair[SI].Dst, Level, Result, NewConstraint,
3803                  SplitIter))
3804        return nullptr;
3805      break;
3806    }
3807    case Subscript::RDIV:
3808      LLVM_DEBUG(dbgs() << ", RDIV\n");
3809      if (testRDIV(Pair[SI].Src, Pair[SI].Dst, Result))
3810        return nullptr;
3811      break;
3812    case Subscript::MIV:
3813      LLVM_DEBUG(dbgs() << ", MIV\n");
3814      if (testMIV(Pair[SI].Src, Pair[SI].Dst, Pair[SI].Loops, Result))
3815        return nullptr;
3816      break;
3817    default:
3818      llvm_unreachable("subscript has unexpected classification");
3819    }
3820  }
3821
3822  if (Coupled.count()) {
3823    // test coupled subscript groups
3824    LLVM_DEBUG(dbgs() << "starting on coupled subscripts\n");
3825    LLVM_DEBUG(dbgs() << "MaxLevels + 1 = " << MaxLevels + 1 << "\n");
3826    SmallVector<Constraint, 4> Constraints(MaxLevels + 1);
3827    for (unsigned II = 0; II <= MaxLevels; ++II)
3828      Constraints[II].setAny(SE);
3829    for (unsigned SI : Coupled.set_bits()) {
3830      LLVM_DEBUG(dbgs() << "testing subscript group " << SI << " { ");
3831      SmallBitVector Group(Pair[SI].Group);
3832      SmallBitVector Sivs(Pairs);
3833      SmallBitVector Mivs(Pairs);
3834      SmallBitVector ConstrainedLevels(MaxLevels + 1);
3835      SmallVector<Subscript *, 4> PairsInGroup;
3836      for (unsigned SJ : Group.set_bits()) {
3837        LLVM_DEBUG(dbgs() << SJ << " ");
3838        if (Pair[SJ].Classification == Subscript::SIV)
3839          Sivs.set(SJ);
3840        else
3841          Mivs.set(SJ);
3842        PairsInGroup.push_back(&Pair[SJ]);
3843      }
3844      unifySubscriptType(PairsInGroup);
3845      LLVM_DEBUG(dbgs() << "}\n");
3846      while (Sivs.any()) {
3847        bool Changed = false;
3848        for (unsigned SJ : Sivs.set_bits()) {
3849          LLVM_DEBUG(dbgs() << "testing subscript " << SJ << ", SIV\n");
3850          // SJ is an SIV subscript that's part of the current coupled group
3851          unsigned Level;
3852          const SCEV *SplitIter = nullptr;
3853          LLVM_DEBUG(dbgs() << "SIV\n");
3854          if (testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level, Result, NewConstraint,
3855                      SplitIter))
3856            return nullptr;
3857          ConstrainedLevels.set(Level);
3858          if (intersectConstraints(&Constraints[Level], &NewConstraint)) {
3859            if (Constraints[Level].isEmpty()) {
3860              ++DeltaIndependence;
3861              return nullptr;
3862            }
3863            Changed = true;
3864          }
3865          Sivs.reset(SJ);
3866        }
3867        if (Changed) {
3868          // propagate, possibly creating new SIVs and ZIVs
3869          LLVM_DEBUG(dbgs() << "    propagating\n");
3870          LLVM_DEBUG(dbgs() << "\tMivs = ");
3871          LLVM_DEBUG(dumpSmallBitVector(Mivs));
3872          for (unsigned SJ : Mivs.set_bits()) {
3873            // SJ is an MIV subscript that's part of the current coupled group
3874            LLVM_DEBUG(dbgs() << "\tSJ = " << SJ << "\n");
3875            if (propagate(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops,
3876                          Constraints, Result.Consistent)) {
3877              LLVM_DEBUG(dbgs() << "\t    Changed\n");
3878              ++DeltaPropagations;
3879              Pair[SJ].Classification =
3880                classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()),
3881                             Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()),
3882                             Pair[SJ].Loops);
3883              switch (Pair[SJ].Classification) {
3884              case Subscript::ZIV:
3885                LLVM_DEBUG(dbgs() << "ZIV\n");
3886                if (testZIV(Pair[SJ].Src, Pair[SJ].Dst, Result))
3887                  return nullptr;
3888                Mivs.reset(SJ);
3889                break;
3890              case Subscript::SIV:
3891                Sivs.set(SJ);
3892                Mivs.reset(SJ);
3893                break;
3894              case Subscript::RDIV:
3895              case Subscript::MIV:
3896                break;
3897              default:
3898                llvm_unreachable("bad subscript classification");
3899              }
3900            }
3901          }
3902        }
3903      }
3904
3905      // test & propagate remaining RDIVs
3906      for (unsigned SJ : Mivs.set_bits()) {
3907        if (Pair[SJ].Classification == Subscript::RDIV) {
3908          LLVM_DEBUG(dbgs() << "RDIV test\n");
3909          if (testRDIV(Pair[SJ].Src, Pair[SJ].Dst, Result))
3910            return nullptr;
3911          // I don't yet understand how to propagate RDIV results
3912          Mivs.reset(SJ);
3913        }
3914      }
3915
3916      // test remaining MIVs
3917      // This code is temporary.
