1//===- SyntheticSections.cpp ----------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains linker-synthesized sections. Currently,
10// synthetic sections are created either output sections or input sections,
11// but we are rewriting code so that all synthetic sections are created as
12// input sections.
13//
14//===----------------------------------------------------------------------===//
15
16#include "SyntheticSections.h"
17#include "Config.h"
18#include "DWARF.h"
19#include "EhFrame.h"
20#include "InputFiles.h"
21#include "LinkerScript.h"
22#include "OutputSections.h"
23#include "SymbolTable.h"
24#include "Symbols.h"
25#include "Target.h"
26#include "Thunks.h"
27#include "Writer.h"
28#include "lld/Common/CommonLinkerContext.h"
29#include "lld/Common/DWARF.h"
30#include "lld/Common/Strings.h"
31#include "lld/Common/Version.h"
32#include "llvm/ADT/STLExtras.h"
33#include "llvm/ADT/SetOperations.h"
34#include "llvm/ADT/StringExtras.h"
35#include "llvm/BinaryFormat/Dwarf.h"
36#include "llvm/BinaryFormat/ELF.h"
37#include "llvm/DebugInfo/DWARF/DWARFDebugPubTable.h"
38#include "llvm/Support/Endian.h"
39#include "llvm/Support/LEB128.h"
40#include "llvm/Support/Parallel.h"
41#include "llvm/Support/TimeProfiler.h"
42#include <cstdlib>
43
44using namespace llvm;
45using namespace llvm::dwarf;
46using namespace llvm::ELF;
47using namespace llvm::object;
48using namespace llvm::support;
49using namespace lld;
50using namespace lld::elf;
51
52using llvm::support::endian::read32le;
53using llvm::support::endian::write32le;
54using llvm::support::endian::write64le;
55
56constexpr size_t MergeNoTailSection::numShards;
57
58static uint64_t readUint(uint8_t *buf) {
59  return config->is64 ? read64(buf) : read32(buf);
60}
61
62static void writeUint(uint8_t *buf, uint64_t val) {
63  if (config->is64)
64    write64(buf, val);
65  else
66    write32(buf, val);
67}
68
69// Returns an LLD version string.
70static ArrayRef<uint8_t> getVersion() {
71  // Check LLD_VERSION first for ease of testing.
72  // You can get consistent output by using the environment variable.
73  // This is only for testing.
74  StringRef s = getenv("LLD_VERSION");
75  if (s.empty())
76    s = saver().save(Twine("Linker: ") + getLLDVersion());
77
78  // +1 to include the terminating '\0'.
79  return {(const uint8_t *)s.data(), s.size() + 1};
80}
81
82// Creates a .comment section containing LLD version info.
83// With this feature, you can identify LLD-generated binaries easily
84// by "readelf --string-dump .comment <file>".
85// The returned object is a mergeable string section.
86MergeInputSection *elf::createCommentSection() {
87  auto *sec = make<MergeInputSection>(SHF_MERGE | SHF_STRINGS, SHT_PROGBITS, 1,
88                                      getVersion(), ".comment");
89  sec->splitIntoPieces();
90  return sec;
91}
92
93// .MIPS.abiflags section.
94template <class ELFT>
95MipsAbiFlagsSection<ELFT>::MipsAbiFlagsSection(Elf_Mips_ABIFlags flags)
96    : SyntheticSection(SHF_ALLOC, SHT_MIPS_ABIFLAGS, 8, ".MIPS.abiflags"),
97      flags(flags) {
98  this->entsize = sizeof(Elf_Mips_ABIFlags);
99}
100
101template <class ELFT> void MipsAbiFlagsSection<ELFT>::writeTo(uint8_t *buf) {
102  memcpy(buf, &flags, sizeof(flags));
103}
104
105template <class ELFT>
106std::unique_ptr<MipsAbiFlagsSection<ELFT>> MipsAbiFlagsSection<ELFT>::create() {
107  Elf_Mips_ABIFlags flags = {};
108  bool create = false;
109
110  for (InputSectionBase *sec : ctx.inputSections) {
111    if (sec->type != SHT_MIPS_ABIFLAGS)
112      continue;
113    sec->markDead();
114    create = true;
115
116    std::string filename = toString(sec->file);
117    const size_t size = sec->content().size();
118    // Older version of BFD (such as the default FreeBSD linker) concatenate
119    // .MIPS.abiflags instead of merging. To allow for this case (or potential
120    // zero padding) we ignore everything after the first Elf_Mips_ABIFlags
121    if (size < sizeof(Elf_Mips_ABIFlags)) {
122      error(filename + ": invalid size of .MIPS.abiflags section: got " +
123            Twine(size) + " instead of " + Twine(sizeof(Elf_Mips_ABIFlags)));
124      return nullptr;
125    }
126    auto *s =
127        reinterpret_cast<const Elf_Mips_ABIFlags *>(sec->content().data());
128    if (s->version != 0) {
129      error(filename + ": unexpected .MIPS.abiflags version " +
130            Twine(s->version));
131      return nullptr;
132    }
133
134    // LLD checks ISA compatibility in calcMipsEFlags(). Here we just
135    // select the highest number of ISA/Rev/Ext.
