1//===-- RenderScriptRuntime.cpp -------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "RenderScriptRuntime.h"
10#include "RenderScriptScriptGroup.h"
11
12#include "lldb/Breakpoint/StoppointCallbackContext.h"
13#include "lldb/Core/Debugger.h"
14#include "lldb/Core/DumpDataExtractor.h"
15#include "lldb/Core/PluginManager.h"
16#include "lldb/Core/ValueObjectVariable.h"
17#include "lldb/DataFormatters/DumpValueObjectOptions.h"
18#include "lldb/Expression/UserExpression.h"
19#include "lldb/Host/OptionParser.h"
20#include "lldb/Interpreter/CommandInterpreter.h"
21#include "lldb/Interpreter/CommandObjectMultiword.h"
22#include "lldb/Interpreter/CommandReturnObject.h"
23#include "lldb/Interpreter/Options.h"
24#include "lldb/Symbol/Function.h"
25#include "lldb/Symbol/Symbol.h"
26#include "lldb/Symbol/Type.h"
27#include "lldb/Symbol/VariableList.h"
28#include "lldb/Target/Process.h"
29#include "lldb/Target/RegisterContext.h"
30#include "lldb/Target/SectionLoadList.h"
31#include "lldb/Target/Target.h"
32#include "lldb/Target/Thread.h"
33#include "lldb/Utility/Args.h"
34#include "lldb/Utility/ConstString.h"
35#include "lldb/Utility/LLDBLog.h"
36#include "lldb/Utility/Log.h"
37#include "lldb/Utility/RegisterValue.h"
38#include "lldb/Utility/RegularExpression.h"
39#include "lldb/Utility/Status.h"
40
41#include "llvm/ADT/StringSwitch.h"
42
43#include <memory>
44
45using namespace lldb;
46using namespace lldb_private;
47using namespace lldb_renderscript;
48
49LLDB_PLUGIN_DEFINE(RenderScriptRuntime)
50
51#define FMT_COORD "(%" PRIu32 ", %" PRIu32 ", %" PRIu32 ")"
52
53char RenderScriptRuntime::ID = 0;
54
55namespace {
56
57// The empirical_type adds a basic level of validation to arbitrary data
58// allowing us to track if data has been discovered and stored or not. An
59// empirical_type will be marked as valid only if it has been explicitly
60// assigned to.
61template <typename type_t> class empirical_type {
62public:
63  // Ctor. Contents is invalid when constructed.
64  empirical_type() = default;
65
66  // Return true and copy contents to out if valid, else return false.
67  bool get(type_t &out) const {
68    if (valid)
69      out = data;
70    return valid;
71  }
72
73  // Return a pointer to the contents or nullptr if it was not valid.
74  const type_t *get() const { return valid ? &data : nullptr; }
75
76  // Assign data explicitly.
77  void set(const type_t in) {
78    data = in;
79    valid = true;
80  }
81
82  // Mark contents as invalid.
83  void invalidate() { valid = false; }
84
85  // Returns true if this type contains valid data.
86  bool isValid() const { return valid; }
87
88  // Assignment operator.
89  empirical_type<type_t> &operator=(const type_t in) {
90    set(in);
91    return *this;
92  }
93
94  // Dereference operator returns contents.
95  // Warning: Will assert if not valid so use only when you know data is valid.
96  const type_t &operator*() const {
97    assert(valid);
98    return data;
99  }
100
101protected:
102  bool valid = false;
103  type_t data;
104};
105
106// ArgItem is used by the GetArgs() function when reading function arguments
107// from the target.
108struct ArgItem {
109  enum { ePointer, eInt32, eInt64, eLong, eBool } type;
110
111  uint64_t value;
112
113  explicit operator uint64_t() const { return value; }
114};
115
116// Context structure to be passed into GetArgsXXX(), argument reading functions
117// below.
118struct GetArgsCtx {
119  RegisterContext *reg_ctx;
120  Process *process;
121};
122
123bool GetArgsX86(const GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) {
124  Log *log = GetLog(LLDBLog::Language);
125
126  Status err;
127
128  // get the current stack pointer
129  uint64_t sp = ctx.reg_ctx->GetSP();
130
131  for (size_t i = 0; i < num_args; ++i) {
132    ArgItem &arg = arg_list[i];
133    // advance up the stack by one argument
134    sp += sizeof(uint32_t);
135    // get the argument type size
136    size_t arg_size = sizeof(uint32_t);
137    // read the argument from memory
138    arg.value = 0;
139    Status err;
140    size_t read =
141        ctx.process->ReadMemory(sp, &arg.value, sizeof(uint32_t), err);
142    if (read != arg_size || !err.Success()) {
143      LLDB_LOGF(log, "%s - error reading argument: %" PRIu64 " '%s'",
144                __FUNCTION__, uint64_t(i), err.AsCString());
145      return false;
146    }
147  }
148  return true;
149}
150
151bool GetArgsX86_64(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) {
152  Log *log = GetLog(LLDBLog::Language);
153
154  // number of arguments passed in registers
155  static const uint32_t args_in_reg = 6;
156  // register passing order
157  static const std::array<const char *, args_in_reg> reg_names{
158      {"rdi", "rsi", "rdx", "rcx", "r8", "r9"}};
159  // argument type to size mapping
160  static const std::array<size_t, 5> arg_size{{
161      8, // ePointer,
162      4, // eInt32,
163      8, // eInt64,
164      8, // eLong,
165      4, // eBool,
166  }};
167
168  Status err;
169
170  // get the current stack pointer
171  uint64_t sp = ctx.reg_ctx->GetSP();
172  // step over the return address
173  sp += sizeof(uint64_t);
174
175  // check the stack alignment was correct (16 byte aligned)
176  if ((sp & 0xf) != 0x0) {
177    LLDB_LOGF(log, "%s - stack misaligned", __FUNCTION__);
178    return false;
179  }
180
181  // find the start of arguments on the stack
182  uint64_t sp_offset = 0;
183  for (uint32_t i = args_in_reg; i < num_args; ++i) {
184    sp_offset += arg_size[arg_list[i].type];
185  }
186  // round up to multiple of 16
187  sp_offset = (sp_offset + 0xf) & 0xf;
188  sp += sp_offset;
189
190  for (size_t i = 0; i < num_args; ++i) {
191    bool success = false;
192    ArgItem &arg = arg_list[i];
193    // arguments passed in registers
194    if (i < args_in_reg) {
195      const RegisterInfo *reg =
196          ctx.reg_ctx->GetRegisterInfoByName(reg_names[i]);
197      RegisterValue reg_val;
198      if (ctx.reg_ctx->ReadRegister(reg, reg_val))
199        arg.value = reg_val.GetAsUInt64(0, &success);
200    }
201    // arguments passed on the stack
202    else {
203      // get the argument type size
204      const size_t size = arg_size[arg_list[i].type];
205      // read the argument from memory
206      arg.value = 0;
207      // note: due to little endian layout reading 4 or 8 bytes will give the
208      // correct value.
209      size_t read = ctx.process->ReadMemory(sp, &arg.value, size, err);
210      success = (err.Success() && read == size);
211      // advance past this argument
212      sp -= size;
213    }
214    // fail if we couldn't read this argument
215    if (!success) {
216      LLDB_LOGF(log, "%s - error reading argument: %" PRIu64 ", reason: %s",
217                __FUNCTION__, uint64_t(i), err.AsCString("n/a"));
218      return false;
219    }
220  }
221  return true;
222}
223
224bool GetArgsArm(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) {
225  // number of arguments passed in registers
226  static const uint32_t args_in_reg = 4;
227
228  Log *log = GetLog(LLDBLog::Language);
229
230  Status err;
231
232  // get the current stack pointer
233  uint64_t sp = ctx.reg_ctx->GetSP();
234
235  for (size_t i = 0; i < num_args; ++i) {
236    bool success = false;
237    ArgItem &arg = arg_list[i];
238    // arguments passed in registers
239    if (i < args_in_reg) {
240      const RegisterInfo *reg = ctx.reg_ctx->GetRegisterInfoAtIndex(i);
241      RegisterValue reg_val;
242      if (ctx.reg_ctx->ReadRegister(reg, reg_val))
243        arg.value = reg_val.GetAsUInt32(0, &success);
244    }
245    // arguments passed on the stack
246    else {
247      // get the argument type size
248      const size_t arg_size = sizeof(uint32_t);
249      // clear all 64bits
250      arg.value = 0;
251      // read this argument from memory
252      size_t bytes_read =
253          ctx.process->ReadMemory(sp, &arg.value, arg_size, err);
254      success = (err.Success() && bytes_read == arg_size);
255      // advance the stack pointer
256      sp += sizeof(uint32_t);
257    }
258    // fail if we couldn't read this argument
259    if (!success) {
260      LLDB_LOGF(log, "%s - error reading argument: %" PRIu64 ", reason: %s",
261                __FUNCTION__, uint64_t(i), err.AsCString("n/a"));
262      return false;
263    }
264  }
265  return true;
266}
267
268bool GetArgsAarch64(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) {
269  // number of arguments passed in registers
270  static const uint32_t args_in_reg = 8;
271
272  Log *log = GetLog(LLDBLog::Language);
273
274  for (size_t i = 0; i < num_args; ++i) {
275    bool success = false;
276    ArgItem &arg = arg_list[i];
277    // arguments passed in registers
278    if (i < args_in_reg) {
279      const RegisterInfo *reg = ctx.reg_ctx->GetRegisterInfoAtIndex(i);
280      RegisterValue reg_val;
281      if (ctx.reg_ctx->ReadRegister(reg, reg_val))
282        arg.value = reg_val.GetAsUInt64(0, &success);
283    }
284    // arguments passed on the stack
285    else {
286      LLDB_LOGF(log, "%s - reading arguments spilled to stack not implemented",
287                __FUNCTION__);
288    }
289    // fail if we couldn't read this argument
290    if (!success) {
291      LLDB_LOGF(log, "%s - error reading argument: %" PRIu64, __FUNCTION__,
292                uint64_t(i));
293      return false;
294    }
295  }
296  return true;
297}
298
299bool GetArgsMipsel(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) {
300  // number of arguments passed in registers
301  static const uint32_t args_in_reg = 4;
302  // register file offset to first argument
303  static const uint32_t reg_offset = 4;
304
305  Log *log = GetLog(LLDBLog::Language);
306
307  Status err;
308
309  // find offset to arguments on the stack (+16 to skip over a0-a3 shadow
310  // space)
311  uint64_t sp = ctx.reg_ctx->GetSP() + 16;
312
313  for (size_t i = 0; i < num_args; ++i) {
314    bool success = false;
315    ArgItem &arg = arg_list[i];
316    // arguments passed in registers
317    if (i < args_in_reg) {
318      const RegisterInfo *reg =
319          ctx.reg_ctx->GetRegisterInfoAtIndex(i + reg_offset);
320      RegisterValue reg_val;
321      if (ctx.reg_ctx->ReadRegister(reg, reg_val))
322        arg.value = reg_val.GetAsUInt64(0, &success);
323    }
324    // arguments passed on the stack
325    else {
326      const size_t arg_size = sizeof(uint32_t);
327      arg.value = 0;
328      size_t bytes_read =
329          ctx.process->ReadMemory(sp, &arg.value, arg_size, err);
330      success = (err.Success() && bytes_read == arg_size);
331      // advance the stack pointer
332      sp += arg_size;
333    }
334    // fail if we couldn't read this argument
335    if (!success) {
336      LLDB_LOGF(log, "%s - error reading argument: %" PRIu64 ", reason: %s",
337                __FUNCTION__, uint64_t(i), err.AsCString("n/a"));
338      return false;
339    }
340  }
341  return true;
342}
343
344bool GetArgsMips64el(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) {
345  // number of arguments passed in registers
346  static const uint32_t args_in_reg = 8;
347  // register file offset to first argument
348  static const uint32_t reg_offset = 4;
349
350  Log *log = GetLog(LLDBLog::Language);
351
352  Status err;
353
354  // get the current stack pointer
355  uint64_t sp = ctx.reg_ctx->GetSP();
356
357  for (size_t i = 0; i < num_args; ++i) {
358    bool success = false;
359    ArgItem &arg = arg_list[i];
360    // arguments passed in registers
361    if (i < args_in_reg) {
362      const RegisterInfo *reg =
363          ctx.reg_ctx->GetRegisterInfoAtIndex(i + reg_offset);
364      RegisterValue reg_val;
365      if (ctx.reg_ctx->ReadRegister(reg, reg_val))
366        arg.value = reg_val.GetAsUInt64(0, &success);
367    }
368    // arguments passed on the stack
369    else {
370      // get the argument type size
371      const size_t arg_size = sizeof(uint64_t);
372      // clear all 64bits
373      arg.value = 0;
374      // read this argument from memory
375      size_t bytes_read =
376          ctx.process->ReadMemory(sp, &arg.value, arg_size, err);
377      success = (err.Success() && bytes_read == arg_size);
378      // advance the stack pointer
379      sp += arg_size;
380    }
381    // fail if we couldn't read this argument
382    if (!success) {
383      LLDB_LOGF(log, "%s - error reading argument: %" PRIu64 ", reason: %s",
384                __FUNCTION__, uint64_t(i), err.AsCString("n/a"));
385      return false;
386    }
387  }
388  return true;
389}
390
391bool GetArgs(ExecutionContext &exe_ctx, ArgItem *arg_list, size_t num_args) {
392  Log *log = GetLog(LLDBLog::Language);
393
394  // verify that we have a target
395  if (!exe_ctx.GetTargetPtr()) {
396    LLDB_LOGF(log, "%s - invalid target", __FUNCTION__);
397    return false;
398  }
399
400  GetArgsCtx ctx = {exe_ctx.GetRegisterContext(), exe_ctx.GetProcessPtr()};
401  assert(ctx.reg_ctx && ctx.process);
402
403  // dispatch based on architecture
404  switch (exe_ctx.GetTargetPtr()->GetArchitecture().GetMachine()) {
405  case llvm::Triple::ArchType::x86:
406    return GetArgsX86(ctx, arg_list, num_args);
407
408  case llvm::Triple::ArchType::x86_64:
409    return GetArgsX86_64(ctx, arg_list, num_args);
410
411  case llvm::Triple::ArchType::arm:
412    return GetArgsArm(ctx, arg_list, num_args);
413
414  case llvm::Triple::ArchType::aarch64:
415    return GetArgsAarch64(ctx, arg_list, num_args);
416
417  case llvm::Triple::ArchType::mipsel:
418    return GetArgsMipsel(ctx, arg_list, num_args);
419
420  case llvm::Triple::ArchType::mips64el:
421    return GetArgsMips64el(ctx, arg_list, num_args);
422
423  default:
424    // unsupported architecture
425    if (log) {
426      LLDB_LOGF(log, "%s - architecture not supported: '%s'", __FUNCTION__,
427                exe_ctx.GetTargetRef().GetArchitecture().GetArchitectureName());
428    }
429    return false;
430  }
431}
432
433bool IsRenderScriptScriptModule(ModuleSP module) {
434  if (!module)
435    return false;
436  return module->FindFirstSymbolWithNameAndType(ConstString(".rs.info"),
437                                                eSymbolTypeData) != nullptr;
438}
439
440bool ParseCoordinate(llvm::StringRef coord_s, RSCoordinate &coord) {
441  // takes an argument of the form 'num[,num][,num]'. Where 'coord_s' is a
442  // comma separated 1,2 or 3-dimensional coordinate with the whitespace
443  // trimmed. Missing coordinates are defaulted to zero. If parsing of any
444  // elements fails the contents of &coord are undefined and `false` is
445  // returned, `true` otherwise
446
447  llvm::SmallVector<llvm::StringRef, 4> matches;
448
449  if (!RegularExpression("^([0-9]+),([0-9]+),([0-9]+)$")
450           .Execute(coord_s, &matches) &&
451      !RegularExpression("^([0-9]+),([0-9]+)$").Execute(coord_s, &matches) &&
452      !RegularExpression("^([0-9]+)$").Execute(coord_s, &matches))
453    return false;
454
455  auto get_index = [&](size_t idx, uint32_t &i) -> bool {
456    std::string group;
457    errno = 0;
458    if (idx + 1 < matches.size()) {
459      return !llvm::StringRef(matches[idx + 1]).getAsInteger<uint32_t>(10, i);
460    }
461    return true;
462  };
463
464  return get_index(0, coord.x) && get_index(1, coord.y) &&
465         get_index(2, coord.z);
466}
467
468bool SkipPrologue(lldb::ModuleSP &module, Address &addr) {
469  Log *log = GetLog(LLDBLog::Language);
470  SymbolContext sc;
471  uint32_t resolved_flags =
472      module->ResolveSymbolContextForAddress(addr, eSymbolContextFunction, sc);
473  if (resolved_flags & eSymbolContextFunction) {
474    if (sc.function) {
475      const uint32_t offset = sc.function->GetPrologueByteSize();
476      ConstString name = sc.GetFunctionName();
477      if (offset)
478        addr.Slide(offset);
479      LLDB_LOGF(log, "%s: Prologue offset for %s is %" PRIu32, __FUNCTION__,
480                name.AsCString(), offset);
481    }
482    return true;
483  } else
484    return false;
485}
486} // anonymous namespace
487
488// The ScriptDetails class collects data associated with a single script
489// instance.
490struct RenderScriptRuntime::ScriptDetails {
491  ~ScriptDetails() = default;
492
493  enum ScriptType { eScript, eScriptC };
494
495  // The derived type of the script.
496  empirical_type<ScriptType> type;
497  // The name of the original source file.
498  empirical_type<std::string> res_name;
499  // Path to script .so file on the device.
500  empirical_type<std::string> shared_lib;
501  // Directory where kernel objects are cached on device.
502  empirical_type<std::string> cache_dir;
503  // Pointer to the context which owns this script.
504  empirical_type<lldb::addr_t> context;
505  // Pointer to the script object itself.
506  empirical_type<lldb::addr_t> script;
507};
508
509// This Element class represents the Element object in RS, defining the type
510// associated with an Allocation.
511struct RenderScriptRuntime::Element {
512  // Taken from rsDefines.h
513  enum DataKind {
514    RS_KIND_USER,
515    RS_KIND_PIXEL_L = 7,
516    RS_KIND_PIXEL_A,
517    RS_KIND_PIXEL_LA,
518    RS_KIND_PIXEL_RGB,
519    RS_KIND_PIXEL_RGBA,
520    RS_KIND_PIXEL_DEPTH,
521    RS_KIND_PIXEL_YUV,
522    RS_KIND_INVALID = 100
523  };
524
525  // Taken from rsDefines.h
526  enum DataType {
527    RS_TYPE_NONE = 0,
528    RS_TYPE_FLOAT_16,
529    RS_TYPE_FLOAT_32,
530    RS_TYPE_FLOAT_64,
531    RS_TYPE_SIGNED_8,
532    RS_TYPE_SIGNED_16,
533    RS_TYPE_SIGNED_32,
534    RS_TYPE_SIGNED_64,
535    RS_TYPE_UNSIGNED_8,
536    RS_TYPE_UNSIGNED_16,
537    RS_TYPE_UNSIGNED_32,
538    RS_TYPE_UNSIGNED_64,
539    RS_TYPE_BOOLEAN,
540
541    RS_TYPE_UNSIGNED_5_6_5,
542    RS_TYPE_UNSIGNED_5_5_5_1,
543    RS_TYPE_UNSIGNED_4_4_4_4,
544
545    RS_TYPE_MATRIX_4X4,
546    RS_TYPE_MATRIX_3X3,
547    RS_TYPE_MATRIX_2X2,
548
549    RS_TYPE_ELEMENT = 1000,
550    RS_TYPE_TYPE,
551    RS_TYPE_ALLOCATION,
552    RS_TYPE_SAMPLER,
553    RS_TYPE_SCRIPT,
554    RS_TYPE_MESH,
555    RS_TYPE_PROGRAM_FRAGMENT,
556    RS_TYPE_PROGRAM_VERTEX,
557    RS_TYPE_PROGRAM_RASTER,
558    RS_TYPE_PROGRAM_STORE,
559    RS_TYPE_FONT,
560
561    RS_TYPE_INVALID = 10000
562  };
563
564  std::vector<Element> children; // Child Element fields for structs
565  empirical_type<lldb::addr_t>
566      element_ptr; // Pointer to the RS Element of the Type
567  empirical_type<DataType>
568      type; // Type of each data pointer stored by the allocation
569  empirical_type<DataKind>
570      type_kind; // Defines pixel type if Allocation is created from an image
571  empirical_type<uint32_t>
572      type_vec_size; // Vector size of each data point, e.g '4' for uchar4
573  empirical_type<uint32_t> field_count; // Number of Subelements
574  empirical_type<uint32_t> datum_size;  // Size of a single Element with padding
575  empirical_type<uint32_t> padding;     // Number of padding bytes
576  empirical_type<uint32_t>
577      array_size;        // Number of items in array, only needed for structs
578  ConstString type_name; // Name of type, only needed for structs
579
580  static ConstString
581  GetFallbackStructName(); // Print this as the type name of a struct Element
582                           // If we can't resolve the actual struct name
583
584  bool ShouldRefresh() const {
585    const bool valid_ptr = element_ptr.isValid() && *element_ptr.get() != 0x0;
586    const bool valid_type =
587        type.isValid() && type_vec_size.isValid() && type_kind.isValid();
588    return !valid_ptr || !valid_type || !datum_size.isValid();
589  }
590};
591
592// This AllocationDetails class collects data associated with a single
593// allocation instance.
594struct RenderScriptRuntime::AllocationDetails {
595  struct Dimension {
596    uint32_t dim_1;
597    uint32_t dim_2;
598    uint32_t dim_3;
599    uint32_t cube_map;
600
601    Dimension() {
602      dim_1 = 0;
603      dim_2 = 0;
604      dim_3 = 0;
605      cube_map = 0;
606    }
607  };
608
609  // The FileHeader struct specifies the header we use for writing allocations
610  // to a binary file. Our format begins with the ASCII characters "RSAD",
611  // identifying the file as an allocation dump. Member variables dims and
612  // hdr_size are then written consecutively, immediately followed by an
613  // instance of the ElementHeader struct. Because Elements can contain
614  // subelements, there may be more than one instance of the ElementHeader
615  // struct. With this first instance being the root element, and the other
616  // instances being the root's descendants. To identify which instances are an
617  // ElementHeader's children, each struct is immediately followed by a
618  // sequence of consecutive offsets to the start of its child structs. These
619  // offsets are
620  // 4 bytes in size, and the 0 offset signifies no more children.
621  struct FileHeader {
622    uint8_t ident[4];  // ASCII 'RSAD' identifying the file
623    uint32_t dims[3];  // Dimensions
624    uint16_t hdr_size; // Header size in bytes, including all element headers
625  };
626
627  struct ElementHeader {
628    uint16_t type;         // DataType enum
629    uint32_t kind;         // DataKind enum
630    uint32_t element_size; // Size of a single element, including padding
631    uint16_t vector_size;  // Vector width
632    uint32_t array_size;   // Number of elements in array
633  };
634
635  // Monotonically increasing from 1
636  static uint32_t ID;
637
638  // Maps Allocation DataType enum and vector size to printable strings using
639  // mapping from RenderScript numerical types summary documentation
640  static const char *RsDataTypeToString[][4];
641
642  // Maps Allocation DataKind enum to printable strings
643  static const char *RsDataKindToString[];
644
645  // Maps allocation types to format sizes for printing.
646  static const uint32_t RSTypeToFormat[][3];
647
648  // Give each allocation an ID as a way
649  // for commands to reference it.
650  const uint32_t id;
651
652  // Allocation Element type
653  RenderScriptRuntime::Element element;
654  // Dimensions of the Allocation
655  empirical_type<Dimension> dimension;
656  // Pointer to address of the RS Allocation
657  empirical_type<lldb::addr_t> address;
658  // Pointer to the data held by the Allocation
659  empirical_type<lldb::addr_t> data_ptr;
660  // Pointer to the RS Type of the Allocation
661  empirical_type<lldb::addr_t> type_ptr;
662  // Pointer to the RS Context of the Allocation
663  empirical_type<lldb::addr_t> context;
664  // Size of the allocation
665  empirical_type<uint32_t> size;
666  // Stride between rows of the allocation
667  empirical_type<uint32_t> stride;
668
669  // Give each allocation an id, so we can reference it in user commands.