3918      // Better to somehow test all remaining subscripts simultaneously.
3919      for (unsigned SJ : Mivs.set_bits()) {
3920        if (Pair[SJ].Classification == Subscript::MIV) {
3921          LLVM_DEBUG(dbgs() << "MIV test\n");
3922          if (testMIV(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops, Result))
3923            return nullptr;
3924        }
3925        else
3926          llvm_unreachable("expected only MIV subscripts at this point");
3927      }
3928
3929      // update Result.DV from constraint vector
3930      LLVM_DEBUG(dbgs() << "    updating\n");
3931      for (unsigned SJ : ConstrainedLevels.set_bits()) {
3932        if (SJ > CommonLevels)
3933          break;
3934        updateDirection(Result.DV[SJ - 1], Constraints[SJ]);
3935        if (Result.DV[SJ - 1].Direction == Dependence::DVEntry::NONE)
3936          return nullptr;
3937      }
3938    }
3939  }
3940
3941  // Make sure the Scalar flags are set correctly.
3942  SmallBitVector CompleteLoops(MaxLevels + 1);
3943  for (unsigned SI = 0; SI < Pairs; ++SI)
3944    CompleteLoops |= Pair[SI].Loops;
3945  for (unsigned II = 1; II <= CommonLevels; ++II)
3946    if (CompleteLoops[II])
3947      Result.DV[II - 1].Scalar = false;
3948
3949  if (PossiblyLoopIndependent) {
3950    // Make sure the LoopIndependent flag is set correctly.
3951    // All directions must include equal, otherwise no
3952    // loop-independent dependence is possible.
3953    for (unsigned II = 1; II <= CommonLevels; ++II) {
3954      if (!(Result.getDirection(II) & Dependence::DVEntry::EQ)) {
3955        Result.LoopIndependent = false;
3956        break;
3957      }
3958    }
3959  }
3960  else {
3961    // On the other hand, if all directions are equal and there's no
3962    // loop-independent dependence possible, then no dependence exists.
3963    bool AllEqual = true;
3964    for (unsigned II = 1; II <= CommonLevels; ++II) {
3965      if (Result.getDirection(II) != Dependence::DVEntry::EQ) {
3966        AllEqual = false;
3967        break;
3968      }
3969    }
3970    if (AllEqual)
3971      return nullptr;
3972  }
3973
3974  return std::make_unique<FullDependence>(std::move(Result));
3975}
3976
3977//===----------------------------------------------------------------------===//
3978// getSplitIteration -
3979// Rather than spend rarely-used space recording the splitting iteration
3980// during the Weak-Crossing SIV test, we re-compute it on demand.
3981// The re-computation is basically a repeat of the entire dependence test,
3982// though simplified since we know that the dependence exists.
3983// It's tedious, since we must go through all propagations, etc.
3984//
3985// Care is required to keep this code up to date with respect to the routine
3986// above, depends().
3987//
3988// Generally, the dependence analyzer will be used to build
3989// a dependence graph for a function (basically a map from instructions
3990// to dependences). Looking for cycles in the graph shows us loops
3991// that cannot be trivially vectorized/parallelized.
3992//
3993// We can try to improve the situation by examining all the dependences
3994// that make up the cycle, looking for ones we can break.
3995// Sometimes, peeling the first or last iteration of a loop will break
3996// dependences, and we've got flags for those possibilities.