136    flags.isa_level = std::max(flags.isa_level, s->isa_level);
137    flags.isa_rev = std::max(flags.isa_rev, s->isa_rev);
138    flags.isa_ext = std::max(flags.isa_ext, s->isa_ext);
139    flags.gpr_size = std::max(flags.gpr_size, s->gpr_size);
140    flags.cpr1_size = std::max(flags.cpr1_size, s->cpr1_size);
141    flags.cpr2_size = std::max(flags.cpr2_size, s->cpr2_size);
142    flags.ases |= s->ases;
143    flags.flags1 |= s->flags1;
144    flags.flags2 |= s->flags2;
145    flags.fp_abi = elf::getMipsFpAbiFlag(flags.fp_abi, s->fp_abi, filename);
146  };
147
148  if (create)
149    return std::make_unique<MipsAbiFlagsSection<ELFT>>(flags);
150  return nullptr;
151}
152
153// .MIPS.options section.
154template <class ELFT>
155MipsOptionsSection<ELFT>::MipsOptionsSection(Elf_Mips_RegInfo reginfo)
156    : SyntheticSection(SHF_ALLOC, SHT_MIPS_OPTIONS, 8, ".MIPS.options"),
157      reginfo(reginfo) {
158  this->entsize = sizeof(Elf_Mips_Options) + sizeof(Elf_Mips_RegInfo);
159}
160
161template <class ELFT> void MipsOptionsSection<ELFT>::writeTo(uint8_t *buf) {
162  auto *options = reinterpret_cast<Elf_Mips_Options *>(buf);
163  options->kind = ODK_REGINFO;
164  options->size = getSize();
165
166  if (!config->relocatable)
167    reginfo.ri_gp_value = in.mipsGot->getGp();
168  memcpy(buf + sizeof(Elf_Mips_Options), &reginfo, sizeof(reginfo));
169}
170
171template <class ELFT>
172std::unique_ptr<MipsOptionsSection<ELFT>> MipsOptionsSection<ELFT>::create() {
173  // N64 ABI only.
174  if (!ELFT::Is64Bits)
175    return nullptr;
176
177  SmallVector<InputSectionBase *, 0> sections;
178  for (InputSectionBase *sec : ctx.inputSections)
179    if (sec->type == SHT_MIPS_OPTIONS)
180      sections.push_back(sec);
181
182  if (sections.empty())
183    return nullptr;
184
185  Elf_Mips_RegInfo reginfo = {};
186  for (InputSectionBase *sec : sections) {
187    sec->markDead();
188
189    std::string filename = toString(sec->file);
190    ArrayRef<uint8_t> d = sec->content();
191
192    while (!d.empty()) {
193      if (d.size() < sizeof(Elf_Mips_Options)) {
194        error(filename + ": invalid size of .MIPS.options section");
195        break;
196      }
197
198      auto *opt = reinterpret_cast<const Elf_Mips_Options *>(d.data());
199      if (opt->kind == ODK_REGINFO) {
200        reginfo.ri_gprmask |= opt->getRegInfo().ri_gprmask;
201        sec->getFile<ELFT>()->mipsGp0 = opt->getRegInfo().ri_gp_value;
202        break;
203      }
204
205      if (!opt->size)
206        fatal(filename + ": zero option descriptor size");
207      d = d.slice(opt->size);
208    }
209  };
210
211  return std::make_unique<MipsOptionsSection<ELFT>>(reginfo);
212}
213
214// MIPS .reginfo section.