670  AllocationDetails() : id(ID++) {}
671
672  bool ShouldRefresh() const {
673    bool valid_ptrs = data_ptr.isValid() && *data_ptr.get() != 0x0;
674    valid_ptrs = valid_ptrs && type_ptr.isValid() && *type_ptr.get() != 0x0;
675    return !valid_ptrs || !dimension.isValid() || !size.isValid() ||
676           element.ShouldRefresh();
677  }
678};
679
680ConstString RenderScriptRuntime::Element::GetFallbackStructName() {
681  static const ConstString FallbackStructName("struct");
682  return FallbackStructName;
683}
684
685uint32_t RenderScriptRuntime::AllocationDetails::ID = 1;
686
687const char *RenderScriptRuntime::AllocationDetails::RsDataKindToString[] = {
688    "User",       "Undefined",   "Undefined", "Undefined",
689    "Undefined",  "Undefined",   "Undefined", // Enum jumps from 0 to 7
690    "L Pixel",    "A Pixel",     "LA Pixel",  "RGB Pixel",
691    "RGBA Pixel", "Pixel Depth", "YUV Pixel"};
692
693const char *RenderScriptRuntime::AllocationDetails::RsDataTypeToString[][4] = {
694    {"None", "None", "None", "None"},
695    {"half", "half2", "half3", "half4"},
696    {"float", "float2", "float3", "float4"},
697    {"double", "double2", "double3", "double4"},
698    {"char", "char2", "char3", "char4"},
699    {"short", "short2", "short3", "short4"},
700    {"int", "int2", "int3", "int4"},
701    {"long", "long2", "long3", "long4"},
702    {"uchar", "uchar2", "uchar3", "uchar4"},
703    {"ushort", "ushort2", "ushort3", "ushort4"},
704    {"uint", "uint2", "uint3", "uint4"},
705    {"ulong", "ulong2", "ulong3", "ulong4"},
706    {"bool", "bool2", "bool3", "bool4"},
707    {"packed_565", "packed_565", "packed_565", "packed_565"},
708    {"packed_5551", "packed_5551", "packed_5551", "packed_5551"},
709    {"packed_4444", "packed_4444", "packed_4444", "packed_4444"},
710    {"rs_matrix4x4", "rs_matrix4x4", "rs_matrix4x4", "rs_matrix4x4"},
711    {"rs_matrix3x3", "rs_matrix3x3", "rs_matrix3x3", "rs_matrix3x3"},
712    {"rs_matrix2x2", "rs_matrix2x2", "rs_matrix2x2", "rs_matrix2x2"},
713
714    // Handlers
715    {"RS Element", "RS Element", "RS Element", "RS Element"},
716    {"RS Type", "RS Type", "RS Type", "RS Type"},
717    {"RS Allocation", "RS Allocation", "RS Allocation", "RS Allocation"},
718    {"RS Sampler", "RS Sampler", "RS Sampler", "RS Sampler"},
719    {"RS Script", "RS Script", "RS Script", "RS Script"},
720
721    // Deprecated
722    {"RS Mesh", "RS Mesh", "RS Mesh", "RS Mesh"},
723    {"RS Program Fragment", "RS Program Fragment", "RS Program Fragment",
724     "RS Program Fragment"},
725    {"RS Program Vertex", "RS Program Vertex", "RS Program Vertex",
726     "RS Program Vertex"},
727    {"RS Program Raster", "RS Program Raster", "RS Program Raster",
728     "RS Program Raster"},
729    {"RS Program Store", "RS Program Store", "RS Program Store",
730     "RS Program Store"},
731    {"RS Font", "RS Font", "RS Font", "RS Font"}};
732
733// Used as an index into the RSTypeToFormat array elements
734enum TypeToFormatIndex { eFormatSingle = 0, eFormatVector, eElementSize };
735
736// { format enum of single element, format enum of element vector, size of
737// element}
738const uint32_t RenderScriptRuntime::AllocationDetails::RSTypeToFormat[][3] = {
739    // RS_TYPE_NONE
740    {eFormatHex, eFormatHex, 1},
741    // RS_TYPE_FLOAT_16
742    {eFormatFloat, eFormatVectorOfFloat16, 2},
743    // RS_TYPE_FLOAT_32
744    {eFormatFloat, eFormatVectorOfFloat32, sizeof(float)},
745    // RS_TYPE_FLOAT_64
746    {eFormatFloat, eFormatVectorOfFloat64, sizeof(double)},
747    // RS_TYPE_SIGNED_8
748    {eFormatDecimal, eFormatVectorOfSInt8, sizeof(int8_t)},
749    // RS_TYPE_SIGNED_16
750    {eFormatDecimal, eFormatVectorOfSInt16, sizeof(int16_t)},
751    // RS_TYPE_SIGNED_32
752    {eFormatDecimal, eFormatVectorOfSInt32, sizeof(int32_t)},
753    // RS_TYPE_SIGNED_64
754    {eFormatDecimal, eFormatVectorOfSInt64, sizeof(int64_t)},
755    // RS_TYPE_UNSIGNED_8
756    {eFormatDecimal, eFormatVectorOfUInt8, sizeof(uint8_t)},
757    // RS_TYPE_UNSIGNED_16
758    {eFormatDecimal, eFormatVectorOfUInt16, sizeof(uint16_t)},
759    // RS_TYPE_UNSIGNED_32
760    {eFormatDecimal, eFormatVectorOfUInt32, sizeof(uint32_t)},
761    // RS_TYPE_UNSIGNED_64
762    {eFormatDecimal, eFormatVectorOfUInt64, sizeof(uint64_t)},
763    // RS_TYPE_BOOL
764    {eFormatBoolean, eFormatBoolean, 1},
765    // RS_TYPE_UNSIGNED_5_6_5
766    {eFormatHex, eFormatHex, sizeof(uint16_t)},
767    // RS_TYPE_UNSIGNED_5_5_5_1
768    {eFormatHex, eFormatHex, sizeof(uint16_t)},
769    // RS_TYPE_UNSIGNED_4_4_4_4
770    {eFormatHex, eFormatHex, sizeof(uint16_t)},
771    // RS_TYPE_MATRIX_4X4
772    {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 16},
773    // RS_TYPE_MATRIX_3X3
774    {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 9},
775    // RS_TYPE_MATRIX_2X2
776    {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 4}};
777
778// Static Functions
779LanguageRuntime *
780RenderScriptRuntime::CreateInstance(Process *process,
781                                    lldb::LanguageType language) {
782
783  if (language == eLanguageTypeExtRenderScript)
784    return new RenderScriptRuntime(process);
785  else
786    return nullptr;
787}
788
789// Callback with a module to search for matching symbols. We first check that
790// the module contains RS kernels. Then look for a symbol which matches our
791// kernel name. The breakpoint address is finally set using the address of this
792// symbol.
793Searcher::CallbackReturn
794RSBreakpointResolver::SearchCallback(SearchFilter &filter,
795                                     SymbolContext &context, Address *) {
796  BreakpointSP breakpoint_sp = GetBreakpoint();
797  assert(breakpoint_sp);
798
799  ModuleSP module = context.module_sp;
800
801  if (!module || !IsRenderScriptScriptModule(module))
802    return Searcher::eCallbackReturnContinue;
803
804  // Attempt to set a breakpoint on the kernel name symbol within the module
805  // library. If it's not found, it's likely debug info is unavailable - try to
806  // set a breakpoint on <name>.expand.
807  const Symbol *kernel_sym =
808      module->FindFirstSymbolWithNameAndType(m_kernel_name, eSymbolTypeCode);
809  if (!kernel_sym) {
810    std::string kernel_name_expanded(m_kernel_name.AsCString());
811    kernel_name_expanded.append(".expand");
812    kernel_sym = module->FindFirstSymbolWithNameAndType(
813        ConstString(kernel_name_expanded.c_str()), eSymbolTypeCode);
814  }
815
816  if (kernel_sym) {
817    Address bp_addr = kernel_sym->GetAddress();
818    if (filter.AddressPasses(bp_addr))
819      breakpoint_sp->AddLocation(bp_addr);
820  }
821
822  return Searcher::eCallbackReturnContinue;
823}
824
825Searcher::CallbackReturn
826RSReduceBreakpointResolver::SearchCallback(lldb_private::SearchFilter &filter,
827                                           lldb_private::SymbolContext &context,
828                                           Address *) {
829  BreakpointSP breakpoint_sp = GetBreakpoint();
830  assert(breakpoint_sp);
831
832  // We need to have access to the list of reductions currently parsed, as
833  // reduce names don't actually exist as symbols in a module. They are only
834  // identifiable by parsing the .rs.info packet, or finding the expand symbol.
835  // We therefore need access to the list of parsed rs modules to properly
836  // resolve reduction names.
837  Log *log = GetLog(LLDBLog::Breakpoints);
838  ModuleSP module = context.module_sp;
839
840  if (!module || !IsRenderScriptScriptModule(module))
841    return Searcher::eCallbackReturnContinue;
842
843  if (!m_rsmodules)
844    return Searcher::eCallbackReturnContinue;
845
846  for (const auto &module_desc : *m_rsmodules) {
847    if (module_desc->m_module != module)
848      continue;
849
850    for (const auto &reduction : module_desc->m_reductions) {
851      if (reduction.m_reduce_name != m_reduce_name)
852        continue;
853
854      std::array<std::pair<ConstString, int>, 5> funcs{
855          {{reduction.m_init_name, eKernelTypeInit},
856           {reduction.m_accum_name, eKernelTypeAccum},
857           {reduction.m_comb_name, eKernelTypeComb},
858           {reduction.m_outc_name, eKernelTypeOutC},
859           {reduction.m_halter_name, eKernelTypeHalter}}};
860
861      for (const auto &kernel : funcs) {
862        // Skip constituent functions that don't match our spec
863        if (!(m_kernel_types & kernel.second))
864          continue;
865
866        const auto kernel_name = kernel.first;
867        const auto symbol = module->FindFirstSymbolWithNameAndType(
868            kernel_name, eSymbolTypeCode);
869        if (!symbol)
870          continue;
871
872        auto address = symbol->GetAddress();
873        if (filter.AddressPasses(address)) {
874          bool new_bp;
875          if (!SkipPrologue(module, address)) {
876            LLDB_LOGF(log, "%s: Error trying to skip prologue", __FUNCTION__);
877          }
878          breakpoint_sp->AddLocation(address, &new_bp);
879          LLDB_LOGF(log, "%s: %s reduction breakpoint on %s in %s",
880                    __FUNCTION__, new_bp ? "new" : "existing",
881                    kernel_name.GetCString(),
882                    address.GetModule()->GetFileSpec().GetPath().c_str());
883        }
884      }
885    }
886  }
887  return eCallbackReturnContinue;
888}
889
890Searcher::CallbackReturn RSScriptGroupBreakpointResolver::SearchCallback(
891    SearchFilter &filter, SymbolContext &context, Address *addr) {
892
893  BreakpointSP breakpoint_sp = GetBreakpoint();
894  if (!breakpoint_sp)
895    return eCallbackReturnContinue;
896
897  Log *log = GetLog(LLDBLog::Breakpoints);
898  ModuleSP &module = context.module_sp;
899
900  if (!module || !IsRenderScriptScriptModule(module))
901    return Searcher::eCallbackReturnContinue;
902
903  std::vector<std::string> names;
904  Breakpoint& breakpoint = *breakpoint_sp;
905  breakpoint.GetNames(names);
906  if (names.empty())
907    return eCallbackReturnContinue;
908
909  for (auto &name : names) {
910    const RSScriptGroupDescriptorSP sg = FindScriptGroup(ConstString(name));
911    if (!sg) {
912      LLDB_LOGF(log, "%s: could not find script group for %s", __FUNCTION__,
913                name.c_str());
914      continue;
915    }
916
917    LLDB_LOGF(log, "%s: Found ScriptGroup for %s", __FUNCTION__, name.c_str());
918
919    for (const RSScriptGroupDescriptor::Kernel &k : sg->m_kernels) {
920      if (log) {
921        LLDB_LOGF(log, "%s: Adding breakpoint for %s", __FUNCTION__,
922                  k.m_name.AsCString());
923        LLDB_LOGF(log, "%s: Kernel address 0x%" PRIx64, __FUNCTION__, k.m_addr);
924      }
925
926      const lldb_private::Symbol *sym =
927          module->FindFirstSymbolWithNameAndType(k.m_name, eSymbolTypeCode);
928      if (!sym) {
929        LLDB_LOGF(log, "%s: Unable to find symbol for %s", __FUNCTION__,
930                  k.m_name.AsCString());
931        continue;
932      }
933
934      if (log) {
935        LLDB_LOGF(log, "%s: Found symbol name is %s", __FUNCTION__,
936                  sym->GetName().AsCString());
937      }
938
939      auto address = sym->GetAddress();
940      if (!SkipPrologue(module, address)) {
941        LLDB_LOGF(log, "%s: Error trying to skip prologue", __FUNCTION__);
942      }
943
944      bool new_bp;
945      breakpoint.AddLocation(address, &new_bp);
946
947      LLDB_LOGF(log, "%s: Placed %sbreakpoint on %s", __FUNCTION__,
948                new_bp ? "new " : "", k.m_name.AsCString());
949
950      // exit after placing the first breakpoint if we do not intend to stop on
951      // all kernels making up this script group
952      if (!m_stop_on_all)
953        break;
954    }
955  }
956
957  return eCallbackReturnContinue;
958}
959
960void RenderScriptRuntime::Initialize() {
961  PluginManager::RegisterPlugin(GetPluginNameStatic(),
962                                "RenderScript language support", CreateInstance,
963                                GetCommandObject);
964}
965
966void RenderScriptRuntime::Terminate() {
967  PluginManager::UnregisterPlugin(CreateInstance);
968}
969
970RenderScriptRuntime::ModuleKind
971RenderScriptRuntime::GetModuleKind(const lldb::ModuleSP &module_sp) {
972  if (module_sp) {
973    if (IsRenderScriptScriptModule(module_sp))
974      return eModuleKindKernelObj;
975
976    // Is this the main RS runtime library
977    const ConstString rs_lib("libRS.so");
978    if (module_sp->GetFileSpec().GetFilename() == rs_lib) {
979      return eModuleKindLibRS;
980    }
981
982    const ConstString rs_driverlib("libRSDriver.so");
983    if (module_sp->GetFileSpec().GetFilename() == rs_driverlib) {
984      return eModuleKindDriver;
985    }
986
987    const ConstString rs_cpureflib("libRSCpuRef.so");
988    if (module_sp->GetFileSpec().GetFilename() == rs_cpureflib) {
989      return eModuleKindImpl;
990    }
991  }
992  return eModuleKindIgnored;
993}
994
995bool RenderScriptRuntime::IsRenderScriptModule(
996    const lldb::ModuleSP &module_sp) {
997  return GetModuleKind(module_sp) != eModuleKindIgnored;
998}
999
1000void RenderScriptRuntime::ModulesDidLoad(const ModuleList &module_list) {
1001  std::lock_guard<std::recursive_mutex> guard(module_list.GetMutex());
1002
1003  size_t num_modules = module_list.GetSize();
1004  for (size_t i = 0; i < num_modules; i++) {
1005    auto mod = module_list.GetModuleAtIndex(i);
1006    if (IsRenderScriptModule(mod)) {
1007      LoadModule(mod);
1008    }
1009  }
1010}
1011
1012bool RenderScriptRuntime::GetDynamicTypeAndAddress(
1013    ValueObject &in_value, lldb::DynamicValueType use_dynamic,
1014    TypeAndOrName &class_type_or_name, Address &address,
1015    Value::ValueType &value_type) {
1016  return false;
1017}
1018
1019TypeAndOrName
1020RenderScriptRuntime::FixUpDynamicType(const TypeAndOrName &type_and_or_name,
1021                                      ValueObject &static_value) {
1022  return type_and_or_name;
1023}
1024
1025bool RenderScriptRuntime::CouldHaveDynamicValue(ValueObject &in_value) {
1026  return false;
1027}
1028
1029lldb::BreakpointResolverSP
1030RenderScriptRuntime::CreateExceptionResolver(const lldb::BreakpointSP &bp,
1031                                             bool catch_bp, bool throw_bp) {
1032  BreakpointResolverSP resolver_sp;
1033  return resolver_sp;
1034}
1035
1036const RenderScriptRuntime::HookDefn RenderScriptRuntime::s_runtimeHookDefns[] =
1037    {
1038        // rsdScript
1039        {"rsdScriptInit", "_Z13rsdScriptInitPKN7android12renderscript7ContextEP"
1040                          "NS0_7ScriptCEPKcS7_PKhjj",
1041         "_Z13rsdScriptInitPKN7android12renderscript7ContextEPNS0_"
1042         "7ScriptCEPKcS7_PKhmj",
1043         0, RenderScriptRuntime::eModuleKindDriver,
1044         &lldb_private::RenderScriptRuntime::CaptureScriptInit},
1045        {"rsdScriptInvokeForEachMulti",
1046         "_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0"
1047         "_6ScriptEjPPKNS0_10AllocationEjPS6_PKvjPK12RsScriptCall",
1048         "_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0"
1049         "_6ScriptEjPPKNS0_10AllocationEmPS6_PKvmPK12RsScriptCall",
1050         0, RenderScriptRuntime::eModuleKindDriver,
1051         &lldb_private::RenderScriptRuntime::CaptureScriptInvokeForEachMulti},
1052        {"rsdScriptSetGlobalVar", "_Z21rsdScriptSetGlobalVarPKN7android12render"
1053                                  "script7ContextEPKNS0_6ScriptEjPvj",
1054         "_Z21rsdScriptSetGlobalVarPKN7android12renderscript7ContextEPKNS0_"
1055         "6ScriptEjPvm",
1056         0, RenderScriptRuntime::eModuleKindDriver,
1057         &lldb_private::RenderScriptRuntime::CaptureSetGlobalVar},
1058
1059        // rsdAllocation
1060        {"rsdAllocationInit", "_Z17rsdAllocationInitPKN7android12renderscript7C"
1061                              "ontextEPNS0_10AllocationEb",
1062         "_Z17rsdAllocationInitPKN7android12renderscript7ContextEPNS0_"
1063         "10AllocationEb",
1064         0, RenderScriptRuntime::eModuleKindDriver,
1065         &lldb_private::RenderScriptRuntime::CaptureAllocationInit},
1066        {"rsdAllocationRead2D",
1067         "_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_"
1068         "10AllocationEjjj23RsAllocationCubemapFacejjPvjj",
1069         "_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_"
1070         "10AllocationEjjj23RsAllocationCubemapFacejjPvmm",
1071         0, RenderScriptRuntime::eModuleKindDriver, nullptr},
1072        {"rsdAllocationDestroy", "_Z20rsdAllocationDestroyPKN7android12rendersc"
1073                                 "ript7ContextEPNS0_10AllocationE",
1074         "_Z20rsdAllocationDestroyPKN7android12renderscript7ContextEPNS0_"
1075         "10AllocationE",
1076         0, RenderScriptRuntime::eModuleKindDriver,
1077         &lldb_private::RenderScriptRuntime::CaptureAllocationDestroy},
1078
1079        // renderscript script groups
1080        {"rsdDebugHintScriptGroup2", "_ZN7android12renderscript21debugHintScrip"
1081                                     "tGroup2EPKcjPKPFvPK24RsExpandKernelDriver"
1082                                     "InfojjjEj",
1083         "_ZN7android12renderscript21debugHintScriptGroup2EPKcjPKPFvPK24RsExpan"
1084         "dKernelDriverInfojjjEj",
1085         0, RenderScriptRuntime::eModuleKindImpl,
1086         &lldb_private::RenderScriptRuntime::CaptureDebugHintScriptGroup2}};
1087
1088const size_t RenderScriptRuntime::s_runtimeHookCount =
1089    sizeof(s_runtimeHookDefns) / sizeof(s_runtimeHookDefns[0]);
1090
1091bool RenderScriptRuntime::HookCallback(void *baton,
1092                                       StoppointCallbackContext *ctx,
1093                                       lldb::user_id_t break_id,
1094                                       lldb::user_id_t break_loc_id) {
1095  RuntimeHook *hook = (RuntimeHook *)baton;
1096  ExecutionContext exe_ctx(ctx->exe_ctx_ref);
1097
1098  RenderScriptRuntime *lang_rt = llvm::cast<RenderScriptRuntime>(
1099      exe_ctx.GetProcessPtr()->GetLanguageRuntime(
1100          eLanguageTypeExtRenderScript));
1101
1102  lang_rt->HookCallback(hook, exe_ctx);
1103
1104  return false;
1105}
1106
1107void RenderScriptRuntime::HookCallback(RuntimeHook *hook,
1108                                       ExecutionContext &exe_ctx) {
1109  Log *log = GetLog(LLDBLog::Language);
1110
1111  LLDB_LOGF(log, "%s - '%s'", __FUNCTION__, hook->defn->name);
1112
1113  if (hook->defn->grabber) {
1114    (this->*(hook->defn->grabber))(hook, exe_ctx);
1115  }
1116}
1117
1118void RenderScriptRuntime::CaptureDebugHintScriptGroup2(
1119    RuntimeHook *hook_info, ExecutionContext &context) {
1120  Log *log = GetLog(LLDBLog::Language);
1121
1122  enum {
1123    eGroupName = 0,
1124    eGroupNameSize,
1125    eKernel,
1126    eKernelCount,
1127  };
1128
1129  std::array<ArgItem, 4> args{{
1130      {ArgItem::ePointer, 0}, // const char         *groupName
1131      {ArgItem::eInt32, 0},   // const uint32_t      groupNameSize
1132      {ArgItem::ePointer, 0}, // const ExpandFuncTy *kernel
1133      {ArgItem::eInt32, 0},   // const uint32_t      kernelCount
1134  }};
1135
1136  if (!GetArgs(context, args.data(), args.size())) {
1137    LLDB_LOGF(log, "%s - Error while reading the function parameters",
1138              __FUNCTION__);
1139    return;
1140  } else if (log) {
1141    LLDB_LOGF(log, "%s - groupName    : 0x%" PRIx64, __FUNCTION__,
1142              addr_t(args[eGroupName]));
1143    LLDB_LOGF(log, "%s - groupNameSize: %" PRIu64, __FUNCTION__,
1144              uint64_t(args[eGroupNameSize]));
1145    LLDB_LOGF(log, "%s - kernel       : 0x%" PRIx64, __FUNCTION__,
1146              addr_t(args[eKernel]));
1147    LLDB_LOGF(log, "%s - kernelCount  : %" PRIu64, __FUNCTION__,
1148              uint64_t(args[eKernelCount]));
1149  }
1150
1151  // parse script group name
1152  ConstString group_name;
1153  {
1154    Status err;
1155    const uint64_t len = uint64_t(args[eGroupNameSize]);
1156    std::unique_ptr<char[]> buffer(new char[uint32_t(len + 1)]);
1157    m_process->ReadMemory(addr_t(args[eGroupName]), buffer.get(), len, err);
1158    buffer.get()[len] = '\0';
1159    if (!err.Success()) {
1160      LLDB_LOGF(log, "Error reading scriptgroup name from target");
1161      return;
1162    } else {
1163      LLDB_LOGF(log, "Extracted scriptgroup name %s", buffer.get());
1164    }
1165    // write back the script group name
1166    group_name.SetCString(buffer.get());
1167  }
1168
1169  // create or access existing script group
1170  RSScriptGroupDescriptorSP group;
1171  {
1172    // search for existing script group
1173    for (auto sg : m_scriptGroups) {
1174      if (sg->m_name == group_name) {
1175        group = sg;
1176        break;
1177      }
1178    }
1179    if (!group) {
1180      group = std::make_shared<RSScriptGroupDescriptor>();
1181      group->m_name = group_name;
1182      m_scriptGroups.push_back(group);
1183    } else {
1184      // already have this script group
1185      LLDB_LOGF(log, "Attempt to add duplicate script group %s",
1186                group_name.AsCString());
1187      return;
1188    }
1189  }
1190  assert(group);
1191
1192  const uint32_t target_ptr_size = m_process->GetAddressByteSize();
1193  std::vector<addr_t> kernels;
1194  // parse kernel addresses in script group
1195  for (uint64_t i = 0; i < uint64_t(args[eKernelCount]); ++i) {
1196    RSScriptGroupDescriptor::Kernel kernel;
1197    // extract script group kernel addresses from the target
1198    const addr_t ptr_addr = addr_t(args[eKernel]) + i * target_ptr_size;
1199    uint64_t kernel_addr = 0;
1200    Status err;
1201    size_t read =
1202        m_process->ReadMemory(ptr_addr, &kernel_addr, target_ptr_size, err);
1203    if (!err.Success() || read != target_ptr_size) {
1204      LLDB_LOGF(log, "Error parsing kernel address %" PRIu64 " in script group",
1205                i);
1206      return;
1207    }
1208    LLDB_LOGF(log, "Extracted scriptgroup kernel address - 0x%" PRIx64,
1209              kernel_addr);
1210    kernel.m_addr = kernel_addr;
1211
1212    // try to resolve the associated kernel name
1213    if (!ResolveKernelName(kernel.m_addr, kernel.m_name)) {
1214      LLDB_LOGF(log, "Parsed scriptgroup kernel %" PRIu64 " - 0x%" PRIx64, i,
1215                kernel_addr);
1216      return;
1217    }
1218
1219    // try to find the non '.expand' function
1220    {
1221      const llvm::StringRef expand(".expand");
1222      const llvm::StringRef name_ref = kernel.m_name.GetStringRef();
1223      if (name_ref.endswith(expand)) {
1224        const ConstString base_kernel(name_ref.drop_back(expand.size()));
1225        // verify this function is a valid kernel
1226        if (IsKnownKernel(base_kernel)) {
1227          kernel.m_name = base_kernel;
1228          LLDB_LOGF(log, "%s - found non expand version '%s'", __FUNCTION__,
1229                    base_kernel.GetCString());
1230        }
1231      }
1232    }
1233    // add to a list of script group kernels we know about
1234    group->m_kernels.push_back(kernel);
1235  }
1236
1237  // Resolve any pending scriptgroup breakpoints
1238  {
1239    Target &target = m_process->GetTarget();
1240    const BreakpointList &list = target.GetBreakpointList();
1241    const size_t num_breakpoints = list.GetSize();
1242    LLDB_LOGF(log, "Resolving %zu breakpoints", num_breakpoints);
1243    for (size_t i = 0; i < num_breakpoints; ++i) {
1244      const BreakpointSP bp = list.GetBreakpointAtIndex(i);
1245      if (bp) {
1246        if (bp->MatchesName(group_name.AsCString())) {
1247          LLDB_LOGF(log, "Found breakpoint with name %s",
1248                    group_name.AsCString());
1249          bp->ResolveBreakpoint();
1250        }
1251      }
1252    }
1253  }
1254}
1255
1256void RenderScriptRuntime::CaptureScriptInvokeForEachMulti(
1257    RuntimeHook *hook, ExecutionContext &exe_ctx) {
1258  Log *log = GetLog(LLDBLog::Language);
1259
1260  enum {
1261    eRsContext = 0,
1262    eRsScript,
1263    eRsSlot,
1264    eRsAIns,
1265    eRsInLen,
1266    eRsAOut,
1267    eRsUsr,
1268    eRsUsrLen,
1269    eRsSc,
1270  };
1271
1272  std::array<ArgItem, 9> args{{
1273      ArgItem{ArgItem::ePointer, 0}, // const Context       *rsc
1274      ArgItem{ArgItem::ePointer, 0}, // Script              *s
1275      ArgItem{ArgItem::eInt32, 0},   // uint32_t             slot
1276      ArgItem{ArgItem::ePointer, 0}, // const Allocation   **aIns
1277      ArgItem{ArgItem::eInt32, 0},   // size_t               inLen
1278      ArgItem{ArgItem::ePointer, 0}, // Allocation          *aout
1279      ArgItem{ArgItem::ePointer, 0}, // const void          *usr
1280      ArgItem{ArgItem::eInt32, 0},   // size_t               usrLen
1281      ArgItem{ArgItem::ePointer, 0}, // const RsScriptCall  *sc
1282  }};
1283
1284  bool success = GetArgs(exe_ctx, &args[0], args.size());
1285  if (!success) {
1286    LLDB_LOGF(log, "%s - Error while reading the function parameters",
1287              __FUNCTION__);
1288    return;
1289  }
1290
1291  const uint32_t target_ptr_size = m_process->GetAddressByteSize();
1292  Status err;
1293  std::vector<uint64_t> allocs;
1294
1295  // traverse allocation list
1296  for (uint64_t i = 0; i < uint64_t(args[eRsInLen]); ++i) {
1297    // calculate offest to allocation pointer
1298    const addr_t addr = addr_t(args[eRsAIns]) + i * target_ptr_size;
1299
1300    // Note: due to little endian layout, reading 32bits or 64bits into res
1301    // will give the correct results.