3997// Sometimes, splitting a loop at some other iteration will do the trick,
3998// and we've got a flag for that case. Rather than waste the space to
3999// record the exact iteration (since we rarely know), we provide
4000// a method that calculates the iteration. It's a drag that it must work
4001// from scratch, but wonderful in that it's possible.
4002//
4003// Here's an example:
4004//
4005//    for (i = 0; i < 10; i++)
4006//        A[i] = ...
4007//        ... = A[11 - i]
4008//
4009// There's a loop-carried flow dependence from the store to the load,
4010// found by the weak-crossing SIV test. The dependence will have a flag,
4011// indicating that the dependence can be broken by splitting the loop.
4012// Calling getSplitIteration will return 5.
4013// Splitting the loop breaks the dependence, like so:
4014//
4015//    for (i = 0; i <= 5; i++)
4016//        A[i] = ...
4017//        ... = A[11 - i]
4018//    for (i = 6; i < 10; i++)
4019//        A[i] = ...
4020//        ... = A[11 - i]
4021//
4022// breaks the dependence and allows us to vectorize/parallelize
4023// both loops.
4024const SCEV *DependenceInfo::getSplitIteration(const Dependence &Dep,
4025                                              unsigned SplitLevel) {
4026  assert(Dep.isSplitable(SplitLevel) &&
4027         "Dep should be splitable at SplitLevel");
4028  Instruction *Src = Dep.getSrc();
4029  Instruction *Dst = Dep.getDst();
4030  assert(Src->mayReadFromMemory() || Src->mayWriteToMemory());
4031  assert(Dst->mayReadFromMemory() || Dst->mayWriteToMemory());
4032  assert(isLoadOrStore(Src));
4033  assert(isLoadOrStore(Dst));
4034  Value *SrcPtr = getLoadStorePointerOperand(Src);
4035  Value *DstPtr = getLoadStorePointerOperand(Dst);
4036  assert(underlyingObjectsAlias(
4037             AA, F->getParent()->getDataLayout(), MemoryLocation::get(Dst),
4038             MemoryLocation::get(Src)) == AliasResult::MustAlias);
4039
4040  // establish loop nesting levels
4041  establishNestingLevels(Src, Dst);
4042
4043  FullDependence Result(Src, Dst, false, CommonLevels);
4044
4045  unsigned Pairs = 1;
4046  SmallVector<Subscript, 2> Pair(Pairs);
4047  const SCEV *SrcSCEV = SE->getSCEV(SrcPtr);
4048  const SCEV *DstSCEV = SE->getSCEV(DstPtr);
4049  Pair[0].Src = SrcSCEV;
4050  Pair[0].Dst = DstSCEV;
4051
4052  if (Delinearize) {
4053    if (tryDelinearize(Src, Dst, Pair)) {
4054      LLVM_DEBUG(dbgs() << "    delinearized\n");
4055      Pairs = Pair.size();
4056    }
4057  }
4058
4059  for (unsigned P = 0; P < Pairs; ++P) {
4060    Pair[P].Loops.resize(MaxLevels + 1);
4061    Pair[P].GroupLoops.resize(MaxLevels + 1);
4062    Pair[P].Group.resize(Pairs);
4063    removeMatchingExtensions(&Pair[P]);
4064    Pair[P].Classification =
4065      classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()),
4066                   Pair[P].Dst, LI->getLoopFor(Dst->getParent()),
4067                   Pair[P].Loops);
4068    Pair[P].GroupLoops = Pair[P].Loops;
4069    Pair[P].Group.set(P);
4070  }
4071
4072  SmallBitVector Separable(Pairs);
4073  SmallBitVector Coupled(Pairs);
4074
4075  // partition subscripts into separable and minimally-coupled groups
4076  for (unsigned SI = 0; SI < Pairs; ++SI) {
4077    if (Pair[SI].Classification == Subscript::NonLinear) {
4078      // ignore these, but collect loops for later
4079      collectCommonLoops(Pair[SI].Src,
4080                         LI->getLoopFor(Src->getParent()),
4081                         Pair[SI].Loops);
4082      collectCommonLoops(Pair[SI].Dst,
4083                         LI->getLoopFor(Dst->getParent()),
4084                         Pair[SI].Loops);
4085      Result.Consistent = false;
4086    }
4087    else if (Pair[SI].Classification == Subscript::ZIV)
4088      Separable.set(SI);
4089    else {
4090      // SIV, RDIV, or MIV, so check for coupled group
4091      bool Done = true;
4092      for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) {
4093        SmallBitVector Intersection = Pair[SI].GroupLoops;