215template <class ELFT>
216MipsReginfoSection<ELFT>::MipsReginfoSection(Elf_Mips_RegInfo reginfo)
217    : SyntheticSection(SHF_ALLOC, SHT_MIPS_REGINFO, 4, ".reginfo"),
218      reginfo(reginfo) {
219  this->entsize = sizeof(Elf_Mips_RegInfo);
220}
221
222template <class ELFT> void MipsReginfoSection<ELFT>::writeTo(uint8_t *buf) {
223  if (!config->relocatable)
224    reginfo.ri_gp_value = in.mipsGot->getGp();
225  memcpy(buf, &reginfo, sizeof(reginfo));
226}
227
228template <class ELFT>
229std::unique_ptr<MipsReginfoSection<ELFT>> MipsReginfoSection<ELFT>::create() {
230  // Section should be alive for O32 and N32 ABIs only.
231  if (ELFT::Is64Bits)
232    return nullptr;
233
234  SmallVector<InputSectionBase *, 0> sections;
235  for (InputSectionBase *sec : ctx.inputSections)
236    if (sec->type == SHT_MIPS_REGINFO)
237      sections.push_back(sec);
238
239  if (sections.empty())
240    return nullptr;
241
242  Elf_Mips_RegInfo reginfo = {};
243  for (InputSectionBase *sec : sections) {
244    sec->markDead();
245
246    if (sec->content().size() != sizeof(Elf_Mips_RegInfo)) {
247      error(toString(sec->file) + ": invalid size of .reginfo section");
248      return nullptr;
249    }
250
251    auto *r = reinterpret_cast<const Elf_Mips_RegInfo *>(sec->content().data());
252    reginfo.ri_gprmask |= r->ri_gprmask;
253    sec->getFile<ELFT>()->mipsGp0 = r->ri_gp_value;
254  };
255
256  return std::make_unique<MipsReginfoSection<ELFT>>(reginfo);
257}
258
259InputSection *elf::createInterpSection() {
260  // StringSaver guarantees that the returned string ends with '\0'.
261  StringRef s = saver().save(config->dynamicLinker);
262  ArrayRef<uint8_t> contents = {(const uint8_t *)s.data(), s.size() + 1};
263
264  return make<InputSection>(nullptr, SHF_ALLOC, SHT_PROGBITS, 1, contents,
265                            ".interp");
266}
267
268Defined *elf::addSyntheticLocal(StringRef name, uint8_t type, uint64_t value,
269                                uint64_t size, InputSectionBase &section) {
270  Defined *s = makeDefined(section.file, name, STB_LOCAL, STV_DEFAULT, type,
271                           value, size, &section);
272  if (in.symTab)
273    in.symTab->addSymbol(s);
274  return s;
275}
276
277static size_t getHashSize() {
278  switch (config->buildId) {
279  case BuildIdKind::Fast:
280    return 8;
281  case BuildIdKind::Md5:
282  case BuildIdKind::Uuid:
283    return 16;
284  case BuildIdKind::Sha1:
285    return 20;
286  case BuildIdKind::Hexstring:
287    return config->buildIdVector.size();
288  default:
289    llvm_unreachable("unknown BuildIdKind");
290  }
291}
292
293// This class represents a linker-synthesized .note.gnu.property section.
294//
295// In x86 and AArch64, object files may contain feature flags indicating the
296// features that they have used. The flags are stored in a .note.gnu.property
297// section.
298//
299// lld reads the sections from input files and merges them by computing AND of
300// the flags. The result is written as a new .note.gnu.property section.
301//
302// If the flag is zero (which indicates that the intersection of the feature
303// sets is empty, or some input files didn't have .note.gnu.property sections),
304// we don't create this section.