1302    uint64_t result = 0;
1303    size_t read = m_process->ReadMemory(addr, &result, target_ptr_size, err);
1304    if (read != target_ptr_size || !err.Success()) {
1305      LLDB_LOGF(log,
1306                "%s - Error while reading allocation list argument %" PRIu64,
1307                __FUNCTION__, i);
1308    } else {
1309      allocs.push_back(result);
1310    }
1311  }
1312
1313  // if there is an output allocation track it
1314  if (uint64_t alloc_out = uint64_t(args[eRsAOut])) {
1315    allocs.push_back(alloc_out);
1316  }
1317
1318  // for all allocations we have found
1319  for (const uint64_t alloc_addr : allocs) {
1320    AllocationDetails *alloc = LookUpAllocation(alloc_addr);
1321    if (!alloc)
1322      alloc = CreateAllocation(alloc_addr);
1323
1324    if (alloc) {
1325      // save the allocation address
1326      if (alloc->address.isValid()) {
1327        // check the allocation address we already have matches
1328        assert(*alloc->address.get() == alloc_addr);
1329      } else {
1330        alloc->address = alloc_addr;
1331      }
1332
1333      // save the context
1334      if (log) {
1335        if (alloc->context.isValid() &&
1336            *alloc->context.get() != addr_t(args[eRsContext]))
1337          LLDB_LOGF(log, "%s - Allocation used by multiple contexts",
1338                    __FUNCTION__);
1339      }
1340      alloc->context = addr_t(args[eRsContext]);
1341    }
1342  }
1343
1344  // make sure we track this script object
1345  if (lldb_private::RenderScriptRuntime::ScriptDetails *script =
1346          LookUpScript(addr_t(args[eRsScript]), true)) {
1347    if (log) {
1348      if (script->context.isValid() &&
1349          *script->context.get() != addr_t(args[eRsContext]))
1350        LLDB_LOGF(log, "%s - Script used by multiple contexts", __FUNCTION__);
1351    }
1352    script->context = addr_t(args[eRsContext]);
1353  }
1354}
1355
1356void RenderScriptRuntime::CaptureSetGlobalVar(RuntimeHook *hook,
1357                                              ExecutionContext &context) {
1358  Log *log = GetLog(LLDBLog::Language);
1359
1360  enum {
1361    eRsContext,
1362    eRsScript,
1363    eRsId,
1364    eRsData,
1365    eRsLength,
1366  };
1367
1368  std::array<ArgItem, 5> args{{
1369      ArgItem{ArgItem::ePointer, 0}, // eRsContext
1370      ArgItem{ArgItem::ePointer, 0}, // eRsScript
1371      ArgItem{ArgItem::eInt32, 0},   // eRsId
1372      ArgItem{ArgItem::ePointer, 0}, // eRsData
1373      ArgItem{ArgItem::eInt32, 0},   // eRsLength
1374  }};
1375
1376  bool success = GetArgs(context, &args[0], args.size());
1377  if (!success) {
1378    LLDB_LOGF(log, "%s - error reading the function parameters.", __FUNCTION__);
1379    return;
1380  }
1381
1382  if (log) {
1383    LLDB_LOGF(log,
1384              "%s - 0x%" PRIx64 ",0x%" PRIx64 " slot %" PRIu64 " = 0x%" PRIx64
1385              ":%" PRIu64 "bytes.",
1386              __FUNCTION__, uint64_t(args[eRsContext]),
1387              uint64_t(args[eRsScript]), uint64_t(args[eRsId]),
1388              uint64_t(args[eRsData]), uint64_t(args[eRsLength]));
1389
1390    addr_t script_addr = addr_t(args[eRsScript]);
1391    if (m_scriptMappings.find(script_addr) != m_scriptMappings.end()) {
1392      auto rsm = m_scriptMappings[script_addr];
1393      if (uint64_t(args[eRsId]) < rsm->m_globals.size()) {
1394        auto rsg = rsm->m_globals[uint64_t(args[eRsId])];
1395        LLDB_LOGF(log, "%s - Setting of '%s' within '%s' inferred",
1396                  __FUNCTION__, rsg.m_name.AsCString(),
1397                  rsm->m_module->GetFileSpec().GetFilename().AsCString());
1398      }
1399    }
1400  }
1401}
1402
1403void RenderScriptRuntime::CaptureAllocationInit(RuntimeHook *hook,
1404                                                ExecutionContext &exe_ctx) {
1405  Log *log = GetLog(LLDBLog::Language);
1406
1407  enum { eRsContext, eRsAlloc, eRsForceZero };
1408
1409  std::array<ArgItem, 3> args{{
1410      ArgItem{ArgItem::ePointer, 0}, // eRsContext
1411      ArgItem{ArgItem::ePointer, 0}, // eRsAlloc
1412      ArgItem{ArgItem::eBool, 0},    // eRsForceZero
1413  }};
1414
1415  bool success = GetArgs(exe_ctx, &args[0], args.size());
1416  if (!success) {
1417    LLDB_LOGF(log, "%s - error while reading the function parameters",
1418              __FUNCTION__);
1419    return;
1420  }
1421
1422  LLDB_LOGF(log, "%s - 0x%" PRIx64 ",0x%" PRIx64 ",0x%" PRIx64 " .",
1423            __FUNCTION__, uint64_t(args[eRsContext]), uint64_t(args[eRsAlloc]),
1424            uint64_t(args[eRsForceZero]));
1425
1426  AllocationDetails *alloc = CreateAllocation(uint64_t(args[eRsAlloc]));
1427  if (alloc)
1428    alloc->context = uint64_t(args[eRsContext]);
1429}
1430
1431void RenderScriptRuntime::CaptureAllocationDestroy(RuntimeHook *hook,
1432                                                   ExecutionContext &exe_ctx) {
1433  Log *log = GetLog(LLDBLog::Language);
1434
1435  enum {
1436    eRsContext,
1437    eRsAlloc,
1438  };
1439
1440  std::array<ArgItem, 2> args{{
1441      ArgItem{ArgItem::ePointer, 0}, // eRsContext
1442      ArgItem{ArgItem::ePointer, 0}, // eRsAlloc
1443  }};
1444
1445  bool success = GetArgs(exe_ctx, &args[0], args.size());
1446  if (!success) {
1447    LLDB_LOGF(log, "%s - error while reading the function parameters.",
1448              __FUNCTION__);
1449    return;
1450  }
1451
1452  LLDB_LOGF(log, "%s - 0x%" PRIx64 ", 0x%" PRIx64 ".", __FUNCTION__,
1453            uint64_t(args[eRsContext]), uint64_t(args[eRsAlloc]));
1454
1455  for (auto iter = m_allocations.begin(); iter != m_allocations.end(); ++iter) {
1456    auto &allocation_up = *iter; // get the unique pointer
1457    if (allocation_up->address.isValid() &&
1458        *allocation_up->address.get() == addr_t(args[eRsAlloc])) {
1459      m_allocations.erase(iter);
1460      LLDB_LOGF(log, "%s - deleted allocation entry.", __FUNCTION__);
1461      return;
1462    }
1463  }
1464
1465  LLDB_LOGF(log, "%s - couldn't find destroyed allocation.", __FUNCTION__);
1466}
1467
1468void RenderScriptRuntime::CaptureScriptInit(RuntimeHook *hook,
1469                                            ExecutionContext &exe_ctx) {
1470  Log *log = GetLog(LLDBLog::Language);
1471
1472  Status err;
1473  Process *process = exe_ctx.GetProcessPtr();
1474
1475  enum { eRsContext, eRsScript, eRsResNamePtr, eRsCachedDirPtr };
1476
1477  std::array<ArgItem, 4> args{
1478      {ArgItem{ArgItem::ePointer, 0}, ArgItem{ArgItem::ePointer, 0},
1479       ArgItem{ArgItem::ePointer, 0}, ArgItem{ArgItem::ePointer, 0}}};
1480  bool success = GetArgs(exe_ctx, &args[0], args.size());
1481  if (!success) {
1482    LLDB_LOGF(log, "%s - error while reading the function parameters.",
1483              __FUNCTION__);
1484    return;
1485  }
1486
1487  std::string res_name;
1488  process->ReadCStringFromMemory(addr_t(args[eRsResNamePtr]), res_name, err);
1489  if (err.Fail()) {
1490    LLDB_LOGF(log, "%s - error reading res_name: %s.", __FUNCTION__,
1491              err.AsCString());
1492  }
1493
1494  std::string cache_dir;
1495  process->ReadCStringFromMemory(addr_t(args[eRsCachedDirPtr]), cache_dir, err);
1496  if (err.Fail()) {
1497    LLDB_LOGF(log, "%s - error reading cache_dir: %s.", __FUNCTION__,
1498              err.AsCString());
1499  }
1500
1501  LLDB_LOGF(log, "%s - 0x%" PRIx64 ",0x%" PRIx64 " => '%s' at '%s' .",
1502            __FUNCTION__, uint64_t(args[eRsContext]), uint64_t(args[eRsScript]),
1503            res_name.c_str(), cache_dir.c_str());
1504
1505  if (res_name.size() > 0) {
1506    StreamString strm;
1507    strm.Printf("librs.%s.so", res_name.c_str());
1508
1509    ScriptDetails *script = LookUpScript(addr_t(args[eRsScript]), true);
1510    if (script) {
1511      script->type = ScriptDetails::eScriptC;
1512      script->cache_dir = cache_dir;
1513      script->res_name = res_name;
1514      script->shared_lib = std::string(strm.GetString());
1515      script->context = addr_t(args[eRsContext]);
1516    }
1517
1518    LLDB_LOGF(log,
1519              "%s - '%s' tagged with context 0x%" PRIx64
1520              " and script 0x%" PRIx64 ".",
1521              __FUNCTION__, strm.GetData(), uint64_t(args[eRsContext]),
1522              uint64_t(args[eRsScript]));
1523  } else if (log) {
1524    LLDB_LOGF(log, "%s - resource name invalid, Script not tagged.",
1525              __FUNCTION__);
1526  }
1527}
1528
1529void RenderScriptRuntime::LoadRuntimeHooks(lldb::ModuleSP module,
1530                                           ModuleKind kind) {
1531  Log *log = GetLog(LLDBLog::Language);
1532
1533  if (!module) {
1534    return;
1535  }
1536
1537  Target &target = GetProcess()->GetTarget();
1538  const llvm::Triple::ArchType machine = target.GetArchitecture().GetMachine();
1539
1540  if (machine != llvm::Triple::ArchType::x86 &&
1541      machine != llvm::Triple::ArchType::arm &&
1542      machine != llvm::Triple::ArchType::aarch64 &&
1543      machine != llvm::Triple::ArchType::mipsel &&
1544      machine != llvm::Triple::ArchType::mips64el &&
1545      machine != llvm::Triple::ArchType::x86_64) {
1546    LLDB_LOGF(log, "%s - unable to hook runtime functions.", __FUNCTION__);
1547    return;
1548  }
1549
1550  const uint32_t target_ptr_size =
1551      target.GetArchitecture().GetAddressByteSize();
1552
1553  std::array<bool, s_runtimeHookCount> hook_placed;
1554  hook_placed.fill(false);
1555
1556  for (size_t idx = 0; idx < s_runtimeHookCount; idx++) {
1557    const HookDefn *hook_defn = &s_runtimeHookDefns[idx];
1558    if (hook_defn->kind != kind) {
1559      continue;
1560    }
1561
1562    const char *symbol_name = (target_ptr_size == 4)
1563                                  ? hook_defn->symbol_name_m32
1564                                  : hook_defn->symbol_name_m64;
1565
1566    const Symbol *sym = module->FindFirstSymbolWithNameAndType(
1567        ConstString(symbol_name), eSymbolTypeCode);
1568    if (!sym) {
1569      if (log) {
1570        LLDB_LOGF(log, "%s - symbol '%s' related to the function %s not found",
1571                  __FUNCTION__, symbol_name, hook_defn->name);
1572      }
1573      continue;
1574    }
1575
1576    addr_t addr = sym->GetLoadAddress(&target);
1577    if (addr == LLDB_INVALID_ADDRESS) {
1578      LLDB_LOGF(log,
1579                "%s - unable to resolve the address of hook function '%s' "
1580                "with symbol '%s'.",
1581                __FUNCTION__, hook_defn->name, symbol_name);
1582      continue;
1583    } else {
1584      LLDB_LOGF(log, "%s - function %s, address resolved at 0x%" PRIx64,
1585                __FUNCTION__, hook_defn->name, addr);
1586    }
1587
1588    RuntimeHookSP hook(new RuntimeHook());
1589    hook->address = addr;
1590    hook->defn = hook_defn;
1591    hook->bp_sp = target.CreateBreakpoint(addr, true, false);
1592    hook->bp_sp->SetCallback(HookCallback, hook.get(), true);
1593    m_runtimeHooks[addr] = hook;
1594    if (log) {
1595      LLDB_LOGF(log,
1596                "%s - successfully hooked '%s' in '%s' version %" PRIu64
1597                " at 0x%" PRIx64 ".",
1598                __FUNCTION__, hook_defn->name,
1599                module->GetFileSpec().GetFilename().AsCString(),
1600                (uint64_t)hook_defn->version, (uint64_t)addr);
1601    }
1602    hook_placed[idx] = true;
1603  }
1604
1605  // log any unhooked function
1606  if (log) {
1607    for (size_t i = 0; i < hook_placed.size(); ++i) {
1608      if (hook_placed[i])
1609        continue;
1610      const HookDefn &hook_defn = s_runtimeHookDefns[i];
1611      if (hook_defn.kind != kind)
1612        continue;
1613      LLDB_LOGF(log, "%s - function %s was not hooked", __FUNCTION__,
1614                hook_defn.name);
1615    }
1616  }
1617}
1618
1619void RenderScriptRuntime::FixupScriptDetails(RSModuleDescriptorSP rsmodule_sp) {
1620  if (!rsmodule_sp)
1621    return;
1622
1623  Log *log = GetLog(LLDBLog::Language);
1624
1625  const ModuleSP module = rsmodule_sp->m_module;
1626  const FileSpec &file = module->GetPlatformFileSpec();
1627
1628  // Iterate over all of the scripts that we currently know of. Note: We cant
1629  // push or pop to m_scripts here or it may invalidate rs_script.
1630  for (const auto &rs_script : m_scripts) {
1631    // Extract the expected .so file path for this script.
1632    std::string shared_lib;
1633    if (!rs_script->shared_lib.get(shared_lib))
1634      continue;
1635
1636    // Only proceed if the module that has loaded corresponds to this script.
1637    if (file.GetFilename() != ConstString(shared_lib.c_str()))
1638      continue;
1639
1640    // Obtain the script address which we use as a key.
1641    lldb::addr_t script;
1642    if (!rs_script->script.get(script))
1643      continue;
1644
1645    // If we have a script mapping for the current script.
1646    if (m_scriptMappings.find(script) != m_scriptMappings.end()) {
1647      // if the module we have stored is different to the one we just received.
1648      if (m_scriptMappings[script] != rsmodule_sp) {
1649        LLDB_LOGF(
1650            log,
1651            "%s - script %" PRIx64 " wants reassigned to new rsmodule '%s'.",
1652            __FUNCTION__, (uint64_t)script,
1653            rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString());
1654      }
1655    }
1656    // We don't have a script mapping for the current script.
1657    else {
1658      // Obtain the script resource name.
1659      std::string res_name;
1660      if (rs_script->res_name.get(res_name))
1661        // Set the modules resource name.
1662        rsmodule_sp->m_resname = res_name;
1663      // Add Script/Module pair to map.
1664      m_scriptMappings[script] = rsmodule_sp;
1665      LLDB_LOGF(log, "%s - script %" PRIx64 " associated with rsmodule '%s'.",
1666                __FUNCTION__, (uint64_t)script,
1667                rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString());
1668    }
1669  }
1670}
1671
1672// Uses the Target API to evaluate the expression passed as a parameter to the
1673// function The result of that expression is returned an unsigned 64 bit int,
1674// via the result* parameter. Function returns true on success, and false on
1675// failure
1676bool RenderScriptRuntime::EvalRSExpression(const char *expr,
1677                                           StackFrame *frame_ptr,
1678                                           uint64_t *result) {
1679  Log *log = GetLog(LLDBLog::Language);
1680  LLDB_LOGF(log, "%s(%s)", __FUNCTION__, expr);
1681
1682  ValueObjectSP expr_result;
1683  EvaluateExpressionOptions options;
1684  options.SetLanguage(lldb::eLanguageTypeC_plus_plus);
1685  // Perform the actual expression evaluation
1686  auto &target = GetProcess()->GetTarget();
1687  target.EvaluateExpression(expr, frame_ptr, expr_result, options);
1688
1689  if (!expr_result) {
1690    LLDB_LOGF(log, "%s: couldn't evaluate expression.", __FUNCTION__);
1691    return false;
1692  }
1693
1694  // The result of the expression is invalid
1695  if (!expr_result->GetError().Success()) {
1696    Status err = expr_result->GetError();
1697    // Expression returned is void, so this is actually a success
1698    if (err.GetError() == UserExpression::kNoResult) {
1699      LLDB_LOGF(log, "%s - expression returned void.", __FUNCTION__);
1700
1701      result = nullptr;
1702      return true;
1703    }
1704
1705    LLDB_LOGF(log, "%s - error evaluating expression result: %s", __FUNCTION__,
1706              err.AsCString());
1707    return false;
1708  }
1709
1710  bool success = false;
1711  // We only read the result as an uint32_t.
1712  *result = expr_result->GetValueAsUnsigned(0, &success);
1713
1714  if (!success) {
1715    LLDB_LOGF(log, "%s - couldn't convert expression result to uint32_t",
1716              __FUNCTION__);
1717    return false;
1718  }
1719
1720  return true;
1721}
1722
1723namespace {
1724// Used to index expression format strings
1725enum ExpressionStrings {
1726  eExprGetOffsetPtr = 0,
1727  eExprAllocGetType,
1728  eExprTypeDimX,
1729  eExprTypeDimY,
1730  eExprTypeDimZ,
1731  eExprTypeElemPtr,
1732  eExprElementType,
1733  eExprElementKind,
1734  eExprElementVec,
1735  eExprElementFieldCount,
1736  eExprSubelementsId,
1737  eExprSubelementsName,
1738  eExprSubelementsArrSize,
1739
1740  _eExprLast // keep at the end, implicit size of the array runtime_expressions
1741};
1742
1743// max length of an expanded expression
1744const int jit_max_expr_size = 512;
1745
1746// Retrieve the string to JIT for the given expression
1747#define JIT_TEMPLATE_CONTEXT "void* ctxt = (void*)rsDebugGetContextWrapper(0x%" PRIx64 "); "
1748const char *JITTemplate(ExpressionStrings e) {
1749  // Format strings containing the expressions we may need to evaluate.