4094        Intersection &= Pair[SJ].GroupLoops;
4095        if (Intersection.any()) {
4096          // accumulate set of all the loops in group
4097          Pair[SJ].GroupLoops |= Pair[SI].GroupLoops;
4098          // accumulate set of all subscripts in group
4099          Pair[SJ].Group |= Pair[SI].Group;
4100          Done = false;
4101        }
4102      }
4103      if (Done) {
4104        if (Pair[SI].Group.count() == 1)
4105          Separable.set(SI);
4106        else
4107          Coupled.set(SI);
4108      }
4109    }
4110  }
4111
4112  Constraint NewConstraint;
4113  NewConstraint.setAny(SE);
4114
4115  // test separable subscripts
4116  for (unsigned SI : Separable.set_bits()) {
4117    switch (Pair[SI].Classification) {
4118    case Subscript::SIV: {
4119      unsigned Level;
4120      const SCEV *SplitIter = nullptr;
4121      (void) testSIV(Pair[SI].Src, Pair[SI].Dst, Level,
4122                     Result, NewConstraint, SplitIter);
4123      if (Level == SplitLevel) {
4124        assert(SplitIter != nullptr);
4125        return SplitIter;
4126      }
4127      break;
4128    }
4129    case Subscript::ZIV:
4130    case Subscript::RDIV:
4131    case Subscript::MIV:
4132      break;
4133    default:
4134      llvm_unreachable("subscript has unexpected classification");
4135    }
4136  }
4137
4138  if (Coupled.count()) {
4139    // test coupled subscript groups
4140    SmallVector<Constraint, 4> Constraints(MaxLevels + 1);
4141    for (unsigned II = 0; II <= MaxLevels; ++II)
4142      Constraints[II].setAny(SE);
4143    for (unsigned SI : Coupled.set_bits()) {
4144      SmallBitVector Group(Pair[SI].Group);
4145      SmallBitVector Sivs(Pairs);
4146      SmallBitVector Mivs(Pairs);
4147      SmallBitVector ConstrainedLevels(MaxLevels + 1);
4148      for (unsigned SJ : Group.set_bits()) {
4149        if (Pair[SJ].Classification == Subscript::SIV)
4150          Sivs.set(SJ);
4151        else
4152          Mivs.set(SJ);
4153      }
4154      while (Sivs.any()) {
4155        bool Changed = false;
4156        for (unsigned SJ : Sivs.set_bits()) {
4157          // SJ is an SIV subscript that's part of the current coupled group
4158          unsigned Level;
4159          const SCEV *SplitIter = nullptr;
4160          (void) testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level,
4161                         Result, NewConstraint, SplitIter);
4162          if (Level == SplitLevel && SplitIter)
4163            return SplitIter;
4164          ConstrainedLevels.set(Level);
4165          if (intersectConstraints(&Constraints[Level], &NewConstraint))
4166            Changed = true;
4167          Sivs.reset(SJ);
4168        }
4169        if (Changed) {
4170          // propagate, possibly creating new SIVs and ZIVs
4171          for (unsigned SJ : Mivs.set_bits()) {
4172            // SJ is an MIV subscript that's part of the current coupled group
4173            if (propagate(Pair[SJ].Src, Pair[SJ].Dst,
4174                          Pair[SJ].Loops, Constraints, Result.Consistent)) {
4175              Pair[SJ].Classification =
4176                classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()),
4177                             Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()),
4178                             Pair[SJ].Loops);
4179              switch (Pair[SJ].Classification) {
4180              case Subscript::ZIV:
4181                Mivs.reset(SJ);
4182                break;
4183              case Subscript::SIV:
4184                Sivs.set(SJ);
4185                Mivs.reset(SJ);
4186                break;
4187              case Subscript::RDIV:
4188              case Subscript::MIV:
4189                break;
4190              default:
4191                llvm_unreachable("bad subscript classification");
4192              }
4193            }
4194          }
4195        }
4196      }
4197    }
4198  }
4199  llvm_unreachable("somehow reached end of routine");
4200  return nullptr;
4201}
4202