305GnuPropertySection::GnuPropertySection()
306    : SyntheticSection(llvm::ELF::SHF_ALLOC, llvm::ELF::SHT_NOTE,
307                       config->wordsize, ".note.gnu.property") {}
308
309void GnuPropertySection::writeTo(uint8_t *buf) {
310  uint32_t featureAndType = config->emachine == EM_AARCH64
311                                ? GNU_PROPERTY_AARCH64_FEATURE_1_AND
312                                : GNU_PROPERTY_X86_FEATURE_1_AND;
313
314  write32(buf, 4);                                   // Name size
315  write32(buf + 4, config->is64 ? 16 : 12);          // Content size
316  write32(buf + 8, NT_GNU_PROPERTY_TYPE_0);          // Type
317  memcpy(buf + 12, "GNU", 4);                        // Name string
318  write32(buf + 16, featureAndType);                 // Feature type
319  write32(buf + 20, 4);                              // Feature size
320  write32(buf + 24, config->andFeatures);            // Feature flags
321  if (config->is64)
322    write32(buf + 28, 0); // Padding
323}
324
325size_t GnuPropertySection::getSize() const { return config->is64 ? 32 : 28; }
326
327BuildIdSection::BuildIdSection()
328    : SyntheticSection(SHF_ALLOC, SHT_NOTE, 4, ".note.gnu.build-id"),
329      hashSize(getHashSize()) {}
330
331void BuildIdSection::writeTo(uint8_t *buf) {
332  write32(buf, 4);                      // Name size
333  write32(buf + 4, hashSize);           // Content size
334  write32(buf + 8, NT_GNU_BUILD_ID);    // Type
335  memcpy(buf + 12, "GNU", 4);           // Name string
336  hashBuf = buf + 16;
337}
338
339void BuildIdSection::writeBuildId(ArrayRef<uint8_t> buf) {
340  assert(buf.size() == hashSize);
341  memcpy(hashBuf, buf.data(), hashSize);
342}
343
344BssSection::BssSection(StringRef name, uint64_t size, uint32_t alignment)
345    : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_NOBITS, alignment, name) {
346  this->bss = true;
347  this->size = size;
348}
349
350EhFrameSection::EhFrameSection()
351    : SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 1, ".eh_frame") {}
352
353// Search for an existing CIE record or create a new one.
354// CIE records from input object files are uniquified by their contents
355// and where their relocations point to.
356template <class ELFT, class RelTy>
357CieRecord *EhFrameSection::addCie(EhSectionPiece &cie, ArrayRef<RelTy> rels) {
358  Symbol *personality = nullptr;
359  unsigned firstRelI = cie.firstRelocation;
360  if (firstRelI != (unsigned)-1)
361    personality =
362        &cie.sec->template getFile<ELFT>()->getRelocTargetSym(rels[firstRelI]);
363
364  // Search for an existing CIE by CIE contents/relocation target pair.
365  CieRecord *&rec = cieMap[{cie.data(), personality}];
366
367  // If not found, create a new one.
368  if (!rec) {
369    rec = make<CieRecord>();
370    rec->cie = &cie;
371    cieRecords.push_back(rec);
372  }
373  return rec;
374}
375
376// There is one FDE per function. Returns a non-null pointer to the function
377// symbol if the given FDE points to a live function.
378template <class ELFT, class RelTy>
379Defined *EhFrameSection::isFdeLive(EhSectionPiece &fde, ArrayRef<RelTy> rels) {
380  auto *sec = cast<EhInputSection>(fde.sec);
381  unsigned firstRelI = fde.firstRelocation;
382
383  // An FDE should point to some function because FDEs are to describe
384  // functions. That's however not always the case due to an issue of
385  // ld.gold with -r. ld.gold may discard only functions and leave their
386  // corresponding FDEs, which results in creating bad .eh_frame sections.
387  // To deal with that, we ignore such FDEs.
388  if (firstRelI == (unsigned)-1)
389    return nullptr;
390
391  const RelTy &rel = rels[firstRelI];
392  Symbol &b = sec->template getFile<ELFT>()->getRelocTargetSym(rel);
393
394  // FDEs for garbage-collected or merged-by-ICF sections, or sections in
395  // another partition, are dead.
396  if (auto *d = dyn_cast<Defined>(&b))
397    if (!d->folded && d->section && d->section->partition == partition)
398      return d;
399  return nullptr;
400}
401
402// .eh_frame is a sequence of CIE or FDE records. In general, there
403// is one CIE record per input object file which is followed by
404// a list of FDEs. This function searches an existing CIE or create a new
405// one and associates FDEs to the CIE.