1750  static std::array<const char *, _eExprLast> runtime_expressions = {
1751      {// Mangled GetOffsetPointer(Allocation*, xoff, yoff, zoff, lod, cubemap)
1752       "(int*)_"
1753       "Z12GetOffsetPtrPKN7android12renderscript10AllocationEjjjj23RsAllocation"
1754       "CubemapFace"
1755       "(0x%" PRIx64 ", %" PRIu32 ", %" PRIu32 ", %" PRIu32 ", 0, 0)", // eExprGetOffsetPtr
1756
1757       // Type* rsaAllocationGetType(Context*, Allocation*)
1758       JIT_TEMPLATE_CONTEXT "(void*)rsaAllocationGetType(ctxt, 0x%" PRIx64 ")", // eExprAllocGetType
1759
1760       // rsaTypeGetNativeData(Context*, Type*, void* typeData, size) Pack the
1761       // data in the following way mHal.state.dimX; mHal.state.dimY;
1762       // mHal.state.dimZ; mHal.state.lodCount; mHal.state.faces; mElement;
1763       // into typeData Need to specify 32 or 64 bit for uint_t since this
1764       // differs between devices
1765       JIT_TEMPLATE_CONTEXT
1766       "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(ctxt"
1767       ", 0x%" PRIx64 ", data, 6); data[0]", // eExprTypeDimX
1768       JIT_TEMPLATE_CONTEXT
1769       "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(ctxt"
1770       ", 0x%" PRIx64 ", data, 6); data[1]", // eExprTypeDimY
1771       JIT_TEMPLATE_CONTEXT
1772       "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(ctxt"
1773       ", 0x%" PRIx64 ", data, 6); data[2]", // eExprTypeDimZ
1774       JIT_TEMPLATE_CONTEXT
1775       "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(ctxt"
1776       ", 0x%" PRIx64 ", data, 6); data[5]", // eExprTypeElemPtr
1777
1778       // rsaElementGetNativeData(Context*, Element*, uint32_t* elemData,size)
1779       // Pack mType; mKind; mNormalized; mVectorSize; NumSubElements into
1780       // elemData
1781       JIT_TEMPLATE_CONTEXT
1782       "uint32_t data[5]; (void*)rsaElementGetNativeData(ctxt"
1783       ", 0x%" PRIx64 ", data, 5); data[0]", // eExprElementType
1784       JIT_TEMPLATE_CONTEXT
1785       "uint32_t data[5]; (void*)rsaElementGetNativeData(ctxt"
1786       ", 0x%" PRIx64 ", data, 5); data[1]", // eExprElementKind
1787       JIT_TEMPLATE_CONTEXT
1788       "uint32_t data[5]; (void*)rsaElementGetNativeData(ctxt"
1789       ", 0x%" PRIx64 ", data, 5); data[3]", // eExprElementVec
1790       JIT_TEMPLATE_CONTEXT
1791       "uint32_t data[5]; (void*)rsaElementGetNativeData(ctxt"
1792       ", 0x%" PRIx64 ", data, 5); data[4]", // eExprElementFieldCount
1793
1794       // rsaElementGetSubElements(RsContext con, RsElement elem, uintptr_t
1795       // *ids, const char **names, size_t *arraySizes, uint32_t dataSize)
1796       // Needed for Allocations of structs to gather details about
1797       // fields/Subelements Element* of field
1798       JIT_TEMPLATE_CONTEXT "void* ids[%" PRIu32 "]; const char* names[%" PRIu32
1799       "]; size_t arr_size[%" PRIu32 "];"
1800       "(void*)rsaElementGetSubElements(ctxt, 0x%" PRIx64
1801       ", ids, names, arr_size, %" PRIu32 "); ids[%" PRIu32 "]", // eExprSubelementsId
1802
1803       // Name of field
1804       JIT_TEMPLATE_CONTEXT "void* ids[%" PRIu32 "]; const char* names[%" PRIu32
1805       "]; size_t arr_size[%" PRIu32 "];"
1806       "(void*)rsaElementGetSubElements(ctxt, 0x%" PRIx64
1807       ", ids, names, arr_size, %" PRIu32 "); names[%" PRIu32 "]", // eExprSubelementsName
1808
1809       // Array size of field
1810       JIT_TEMPLATE_CONTEXT "void* ids[%" PRIu32 "]; const char* names[%" PRIu32
1811       "]; size_t arr_size[%" PRIu32 "];"
1812       "(void*)rsaElementGetSubElements(ctxt, 0x%" PRIx64
1813       ", ids, names, arr_size, %" PRIu32 "); arr_size[%" PRIu32 "]"}}; // eExprSubelementsArrSize
1814
1815  return runtime_expressions[e];
1816}
1817} // end of the anonymous namespace
1818
1819// JITs the RS runtime for the internal data pointer of an allocation. Is
1820// passed x,y,z coordinates for the pointer to a specific element. Then sets
1821// the data_ptr member in Allocation with the result. Returns true on success,
1822// false otherwise
1823bool RenderScriptRuntime::JITDataPointer(AllocationDetails *alloc,
1824                                         StackFrame *frame_ptr, uint32_t x,
1825                                         uint32_t y, uint32_t z) {
1826  Log *log = GetLog(LLDBLog::Language);
1827
1828  if (!alloc->address.isValid()) {
1829    LLDB_LOGF(log, "%s - failed to find allocation details.", __FUNCTION__);
1830    return false;
1831  }
1832
1833  const char *fmt_str = JITTemplate(eExprGetOffsetPtr);
1834  char expr_buf[jit_max_expr_size];
1835
1836  int written = snprintf(expr_buf, jit_max_expr_size, fmt_str,
1837                         *alloc->address.get(), x, y, z);
1838  if (written < 0) {
1839    LLDB_LOGF(log, "%s - encoding error in snprintf().", __FUNCTION__);
1840    return false;
1841  } else if (written >= jit_max_expr_size) {
1842    LLDB_LOGF(log, "%s - expression too long.", __FUNCTION__);
1843    return false;
1844  }
1845
1846  uint64_t result = 0;
1847  if (!EvalRSExpression(expr_buf, frame_ptr, &result))
1848    return false;
1849
1850  addr_t data_ptr = static_cast<lldb::addr_t>(result);
1851  alloc->data_ptr = data_ptr;
1852
1853  return true;
1854}
1855
1856// JITs the RS runtime for the internal pointer to the RS Type of an allocation
1857// Then sets the type_ptr member in Allocation with the result. Returns true on
1858// success, false otherwise
1859bool RenderScriptRuntime::JITTypePointer(AllocationDetails *alloc,
1860                                         StackFrame *frame_ptr) {
1861  Log *log = GetLog(LLDBLog::Language);
1862
1863  if (!alloc->address.isValid() || !alloc->context.isValid()) {
1864    LLDB_LOGF(log, "%s - failed to find allocation details.", __FUNCTION__);
1865    return false;
1866  }
1867
1868  const char *fmt_str = JITTemplate(eExprAllocGetType);
1869  char expr_buf[jit_max_expr_size];
1870
1871  int written = snprintf(expr_buf, jit_max_expr_size, fmt_str,
1872                         *alloc->context.get(), *alloc->address.get());
1873  if (written < 0) {
1874    LLDB_LOGF(log, "%s - encoding error in snprintf().", __FUNCTION__);
1875    return false;
1876  } else if (written >= jit_max_expr_size) {
1877    LLDB_LOGF(log, "%s - expression too long.", __FUNCTION__);
1878    return false;
1879  }
1880
1881  uint64_t result = 0;
1882  if (!EvalRSExpression(expr_buf, frame_ptr, &result))
1883    return false;
1884
1885  addr_t type_ptr = static_cast<lldb::addr_t>(result);
1886  alloc->type_ptr = type_ptr;
1887
1888  return true;
1889}
1890
1891// JITs the RS runtime for information about the dimensions and type of an
1892// allocation Then sets dimension and element_ptr members in Allocation with
1893// the result. Returns true on success, false otherwise
1894bool RenderScriptRuntime::JITTypePacked(AllocationDetails *alloc,
1895                                        StackFrame *frame_ptr) {
1896  Log *log = GetLog(LLDBLog::Language);
1897
1898  if (!alloc->type_ptr.isValid() || !alloc->context.isValid()) {
1899    LLDB_LOGF(log, "%s - Failed to find allocation details.", __FUNCTION__);
1900    return false;
1901  }
1902
1903  // Expression is different depending on if device is 32 or 64 bit
1904  uint32_t target_ptr_size =
1905      GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize();
1906  const uint32_t bits = target_ptr_size == 4 ? 32 : 64;
1907
1908  // We want 4 elements from packed data
1909  const uint32_t num_exprs = 4;
1910  static_assert(num_exprs == (eExprTypeElemPtr - eExprTypeDimX + 1),
1911                "Invalid number of expressions");
1912
1913  char expr_bufs[num_exprs][jit_max_expr_size];
1914  uint64_t results[num_exprs];
1915
1916  for (uint32_t i = 0; i < num_exprs; ++i) {
1917    const char *fmt_str = JITTemplate(ExpressionStrings(eExprTypeDimX + i));
1918    int written = snprintf(expr_bufs[i], jit_max_expr_size, fmt_str,
1919                           *alloc->context.get(), bits, *alloc->type_ptr.get());
1920    if (written < 0) {
1921      LLDB_LOGF(log, "%s - encoding error in snprintf().", __FUNCTION__);
1922      return false;
1923    } else if (written >= jit_max_expr_size) {
1924      LLDB_LOGF(log, "%s - expression too long.", __FUNCTION__);
1925      return false;
1926    }
1927
1928    // Perform expression evaluation
1929    if (!EvalRSExpression(expr_bufs[i], frame_ptr, &results[i]))
1930      return false;
1931  }
1932
1933  // Assign results to allocation members
1934  AllocationDetails::Dimension dims;
1935  dims.dim_1 = static_cast<uint32_t>(results[0]);
1936  dims.dim_2 = static_cast<uint32_t>(results[1]);
1937  dims.dim_3 = static_cast<uint32_t>(results[2]);
1938  alloc->dimension = dims;
1939
1940  addr_t element_ptr = static_cast<lldb::addr_t>(results[3]);
1941  alloc->element.element_ptr = element_ptr;
1942
1943  LLDB_LOGF(log,
1944            "%s - dims (%" PRIu32 ", %" PRIu32 ", %" PRIu32
1945            ") Element*: 0x%" PRIx64 ".",
1946            __FUNCTION__, dims.dim_1, dims.dim_2, dims.dim_3, element_ptr);
1947
1948  return true;
1949}
1950
1951// JITs the RS runtime for information about the Element of an allocation Then
1952// sets type, type_vec_size, field_count and type_kind members in Element with
1953// the result. Returns true on success, false otherwise
1954bool RenderScriptRuntime::JITElementPacked(Element &elem,
1955                                           const lldb::addr_t context,
1956                                           StackFrame *frame_ptr) {
1957  Log *log = GetLog(LLDBLog::Language);
1958
1959  if (!elem.element_ptr.isValid()) {
1960    LLDB_LOGF(log, "%s - failed to find allocation details.", __FUNCTION__);
1961    return false;
1962  }
1963
1964  // We want 4 elements from packed data
1965  const uint32_t num_exprs = 4;
1966  static_assert(num_exprs == (eExprElementFieldCount - eExprElementType + 1),
1967                "Invalid number of expressions");
1968
1969  char expr_bufs[num_exprs][jit_max_expr_size];
1970  uint64_t results[num_exprs];
1971
1972  for (uint32_t i = 0; i < num_exprs; i++) {
1973    const char *fmt_str = JITTemplate(ExpressionStrings(eExprElementType + i));
1974    int written = snprintf(expr_bufs[i], jit_max_expr_size, fmt_str, context,
1975                           *elem.element_ptr.get());
1976    if (written < 0) {
1977      LLDB_LOGF(log, "%s - encoding error in snprintf().", __FUNCTION__);
1978      return false;
1979    } else if (written >= jit_max_expr_size) {
1980      LLDB_LOGF(log, "%s - expression too long.", __FUNCTION__);
1981      return false;
1982    }
1983
1984    // Perform expression evaluation
1985    if (!EvalRSExpression(expr_bufs[i], frame_ptr, &results[i]))
1986      return false;
1987  }
1988
1989  // Assign results to allocation members
1990  elem.type = static_cast<RenderScriptRuntime::Element::DataType>(results[0]);
1991  elem.type_kind =
1992      static_cast<RenderScriptRuntime::Element::DataKind>(results[1]);
1993  elem.type_vec_size = static_cast<uint32_t>(results[2]);
1994  elem.field_count = static_cast<uint32_t>(results[3]);
1995
1996  LLDB_LOGF(log,
1997            "%s - data type %" PRIu32 ", pixel type %" PRIu32
1998            ", vector size %" PRIu32 ", field count %" PRIu32,
1999            __FUNCTION__, *elem.type.get(), *elem.type_kind.get(),
2000            *elem.type_vec_size.get(), *elem.field_count.get());
2001
2002  // If this Element has subelements then JIT rsaElementGetSubElements() for
2003  // details about its fields
2004  return !(*elem.field_count.get() > 0 &&
2005           !JITSubelements(elem, context, frame_ptr));
2006}
2007
2008// JITs the RS runtime for information about the subelements/fields of a struct
2009// allocation This is necessary for infering the struct type so we can pretty
2010// print the allocation's contents. Returns true on success, false otherwise
2011bool RenderScriptRuntime::JITSubelements(Element &elem,
2012                                         const lldb::addr_t context,
2013                                         StackFrame *frame_ptr) {
2014  Log *log = GetLog(LLDBLog::Language);
2015
2016  if (!elem.element_ptr.isValid() || !elem.field_count.isValid()) {
2017    LLDB_LOGF(log, "%s - failed to find allocation details.", __FUNCTION__);
2018    return false;
2019  }
2020
2021  const short num_exprs = 3;
2022  static_assert(num_exprs == (eExprSubelementsArrSize - eExprSubelementsId + 1),
2023                "Invalid number of expressions");
2024
2025  char expr_buffer[jit_max_expr_size];
2026  uint64_t results;
2027
2028  // Iterate over struct fields.
2029  const uint32_t field_count = *elem.field_count.get();
2030  for (uint32_t field_index = 0; field_index < field_count; ++field_index) {
2031    Element child;
2032    for (uint32_t expr_index = 0; expr_index < num_exprs; ++expr_index) {
2033      const char *fmt_str =
2034          JITTemplate(ExpressionStrings(eExprSubelementsId + expr_index));
2035      int written = snprintf(expr_buffer, jit_max_expr_size, fmt_str,
2036                             context, field_count, field_count, field_count,
2037                             *elem.element_ptr.get(), field_count, field_index);
2038      if (written < 0) {
2039        LLDB_LOGF(log, "%s - encoding error in snprintf().", __FUNCTION__);
2040        return false;
2041      } else if (written >= jit_max_expr_size) {
2042        LLDB_LOGF(log, "%s - expression too long.", __FUNCTION__);
2043        return false;
2044      }
2045
2046      // Perform expression evaluation
2047      if (!EvalRSExpression(expr_buffer, frame_ptr, &results))
2048        return false;
2049
2050      LLDB_LOGF(log, "%s - expr result 0x%" PRIx64 ".", __FUNCTION__, results);
2051
2052      switch (expr_index) {
2053      case 0: // Element* of child
2054        child.element_ptr = static_cast<addr_t>(results);
2055        break;
2056      case 1: // Name of child
2057      {
2058        lldb::addr_t address = static_cast<addr_t>(results);
2059        Status err;
2060        std::string name;
2061        GetProcess()->ReadCStringFromMemory(address, name, err);
2062        if (!err.Fail())
2063          child.type_name = ConstString(name);
2064        else {
2065          LLDB_LOGF(log, "%s - warning: Couldn't read field name.",
2066                    __FUNCTION__);
2067        }
2068        break;
2069      }
2070      case 2: // Array size of child
2071        child.array_size = static_cast<uint32_t>(results);
2072        break;
2073      }
2074    }
2075
2076    // We need to recursively JIT each Element field of the struct since
2077    // structs can be nested inside structs.
2078    if (!JITElementPacked(child, context, frame_ptr))
2079      return false;
2080    elem.children.push_back(child);
2081  }
2082
2083  // Try to infer the name of the struct type so we can pretty print the
2084  // allocation contents.
2085  FindStructTypeName(elem, frame_ptr);
2086
2087  return true;
2088}
2089
2090// JITs the RS runtime for the address of the last element in the allocation.
2091// The `elem_size` parameter represents the size of a single element, including
2092// padding. Which is needed as an offset from the last element pointer. Using
2093// this offset minus the starting address we can calculate the size of the
2094// allocation. Returns true on success, false otherwise
2095bool RenderScriptRuntime::JITAllocationSize(AllocationDetails *alloc,
2096                                            StackFrame *frame_ptr) {
2097  Log *log = GetLog(LLDBLog::Language);
2098
2099  if (!alloc->address.isValid() || !alloc->dimension.isValid() ||
2100      !alloc->data_ptr.isValid() || !alloc->element.datum_size.isValid()) {
2101    LLDB_LOGF(log, "%s - failed to find allocation details.", __FUNCTION__);
2102    return false;
2103  }
2104
2105  // Find dimensions
2106  uint32_t dim_x = alloc->dimension.get()->dim_1;
2107  uint32_t dim_y = alloc->dimension.get()->dim_2;
2108  uint32_t dim_z = alloc->dimension.get()->dim_3;
2109
2110  // Our plan of jitting the last element address doesn't seem to work for
2111  // struct Allocations` Instead try to infer the size ourselves without any
2112  // inter element padding.
2113  if (alloc->element.children.size() > 0) {
2114    if (dim_x == 0)
2115      dim_x = 1;
2116    if (dim_y == 0)
2117      dim_y = 1;
2118    if (dim_z == 0)
2119      dim_z = 1;
2120
2121    alloc->size = dim_x * dim_y * dim_z * *alloc->element.datum_size.get();
2122
2123    LLDB_LOGF(log, "%s - inferred size of struct allocation %" PRIu32 ".",
2124              __FUNCTION__, *alloc->size.get());
2125    return true;
2126  }
2127
2128  const char *fmt_str = JITTemplate(eExprGetOffsetPtr);
2129  char expr_buf[jit_max_expr_size];
2130
2131  // Calculate last element
2132  dim_x = dim_x == 0 ? 0 : dim_x - 1;
2133  dim_y = dim_y == 0 ? 0 : dim_y - 1;
2134  dim_z = dim_z == 0 ? 0 : dim_z - 1;
2135
2136  int written = snprintf(expr_buf, jit_max_expr_size, fmt_str,
2137                         *alloc->address.get(), dim_x, dim_y, dim_z);
2138  if (written < 0) {
2139    LLDB_LOGF(log, "%s - encoding error in snprintf().", __FUNCTION__);
2140    return false;
2141  } else if (written >= jit_max_expr_size) {
2142    LLDB_LOGF(log, "%s - expression too long.", __FUNCTION__);
2143    return false;
2144  }
2145
2146  uint64_t result = 0;
2147  if (!EvalRSExpression(expr_buf, frame_ptr, &result))
2148    return false;
2149
2150  addr_t mem_ptr = static_cast<lldb::addr_t>(result);
2151  // Find pointer to last element and add on size of an element
2152  alloc->size = static_cast<uint32_t>(mem_ptr - *alloc->data_ptr.get()) +
2153                *alloc->element.datum_size.get();
2154
2155  return true;
2156}
2157
2158// JITs the RS runtime for information about the stride between rows in the
2159// allocation. This is done to detect padding, since allocated memory is
2160// 16-byte aligned. Returns true on success, false otherwise
2161bool RenderScriptRuntime::JITAllocationStride(AllocationDetails *alloc,
2162                                              StackFrame *frame_ptr) {
2163  Log *log = GetLog(LLDBLog::Language);
2164
2165  if (!alloc->address.isValid() || !alloc->data_ptr.isValid()) {
2166    LLDB_LOGF(log, "%s - failed to find allocation details.", __FUNCTION__);
2167    return false;
2168  }
2169
2170  const char *fmt_str = JITTemplate(eExprGetOffsetPtr);
2171  char expr_buf[jit_max_expr_size];
2172
2173  int written = snprintf(expr_buf, jit_max_expr_size, fmt_str,
2174                         *alloc->address.get(), 0, 1, 0);
2175  if (written < 0) {
2176    LLDB_LOGF(log, "%s - encoding error in snprintf().", __FUNCTION__);
2177    return false;
2178  } else if (written >= jit_max_expr_size) {
2179    LLDB_LOGF(log, "%s - expression too long.", __FUNCTION__);
2180    return false;
2181  }
2182
2183  uint64_t result = 0;
2184  if (!EvalRSExpression(expr_buf, frame_ptr, &result))
2185    return false;
2186
2187  addr_t mem_ptr = static_cast<lldb::addr_t>(result);
2188  alloc->stride = static_cast<uint32_t>(mem_ptr - *alloc->data_ptr.get());
2189
2190  return true;
2191}
2192
2193// JIT all the current runtime info regarding an allocation
2194bool RenderScriptRuntime::RefreshAllocation(AllocationDetails *alloc,
2195                                            StackFrame *frame_ptr) {
2196  // GetOffsetPointer()
2197  if (!JITDataPointer(alloc, frame_ptr))
2198    return false;
2199
2200  // rsaAllocationGetType()
2201  if (!JITTypePointer(alloc, frame_ptr))
2202    return false;
2203
2204  // rsaTypeGetNativeData()
2205  if (!JITTypePacked(alloc, frame_ptr))
2206    return false;
2207
2208  // rsaElementGetNativeData()
2209  if (!JITElementPacked(alloc->element, *alloc->context.get(), frame_ptr))
2210    return false;
2211
2212  // Sets the datum_size member in Element
2213  SetElementSize(alloc->element);
2214
2215  // Use GetOffsetPointer() to infer size of the allocation
2216  return JITAllocationSize(alloc, frame_ptr);
2217}
2218
2219// Function attempts to set the type_name member of the parameterised Element
2220// object. This string should be the name of the struct type the Element
2221// represents. We need this string for pretty printing the Element to users.
2222void RenderScriptRuntime::FindStructTypeName(Element &elem,
2223                                             StackFrame *frame_ptr) {
2224  Log *log = GetLog(LLDBLog::Language);
2225
2226  if (!elem.type_name.IsEmpty()) // Name already set
2227    return;
2228  else
2229    elem.type_name = Element::GetFallbackStructName(); // Default type name if
2230                                                       // we don't succeed
2231
2232  // Find all the global variables from the script rs modules
2233  VariableList var_list;
2234  for (auto module_sp : m_rsmodules)
2235    module_sp->m_module->FindGlobalVariables(
2236        RegularExpression(llvm::StringRef(".")), UINT32_MAX, var_list);
2237
2238  // Iterate over all the global variables looking for one with a matching type
2239  // to the Element. We make the assumption a match exists since there needs to
2240  // be a global variable to reflect the struct type back into java host code.
2241  for (const VariableSP &var_sp : var_list) {
2242    if (!var_sp)
2243      continue;
2244
2245    ValueObjectSP valobj_sp = ValueObjectVariable::Create(frame_ptr, var_sp);
2246    if (!valobj_sp)
2247      continue;
2248
2249    // Find the number of variable fields.
2250    // If it has no fields, or more fields than our Element, then it can't be
2251    // the struct we're looking for. Don't check for equality since RS can add
2252    // extra struct members for padding.
2253    size_t num_children = valobj_sp->GetNumChildren();
2254    if (num_children > elem.children.size() || num_children == 0)
2255      continue;
2256
2257    // Iterate over children looking for members with matching field names. If
2258    // all the field names match, this is likely the struct we want.
2259    //   TODO: This could be made more robust by also checking children data
2260    //   sizes, or array size
2261    bool found = true;
2262    for (size_t i = 0; i < num_children; ++i) {
2263      ValueObjectSP child = valobj_sp->GetChildAtIndex(i, true);
2264      if (!child || (child->GetName() != elem.children[i].type_name)) {
2265        found = false;
2266        break;
2267      }
2268    }
2269
2270    // RS can add extra struct members for padding in the format
2271    // '#rs_padding_[0-9]+'
2272    if (found && num_children < elem.children.size()) {
2273      const uint32_t size_diff = elem.children.size() - num_children;
2274      LLDB_LOGF(log, "%s - %" PRIu32 " padding struct entries", __FUNCTION__,
2275                size_diff);
2276
2277      for (uint32_t i = 0; i < size_diff; ++i) {
2278        ConstString name = elem.children[num_children + i].type_name;
2279        if (strcmp(name.AsCString(), "#rs_padding") < 0)
2280          found = false;
2281      }
2282    }
2283
2284    // We've found a global variable with matching type
2285    if (found) {
2286      // Dereference since our Element type isn't a pointer.
2287      if (valobj_sp->IsPointerType()) {
2288        Status err;
2289        ValueObjectSP deref_valobj = valobj_sp->Dereference(err);
2290        if (!err.Fail())
2291          valobj_sp = deref_valobj;
2292      }
2293
2294      // Save name of variable in Element.
2295      elem.type_name = valobj_sp->GetTypeName();
2296      LLDB_LOGF(log, "%s - element name set to %s", __FUNCTION__,
2297                elem.type_name.AsCString());
2298
2299      return;
2300    }
2301  }
2302}
2303
2304// Function sets the datum_size member of Element. Representing the size of a
2305// single instance including padding. Assumes the relevant allocation
2306// information has already been jitted.
2307void RenderScriptRuntime::SetElementSize(Element &elem) {
2308  Log *log = GetLog(LLDBLog::Language);
2309  const Element::DataType type = *elem.type.get();
2310  assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_FONT &&
2311         "Invalid allocation type");
2312
2313  const uint32_t vec_size = *elem.type_vec_size.get();
2314  uint32_t data_size = 0;
2315  uint32_t padding = 0;
2316
2317  // Element is of a struct type, calculate size recursively.
2318  if ((type == Element::RS_TYPE_NONE) && (elem.children.size() > 0)) {
2319    for (Element &child : elem.children) {
2320      SetElementSize(child);
2321      const uint32_t array_size =
2322          child.array_size.isValid() ? *child.array_size.get() : 1;
2323      data_size += *child.datum_size.get() * array_size;
2324    }
2325  }
2326  // These have been packed already
2327  else if (type == Element::RS_TYPE_UNSIGNED_5_6_5 ||
2328           type == Element::RS_TYPE_UNSIGNED_5_5_5_1 ||
2329           type == Element::RS_TYPE_UNSIGNED_4_4_4_4) {
2330    data_size = AllocationDetails::RSTypeToFormat[type][eElementSize];
2331  } else if (type < Element::RS_TYPE_ELEMENT) {
2332    data_size =
2333        vec_size * AllocationDetails::RSTypeToFormat[type][eElementSize];
2334    if (vec_size == 3)
2335      padding = AllocationDetails::RSTypeToFormat[type][eElementSize];
2336  } else
2337    data_size =
2338        GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize();
2339
2340  elem.padding = padding;
2341  elem.datum_size = data_size + padding;
2342  LLDB_LOGF(log, "%s - element size set to %" PRIu32, __FUNCTION__,
2343            data_size + padding);
2344}
2345
2346// Given an allocation, this function copies the allocation contents from
2347// device into a buffer on the heap. Returning a shared pointer to the buffer
2348// containing the data.
2349std::shared_ptr<uint8_t>
2350RenderScriptRuntime::GetAllocationData(AllocationDetails *alloc,
2351                                       StackFrame *frame_ptr) {
2352  Log *log = GetLog(LLDBLog::Language);
2353
2354  // JIT all the allocation details
2355  if (alloc->ShouldRefresh()) {
2356    LLDB_LOGF(log, "%s - allocation details not calculated yet, jitting info",
2357              __FUNCTION__);
2358
2359    if (!RefreshAllocation(alloc, frame_ptr)) {
2360      LLDB_LOGF(log, "%s - couldn't JIT allocation details", __FUNCTION__);
2361      return nullptr;
2362    }
2363  }
2364
2365  assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() &&
2366         alloc->element.type_vec_size.isValid() && alloc->size.isValid() &&
2367         "Allocation information not available");
2368
2369  // Allocate a buffer to copy data into
2370  const uint32_t size = *alloc->size.get();
2371  std::shared_ptr<uint8_t> buffer(new uint8_t[size]);
2372  if (!buffer) {
2373    LLDB_LOGF(log, "%s - couldn't allocate a %" PRIu32 " byte buffer",
2374              __FUNCTION__, size);
2375    return nullptr;
2376  }
2377
2378  // Read the inferior memory
2379  Status err;
2380  lldb::addr_t data_ptr = *alloc->data_ptr.get();
2381  GetProcess()->ReadMemory(data_ptr, buffer.get(), size, err);
2382  if (err.Fail()) {
2383    LLDB_LOGF(log,
2384              "%s - '%s' Couldn't read %" PRIu32
2385              " bytes of allocation data from 0x%" PRIx64,
2386              __FUNCTION__, err.AsCString(), size, data_ptr);
2387    return nullptr;
2388  }
2389
2390  return buffer;
2391}
2392
2393// Function copies data from a binary file into an allocation. There is a
2394// header at the start of the file, FileHeader, before the data content itself.