406template <class ELFT, class RelTy>
407void EhFrameSection::addRecords(EhInputSection *sec, ArrayRef<RelTy> rels) {
408  offsetToCie.clear();
409  for (EhSectionPiece &cie : sec->cies)
410    offsetToCie[cie.inputOff] = addCie<ELFT>(cie, rels);
411  for (EhSectionPiece &fde : sec->fdes) {
412    uint32_t id = endian::read32<ELFT::TargetEndianness>(fde.data().data() + 4);
413    CieRecord *rec = offsetToCie[fde.inputOff + 4 - id];
414    if (!rec)
415      fatal(toString(sec) + ": invalid CIE reference");
416
417    if (!isFdeLive<ELFT>(fde, rels))
418      continue;
419    rec->fdes.push_back(&fde);
420    numFdes++;
421  }
422}
423
424template <class ELFT>
425void EhFrameSection::addSectionAux(EhInputSection *sec) {
426  if (!sec->isLive())
427    return;
428  const RelsOrRelas<ELFT> rels = sec->template relsOrRelas<ELFT>();
429  if (rels.areRelocsRel())
430    addRecords<ELFT>(sec, rels.rels);
431  else
432    addRecords<ELFT>(sec, rels.relas);
433}
434
435// Used by ICF<ELFT>::handleLSDA(). This function is very similar to
436// EhFrameSection::addRecords().
437template <class ELFT, class RelTy>
438void EhFrameSection::iterateFDEWithLSDAAux(
439    EhInputSection &sec, ArrayRef<RelTy> rels, DenseSet<size_t> &ciesWithLSDA,
440    llvm::function_ref<void(InputSection &)> fn) {
441  for (EhSectionPiece &cie : sec.cies)
442    if (hasLSDA(cie))
443      ciesWithLSDA.insert(cie.inputOff);
444  for (EhSectionPiece &fde : sec.fdes) {
445    uint32_t id = endian::read32<ELFT::TargetEndianness>(fde.data().data() + 4);
446    if (!ciesWithLSDA.contains(fde.inputOff + 4 - id))
447      continue;
448
449    // The CIE has a LSDA argument. Call fn with d's section.
450    if (Defined *d = isFdeLive<ELFT>(fde, rels))
451      if (auto *s = dyn_cast_or_null<InputSection>(d->section))
452        fn(*s);
453  }
454}
455
456template <class ELFT>
457void EhFrameSection::iterateFDEWithLSDA(
458    llvm::function_ref<void(InputSection &)> fn) {
459  DenseSet<size_t> ciesWithLSDA;
460  for (EhInputSection *sec : sections) {
461    ciesWithLSDA.clear();
462    const RelsOrRelas<ELFT> rels = sec->template relsOrRelas<ELFT>();
463    if (rels.areRelocsRel())
464      iterateFDEWithLSDAAux<ELFT>(*sec, rels.rels, ciesWithLSDA, fn);
465    else
466      iterateFDEWithLSDAAux<ELFT>(*sec, rels.relas, ciesWithLSDA, fn);
467  }
468}
469
470static void writeCieFde(uint8_t *buf, ArrayRef<uint8_t> d) {
471  memcpy(buf, d.data(), d.size());
472  // Fix the size field. -4 since size does not include the size field itself.
473  write32(buf, d.size() - 4);
474}
475
476void EhFrameSection::finalizeContents() {
477  assert(!this->size); // Not finalized.
478
479  switch (config->ekind) {
480  case ELFNoneKind:
481    llvm_unreachable("invalid ekind");
482  case ELF32LEKind:
483    for (EhInputSection *sec : sections)
484      addSectionAux<ELF32LE>(sec);
485    break;
486  case ELF32BEKind:
487    for (EhInputSection *sec : sections)
488      addSectionAux<ELF32BE>(sec);
489    break;
490  case ELF64LEKind:
491    for (EhInputSection *sec : sections)
492      addSectionAux<ELF64LE>(sec);
493    break;
494  case ELF64BEKind:
495    for (EhInputSection *sec : sections)
496      addSectionAux<ELF64BE>(sec);
497    break;
498  }
499
500  size_t off = 0;
501  for (CieRecord *rec : cieRecords) {
502    rec->cie->outputOff = off;
503    off += rec->cie->size;
504
505    for (EhSectionPiece *fde : rec->fdes) {
506      fde->outputOff = off;
507      off += fde->size;
508    }
509  }
510
511  // The LSB standard does not allow a .eh_frame section with zero
512  // Call Frame Information records. glibc unwind-dw2-fde.c
513  // classify_object_over_fdes expects there is a CIE record length 0 as a
514  // terminator. Thus we add one unconditionally.
515  off += 4;
516
517  this->size = off;
518}
519
520// Returns data for .eh_frame_hdr. .eh_frame_hdr is a binary search table
521// to get an FDE from an address to which FDE is applied. This function
522// returns a list of such pairs.
523SmallVector<EhFrameSection::FdeData, 0> EhFrameSection::getFdeData() const {
524  uint8_t *buf = Out::bufferStart + getParent()->offset + outSecOff;
525  SmallVector<FdeData, 0> ret;
526
527  uint64_t va = getPartition().ehFrameHdr->getVA();
528  for (CieRecord *rec : cieRecords) {
529    uint8_t enc = getFdeEncoding(rec->cie);
530    for (EhSectionPiece *fde : rec->fdes) {
531      uint64_t pc = getFdePc(buf, fde->outputOff, enc);
532      uint64_t fdeVA = getParent()->addr + fde->outputOff;
533      if (!isInt<32>(pc - va))
534        fatal(toString(fde->sec) + ": PC offset is too large: 0x" +
535              Twine::utohexstr(pc - va));
536      ret.push_back({uint32_t(pc - va), uint32_t(fdeVA - va)});
537    }
538  }
539
540  // Sort the FDE list by their PC and uniqueify. Usually there is only
541  // one FDE for a PC (i.e. function), but if ICF merges two functions
542  // into one, there can be more than one FDEs pointing to the address.
543  auto less = [](const FdeData &a, const FdeData &b) {
544    return a.pcRel < b.pcRel;
545  };
546  llvm::stable_sort(ret, less);
547  auto eq = [](const FdeData &a, const FdeData &b) {
548    return a.pcRel == b.pcRel;
549  };
550  ret.erase(std::unique(ret.begin(), ret.end(), eq), ret.end());
551
552  return ret;
553}
554
555static uint64_t readFdeAddr(uint8_t *buf, int size) {
556  switch (size) {
557  case DW_EH_PE_udata2:
558    return read16(buf);
559  case DW_EH_PE_sdata2:
560    return (int16_t)read16(buf);
561  case DW_EH_PE_udata4:
562    return read32(buf);
563  case DW_EH_PE_sdata4:
564    return (int32_t)read32(buf);
565  case DW_EH_PE_udata8:
566  case DW_EH_PE_sdata8:
567    return read64(buf);
568  case DW_EH_PE_absptr:
569    return readUint(buf);
570  }
571  fatal("unknown FDE size encoding");
572}
573
574// Returns the VA to which a given FDE (on a mmap'ed buffer) is applied to.
575// We need it to create .eh_frame_hdr section.
576uint64_t EhFrameSection::getFdePc(uint8_t *buf, size_t fdeOff,
577                                  uint8_t enc) const {
578  // The starting address to which this FDE applies is
579  // stored at FDE + 8 byte.
580  size_t off = fdeOff + 8;
581  uint64_t addr = readFdeAddr(buf + off, enc & 0xf);
582  if ((enc & 0x70) == DW_EH_PE_absptr)
583    return addr;
584  if ((enc & 0x70) == DW_EH_PE_pcrel)
585    return addr + getParent()->addr + off;
586  fatal("unknown FDE size relative encoding");
587}
588
589void EhFrameSection::writeTo(uint8_t *buf) {
590  // Write CIE and FDE records.
591  for (CieRecord *rec : cieRecords) {
592    size_t cieOffset = rec->cie->outputOff;
593    writeCieFde(buf + cieOffset, rec->cie->data());
594
595    for (EhSectionPiece *fde : rec->fdes) {
596      size_t off = fde->outputOff;
597      writeCieFde(buf + off, fde->data());
598
599      // FDE's second word should have the offset to an associated CIE.
600      // Write it.
601      write32(buf + off + 4, off + 4 - cieOffset);
602    }
603  }
604
605  // Apply relocations. .eh_frame section contents are not contiguous
606  // in the output buffer, but relocateAlloc() still works because
607  // getOffset() takes care of discontiguous section pieces.
608  for (EhInputSection *s : sections)
609    target->relocateAlloc(*s, buf);
610
611  if (getPartition().ehFrameHdr && getPartition().ehFrameHdr->getParent())
612    getPartition().ehFrameHdr->write();
613}
614
615GotSection::GotSection()
616    : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS,
617                       target->gotEntrySize, ".got") {
618  numEntries = target->gotHeaderEntriesNum;
619}
620
621void GotSection::addConstant(const Relocation &r) { relocations.push_back(r); }
622void GotSection::addEntry(Symbol &sym) {
623  assert(sym.auxIdx == symAux.size() - 1);
624  symAux.back().gotIdx = numEntries++;
625}
626
627bool GotSection::addTlsDescEntry(Symbol &sym) {
628  assert(sym.auxIdx == symAux.size() - 1);
629  symAux.back().tlsDescIdx = numEntries;
630  numEntries += 2;
631  return true;
632}
633
634bool GotSection::addDynTlsEntry(Symbol &sym) {
635  assert(sym.auxIdx == symAux.size() - 1);
636  symAux.back().tlsGdIdx = numEntries;
637  // Global Dynamic TLS entries take two GOT slots.