2395// Information from this header is used to display warnings to the user about
2396// incompatibilities
2397bool RenderScriptRuntime::LoadAllocation(Stream &strm, const uint32_t alloc_id,
2398                                         const char *path,
2399                                         StackFrame *frame_ptr) {
2400  Log *log = GetLog(LLDBLog::Language);
2401
2402  // Find allocation with the given id
2403  AllocationDetails *alloc = FindAllocByID(strm, alloc_id);
2404  if (!alloc)
2405    return false;
2406
2407  LLDB_LOGF(log, "%s - found allocation 0x%" PRIx64, __FUNCTION__,
2408            *alloc->address.get());
2409
2410  // JIT all the allocation details
2411  if (alloc->ShouldRefresh()) {
2412    LLDB_LOGF(log, "%s - allocation details not calculated yet, jitting info.",
2413              __FUNCTION__);
2414
2415    if (!RefreshAllocation(alloc, frame_ptr)) {
2416      LLDB_LOGF(log, "%s - couldn't JIT allocation details", __FUNCTION__);
2417      return false;
2418    }
2419  }
2420
2421  assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() &&
2422         alloc->element.type_vec_size.isValid() && alloc->size.isValid() &&
2423         alloc->element.datum_size.isValid() &&
2424         "Allocation information not available");
2425
2426  // Check we can read from file
2427  FileSpec file(path);
2428  FileSystem::Instance().Resolve(file);
2429  if (!FileSystem::Instance().Exists(file)) {
2430    strm.Printf("Error: File %s does not exist", path);
2431    strm.EOL();
2432    return false;
2433  }
2434
2435  if (!FileSystem::Instance().Readable(file)) {
2436    strm.Printf("Error: File %s does not have readable permissions", path);
2437    strm.EOL();
2438    return false;
2439  }
2440
2441  // Read file into data buffer
2442  auto data_sp = FileSystem::Instance().CreateDataBuffer(file.GetPath());
2443
2444  // Cast start of buffer to FileHeader and use pointer to read metadata
2445  const void *file_buf = data_sp->GetBytes();
2446  if (file_buf == nullptr ||
2447      data_sp->GetByteSize() < (sizeof(AllocationDetails::FileHeader) +
2448                                sizeof(AllocationDetails::ElementHeader))) {
2449    strm.Printf("Error: File %s does not contain enough data for header", path);
2450    strm.EOL();
2451    return false;
2452  }
2453  const AllocationDetails::FileHeader *file_header =
2454      static_cast<const AllocationDetails::FileHeader *>(file_buf);
2455
2456  // Check file starts with ascii characters "RSAD"
2457  if (memcmp(file_header->ident, "RSAD", 4)) {
2458    strm.Printf("Error: File doesn't contain identifier for an RS allocation "
2459                "dump. Are you sure this is the correct file?");
2460    strm.EOL();
2461    return false;
2462  }
2463
2464  // Look at the type of the root element in the header
2465  AllocationDetails::ElementHeader root_el_hdr;
2466  memcpy(&root_el_hdr,
2467         static_cast<const uint8_t *>(file_buf) +
2468             sizeof(AllocationDetails::FileHeader),
2469         sizeof(AllocationDetails::ElementHeader));
2470
2471  LLDB_LOGF(log, "%s - header type %" PRIu32 ", element size %" PRIu32,
2472            __FUNCTION__, root_el_hdr.type, root_el_hdr.element_size);
2473
2474  // Check if the target allocation and file both have the same number of bytes
2475  // for an Element
2476  if (*alloc->element.datum_size.get() != root_el_hdr.element_size) {
2477    strm.Printf("Warning: Mismatched Element sizes - file %" PRIu32
2478                " bytes, allocation %" PRIu32 " bytes",
2479                root_el_hdr.element_size, *alloc->element.datum_size.get());
2480    strm.EOL();
2481  }
2482
2483  // Check if the target allocation and file both have the same type
2484  const uint32_t alloc_type = static_cast<uint32_t>(*alloc->element.type.get());
2485  const uint32_t file_type = root_el_hdr.type;
2486
2487  if (file_type > Element::RS_TYPE_FONT) {
2488    strm.Printf("Warning: File has unknown allocation type");
2489    strm.EOL();
2490  } else if (alloc_type != file_type) {
2491    // Enum value isn't monotonous, so doesn't always index RsDataTypeToString
2492    // array
2493    uint32_t target_type_name_idx = alloc_type;
2494    uint32_t head_type_name_idx = file_type;
2495    if (alloc_type >= Element::RS_TYPE_ELEMENT &&
2496        alloc_type <= Element::RS_TYPE_FONT)
2497      target_type_name_idx = static_cast<Element::DataType>(
2498          (alloc_type - Element::RS_TYPE_ELEMENT) +
2499          Element::RS_TYPE_MATRIX_2X2 + 1);
2500
2501    if (file_type >= Element::RS_TYPE_ELEMENT &&
2502        file_type <= Element::RS_TYPE_FONT)
2503      head_type_name_idx = static_cast<Element::DataType>(
2504          (file_type - Element::RS_TYPE_ELEMENT) + Element::RS_TYPE_MATRIX_2X2 +
2505          1);
2506
2507    const char *head_type_name =
2508        AllocationDetails::RsDataTypeToString[head_type_name_idx][0];
2509    const char *target_type_name =
2510        AllocationDetails::RsDataTypeToString[target_type_name_idx][0];
2511
2512    strm.Printf(
2513        "Warning: Mismatched Types - file '%s' type, allocation '%s' type",
2514        head_type_name, target_type_name);
2515    strm.EOL();
2516  }
2517
2518  // Advance buffer past header
2519  file_buf = static_cast<const uint8_t *>(file_buf) + file_header->hdr_size;
2520
2521  // Calculate size of allocation data in file
2522  size_t size = data_sp->GetByteSize() - file_header->hdr_size;
2523
2524  // Check if the target allocation and file both have the same total data
2525  // size.
2526  const uint32_t alloc_size = *alloc->size.get();
2527  if (alloc_size != size) {
2528    strm.Printf("Warning: Mismatched allocation sizes - file 0x%" PRIx64
2529                " bytes, allocation 0x%" PRIx32 " bytes",
2530                (uint64_t)size, alloc_size);
2531    strm.EOL();
2532    // Set length to copy to minimum
2533    size = alloc_size < size ? alloc_size : size;
2534  }
2535
2536  // Copy file data from our buffer into the target allocation.
2537  lldb::addr_t alloc_data = *alloc->data_ptr.get();
2538  Status err;
2539  size_t written = GetProcess()->WriteMemory(alloc_data, file_buf, size, err);
2540  if (!err.Success() || written != size) {
2541    strm.Printf("Error: Couldn't write data to allocation %s", err.AsCString());
2542    strm.EOL();
2543    return false;
2544  }
2545
2546  strm.Printf("Contents of file '%s' read into allocation %" PRIu32, path,
2547              alloc->id);
2548  strm.EOL();
2549
2550  return true;
2551}
2552
2553// Function takes as parameters a byte buffer, which will eventually be written
2554// to file as the element header, an offset into that buffer, and an Element
2555// that will be saved into the buffer at the parametrised offset. Return value
2556// is the new offset after writing the element into the buffer. Elements are
2557// saved to the file as the ElementHeader struct followed by offsets to the
2558// structs of all the element's children.
2559size_t RenderScriptRuntime::PopulateElementHeaders(
2560    const std::shared_ptr<uint8_t> header_buffer, size_t offset,
2561    const Element &elem) {
2562  // File struct for an element header with all the relevant details copied
2563  // from elem. We assume members are valid already.
2564  AllocationDetails::ElementHeader elem_header;
2565  elem_header.type = *elem.type.get();
2566  elem_header.kind = *elem.type_kind.get();
2567  elem_header.element_size = *elem.datum_size.get();
2568  elem_header.vector_size = *elem.type_vec_size.get();
2569  elem_header.array_size =
2570      elem.array_size.isValid() ? *elem.array_size.get() : 0;
2571  const size_t elem_header_size = sizeof(AllocationDetails::ElementHeader);
2572
2573  // Copy struct into buffer and advance offset We assume that header_buffer
2574  // has been checked for nullptr before this method is called
2575  memcpy(header_buffer.get() + offset, &elem_header, elem_header_size);
2576  offset += elem_header_size;
2577
2578  // Starting offset of child ElementHeader struct
2579  size_t child_offset =
2580      offset + ((elem.children.size() + 1) * sizeof(uint32_t));
2581  for (const RenderScriptRuntime::Element &child : elem.children) {
2582    // Recursively populate the buffer with the element header structs of
2583    // children. Then save the offsets where they were set after the parent
2584    // element header.
2585    memcpy(header_buffer.get() + offset, &child_offset, sizeof(uint32_t));
2586    offset += sizeof(uint32_t);
2587
2588    child_offset = PopulateElementHeaders(header_buffer, child_offset, child);
2589  }
2590
2591  // Zero indicates no more children
2592  memset(header_buffer.get() + offset, 0, sizeof(uint32_t));
2593
2594  return child_offset;
2595}
2596
2597// Given an Element object this function returns the total size needed in the
2598// file header to store the element's details. Taking into account the size of
2599// the element header struct, plus the offsets to all the element's children.
2600// Function is recursive so that the size of all ancestors is taken into
2601// account.
2602size_t RenderScriptRuntime::CalculateElementHeaderSize(const Element &elem) {
2603  // Offsets to children plus zero terminator
2604  size_t size = (elem.children.size() + 1) * sizeof(uint32_t);
2605  // Size of header struct with type details
2606  size += sizeof(AllocationDetails::ElementHeader);
2607
2608  // Calculate recursively for all descendants
2609  for (const Element &child : elem.children)
2610    size += CalculateElementHeaderSize(child);
2611
2612  return size;
2613}
2614
2615// Function copies allocation contents into a binary file. This file can then
2616// be loaded later into a different allocation. There is a header, FileHeader,
2617// before the allocation data containing meta-data.
2618bool RenderScriptRuntime::SaveAllocation(Stream &strm, const uint32_t alloc_id,
2619                                         const char *path,
2620                                         StackFrame *frame_ptr) {
2621  Log *log = GetLog(LLDBLog::Language);
2622
2623  // Find allocation with the given id
2624  AllocationDetails *alloc = FindAllocByID(strm, alloc_id);
2625  if (!alloc)
2626    return false;
2627
2628  LLDB_LOGF(log, "%s - found allocation 0x%" PRIx64 ".", __FUNCTION__,
2629            *alloc->address.get());
2630
2631  // JIT all the allocation details
2632  if (alloc->ShouldRefresh()) {
2633    LLDB_LOGF(log, "%s - allocation details not calculated yet, jitting info.",
2634              __FUNCTION__);
2635
2636    if (!RefreshAllocation(alloc, frame_ptr)) {
2637      LLDB_LOGF(log, "%s - couldn't JIT allocation details.", __FUNCTION__);
2638      return false;
2639    }
2640  }
2641
2642  assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() &&
2643         alloc->element.type_vec_size.isValid() &&
2644         alloc->element.datum_size.get() &&
2645         alloc->element.type_kind.isValid() && alloc->dimension.isValid() &&
2646         "Allocation information not available");
2647
2648  // Check we can create writable file
2649  FileSpec file_spec(path);
2650  FileSystem::Instance().Resolve(file_spec);
2651  auto file = FileSystem::Instance().Open(
2652      file_spec, File::eOpenOptionWriteOnly | File::eOpenOptionCanCreate |
2653                     File::eOpenOptionTruncate);
2654
2655  if (!file) {
2656    std::string error = llvm::toString(file.takeError());
2657    strm.Printf("Error: Failed to open '%s' for writing: %s", path,
2658                error.c_str());
2659    strm.EOL();
2660    return false;
2661  }
2662
2663  // Read allocation into buffer of heap memory
2664  const std::shared_ptr<uint8_t> buffer = GetAllocationData(alloc, frame_ptr);
2665  if (!buffer) {
2666    strm.Printf("Error: Couldn't read allocation data into buffer");
2667    strm.EOL();
2668    return false;
2669  }
2670
2671  // Create the file header
2672  AllocationDetails::FileHeader head;
2673  memcpy(head.ident, "RSAD", 4);
2674  head.dims[0] = static_cast<uint32_t>(alloc->dimension.get()->dim_1);
2675  head.dims[1] = static_cast<uint32_t>(alloc->dimension.get()->dim_2);
2676  head.dims[2] = static_cast<uint32_t>(alloc->dimension.get()->dim_3);
2677
2678  const size_t element_header_size = CalculateElementHeaderSize(alloc->element);
2679  assert((sizeof(AllocationDetails::FileHeader) + element_header_size) <
2680             UINT16_MAX &&
2681         "Element header too large");
2682  head.hdr_size = static_cast<uint16_t>(sizeof(AllocationDetails::FileHeader) +
2683                                        element_header_size);
2684
2685  // Write the file header
2686  size_t num_bytes = sizeof(AllocationDetails::FileHeader);
2687  LLDB_LOGF(log, "%s - writing File Header, 0x%" PRIx64 " bytes", __FUNCTION__,
2688            (uint64_t)num_bytes);
2689
2690  Status err = file.get()->Write(&head, num_bytes);
2691  if (!err.Success()) {
2692    strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), path);
2693    strm.EOL();
2694    return false;
2695  }
2696
2697  // Create the headers describing the element type of the allocation.
2698  std::shared_ptr<uint8_t> element_header_buffer(
2699      new uint8_t[element_header_size]);
2700  if (element_header_buffer == nullptr) {
2701    strm.Printf("Internal Error: Couldn't allocate %" PRIu64
2702                " bytes on the heap",
2703                (uint64_t)element_header_size);
2704    strm.EOL();
2705    return false;
2706  }
2707
2708  PopulateElementHeaders(element_header_buffer, 0, alloc->element);
2709
2710  // Write headers for allocation element type to file
2711  num_bytes = element_header_size;
2712  LLDB_LOGF(log, "%s - writing element headers, 0x%" PRIx64 " bytes.",
2713            __FUNCTION__, (uint64_t)num_bytes);
2714
2715  err = file.get()->Write(element_header_buffer.get(), num_bytes);
2716  if (!err.Success()) {
2717    strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), path);
2718    strm.EOL();
2719    return false;
2720  }
2721
2722  // Write allocation data to file
2723  num_bytes = static_cast<size_t>(*alloc->size.get());
2724  LLDB_LOGF(log, "%s - writing 0x%" PRIx64 " bytes", __FUNCTION__,
2725            (uint64_t)num_bytes);
2726
2727  err = file.get()->Write(buffer.get(), num_bytes);
2728  if (!err.Success()) {
2729    strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), path);
2730    strm.EOL();
2731    return false;
2732  }
2733
2734  strm.Printf("Allocation written to file '%s'", path);
2735  strm.EOL();
2736  return true;
2737}
2738
2739bool RenderScriptRuntime::LoadModule(const lldb::ModuleSP &module_sp) {
2740  Log *log = GetLog(LLDBLog::Language);
2741
2742  if (module_sp) {
2743    for (const auto &rs_module : m_rsmodules) {
2744      if (rs_module->m_module == module_sp) {
2745        // Check if the user has enabled automatically breaking on all RS
2746        // kernels.
2747        if (m_breakAllKernels)
2748          BreakOnModuleKernels(rs_module);
2749
2750        return false;
2751      }
2752    }
2753    bool module_loaded = false;
2754    switch (GetModuleKind(module_sp)) {
2755    case eModuleKindKernelObj: {
2756      RSModuleDescriptorSP module_desc;
2757      module_desc = std::make_shared<RSModuleDescriptor>(module_sp);
2758      if (module_desc->ParseRSInfo()) {
2759        m_rsmodules.push_back(module_desc);
2760        module_desc->WarnIfVersionMismatch(GetProcess()
2761                                               ->GetTarget()
2762                                               .GetDebugger()
2763                                               .GetAsyncOutputStream()
2764                                               .get());
2765        module_loaded = true;
2766      }
2767      if (module_loaded) {
2768        FixupScriptDetails(module_desc);
2769      }
2770      break;
2771    }
2772    case eModuleKindDriver: {
2773      if (!m_libRSDriver) {
2774        m_libRSDriver = module_sp;
2775        LoadRuntimeHooks(m_libRSDriver, RenderScriptRuntime::eModuleKindDriver);
2776      }
2777      break;
2778    }
2779    case eModuleKindImpl: {
2780      if (!m_libRSCpuRef) {
2781        m_libRSCpuRef = module_sp;
2782        LoadRuntimeHooks(m_libRSCpuRef, RenderScriptRuntime::eModuleKindImpl);
2783      }
2784      break;
2785    }
2786    case eModuleKindLibRS: {
2787      if (!m_libRS) {
2788        m_libRS = module_sp;
2789        static ConstString gDbgPresentStr("gDebuggerPresent");
2790        const Symbol *debug_present = m_libRS->FindFirstSymbolWithNameAndType(
2791            gDbgPresentStr, eSymbolTypeData);
2792        if (debug_present) {
2793          Status err;
2794          uint32_t flag = 0x00000001U;
2795          Target &target = GetProcess()->GetTarget();
2796          addr_t addr = debug_present->GetLoadAddress(&target);
2797          GetProcess()->WriteMemory(addr, &flag, sizeof(flag), err);
2798          if (err.Success()) {
2799            LLDB_LOGF(log, "%s - debugger present flag set on debugee.",
2800                      __FUNCTION__);
2801
2802            m_debuggerPresentFlagged = true;
2803          } else if (log) {
2804            LLDB_LOGF(log, "%s - error writing debugger present flags '%s' ",
2805                      __FUNCTION__, err.AsCString());
2806          }
2807        } else if (log) {
2808          LLDB_LOGF(
2809              log,
2810              "%s - error writing debugger present flags - symbol not found",
2811              __FUNCTION__);
2812        }
2813      }
2814      break;
2815    }
2816    default:
2817      break;
2818    }
2819    if (module_loaded)
2820      Update();
2821    return module_loaded;
2822  }
2823  return false;
2824}
2825
2826void RenderScriptRuntime::Update() {
2827  if (m_rsmodules.size() > 0) {
2828    if (!m_initiated) {
2829      Initiate();
2830    }
2831  }
2832}
2833
2834void RSModuleDescriptor::WarnIfVersionMismatch(lldb_private::Stream *s) const {
2835  if (!s)
2836    return;
2837
2838  if (m_slang_version.empty() || m_bcc_version.empty()) {
2839    s->PutCString("WARNING: Unknown bcc or slang (llvm-rs-cc) version; debug "
2840                  "experience may be unreliable");
2841    s->EOL();
2842  } else if (m_slang_version != m_bcc_version) {
2843    s->Printf("WARNING: The debug info emitted by the slang frontend "
2844              "(llvm-rs-cc) used to build this module (%s) does not match the "
2845              "version of bcc used to generate the debug information (%s). "
2846              "This is an unsupported configuration and may result in a poor "
2847              "debugging experience; proceed with caution",
2848              m_slang_version.c_str(), m_bcc_version.c_str());
2849    s->EOL();
2850  }
2851}
2852
2853bool RSModuleDescriptor::ParsePragmaCount(llvm::StringRef *lines,
2854                                          size_t n_lines) {
2855  // Skip the pragma prototype line
2856  ++lines;
2857  for (; n_lines--; ++lines) {
2858    const auto kv_pair = lines->split(" - ");
2859    m_pragmas[kv_pair.first.trim().str()] = kv_pair.second.trim().str();
2860  }
2861  return true;
2862}
2863
2864bool RSModuleDescriptor::ParseExportReduceCount(llvm::StringRef *lines,
2865                                                size_t n_lines) {
2866  // The list of reduction kernels in the `.rs.info` symbol is of the form
2867  // "signature - accumulatordatasize - reduction_name - initializer_name -
2868  // accumulator_name - combiner_name - outconverter_name - halter_name" Where
2869  // a function is not explicitly named by the user, or is not generated by the
2870  // compiler, it is named "." so the dash separated list should always be 8
2871  // items long
2872  Log *log = GetLog(LLDBLog::Language);
2873  // Skip the exportReduceCount line
2874  ++lines;
2875  for (; n_lines--; ++lines) {
2876    llvm::SmallVector<llvm::StringRef, 8> spec;
2877    lines->split(spec, " - ");
2878    if (spec.size() != 8) {
2879      if (spec.size() < 8) {
2880        if (log)
2881          log->Error("Error parsing RenderScript reduction spec. wrong number "
2882                     "of fields");
2883        return false;
2884      } else if (log)
2885        log->Warning("Extraneous members in reduction spec: '%s'",
2886                     lines->str().c_str());
2887    }
2888
2889    const auto sig_s = spec[0];
2890    uint32_t sig;
2891    if (sig_s.getAsInteger(10, sig)) {
2892      if (log)
2893        log->Error("Error parsing Renderscript reduction spec: invalid kernel "
2894                   "signature: '%s'",
2895                   sig_s.str().c_str());
2896      return false;
2897    }
2898
2899    const auto accum_data_size_s = spec[1];
2900    uint32_t accum_data_size;
2901    if (accum_data_size_s.getAsInteger(10, accum_data_size)) {
2902      if (log)
2903        log->Error("Error parsing Renderscript reduction spec: invalid "
2904                   "accumulator data size %s",
2905                   accum_data_size_s.str().c_str());
2906      return false;
2907    }
2908
2909    LLDB_LOGF(log, "Found RenderScript reduction '%s'", spec[2].str().c_str());
2910
2911    m_reductions.push_back(RSReductionDescriptor(this, sig, accum_data_size,
2912                                                 spec[2], spec[3], spec[4],
2913                                                 spec[5], spec[6], spec[7]));
2914  }
2915  return true;
2916}
2917
2918bool RSModuleDescriptor::ParseVersionInfo(llvm::StringRef *lines,
2919                                          size_t n_lines) {
2920  // Skip the versionInfo line
2921  ++lines;
2922  for (; n_lines--; ++lines) {
2923    // We're only interested in bcc and slang versions, and ignore all other
2924    // versionInfo lines
2925    const auto kv_pair = lines->split(" - ");
2926    if (kv_pair.first == "slang")
2927      m_slang_version = kv_pair.second.str();
2928    else if (kv_pair.first == "bcc")
2929      m_bcc_version = kv_pair.second.str();
2930  }
2931  return true;
2932}
2933
2934bool RSModuleDescriptor::ParseExportForeachCount(llvm::StringRef *lines,
2935                                                 size_t n_lines) {
2936  // Skip the exportForeachCount line
2937  ++lines;
2938  for (; n_lines--; ++lines) {
2939    uint32_t slot;
2940    // `forEach` kernels are listed in the `.rs.info` packet as a "slot - name"
2941    // pair per line
2942    const auto kv_pair = lines->split(" - ");
2943    if (kv_pair.first.getAsInteger(10, slot))
2944      return false;
2945    m_kernels.push_back(RSKernelDescriptor(this, kv_pair.second, slot));
2946  }
2947  return true;
2948}
2949
2950bool RSModuleDescriptor::ParseExportVarCount(llvm::StringRef *lines,
2951                                             size_t n_lines) {
2952  // Skip the ExportVarCount line
2953  ++lines;
2954  for (; n_lines--; ++lines)
2955    m_globals.push_back(RSGlobalDescriptor(this, *lines));
2956  return true;
2957}
2958
2959// The .rs.info symbol in renderscript modules contains a string which needs to
2960// be parsed. The string is basic and is parsed on a line by line basis.
2961bool RSModuleDescriptor::ParseRSInfo() {
2962  assert(m_module);
2963  Log *log = GetLog(LLDBLog::Language);
2964  const Symbol *info_sym = m_module->FindFirstSymbolWithNameAndType(
2965      ConstString(".rs.info"), eSymbolTypeData);
2966  if (!info_sym)
2967    return false;
2968
2969  const addr_t addr = info_sym->GetAddressRef().GetFileAddress();
2970  if (addr == LLDB_INVALID_ADDRESS)
2971    return false;
2972
2973  const addr_t size = info_sym->GetByteSize();
2974  const FileSpec fs = m_module->GetFileSpec();
2975
2976  auto buffer =
2977      FileSystem::Instance().CreateDataBuffer(fs.GetPath(), size, addr);
2978  if (!buffer)
2979    return false;
2980
2981  // split rs.info. contents into lines
2982  llvm::SmallVector<llvm::StringRef, 128> info_lines;
2983  {
2984    const llvm::StringRef raw_rs_info((const char *)buffer->GetBytes());
2985    raw_rs_info.split(info_lines, '\n');
2986    LLDB_LOGF(log, "'.rs.info symbol for '%s':\n%s",
2987              m_module->GetFileSpec().GetPath().c_str(),
2988              raw_rs_info.str().c_str());
2989  }
2990
2991  enum {
2992    eExportVar,
2993    eExportForEach,
2994    eExportReduce,
2995    ePragma,
2996    eBuildChecksum,
2997    eObjectSlot,
2998    eVersionInfo,
2999  };
3000
3001  const auto rs_info_handler = [](llvm::StringRef name) -> int {
3002    return llvm::StringSwitch<int>(name)
3003        // The number of visible global variables in the script
3004        .Case("exportVarCount", eExportVar)
3005        // The number of RenderScrip `forEach` kernels __attribute__((kernel))
3006        .Case("exportForEachCount", eExportForEach)
3007        // The number of generalreductions: This marked in the script by
3008        // `#pragma reduce()`
3009        .Case("exportReduceCount", eExportReduce)
3010        // Total count of all RenderScript specific `#pragmas` used in the
3011        // script
3012        .Case("pragmaCount", ePragma)
3013        .Case("objectSlotCount", eObjectSlot)
3014        .Case("versionInfo", eVersionInfo)
3015        .Default(-1);
3016  };
3017
3018  // parse all text lines of .rs.info
3019  for (auto line = info_lines.begin(); line != info_lines.end(); ++line) {
3020    const auto kv_pair = line->split(": ");
3021    const auto key = kv_pair.first;
3022    const auto val = kv_pair.second.trim();
3023
3024    const auto handler = rs_info_handler(key);
3025    if (handler == -1)
3026      continue;
3027    // getAsInteger returns `true` on an error condition - we're only
3028    // interested in numeric fields at the moment
3029    uint64_t n_lines;
3030    if (val.getAsInteger(10, n_lines)) {
3031      LLDB_LOGV(log, "Failed to parse non-numeric '.rs.info' section {0}",
3032                line->str());
3033      continue;
3034    }
3035    if (info_lines.end() - (line + 1) < (ptrdiff_t)n_lines)
3036      return false;
3037
3038    bool success = false;
3039    switch (handler) {
3040    case eExportVar:
3041      success = ParseExportVarCount(line, n_lines);
3042      break;
3043    case eExportForEach:
3044      success = ParseExportForeachCount(line, n_lines);
3045      break;
3046    case eExportReduce:
3047      success = ParseExportReduceCount(line, n_lines);
3048      break;
3049    case ePragma:
3050      success = ParsePragmaCount(line, n_lines);
3051      break;
3052    case eVersionInfo:
3053      success = ParseVersionInfo(line, n_lines);
3054      break;
3055    default: {
3056      LLDB_LOGF(log, "%s - skipping .rs.info field '%s'", __FUNCTION__,
3057                line->str().c_str());
3058      continue;
3059    }
3060    }
3061    if (!success)
3062      return false;
3063    line += n_lines;
3064  }
3065  return info_lines.size() > 0;
3066}
3067
3068void RenderScriptRuntime::DumpStatus(Stream &strm) const {
3069  if (m_libRS) {
3070    strm.Printf("Runtime Library discovered.");
3071    strm.EOL();
3072  }
3073  if (m_libRSDriver) {
3074    strm.Printf("Runtime Driver discovered.");
3075    strm.EOL();
3076  }
3077  if (m_libRSCpuRef) {
3078    strm.Printf("CPU Reference Implementation discovered.");
3079    strm.EOL();
3080  }
3081
3082  if (m_runtimeHooks.size()) {
3083    strm.Printf("Runtime functions hooked:");
3084    strm.EOL();
3085    for (auto b : m_runtimeHooks) {
3086      strm.Indent(b.second->defn->name);
3087      strm.EOL();
3088    }
3089  } else {
3090    strm.Printf("Runtime is not hooked.");
3091    strm.EOL();
3092  }
3093}
3094
3095void RenderScriptRuntime::DumpContexts(Stream &strm) const {
3096  strm.Printf("Inferred RenderScript Contexts:");
3097  strm.EOL();
3098  strm.IndentMore();
3099
3100  std::map<addr_t, uint64_t> contextReferences;
3101
3102  // Iterate over all of the currently discovered scripts. Note: We cant push
3103  // or pop from m_scripts inside this loop or it may invalidate script.
3104  for (const auto &script : m_scripts) {
3105    if (!script->context.isValid())
3106      continue;
3107    lldb::addr_t context = *script->context;
3108
3109    if (contextReferences.find(context) != contextReferences.end()) {
3110      contextReferences[context]++;
3111    } else {
3112      contextReferences[context] = 1;
3113    }
3114  }
3115
3116  for (const auto &cRef : contextReferences) {
3117    strm.Printf("Context 0x%" PRIx64 ": %" PRIu64 " script instances",
3118                cRef.first, cRef.second);
3119    strm.EOL();
3120  }
3121  strm.IndentLess();
3122}
3123
3124void RenderScriptRuntime::DumpKernels(Stream &strm) const {
3125  strm.Printf("RenderScript Kernels:");
3126  strm.EOL();
3127  strm.IndentMore();
3128  for (const auto &module : m_rsmodules) {
3129    strm.Printf("Resource '%s':", module->m_resname.c_str());
3130    strm.EOL();
3131    for (const auto &kernel : module->m_kernels) {
3132      strm.Indent(kernel.m_name.GetStringRef());
3133      strm.EOL();
3134    }
3135  }
3136  strm.IndentLess();
3137}
3138
3139RenderScriptRuntime::AllocationDetails *
3140RenderScriptRuntime::FindAllocByID(Stream &strm, const uint32_t alloc_id) {
3141  AllocationDetails *alloc = nullptr;
3142
3143  // See if we can find allocation using id as an index;
3144  if (alloc_id <= m_allocations.size() && alloc_id != 0 &&
3145      m_allocations[alloc_id - 1]->id == alloc_id) {
3146    alloc = m_allocations[alloc_id - 1].get();
3147    return alloc;
3148  }
3149
3150  // Fallback to searching
3151  for (const auto &a : m_allocations) {
3152    if (a->id == alloc_id) {
3153      alloc = a.get();
3154      break;
3155    }
3156  }
3157
3158  if (alloc == nullptr) {
3159    strm.Printf("Error: Couldn't find allocation with id matching %" PRIu32,
3160                alloc_id);
3161    strm.EOL();
3162  }
3163
3164  return alloc;
3165}
3166
3167// Prints the contents of an allocation to the output stream, which may be a
3168// file
3169bool RenderScriptRuntime::DumpAllocation(Stream &strm, StackFrame *frame_ptr,
3170                                         const uint32_t id) {
3171  Log *log = GetLog(LLDBLog::Language);
3172
3173  // Check we can find the desired allocation
3174  AllocationDetails *alloc = FindAllocByID(strm, id);
3175  if (!alloc)
3176    return false; // FindAllocByID() will print error message for us here
3177
3178  LLDB_LOGF(log, "%s - found allocation 0x%" PRIx64, __FUNCTION__,
3179            *alloc->address.get());
3180
3181  // Check we have information about the allocation, if not calculate it
3182  if (alloc->ShouldRefresh()) {
3183    LLDB_LOGF(log, "%s - allocation details not calculated yet, jitting info.",
3184              __FUNCTION__);
3185
3186    // JIT all the allocation information
3187    if (!RefreshAllocation(alloc, frame_ptr)) {
3188      strm.Printf("Error: Couldn't JIT allocation details");
3189      strm.EOL();
3190      return false;
3191    }
3192  }
3193
3194  // Establish format and size of each data element
3195  const uint32_t vec_size = *alloc->element.type_vec_size.get();
3196  const Element::DataType type = *alloc->element.type.get();
3197
3198  assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_FONT &&
3199         "Invalid allocation type");
3200
3201  lldb::Format format;
3202  if (type >= Element::RS_TYPE_ELEMENT)
3203    format = eFormatHex;
3204  else
3205    format = vec_size == 1
3206                 ? static_cast<lldb::Format>(
3207                       AllocationDetails::RSTypeToFormat[type][eFormatSingle])
3208                 : static_cast<lldb::Format>(
3209                       AllocationDetails::RSTypeToFormat[type][eFormatVector]);
3210
3211  const uint32_t data_size = *alloc->element.datum_size.get();
3212
3213  LLDB_LOGF(log, "%s - element size %" PRIu32 " bytes, including padding",
3214            __FUNCTION__, data_size);
3215
3216  // Allocate a buffer to copy data into
3217  std::shared_ptr<uint8_t> buffer = GetAllocationData(alloc, frame_ptr);
3218  if (!buffer) {
3219    strm.Printf("Error: Couldn't read allocation data");
3220    strm.EOL();
3221    return false;
3222  }
3223
3224  // Calculate stride between rows as there may be padding at end of rows since
3225  // allocated memory is 16-byte aligned
3226  if (!alloc->stride.isValid()) {
3227    if (alloc->dimension.get()->dim_2 == 0) // We only have one dimension
3228      alloc->stride = 0;
3229    else if (!JITAllocationStride(alloc, frame_ptr)) {
3230      strm.Printf("Error: Couldn't calculate allocation row stride");
3231      strm.EOL();
3232      return false;
3233    }
3234  }
3235  const uint32_t stride = *alloc->stride.get();
3236  const uint32_t size = *alloc->size.get(); // Size of whole allocation
3237  const uint32_t padding =
3238      alloc->element.padding.isValid() ? *alloc->element.padding.get() : 0;
3239  LLDB_LOGF(log,
3240            "%s - stride %" PRIu32 " bytes, size %" PRIu32
3241            " bytes, padding %" PRIu32,
3242            __FUNCTION__, stride, size, padding);
3243
3244  // Find dimensions used to index loops, so need to be non-zero
3245  uint32_t dim_x = alloc->dimension.get()->dim_1;
3246  dim_x = dim_x == 0 ? 1 : dim_x;
3247
3248  uint32_t dim_y = alloc->dimension.get()->dim_2;
3249  dim_y = dim_y == 0 ? 1 : dim_y;
3250
3251  uint32_t dim_z = alloc->dimension.get()->dim_3;
3252  dim_z = dim_z == 0 ? 1 : dim_z;
3253
3254  // Use data extractor to format output
3255  const uint32_t target_ptr_size =
3256      GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize();
3257  DataExtractor alloc_data(buffer.get(), size, GetProcess()->GetByteOrder(),
3258                           target_ptr_size);
3259
3260  uint32_t offset = 0;   // Offset in buffer to next element to be printed
3261  uint32_t prev_row = 0; // Offset to the start of the previous row
3262
3263  // Iterate over allocation dimensions, printing results to user
3264  strm.Printf("Data (X, Y, Z):");
3265  for (uint32_t z = 0; z < dim_z; ++z) {
3266    for (uint32_t y = 0; y < dim_y; ++y) {
3267      // Use stride to index start of next row.
3268      if (!(y == 0 && z == 0))
3269        offset = prev_row + stride;
3270      prev_row = offset;
3271
3272      // Print each element in the row individually
3273      for (uint32_t x = 0; x < dim_x; ++x) {
3274        strm.Printf("\n(%" PRIu32 ", %" PRIu32 ", %" PRIu32 ") = ", x, y, z);
3275        if ((type == Element::RS_TYPE_NONE) &&
3276            (alloc->element.children.size() > 0) &&
3277            (alloc->element.type_name != Element::GetFallbackStructName())) {
3278          // Here we are dumping an Element of struct type. This is done using
3279          // expression evaluation with the name of the struct type and pointer
3280          // to element. Don't print the name of the resulting expression,
3281          // since this will be '$[0-9]+'
3282          DumpValueObjectOptions expr_options;
3283          expr_options.SetHideName(true);
3284
3285          // Setup expression as dereferencing a pointer cast to element
3286          // address.
3287          char expr_char_buffer[jit_max_expr_size];
3288          int written =
3289              snprintf(expr_char_buffer, jit_max_expr_size, "*(%s*) 0x%" PRIx64,
3290                       alloc->element.type_name.AsCString(),
3291                       *alloc->data_ptr.get() + offset);
3292
3293          if (written < 0 || written >= jit_max_expr_size) {
3294            LLDB_LOGF(log, "%s - error in snprintf().", __FUNCTION__);
3295            continue;
3296          }
3297
3298          // Evaluate expression
3299          ValueObjectSP expr_result;
3300          GetProcess()->GetTarget().EvaluateExpression(expr_char_buffer,
3301                                                       frame_ptr, expr_result);
3302
3303          // Print the results to our stream.
3304          expr_result->Dump(strm, expr_options);
3305        } else {
3306          DumpDataExtractor(alloc_data, &strm, offset, format,
3307                            data_size - padding, 1, 1, LLDB_INVALID_ADDRESS, 0,
3308                            0);
3309        }
3310        offset += data_size;
3311      }
3312    }
3313  }
3314  strm.EOL();
3315
3316  return true;
3317}
3318
3319// Function recalculates all our cached information about allocations by
3320// jitting the RS runtime regarding each allocation we know about. Returns true
3321// if all allocations could be recomputed, false otherwise.
3322bool RenderScriptRuntime::RecomputeAllAllocations(Stream &strm,
3323                                                  StackFrame *frame_ptr) {
3324  bool success = true;
3325  for (auto &alloc : m_allocations) {
3326    // JIT current allocation information
3327    if (!RefreshAllocation(alloc.get(), frame_ptr)) {
3328      strm.Printf("Error: Couldn't evaluate details for allocation %" PRIu32
3329                  "\n",
3330                  alloc->id);
3331      success = false;
3332    }
3333  }
3334
3335  if (success)
3336    strm.Printf("All allocations successfully recomputed");
3337  strm.EOL();
3338
3339  return success;
3340}
3341
3342// Prints information regarding currently loaded allocations. These details are
3343// gathered by jitting the runtime, which has as latency. Index parameter
3344// specifies a single allocation ID to print, or a zero value to print them all
3345void RenderScriptRuntime::ListAllocations(Stream &strm, StackFrame *frame_ptr,
3346                                          const uint32_t index) {
3347  strm.Printf("RenderScript Allocations:");
3348  strm.EOL();
3349  strm.IndentMore();
3350
3351  for (auto &alloc : m_allocations) {
3352    // index will only be zero if we want to print all allocations
3353    if (index != 0 && index != alloc->id)
3354      continue;
3355
3356    // JIT current allocation information
3357    if (alloc->ShouldRefresh() && !RefreshAllocation(alloc.get(), frame_ptr)) {
3358      strm.Printf("Error: Couldn't evaluate details for allocation %" PRIu32,
3359                  alloc->id);
3360      strm.EOL();
3361      continue;
3362    }
3363
3364    strm.Printf("%" PRIu32 ":", alloc->id);
3365    strm.EOL();
3366    strm.IndentMore();
3367
3368    strm.Indent("Context: ");
3369    if (!alloc->context.isValid())
3370      strm.Printf("unknown\n");
3371    else
3372      strm.Printf("0x%" PRIx64 "\n", *alloc->context.get());
3373
3374    strm.Indent("Address: ");
3375    if (!alloc->address.isValid())
3376      strm.Printf("unknown\n");
3377    else
3378      strm.Printf("0x%" PRIx64 "\n", *alloc->address.get());
3379
3380    strm.Indent("Data pointer: ");
3381    if (!alloc->data_ptr.isValid())
3382      strm.Printf("unknown\n");
3383    else
3384      strm.Printf("0x%" PRIx64 "\n", *alloc->data_ptr.get());
3385
3386    strm.Indent("Dimensions: ");
3387    if (!alloc->dimension.isValid())
3388      strm.Printf("unknown\n");
3389    else
3390      strm.Printf("(%" PRId32 ", %" PRId32 ", %" PRId32 ")\n",
3391                  alloc->dimension.get()->dim_1, alloc->dimension.get()->dim_2,
3392                  alloc->dimension.get()->dim_3);
3393
3394    strm.Indent("Data Type: ");
3395    if (!alloc->element.type.isValid() ||
3396        !alloc->element.type_vec_size.isValid())
3397      strm.Printf("unknown\n");
3398    else {
3399      const int vector_size = *alloc->element.type_vec_size.get();
3400      Element::DataType type = *alloc->element.type.get();
3401
3402      if (!alloc->element.type_name.IsEmpty())
3403        strm.Printf("%s\n", alloc->element.type_name.AsCString());
3404      else {
3405        // Enum value isn't monotonous, so doesn't always index
3406        // RsDataTypeToString array
3407        if (type >= Element::RS_TYPE_ELEMENT && type <= Element::RS_TYPE_FONT)
3408          type =
3409              static_cast<Element::DataType>((type - Element::RS_TYPE_ELEMENT) +
3410                                             Element::RS_TYPE_MATRIX_2X2 + 1);
3411
3412        if (type >= (sizeof(AllocationDetails::RsDataTypeToString) /
3413                     sizeof(AllocationDetails::RsDataTypeToString[0])) ||
3414            vector_size > 4 || vector_size < 1)
3415          strm.Printf("invalid type\n");
3416        else
3417          strm.Printf(
3418              "%s\n",
3419              AllocationDetails::RsDataTypeToString[static_cast<uint32_t>(type)]
3420                                                   [vector_size - 1]);
3421      }
3422    }
3423
3424    strm.Indent("Data Kind: ");
3425    if (!alloc->element.type_kind.isValid())
3426      strm.Printf("unknown\n");
3427    else {
3428      const Element::DataKind kind = *alloc->element.type_kind.get();
3429      if (kind < Element::RS_KIND_USER || kind > Element::RS_KIND_PIXEL_YUV)
3430        strm.Printf("invalid kind\n");
3431      else
3432        strm.Printf(
3433            "%s\n",
3434            AllocationDetails::RsDataKindToString[static_cast<uint32_t>(kind)]);
3435    }
3436
3437    strm.EOL();
3438    strm.IndentLess();
3439  }
3440  strm.IndentLess();
3441}
3442
3443// Set breakpoints on every kernel found in RS module
3444void RenderScriptRuntime::BreakOnModuleKernels(
3445    const RSModuleDescriptorSP rsmodule_sp) {
3446  for (const auto &kernel : rsmodule_sp->m_kernels) {
3447    // Don't set breakpoint on 'root' kernel
3448    if (strcmp(kernel.m_name.AsCString(), "root") == 0)
3449      continue;
3450
3451    CreateKernelBreakpoint(kernel.m_name);
3452  }
3453}
3454
3455// Method is internally called by the 'kernel breakpoint all' command to enable
3456// or disable breaking on all kernels. When do_break is true we want to enable
3457// this functionality. When do_break is false we want to disable it.
3458void RenderScriptRuntime::SetBreakAllKernels(bool do_break, TargetSP target) {
3459  Log *log = GetLog(LLDBLog::Language | LLDBLog::Breakpoints);
3460
3461  InitSearchFilter(target);
3462
3463  // Set breakpoints on all the kernels
3464  if (do_break && !m_breakAllKernels) {
3465    m_breakAllKernels = true;
3466
3467    for (const auto &module : m_rsmodules)
3468      BreakOnModuleKernels(module);
3469
3470    LLDB_LOGF(log,
3471              "%s(True) - breakpoints set on all currently loaded kernels.",
3472              __FUNCTION__);
3473  } else if (!do_break &&
3474             m_breakAllKernels) // Breakpoints won't be set on any new kernels.
3475  {
3476    m_breakAllKernels = false;
3477
3478    LLDB_LOGF(log, "%s(False) - breakpoints no longer automatically set.",
3479              __FUNCTION__);
3480  }
3481}
3482
3483// Given the name of a kernel this function creates a breakpoint using our own
3484// breakpoint resolver, and returns the Breakpoint shared pointer.
3485BreakpointSP
3486RenderScriptRuntime::CreateKernelBreakpoint(ConstString name) {
3487  Log *log = GetLog(LLDBLog::Language | LLDBLog::Breakpoints);
3488
3489  if (!m_filtersp) {
3490    LLDB_LOGF(log, "%s - error, no breakpoint search filter set.",
3491              __FUNCTION__);
3492    return nullptr;
3493  }
3494
3495  BreakpointResolverSP resolver_sp(new RSBreakpointResolver(nullptr, name));
3496  Target &target = GetProcess()->GetTarget();
3497  BreakpointSP bp = target.CreateBreakpoint(
3498      m_filtersp, resolver_sp, false, false, false);
3499
3500  // Give RS breakpoints a specific name, so the user can manipulate them as a
3501  // group.
3502  Status err;
3503  target.AddNameToBreakpoint(bp, "RenderScriptKernel", err);
3504  if (err.Fail() && log)
3505    LLDB_LOGF(log, "%s - error setting break name, '%s'.", __FUNCTION__,
3506              err.AsCString());
3507
3508  return bp;
3509}
3510
3511BreakpointSP
3512RenderScriptRuntime::CreateReductionBreakpoint(ConstString name,
3513                                               int kernel_types) {
3514  Log *log = GetLog(LLDBLog::Language | LLDBLog::Breakpoints);
3515
3516  if (!m_filtersp) {
3517    LLDB_LOGF(log, "%s - error, no breakpoint search filter set.",
3518              __FUNCTION__);
3519    return nullptr;
3520  }
3521
3522  BreakpointResolverSP resolver_sp(new RSReduceBreakpointResolver(
3523      nullptr, name, &m_rsmodules, kernel_types));
3524  Target &target = GetProcess()->GetTarget();
3525  BreakpointSP bp = target.CreateBreakpoint(
3526      m_filtersp, resolver_sp, false, false, false);
3527
3528  // Give RS breakpoints a specific name, so the user can manipulate them as a
3529  // group.
3530  Status err;
3531  target.AddNameToBreakpoint(bp, "RenderScriptReduction", err);
3532  if (err.Fail() && log)
3533    LLDB_LOGF(log, "%s - error setting break name, '%s'.", __FUNCTION__,
3534              err.AsCString());
3535
3536  return bp;
3537}
3538
3539// Given an expression for a variable this function tries to calculate the
3540// variable's value. If this is possible it returns true and sets the uint64_t
3541// parameter to the variables unsigned value. Otherwise function returns false.
3542bool RenderScriptRuntime::GetFrameVarAsUnsigned(const StackFrameSP frame_sp,
3543                                                const char *var_name,
3544                                                uint64_t &val) {
3545  Log *log = GetLog(LLDBLog::Language);
3546  Status err;
3547  VariableSP var_sp;
3548
3549  // Find variable in stack frame
3550  ValueObjectSP value_sp(frame_sp->GetValueForVariableExpressionPath(
3551      var_name, eNoDynamicValues,
3552      StackFrame::eExpressionPathOptionCheckPtrVsMember |
3553          StackFrame::eExpressionPathOptionsAllowDirectIVarAccess,
3554      var_sp, err));
3555  if (!err.Success()) {
3556    LLDB_LOGF(log, "%s - error, couldn't find '%s' in frame", __FUNCTION__,
3557              var_name);
3558    return false;
3559  }
3560
3561  // Find the uint32_t value for the variable
3562  bool success = false;
3563  val = value_sp->GetValueAsUnsigned(0, &success);
3564  if (!success) {
3565    LLDB_LOGF(log, "%s - error, couldn't parse '%s' as an uint32_t.",
3566              __FUNCTION__, var_name);
3567    return false;
3568  }
3569
3570  return true;
3571}
3572
3573// Function attempts to find the current coordinate of a kernel invocation by
3574// investigating the values of frame variables in the .expand function. These
3575// coordinates are returned via the coord array reference parameter. Returns
3576// true if the coordinates could be found, and false otherwise.
3577bool RenderScriptRuntime::GetKernelCoordinate(RSCoordinate &coord,
3578                                              Thread *thread_ptr) {
3579  static const char *const x_expr = "rsIndex";
3580  static const char *const y_expr = "p->current.y";
3581  static const char *const z_expr = "p->current.z";
3582
3583  Log *log = GetLog(LLDBLog::Language);
3584
3585  if (!thread_ptr) {
3586    LLDB_LOGF(log, "%s - Error, No thread pointer", __FUNCTION__);
3587
3588    return false;
3589  }
3590
3591  // Walk the call stack looking for a function whose name has the suffix
3592  // '.expand' and contains the variables we're looking for.
3593  for (uint32_t i = 0; i < thread_ptr->GetStackFrameCount(); ++i) {
3594    if (!thread_ptr->SetSelectedFrameByIndex(i))
3595      continue;
3596
3597    StackFrameSP frame_sp = thread_ptr->GetSelectedFrame();
3598    if (!frame_sp)
3599      continue;
3600
3601    // Find the function name
3602    const SymbolContext sym_ctx =
3603        frame_sp->GetSymbolContext(eSymbolContextFunction);
3604    const ConstString func_name = sym_ctx.GetFunctionName();
3605    if (!func_name)
3606      continue;
3607
3608    LLDB_LOGF(log, "%s - Inspecting function '%s'", __FUNCTION__,
3609              func_name.GetCString());
3610
3611    // Check if function name has .expand suffix
3612    if (!func_name.GetStringRef().endswith(".expand"))
3613      continue;
3614
3615    LLDB_LOGF(log, "%s - Found .expand function '%s'", __FUNCTION__,
3616              func_name.GetCString());
3617
3618    // Get values for variables in .expand frame that tell us the current
3619    // kernel invocation
3620    uint64_t x, y, z;
3621    bool found = GetFrameVarAsUnsigned(frame_sp, x_expr, x) &&
3622                 GetFrameVarAsUnsigned(frame_sp, y_expr, y) &&
3623                 GetFrameVarAsUnsigned(frame_sp, z_expr, z);
3624
3625    if (found) {
3626      // The RenderScript runtime uses uint32_t for these vars. If they're not
3627      // within bounds, our frame parsing is garbage
3628      assert(x <= UINT32_MAX && y <= UINT32_MAX && z <= UINT32_MAX);
3629      coord.x = (uint32_t)x;
3630      coord.y = (uint32_t)y;
3631      coord.z = (uint32_t)z;
3632      return true;
3633    }
3634  }
3635  return false;
3636}
3637
3638// Callback when a kernel breakpoint hits and we're looking for a specific
3639// coordinate. Baton parameter contains a pointer to the target coordinate we
3640// want to break on. Function then checks the .expand frame for the current
3641// coordinate and breaks to user if it matches. Parameter 'break_id' is the id
3642// of the Breakpoint which made the callback. Parameter 'break_loc_id' is the
3643// id for the BreakpointLocation which was hit, a single logical breakpoint can
3644// have multiple addresses.
3645bool RenderScriptRuntime::KernelBreakpointHit(void *baton,
3646                                              StoppointCallbackContext *ctx,
3647                                              user_id_t break_id,
3648                                              user_id_t break_loc_id) {
3649  Log *log = GetLog(LLDBLog::Language | LLDBLog::Breakpoints);
3650
3651  assert(baton &&
3652         "Error: null baton in conditional kernel breakpoint callback");
3653
3654  // Coordinate we want to stop on
3655  RSCoordinate target_coord = *static_cast<RSCoordinate *>(baton);
3656
3657  LLDB_LOGF(log, "%s - Break ID %" PRIu64 ", " FMT_COORD, __FUNCTION__,
3658            break_id, target_coord.x, target_coord.y, target_coord.z);
3659
3660  // Select current thread
3661  ExecutionContext context(ctx->exe_ctx_ref);
3662  Thread *thread_ptr = context.GetThreadPtr();
3663  assert(thread_ptr && "Null thread pointer");
3664
3665  // Find current kernel invocation from .expand frame variables
3666  RSCoordinate current_coord{};
3667  if (!GetKernelCoordinate(current_coord, thread_ptr)) {
3668    LLDB_LOGF(log, "%s - Error, couldn't select .expand stack frame",
3669              __FUNCTION__);
3670    return false;
3671  }
3672
3673  LLDB_LOGF(log, "%s - " FMT_COORD, __FUNCTION__, current_coord.x,
3674            current_coord.y, current_coord.z);
3675
3676  // Check if the current kernel invocation coordinate matches our target
3677  // coordinate
3678  if (target_coord == current_coord) {
3679    LLDB_LOGF(log, "%s, BREAKING " FMT_COORD, __FUNCTION__, current_coord.x,
3680              current_coord.y, current_coord.z);
3681
3682    BreakpointSP breakpoint_sp =
3683        context.GetTargetPtr()->GetBreakpointByID(break_id);
3684    assert(breakpoint_sp != nullptr &&
3685           "Error: Couldn't find breakpoint matching break id for callback");
3686    breakpoint_sp->SetEnabled(false); // Optimise since conditional breakpoint
3687                                      // should only be hit once.
3688    return true;
3689  }
3690
3691  // No match on coordinate
3692  return false;
3693}
3694
3695void RenderScriptRuntime::SetConditional(BreakpointSP bp, Stream &messages,
3696                                         const RSCoordinate &coord) {
3697  messages.Printf("Conditional kernel breakpoint on coordinate " FMT_COORD,
3698                  coord.x, coord.y, coord.z);
3699  messages.EOL();
3700
3701  // Allocate memory for the baton, and copy over coordinate
3702  RSCoordinate *baton = new RSCoordinate(coord);
3703
3704  // Create a callback that will be invoked every time the breakpoint is hit.
3705  // The baton object passed to the handler is the target coordinate we want to
3706  // break on.
3707  bp->SetCallback(KernelBreakpointHit, baton, true);
3708
3709  // Store a shared pointer to the baton, so the memory will eventually be
3710  // cleaned up after destruction
3711  m_conditional_breaks[bp->GetID()] = std::unique_ptr<RSCoordinate>(baton);
3712}
3713
3714// Tries to set a breakpoint on the start of a kernel, resolved using the
3715// kernel name. Argument 'coords', represents a three dimensional coordinate
3716// which can be used to specify a single kernel instance to break on. If this
3717// is set then we add a callback to the breakpoint.
3718bool RenderScriptRuntime::PlaceBreakpointOnKernel(TargetSP target,
3719                                                  Stream &messages,
3720                                                  const char *name,
3721                                                  const RSCoordinate *coord) {
3722  if (!name)
3723    return false;
3724
3725  InitSearchFilter(target);
3726
3727  ConstString kernel_name(name);
3728  BreakpointSP bp = CreateKernelBreakpoint(kernel_name);
3729  if (!bp)
3730    return false;
3731
3732  // We have a conditional breakpoint on a specific coordinate
3733  if (coord)
3734    SetConditional(bp, messages, *coord);
3735
3736  bp->GetDescription(&messages, lldb::eDescriptionLevelInitial, false);
3737
3738  return true;
3739}
3740
3741BreakpointSP
3742RenderScriptRuntime::CreateScriptGroupBreakpoint(ConstString name,
3743                                                 bool stop_on_all) {
3744  Log *log = GetLog(LLDBLog::Language | LLDBLog::Breakpoints);
3745
3746  if (!m_filtersp) {
3747    LLDB_LOGF(log, "%s - error, no breakpoint search filter set.",
3748              __FUNCTION__);
3749    return nullptr;
3750  }
3751
3752  BreakpointResolverSP resolver_sp(new RSScriptGroupBreakpointResolver(
3753      nullptr, name, m_scriptGroups, stop_on_all));
3754  Target &target = GetProcess()->GetTarget();
3755  BreakpointSP bp = target.CreateBreakpoint(
3756      m_filtersp, resolver_sp, false, false, false);
3757  // Give RS breakpoints a specific name, so the user can manipulate them as a
3758  // group.
3759  Status err;
3760  target.AddNameToBreakpoint(bp, name.GetCString(), err);
3761  if (err.Fail() && log)
3762    LLDB_LOGF(log, "%s - error setting break name, '%s'.", __FUNCTION__,
3763              err.AsCString());
3764  // ask the breakpoint to resolve itself
3765  bp->ResolveBreakpoint();
3766  return bp;
3767}
3768
3769bool RenderScriptRuntime::PlaceBreakpointOnScriptGroup(TargetSP target,
3770                                                       Stream &strm,
3771                                                       ConstString name,
3772                                                       bool multi) {
3773  InitSearchFilter(target);
3774  BreakpointSP bp = CreateScriptGroupBreakpoint(name, multi);
3775  if (bp)
3776    bp->GetDescription(&strm, lldb::eDescriptionLevelInitial, false);
3777  return bool(bp);
3778}
3779
3780bool RenderScriptRuntime::PlaceBreakpointOnReduction(TargetSP target,
3781                                                     Stream &messages,
3782                                                     const char *reduce_name,
3783                                                     const RSCoordinate *coord,
3784                                                     int kernel_types) {
3785  if (!reduce_name)
3786    return false;
3787
3788  InitSearchFilter(target);
3789  BreakpointSP bp =
3790      CreateReductionBreakpoint(ConstString(reduce_name), kernel_types);
3791  if (!bp)
3792    return false;
3793
3794  if (coord)
3795    SetConditional(bp, messages, *coord);
3796
3797  bp->GetDescription(&messages, lldb::eDescriptionLevelInitial, false);
3798
3799  return true;
3800}
3801
3802void RenderScriptRuntime::DumpModules(Stream &strm) const {
3803  strm.Printf("RenderScript Modules:");
3804  strm.EOL();
3805  strm.IndentMore();
3806  for (const auto &module : m_rsmodules) {
3807    module->Dump(strm);
3808  }
3809  strm.IndentLess();
3810}
3811
3812RenderScriptRuntime::ScriptDetails *
3813RenderScriptRuntime::LookUpScript(addr_t address, bool create) {
3814  for (const auto &s : m_scripts) {
3815    if (s->script.isValid())
3816      if (*s->script == address)
3817        return s.get();
3818  }
3819  if (create) {
3820    std::unique_ptr<ScriptDetails> s(new ScriptDetails);
3821    s->script = address;
3822    m_scripts.push_back(std::move(s));
3823    return m_scripts.back().get();
3824  }
3825  return nullptr;
3826}
3827
3828RenderScriptRuntime::AllocationDetails *
3829RenderScriptRuntime::LookUpAllocation(addr_t address) {
3830  for (const auto &a : m_allocations) {
3831    if (a->address.isValid())
3832      if (*a->address == address)
3833        return a.get();
3834  }
3835  return nullptr;
3836}
3837
3838RenderScriptRuntime::AllocationDetails *
3839RenderScriptRuntime::CreateAllocation(addr_t address) {
3840  Log *log = GetLog(LLDBLog::Language);
3841
3842  // Remove any previous allocation which contains the same address
3843  auto it = m_allocations.begin();
3844  while (it != m_allocations.end()) {
3845    if (*((*it)->address) == address) {
3846      LLDB_LOGF(log, "%s - Removing allocation id: %d, address: 0x%" PRIx64,
3847                __FUNCTION__, (*it)->id, address);
3848
3849      it = m_allocations.erase(it);
3850    } else {
3851      it++;
3852    }
3853  }
3854
3855  std::unique_ptr<AllocationDetails> a(new AllocationDetails);
3856  a->address = address;
3857  m_allocations.push_back(std::move(a));
3858  return m_allocations.back().get();
3859}
3860
3861bool RenderScriptRuntime::ResolveKernelName(lldb::addr_t kernel_addr,
3862                                            ConstString &name) {
3863  Log *log = GetLog(LLDBLog::Symbols);
3864
3865  Target &target = GetProcess()->GetTarget();
3866  Address resolved;
3867  // RenderScript module
3868  if (!target.GetSectionLoadList().ResolveLoadAddress(kernel_addr, resolved)) {
3869    LLDB_LOGF(log, "%s: unable to resolve 0x%" PRIx64 " to a loaded symbol",
3870              __FUNCTION__, kernel_addr);
3871    return false;
3872  }
3873
3874  Symbol *sym = resolved.CalculateSymbolContextSymbol();
3875  if (!sym)
3876    return false;
3877
3878  name = sym->GetName();
3879  assert(IsRenderScriptModule(resolved.CalculateSymbolContextModule()));
3880  LLDB_LOGF(log, "%s: 0x%" PRIx64 " resolved to the symbol '%s'", __FUNCTION__,
3881            kernel_addr, name.GetCString());
3882  return true;
3883}
3884
3885void RSModuleDescriptor::Dump(Stream &strm) const {
3886  int indent = strm.GetIndentLevel();
3887
3888  strm.Indent();
3889  m_module->GetFileSpec().Dump(strm.AsRawOstream());
3890  strm.Indent(m_module->GetNumCompileUnits() ? "Debug info loaded."
3891                                             : "Debug info does not exist.");
3892  strm.EOL();
3893  strm.IndentMore();
3894
3895  strm.Indent();
3896  strm.Printf("Globals: %" PRIu64, static_cast<uint64_t>(m_globals.size()));
3897  strm.EOL();
3898  strm.IndentMore();
3899  for (const auto &global : m_globals) {
3900    global.Dump(strm);
3901  }
3902  strm.IndentLess();
3903
3904  strm.Indent();
3905  strm.Printf("Kernels: %" PRIu64, static_cast<uint64_t>(m_kernels.size()));
3906  strm.EOL();
3907  strm.IndentMore();
3908  for (const auto &kernel : m_kernels) {
3909    kernel.Dump(strm);
3910  }
3911  strm.IndentLess();
3912
3913  strm.Indent();
3914  strm.Printf("Pragmas: %" PRIu64, static_cast<uint64_t>(m_pragmas.size()));
3915  strm.EOL();
3916  strm.IndentMore();
3917  for (const auto &key_val : m_pragmas) {
3918    strm.Indent();
3919    strm.Printf("%s: %s", key_val.first.c_str(), key_val.second.c_str());
3920    strm.EOL();
3921  }
3922  strm.IndentLess();
3923
3924  strm.Indent();
3925  strm.Printf("Reductions: %" PRIu64,
3926              static_cast<uint64_t>(m_reductions.size()));
3927  strm.EOL();
3928  strm.IndentMore();
3929  for (const auto &reduction : m_reductions) {
3930    reduction.Dump(strm);
3931  }
3932
3933  strm.SetIndentLevel(indent);
3934}
3935
3936void RSGlobalDescriptor::Dump(Stream &strm) const {
3937  strm.Indent(m_name.GetStringRef());
3938  VariableList var_list;
3939  m_module->m_module->FindGlobalVariables(m_name, CompilerDeclContext(), 1U,
3940                                          var_list);
3941  if (var_list.GetSize() == 1) {
3942    auto var = var_list.GetVariableAtIndex(0);
3943    auto type = var->GetType();
3944    if (type) {
3945      strm.Printf(" - ");
3946      type->DumpTypeName(&strm);
3947    } else {
3948      strm.Printf(" - Unknown Type");
3949    }
3950  } else {
3951    strm.Printf(" - variable identified, but not found in binary");
3952    const Symbol *s = m_module->m_module->FindFirstSymbolWithNameAndType(
3953        m_name, eSymbolTypeData);
3954    if (s) {
3955      strm.Printf(" (symbol exists) ");
3956    }
3957  }
3958
3959  strm.EOL();
3960}
3961
3962void RSKernelDescriptor::Dump(Stream &strm) const {
3963  strm.Indent(m_name.GetStringRef());
3964  strm.EOL();
3965}
3966
3967void RSReductionDescriptor::Dump(lldb_private::Stream &stream) const {
3968  stream.Indent(m_reduce_name.GetStringRef());
3969  stream.IndentMore();
3970  stream.EOL();
3971  stream.Indent();
3972  stream.Printf("accumulator: %s", m_accum_name.AsCString());
3973  stream.EOL();
3974  stream.Indent();
3975  stream.Printf("initializer: %s", m_init_name.AsCString());
3976  stream.EOL();
3977  stream.Indent();
3978  stream.Printf("combiner: %s", m_comb_name.AsCString());
3979  stream.EOL();
3980  stream.Indent();
3981  stream.Printf("outconverter: %s", m_outc_name.AsCString());
3982  stream.EOL();
3983  // XXX This is currently unspecified by RenderScript, and unused
3984  // stream.Indent();
3985  // stream.Printf("halter: '%s'", m_init_name.AsCString());
3986  // stream.EOL();
3987  stream.IndentLess();
3988}
3989
3990class CommandObjectRenderScriptRuntimeModuleDump : public CommandObjectParsed {
3991public:
3992  CommandObjectRenderScriptRuntimeModuleDump(CommandInterpreter &interpreter)
3993      : CommandObjectParsed(
3994            interpreter, "renderscript module dump",
3995            "Dumps renderscript specific information for all modules.",
3996            "renderscript module dump",
3997            eCommandRequiresProcess | eCommandProcessMustBeLaunched) {}
3998
3999  ~CommandObjectRenderScriptRuntimeModuleDump() override = default;
4000
4001  bool DoExecute(Args &command, CommandReturnObject &result) override {
4002    RenderScriptRuntime *runtime = llvm::cast<RenderScriptRuntime>(
4003        m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4004            eLanguageTypeExtRenderScript));
4005    runtime->DumpModules(result.GetOutputStream());
4006    result.SetStatus(eReturnStatusSuccessFinishResult);
4007    return true;
4008  }
4009};
4010
4011class CommandObjectRenderScriptRuntimeModule : public CommandObjectMultiword {
4012public:
4013  CommandObjectRenderScriptRuntimeModule(CommandInterpreter &interpreter)
4014      : CommandObjectMultiword(interpreter, "renderscript module",
4015                               "Commands that deal with RenderScript modules.",
4016                               nullptr) {
4017    LoadSubCommand(
4018        "dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeModuleDump(
4019                    interpreter)));
4020  }
4021
4022  ~CommandObjectRenderScriptRuntimeModule() override = default;
4023};
4024
4025class CommandObjectRenderScriptRuntimeKernelList : public CommandObjectParsed {
4026public:
4027  CommandObjectRenderScriptRuntimeKernelList(CommandInterpreter &interpreter)
4028      : CommandObjectParsed(
4029            interpreter, "renderscript kernel list",
4030            "Lists renderscript kernel names and associated script resources.",
4031            "renderscript kernel list",
4032            eCommandRequiresProcess | eCommandProcessMustBeLaunched) {}
4033
4034  ~CommandObjectRenderScriptRuntimeKernelList() override = default;
4035
4036  bool DoExecute(Args &command, CommandReturnObject &result) override {
4037    RenderScriptRuntime *runtime = llvm::cast<RenderScriptRuntime>(
4038        m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4039            eLanguageTypeExtRenderScript));
4040    runtime->DumpKernels(result.GetOutputStream());
4041    result.SetStatus(eReturnStatusSuccessFinishResult);
4042    return true;
4043  }
4044};
4045
4046static constexpr OptionDefinition g_renderscript_reduction_bp_set_options[] = {
4047    {LLDB_OPT_SET_1, false, "function-role", 't',
4048     OptionParser::eRequiredArgument, nullptr, {}, 0, eArgTypeOneLiner,
4049     "Break on a comma separated set of reduction kernel types "
4050     "(accumulator,outcoverter,combiner,initializer"},
4051    {LLDB_OPT_SET_1, false, "coordinate", 'c', OptionParser::eRequiredArgument,
4052     nullptr, {}, 0, eArgTypeValue,
4053     "Set a breakpoint on a single invocation of the kernel with specified "
4054     "coordinate.\n"
4055     "Coordinate takes the form 'x[,y][,z] where x,y,z are positive "
4056     "integers representing kernel dimensions. "
4057     "Any unset dimensions will be defaulted to zero."}};
4058
4059class CommandObjectRenderScriptRuntimeReductionBreakpointSet
4060    : public CommandObjectParsed {
4061public:
4062  CommandObjectRenderScriptRuntimeReductionBreakpointSet(
4063      CommandInterpreter &interpreter)
4064      : CommandObjectParsed(
4065            interpreter, "renderscript reduction breakpoint set",
4066            "Set a breakpoint on named RenderScript general reductions",
4067            "renderscript reduction breakpoint set  <kernel_name> [-t "
4068            "<reduction_kernel_type,...>]",
4069            eCommandRequiresProcess | eCommandProcessMustBeLaunched |
4070                eCommandProcessMustBePaused),
4071        m_options() {
4072    CommandArgumentData name_arg{eArgTypeName, eArgRepeatPlain};
4073    m_arguments.push_back({name_arg});
4074  };
4075
4076  class CommandOptions : public Options {
4077  public:
4078    CommandOptions() : Options() {}
4079
4080    ~CommandOptions() override = default;
4081
4082    Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg,
4083                          ExecutionContext *exe_ctx) override {
4084      Status err;
4085      StreamString err_str;
4086      const int short_option = m_getopt_table[option_idx].val;
4087      switch (short_option) {
4088      case 't':
4089        if (!ParseReductionTypes(option_arg, err_str))
4090          err.SetErrorStringWithFormat(
4091              "Unable to deduce reduction types for %s: %s",
4092              option_arg.str().c_str(), err_str.GetData());
4093        break;
4094      case 'c': {
4095        auto coord = RSCoordinate{};
4096        if (!ParseCoordinate(option_arg, coord))
4097          err.SetErrorStringWithFormat("unable to parse coordinate for %s",
4098                                       option_arg.str().c_str());
4099        else {
4100          m_have_coord = true;
4101          m_coord = coord;
4102        }
4103        break;
4104      }
4105      default:
4106        err.SetErrorStringWithFormat("Invalid option '-%c'", short_option);
4107      }
4108      return err;
4109    }
4110
4111    void OptionParsingStarting(ExecutionContext *exe_ctx) override {
4112      m_have_coord = false;
4113    }
4114
4115    llvm::ArrayRef<OptionDefinition> GetDefinitions() override {
4116      return llvm::ArrayRef(g_renderscript_reduction_bp_set_options);
4117    }
4118
4119    bool ParseReductionTypes(llvm::StringRef option_val,
4120                             StreamString &err_str) {
4121      m_kernel_types = RSReduceBreakpointResolver::eKernelTypeNone;
4122      const auto reduce_name_to_type = [](llvm::StringRef name) -> int {
4123        return llvm::StringSwitch<int>(name)
4124            .Case("accumulator", RSReduceBreakpointResolver::eKernelTypeAccum)
4125            .Case("initializer", RSReduceBreakpointResolver::eKernelTypeInit)
4126            .Case("outconverter", RSReduceBreakpointResolver::eKernelTypeOutC)
4127            .Case("combiner", RSReduceBreakpointResolver::eKernelTypeComb)
4128            .Case("all", RSReduceBreakpointResolver::eKernelTypeAll)
4129            // Currently not exposed by the runtime
4130            // .Case("halter", RSReduceBreakpointResolver::eKernelTypeHalter)
4131            .Default(0);
4132      };
4133
4134      // Matching a comma separated list of known words is fairly
4135      // straightforward with PCRE, but we're using ERE, so we end up with a
4136      // little ugliness...
4137      RegularExpression match_type_list(
4138          llvm::StringRef("^([[:alpha:]]+)(,[[:alpha:]]+){0,4}$"));
4139
4140      assert(match_type_list.IsValid());
4141
4142      if (!match_type_list.Execute(option_val)) {
4143        err_str.PutCString(
4144            "a comma-separated list of kernel types is required");
4145        return false;
4146      }
4147
4148      // splitting on commas is much easier with llvm::StringRef than regex
4149      llvm::SmallVector<llvm::StringRef, 5> type_names;
4150      llvm::StringRef(option_val).split(type_names, ',');
4151
4152      for (const auto &name : type_names) {
4153        const int type = reduce_name_to_type(name);
4154        if (!type) {
4155          err_str.Printf("unknown kernel type name %s", name.str().c_str());
4156          return false;
4157        }
4158        m_kernel_types |= type;
4159      }
4160
4161      return true;
4162    }
4163
4164    int m_kernel_types = RSReduceBreakpointResolver::eKernelTypeAll;
4165    llvm::StringRef m_reduce_name;
4166    RSCoordinate m_coord;
4167    bool m_have_coord = false;
4168  };
4169
4170  Options *GetOptions() override { return &m_options; }
4171
4172  bool DoExecute(Args &command, CommandReturnObject &result) override {
4173    const size_t argc = command.GetArgumentCount();
4174    if (argc < 1) {
4175      result.AppendErrorWithFormat("'%s' takes 1 argument of reduction name, "
4176                                   "and an optional kernel type list",
4177                                   m_cmd_name.c_str());
4178      return false;
4179    }
4180
4181    RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
4182        m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4183            eLanguageTypeExtRenderScript));
4184
4185    auto &outstream = result.GetOutputStream();
4186    auto name = command.GetArgumentAtIndex(0);
4187    auto &target = m_exe_ctx.GetTargetSP();
4188    auto coord = m_options.m_have_coord ? &m_options.m_coord : nullptr;
4189    if (!runtime->PlaceBreakpointOnReduction(target, outstream, name, coord,
4190                                             m_options.m_kernel_types)) {
4191      result.AppendError("Error: unable to place breakpoint on reduction");
4192      return false;
4193    }
4194    result.AppendMessage("Breakpoint(s) created");
4195    result.SetStatus(eReturnStatusSuccessFinishResult);
4196    return true;
4197  }
4198
4199private:
4200  CommandOptions m_options;
4201};
4202
4203static constexpr OptionDefinition g_renderscript_kernel_bp_set_options[] = {
4204    {LLDB_OPT_SET_1, false, "coordinate", 'c', OptionParser::eRequiredArgument,
4205     nullptr, {}, 0, eArgTypeValue,
4206     "Set a breakpoint on a single invocation of the kernel with specified "
4207     "coordinate.\n"
4208     "Coordinate takes the form 'x[,y][,z] where x,y,z are positive "
4209     "integers representing kernel dimensions. "
4210     "Any unset dimensions will be defaulted to zero."}};
4211
4212class CommandObjectRenderScriptRuntimeKernelBreakpointSet
4213    : public CommandObjectParsed {
4214public:
4215  CommandObjectRenderScriptRuntimeKernelBreakpointSet(
4216      CommandInterpreter &interpreter)
4217      : CommandObjectParsed(
4218            interpreter, "renderscript kernel breakpoint set",
4219            "Sets a breakpoint on a renderscript kernel.",
4220            "renderscript kernel breakpoint set <kernel_name> [-c x,y,z]",
4221            eCommandRequiresProcess | eCommandProcessMustBeLaunched |
4222                eCommandProcessMustBePaused),
4223        m_options() {
4224    CommandArgumentData name_arg{eArgTypeName, eArgRepeatPlain};
4225    m_arguments.push_back({name_arg});
4226  }
4227
4228  ~CommandObjectRenderScriptRuntimeKernelBreakpointSet() override = default;
4229
4230  Options *GetOptions() override { return &m_options; }
4231
4232  class CommandOptions : public Options {
4233  public:
4234    CommandOptions() : Options() {}
4235
4236    ~CommandOptions() override = default;
4237
4238    Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg,
4239                          ExecutionContext *exe_ctx) override {
4240      Status err;
4241      const int short_option = m_getopt_table[option_idx].val;
4242
4243      switch (short_option) {
4244      case 'c': {
4245        auto coord = RSCoordinate{};
4246        if (!ParseCoordinate(option_arg, coord))
4247          err.SetErrorStringWithFormat(
4248              "Couldn't parse coordinate '%s', should be in format 'x,y,z'.",
4249              option_arg.str().c_str());
4250        else {
4251          m_have_coord = true;
4252          m_coord = coord;
4253        }
4254        break;
4255      }
4256      default:
4257        err.SetErrorStringWithFormat("unrecognized option '%c'", short_option);
4258        break;
4259      }
4260      return err;
4261    }
4262
4263    void OptionParsingStarting(ExecutionContext *exe_ctx) override {
4264      m_have_coord = false;
4265    }
4266
4267    llvm::ArrayRef<OptionDefinition> GetDefinitions() override {
4268      return llvm::ArrayRef(g_renderscript_kernel_bp_set_options);
4269    }
4270
4271    RSCoordinate m_coord;
4272    bool m_have_coord = false;
4273  };
4274
4275  bool DoExecute(Args &command, CommandReturnObject &result) override {
4276    const size_t argc = command.GetArgumentCount();
4277    if (argc < 1) {
4278      result.AppendErrorWithFormat(
4279          "'%s' takes 1 argument of kernel name, and an optional coordinate.",
4280          m_cmd_name.c_str());
4281      return false;
4282    }
4283
4284    RenderScriptRuntime *runtime = llvm::cast<RenderScriptRuntime>(
4285        m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4286            eLanguageTypeExtRenderScript));
4287
4288    auto &outstream = result.GetOutputStream();
4289    auto &target = m_exe_ctx.GetTargetSP();
4290    auto name = command.GetArgumentAtIndex(0);
4291    auto coord = m_options.m_have_coord ? &m_options.m_coord : nullptr;
4292    if (!runtime->PlaceBreakpointOnKernel(target, outstream, name, coord)) {
4293      result.AppendErrorWithFormat(
4294          "Error: unable to set breakpoint on kernel '%s'", name);
4295      return false;
4296    }
4297
4298    result.AppendMessage("Breakpoint(s) created");
4299    result.SetStatus(eReturnStatusSuccessFinishResult);
4300    return true;
4301  }
4302
4303private:
4304  CommandOptions m_options;
4305};
4306
4307class CommandObjectRenderScriptRuntimeKernelBreakpointAll
4308    : public CommandObjectParsed {
4309public:
4310  CommandObjectRenderScriptRuntimeKernelBreakpointAll(
4311      CommandInterpreter &interpreter)
4312      : CommandObjectParsed(
4313            interpreter, "renderscript kernel breakpoint all",
4314            "Automatically sets a breakpoint on all renderscript kernels that "
4315            "are or will be loaded.\n"
4316            "Disabling option means breakpoints will no longer be set on any "
4317            "kernels loaded in the future, "
4318            "but does not remove currently set breakpoints.",
4319            "renderscript kernel breakpoint all <enable/disable>",
4320            eCommandRequiresProcess | eCommandProcessMustBeLaunched |
4321                eCommandProcessMustBePaused) {
4322    CommandArgumentData enable_arg{eArgTypeNone, eArgRepeatPlain};
4323    m_arguments.push_back({enable_arg});
4324  }
4325
4326  ~CommandObjectRenderScriptRuntimeKernelBreakpointAll() override = default;
4327
4328  bool DoExecute(Args &command, CommandReturnObject &result) override {
4329    const size_t argc = command.GetArgumentCount();
4330    if (argc != 1) {
4331      result.AppendErrorWithFormat(
4332          "'%s' takes 1 argument of 'enable' or 'disable'", m_cmd_name.c_str());
4333      return false;
4334    }
4335
4336    RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
4337        m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4338            eLanguageTypeExtRenderScript));
4339
4340    bool do_break = false;
4341    const char *argument = command.GetArgumentAtIndex(0);
4342    if (strcmp(argument, "enable") == 0) {
4343      do_break = true;
4344      result.AppendMessage("Breakpoints will be set on all kernels.");
4345    } else if (strcmp(argument, "disable") == 0) {
4346      do_break = false;
4347      result.AppendMessage("Breakpoints will not be set on any new kernels.");
4348    } else {
4349      result.AppendErrorWithFormat(
4350          "Argument must be either 'enable' or 'disable'");
4351      return false;
4352    }
4353
4354    runtime->SetBreakAllKernels(do_break, m_exe_ctx.GetTargetSP());
4355
4356    result.SetStatus(eReturnStatusSuccessFinishResult);
4357    return true;
4358  }
4359};
4360
4361class CommandObjectRenderScriptRuntimeReductionBreakpoint
4362    : public CommandObjectMultiword {
4363public:
4364  CommandObjectRenderScriptRuntimeReductionBreakpoint(
4365      CommandInterpreter &interpreter)
4366      : CommandObjectMultiword(interpreter, "renderscript reduction breakpoint",
4367                               "Commands that manipulate breakpoints on "
4368                               "renderscript general reductions.",
4369                               nullptr) {
4370    LoadSubCommand(
4371        "set", CommandObjectSP(
4372                   new CommandObjectRenderScriptRuntimeReductionBreakpointSet(
4373                       interpreter)));
4374  }
4375
4376  ~CommandObjectRenderScriptRuntimeReductionBreakpoint() override = default;
4377};
4378
4379class CommandObjectRenderScriptRuntimeKernelCoordinate
4380    : public CommandObjectParsed {
4381public:
4382  CommandObjectRenderScriptRuntimeKernelCoordinate(
4383      CommandInterpreter &interpreter)
4384      : CommandObjectParsed(
4385            interpreter, "renderscript kernel coordinate",
4386            "Shows the (x,y,z) coordinate of the current kernel invocation.",
4387            "renderscript kernel coordinate",
4388            eCommandRequiresProcess | eCommandProcessMustBeLaunched |
4389                eCommandProcessMustBePaused) {}
4390
4391  ~CommandObjectRenderScriptRuntimeKernelCoordinate() override = default;
4392
4393  bool DoExecute(Args &command, CommandReturnObject &result) override {
4394    RSCoordinate coord{};
4395    bool success = RenderScriptRuntime::GetKernelCoordinate(
4396        coord, m_exe_ctx.GetThreadPtr());
4397    Stream &stream = result.GetOutputStream();
4398
4399    if (success) {
4400      stream.Printf("Coordinate: " FMT_COORD, coord.x, coord.y, coord.z);
4401      stream.EOL();
4402      result.SetStatus(eReturnStatusSuccessFinishResult);
4403    } else {
4404      stream.Printf("Error: Coordinate could not be found.");
4405      stream.EOL();
4406      result.SetStatus(eReturnStatusFailed);
4407    }
4408    return true;
4409  }
4410};
4411
4412class CommandObjectRenderScriptRuntimeKernelBreakpoint
4413    : public CommandObjectMultiword {
4414public:
4415  CommandObjectRenderScriptRuntimeKernelBreakpoint(
4416      CommandInterpreter &interpreter)
4417      : CommandObjectMultiword(
4418            interpreter, "renderscript kernel",
4419            "Commands that generate breakpoints on renderscript kernels.",
4420            nullptr) {
4421    LoadSubCommand(
4422        "set",
4423        CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointSet(
4424            interpreter)));
4425    LoadSubCommand(
4426        "all",
4427        CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointAll(
4428            interpreter)));
4429  }
4430
4431  ~CommandObjectRenderScriptRuntimeKernelBreakpoint() override = default;
4432};
4433
4434class CommandObjectRenderScriptRuntimeKernel : public CommandObjectMultiword {
4435public:
4436  CommandObjectRenderScriptRuntimeKernel(CommandInterpreter &interpreter)
4437      : CommandObjectMultiword(interpreter, "renderscript kernel",
4438                               "Commands that deal with RenderScript kernels.",
4439                               nullptr) {
4440    LoadSubCommand(
4441        "list", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelList(
4442                    interpreter)));
4443    LoadSubCommand(
4444        "coordinate",
4445        CommandObjectSP(
4446            new CommandObjectRenderScriptRuntimeKernelCoordinate(interpreter)));
4447    LoadSubCommand(
4448        "breakpoint",
4449        CommandObjectSP(
4450            new CommandObjectRenderScriptRuntimeKernelBreakpoint(interpreter)));
4451  }
4452
4453  ~CommandObjectRenderScriptRuntimeKernel() override = default;
4454};
4455
4456class CommandObjectRenderScriptRuntimeContextDump : public CommandObjectParsed {
4457public:
4458  CommandObjectRenderScriptRuntimeContextDump(CommandInterpreter &interpreter)
4459      : CommandObjectParsed(interpreter, "renderscript context dump",
4460                            "Dumps renderscript context information.",
4461                            "renderscript context dump",
4462                            eCommandRequiresProcess |
4463                                eCommandProcessMustBeLaunched) {}
4464
4465  ~CommandObjectRenderScriptRuntimeContextDump() override = default;
4466
4467  bool DoExecute(Args &command, CommandReturnObject &result) override {
4468    RenderScriptRuntime *runtime = llvm::cast<RenderScriptRuntime>(
4469        m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4470            eLanguageTypeExtRenderScript));
4471    runtime->DumpContexts(result.GetOutputStream());
4472    result.SetStatus(eReturnStatusSuccessFinishResult);
4473    return true;
4474  }
4475};
4476
4477static constexpr OptionDefinition g_renderscript_runtime_alloc_dump_options[] = {
4478    {LLDB_OPT_SET_1, false, "file", 'f', OptionParser::eRequiredArgument,
4479     nullptr, {}, 0, eArgTypeFilename,
4480     "Print results to specified file instead of command line."}};
4481
4482class CommandObjectRenderScriptRuntimeContext : public CommandObjectMultiword {
4483public:
4484  CommandObjectRenderScriptRuntimeContext(CommandInterpreter &interpreter)
4485      : CommandObjectMultiword(interpreter, "renderscript context",
4486                               "Commands that deal with RenderScript contexts.",
4487                               nullptr) {
4488    LoadSubCommand(
4489        "dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeContextDump(
4490                    interpreter)));
4491  }
4492
4493  ~CommandObjectRenderScriptRuntimeContext() override = default;
4494};
4495
4496class CommandObjectRenderScriptRuntimeAllocationDump
4497    : public CommandObjectParsed {
4498public:
4499  CommandObjectRenderScriptRuntimeAllocationDump(
4500      CommandInterpreter &interpreter)
4501      : CommandObjectParsed(interpreter, "renderscript allocation dump",
4502                            "Displays the contents of a particular allocation",
4503                            "renderscript allocation dump <ID>",
4504                            eCommandRequiresProcess |
4505                                eCommandProcessMustBeLaunched),
4506        m_options() {
4507    CommandArgumentData id_arg{eArgTypeUnsignedInteger, eArgRepeatPlain};
4508    m_arguments.push_back({id_arg});
4509  }
4510
4511  ~CommandObjectRenderScriptRuntimeAllocationDump() override = default;
4512
4513  Options *GetOptions() override { return &m_options; }
4514
4515  class CommandOptions : public Options {
4516  public:
4517    CommandOptions() : Options() {}
4518
4519    ~CommandOptions() override = default;
4520
4521    Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg,
4522                          ExecutionContext *exe_ctx) override {
4523      Status err;
4524      const int short_option = m_getopt_table[option_idx].val;
4525
4526      switch (short_option) {
4527      case 'f':
4528        m_outfile.SetFile(option_arg, FileSpec::Style::native);
4529        FileSystem::Instance().Resolve(m_outfile);
4530        if (FileSystem::Instance().Exists(m_outfile)) {
4531          m_outfile.Clear();
4532          err.SetErrorStringWithFormat("file already exists: '%s'",
4533                                       option_arg.str().c_str());
4534        }
4535        break;
4536      default:
4537        err.SetErrorStringWithFormat("unrecognized option '%c'", short_option);
4538        break;
4539      }
4540      return err;
4541    }
4542
4543    void OptionParsingStarting(ExecutionContext *exe_ctx) override {
4544      m_outfile.Clear();
4545    }
4546
4547    llvm::ArrayRef<OptionDefinition> GetDefinitions() override {
4548      return llvm::ArrayRef(g_renderscript_runtime_alloc_dump_options);
4549    }
4550
4551    FileSpec m_outfile;
4552  };
4553
4554  bool DoExecute(Args &command, CommandReturnObject &result) override {
4555    const size_t argc = command.GetArgumentCount();
4556    if (argc < 1) {
4557      result.AppendErrorWithFormat("'%s' takes 1 argument, an allocation ID. "
4558                                   "As well as an optional -f argument",
4559                                   m_cmd_name.c_str());
4560      return false;
4561    }
4562
4563    RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
4564        m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4565            eLanguageTypeExtRenderScript));
4566
4567    const char *id_cstr = command.GetArgumentAtIndex(0);
4568    uint32_t id;
4569    if (!llvm::to_integer(id_cstr, id)) {
4570      result.AppendErrorWithFormat("invalid allocation id argument '%s'",
4571                                   id_cstr);
4572      return false;
4573    }
4574
4575    Stream *output_stream_p = nullptr;
4576    std::unique_ptr<Stream> output_stream_storage;
4577
4578    const FileSpec &outfile_spec =
4579        m_options.m_outfile; // Dump allocation to file instead
4580    if (outfile_spec) {
4581      // Open output file
4582      std::string path = outfile_spec.GetPath();
4583      auto file = FileSystem::Instance().Open(outfile_spec,
4584                                              File::eOpenOptionWriteOnly |
4585                                                  File::eOpenOptionCanCreate);
4586      if (file) {
4587        output_stream_storage =
4588            std::make_unique<StreamFile>(std::move(file.get()));
4589        output_stream_p = output_stream_storage.get();
4590        result.GetOutputStream().Printf("Results written to '%s'",
4591                                        path.c_str());
4592        result.GetOutputStream().EOL();
4593      } else {
4594        std::string error = llvm::toString(file.takeError());
4595        result.AppendErrorWithFormat("Couldn't open file '%s': %s",
4596                                     path.c_str(), error.c_str());
4597        return false;
4598      }
4599    } else
4600      output_stream_p = &result.GetOutputStream();
4601
4602    assert(output_stream_p != nullptr);
4603    bool dumped =
4604        runtime->DumpAllocation(*output_stream_p, m_exe_ctx.GetFramePtr(), id);
4605
4606    if (dumped)
4607      result.SetStatus(eReturnStatusSuccessFinishResult);
4608    else
4609      result.SetStatus(eReturnStatusFailed);
4610
4611    return true;
4612  }
4613
4614private:
4615  CommandOptions m_options;
4616};
4617
4618static constexpr OptionDefinition g_renderscript_runtime_alloc_list_options[] = {
4619    {LLDB_OPT_SET_1, false, "id", 'i', OptionParser::eRequiredArgument, nullptr,
4620     {}, 0, eArgTypeIndex,
4621     "Only show details of a single allocation with specified id."}};
4622
4623class CommandObjectRenderScriptRuntimeAllocationList
4624    : public CommandObjectParsed {
4625public:
4626  CommandObjectRenderScriptRuntimeAllocationList(
4627      CommandInterpreter &interpreter)
4628      : CommandObjectParsed(
4629            interpreter, "renderscript allocation list",
4630            "List renderscript allocations and their information.",
4631            "renderscript allocation list",
4632            eCommandRequiresProcess | eCommandProcessMustBeLaunched),
4633        m_options() {}
4634
4635  ~CommandObjectRenderScriptRuntimeAllocationList() override = default;
4636
4637  Options *GetOptions() override { return &m_options; }
4638
4639  class CommandOptions : public Options {
4640  public:
4641    CommandOptions() : Options() {}
4642
4643    ~CommandOptions() override = default;
4644
4645    Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg,
4646                          ExecutionContext *exe_ctx) override {
4647      Status err;
4648      const int short_option = m_getopt_table[option_idx].val;
4649
4650      switch (short_option) {
4651      case 'i':
4652        if (option_arg.getAsInteger(0, m_id))
4653          err.SetErrorStringWithFormat("invalid integer value for option '%c'",
4654                                       short_option);
4655        break;
4656      default:
4657        err.SetErrorStringWithFormat("unrecognized option '%c'", short_option);
4658        break;
4659      }
4660      return err;
4661    }
4662
4663    void OptionParsingStarting(ExecutionContext *exe_ctx) override { m_id = 0; }
4664
4665    llvm::ArrayRef<OptionDefinition> GetDefinitions() override {
4666      return llvm::ArrayRef(g_renderscript_runtime_alloc_list_options);
4667    }
4668
4669    uint32_t m_id = 0;
4670  };
4671
4672  bool DoExecute(Args &command, CommandReturnObject &result) override {
4673    RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
4674        m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4675            eLanguageTypeExtRenderScript));
4676    runtime->ListAllocations(result.GetOutputStream(), m_exe_ctx.GetFramePtr(),
4677                             m_options.m_id);
4678    result.SetStatus(eReturnStatusSuccessFinishResult);
4679    return true;
4680  }
4681
4682private:
4683  CommandOptions m_options;
4684};
4685
4686class CommandObjectRenderScriptRuntimeAllocationLoad
4687    : public CommandObjectParsed {
4688public:
4689  CommandObjectRenderScriptRuntimeAllocationLoad(
4690      CommandInterpreter &interpreter)
4691      : CommandObjectParsed(
4692            interpreter, "renderscript allocation load",
4693            "Loads renderscript allocation contents from a file.",
4694            "renderscript allocation load <ID> <filename>",
4695            eCommandRequiresProcess | eCommandProcessMustBeLaunched) {
4696    CommandArgumentData id_arg{eArgTypeUnsignedInteger, eArgRepeatPlain};
4697    CommandArgumentData name_arg{eArgTypeFilename, eArgRepeatPlain};
4698    m_arguments.push_back({id_arg});
4699    m_arguments.push_back({name_arg});
4700  }
4701
4702  ~CommandObjectRenderScriptRuntimeAllocationLoad() override = default;
4703
4704  bool DoExecute(Args &command, CommandReturnObject &result) override {
4705    const size_t argc = command.GetArgumentCount();
4706    if (argc != 2) {
4707      result.AppendErrorWithFormat(
4708          "'%s' takes 2 arguments, an allocation ID and filename to read from.",
4709          m_cmd_name.c_str());
4710      return false;
4711    }
4712
4713    RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
4714        m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4715            eLanguageTypeExtRenderScript));
4716
4717    const char *id_cstr = command.GetArgumentAtIndex(0);
4718    uint32_t id;
4719    if (!llvm::to_integer(id_cstr, id)) {
4720      result.AppendErrorWithFormat("invalid allocation id argument '%s'",
4721                                   id_cstr);
4722      return false;
4723    }
4724
4725    const char *path = command.GetArgumentAtIndex(1);
4726    bool loaded = runtime->LoadAllocation(result.GetOutputStream(), id, path,
4727                                          m_exe_ctx.GetFramePtr());
4728
4729    if (loaded)
4730      result.SetStatus(eReturnStatusSuccessFinishResult);
4731    else
4732      result.SetStatus(eReturnStatusFailed);
4733
4734    return true;
4735  }
4736};
4737
4738class CommandObjectRenderScriptRuntimeAllocationSave
4739    : public CommandObjectParsed {
4740public:
4741  CommandObjectRenderScriptRuntimeAllocationSave(
4742      CommandInterpreter &interpreter)
4743      : CommandObjectParsed(interpreter, "renderscript allocation save",
4744                            "Write renderscript allocation contents to a file.",
4745                            "renderscript allocation save <ID> <filename>",
4746                            eCommandRequiresProcess |
4747                                eCommandProcessMustBeLaunched) {
4748    CommandArgumentData id_arg{eArgTypeUnsignedInteger, eArgRepeatPlain};
4749    CommandArgumentData name_arg{eArgTypeFilename, eArgRepeatPlain};
4750    m_arguments.push_back({id_arg});
4751    m_arguments.push_back({name_arg});
4752  }
4753
4754  ~CommandObjectRenderScriptRuntimeAllocationSave() override = default;
4755
4756  bool DoExecute(Args &command, CommandReturnObject &result) override {
4757    const size_t argc = command.GetArgumentCount();
4758    if (argc != 2) {
4759      result.AppendErrorWithFormat(
4760          "'%s' takes 2 arguments, an allocation ID and filename to read from.",
4761          m_cmd_name.c_str());
4762      return false;
4763    }
4764
4765    RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
4766        m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4767            eLanguageTypeExtRenderScript));
4768
4769    const char *id_cstr = command.GetArgumentAtIndex(0);
4770    uint32_t id;
4771    if (!llvm::to_integer(id_cstr, id)) {
4772      result.AppendErrorWithFormat("invalid allocation id argument '%s'",
4773                                   id_cstr);
4774      return false;
4775    }
4776
4777    const char *path = command.GetArgumentAtIndex(1);
4778    bool saved = runtime->SaveAllocation(result.GetOutputStream(), id, path,
4779                                         m_exe_ctx.GetFramePtr());
4780
4781    if (saved)
4782      result.SetStatus(eReturnStatusSuccessFinishResult);
4783    else
4784      result.SetStatus(eReturnStatusFailed);
4785
4786    return true;
4787  }
4788};
4789
4790class CommandObjectRenderScriptRuntimeAllocationRefresh
4791    : public CommandObjectParsed {
4792public:
4793  CommandObjectRenderScriptRuntimeAllocationRefresh(
4794      CommandInterpreter &interpreter)
4795      : CommandObjectParsed(interpreter, "renderscript allocation refresh",
4796                            "Recomputes the details of all allocations.",
4797                            "renderscript allocation refresh",
4798                            eCommandRequiresProcess |
4799                                eCommandProcessMustBeLaunched) {}
4800
4801  ~CommandObjectRenderScriptRuntimeAllocationRefresh() override = default;
4802
4803  bool DoExecute(Args &command, CommandReturnObject &result) override {
4804    RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
4805        m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4806            eLanguageTypeExtRenderScript));
4807
4808    bool success = runtime->RecomputeAllAllocations(result.GetOutputStream(),
4809                                                    m_exe_ctx.GetFramePtr());
4810
4811    if (success) {
4812      result.SetStatus(eReturnStatusSuccessFinishResult);
4813      return true;
4814    } else {
4815      result.SetStatus(eReturnStatusFailed);
4816      return false;
4817    }
4818  }
4819};
4820
4821class CommandObjectRenderScriptRuntimeAllocation
4822    : public CommandObjectMultiword {
4823public:
4824  CommandObjectRenderScriptRuntimeAllocation(CommandInterpreter &interpreter)
4825      : CommandObjectMultiword(
4826            interpreter, "renderscript allocation",
4827            "Commands that deal with RenderScript allocations.", nullptr) {
4828    LoadSubCommand(
4829        "list",
4830        CommandObjectSP(
4831            new CommandObjectRenderScriptRuntimeAllocationList(interpreter)));
4832    LoadSubCommand(
4833        "dump",
4834        CommandObjectSP(
4835            new CommandObjectRenderScriptRuntimeAllocationDump(interpreter)));
4836    LoadSubCommand(
4837        "save",
4838        CommandObjectSP(
4839            new CommandObjectRenderScriptRuntimeAllocationSave(interpreter)));
4840    LoadSubCommand(
4841        "load",
4842        CommandObjectSP(
4843            new CommandObjectRenderScriptRuntimeAllocationLoad(interpreter)));
4844    LoadSubCommand(
4845        "refresh",
4846        CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationRefresh(
4847            interpreter)));
4848  }
4849
4850  ~CommandObjectRenderScriptRuntimeAllocation() override = default;
4851};
4852
4853class CommandObjectRenderScriptRuntimeStatus : public CommandObjectParsed {
4854public:
4855  CommandObjectRenderScriptRuntimeStatus(CommandInterpreter &interpreter)
4856      : CommandObjectParsed(interpreter, "renderscript status",
4857                            "Displays current RenderScript runtime status.",
4858                            "renderscript status",
4859                            eCommandRequiresProcess |
4860                                eCommandProcessMustBeLaunched) {}
4861
4862  ~CommandObjectRenderScriptRuntimeStatus() override = default;
4863
4864  bool DoExecute(Args &command, CommandReturnObject &result) override {
4865    RenderScriptRuntime *runtime = llvm::cast<RenderScriptRuntime>(
4866        m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4867            eLanguageTypeExtRenderScript));
4868    runtime->DumpStatus(result.GetOutputStream());
4869    result.SetStatus(eReturnStatusSuccessFinishResult);
4870    return true;
4871  }
4872};
4873
4874class CommandObjectRenderScriptRuntimeReduction
4875    : public CommandObjectMultiword {
4876public:
4877  CommandObjectRenderScriptRuntimeReduction(CommandInterpreter &interpreter)
4878      : CommandObjectMultiword(interpreter, "renderscript reduction",
4879                               "Commands that handle general reduction kernels",
4880                               nullptr) {
4881    LoadSubCommand(
4882        "breakpoint",
4883        CommandObjectSP(new CommandObjectRenderScriptRuntimeReductionBreakpoint(
4884            interpreter)));
4885  }
4886  ~CommandObjectRenderScriptRuntimeReduction() override = default;
4887};
4888
4889class CommandObjectRenderScriptRuntime : public CommandObjectMultiword {
4890public:
4891  CommandObjectRenderScriptRuntime(CommandInterpreter &interpreter)
4892      : CommandObjectMultiword(
4893            interpreter, "renderscript",
4894            "Commands for operating on the RenderScript runtime.",
4895            "renderscript <subcommand> [<subcommand-options>]") {
4896    LoadSubCommand(
4897        "module", CommandObjectSP(
4898                      new CommandObjectRenderScriptRuntimeModule(interpreter)));
4899    LoadSubCommand(
4900        "status", CommandObjectSP(
4901                      new CommandObjectRenderScriptRuntimeStatus(interpreter)));
4902    LoadSubCommand(
4903        "kernel", CommandObjectSP(
4904                      new CommandObjectRenderScriptRuntimeKernel(interpreter)));
4905    LoadSubCommand("context",
4906                   CommandObjectSP(new CommandObjectRenderScriptRuntimeContext(
4907                       interpreter)));
4908    LoadSubCommand(
4909        "allocation",
4910        CommandObjectSP(
4911            new CommandObjectRenderScriptRuntimeAllocation(interpreter)));
4912    LoadSubCommand("scriptgroup",
4913                   NewCommandObjectRenderScriptScriptGroup(interpreter));
4914    LoadSubCommand(
4915        "reduction",
4916        CommandObjectSP(
4917            new CommandObjectRenderScriptRuntimeReduction(interpreter)));
4918  }
4919
4920  ~CommandObjectRenderScriptRuntime() override = default;
4921};
4922
4923void RenderScriptRuntime::Initiate() { assert(!m_initiated); }
4924
4925RenderScriptRuntime::RenderScriptRuntime(Process *process)
4926    : lldb_private::CPPLanguageRuntime(process), m_initiated(false),
4927      m_debuggerPresentFlagged(false), m_breakAllKernels(false),
4928      m_ir_passes(nullptr) {
4929  ModulesDidLoad(process->GetTarget().GetImages());
4930}
4931
4932lldb::CommandObjectSP RenderScriptRuntime::GetCommandObject(
4933    lldb_private::CommandInterpreter &interpreter) {
4934  return CommandObjectSP(new CommandObjectRenderScriptRuntime(interpreter));
4935}
4936
4937RenderScriptRuntime::~RenderScriptRuntime() = default;
4938