638  numEntries += 2;
639  return true;
640}
641
642// Reserves TLS entries for a TLS module ID and a TLS block offset.
643// In total it takes two GOT slots.
644bool GotSection::addTlsIndex() {
645  if (tlsIndexOff != uint32_t(-1))
646    return false;
647  tlsIndexOff = numEntries * config->wordsize;
648  numEntries += 2;
649  return true;
650}
651
652uint32_t GotSection::getTlsDescOffset(const Symbol &sym) const {
653  return sym.getTlsDescIdx() * config->wordsize;
654}
655
656uint64_t GotSection::getTlsDescAddr(const Symbol &sym) const {
657  return getVA() + getTlsDescOffset(sym);
658}
659
660uint64_t GotSection::getGlobalDynAddr(const Symbol &b) const {
661  return this->getVA() + b.getTlsGdIdx() * config->wordsize;
662}
663
664uint64_t GotSection::getGlobalDynOffset(const Symbol &b) const {
665  return b.getTlsGdIdx() * config->wordsize;
666}
667
668void GotSection::finalizeContents() {
669  if (config->emachine == EM_PPC64 &&
670      numEntries <= target->gotHeaderEntriesNum && !ElfSym::globalOffsetTable)
671    size = 0;
672  else
673    size = numEntries * config->wordsize;
674}
675
676bool GotSection::isNeeded() const {
677  // Needed if the GOT symbol is used or the number of entries is more than just
678  // the header. A GOT with just the header may not be needed.
679  return hasGotOffRel || numEntries > target->gotHeaderEntriesNum;
680}
681
682void GotSection::writeTo(uint8_t *buf) {
683  // On PPC64 .got may be needed but empty. Skip the write.
684  if (size == 0)
685    return;
686  target->writeGotHeader(buf);
687  target->relocateAlloc(*this, buf);
688}
689
690static uint64_t getMipsPageAddr(uint64_t addr) {
691  return (addr + 0x8000) & ~0xffff;
692}
693
694static uint64_t getMipsPageCount(uint64_t size) {
695  return (size + 0xfffe) / 0xffff + 1;
696}
697
698MipsGotSection::MipsGotSection()
699    : SyntheticSection(SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL, SHT_PROGBITS, 16,
700                       ".got") {}
701
702void MipsGotSection::addEntry(InputFile &file, Symbol &sym, int64_t addend,
703                              RelExpr expr) {
704  FileGot &g = getGot(file);
705  if (expr == R_MIPS_GOT_LOCAL_PAGE) {
706    if (const OutputSection *os = sym.getOutputSection())
707      g.pagesMap.insert({os, {}});
708    else
709      g.local16.insert({{nullptr, getMipsPageAddr(sym.getVA(addend))}, 0});
710  } else if (sym.isTls())
711    g.tls.insert({&sym, 0});
712  else if (sym.isPreemptible && expr == R_ABS)
713    g.relocs.insert({&sym, 0});
714  else if (sym.isPreemptible)
715    g.global.insert({&sym, 0});
716  else if (expr == R_MIPS_GOT_OFF32)
717    g.local32.insert({{&sym, addend}, 0});
718  else
719    g.local16.insert({{&sym, addend}, 0});
720}
721
722void MipsGotSection::addDynTlsEntry(InputFile &file, Symbol &sym) {
723  getGot(file).dynTlsSymbols.insert({&sym, 0});
724}
725
726void MipsGotSection::addTlsIndex(InputFile &file) {
727  getGot(file).dynTlsSymbols.insert({nullptr, 0});
728}
729
730size_t MipsGotSection::FileGot::getEntriesNum() const {
731  return getPageEntriesNum() + local16.size() + global.size() + relocs.size() +
732         tls.size() + dynTlsSymbols.size() * 2;
733}
734
735size_t MipsGotSection::FileGot::getPageEntriesNum() const {
736  size_t num = 0;
737  for (const std::pair<const OutputSection *, FileGot::PageBlock> &p : pagesMap)
738    num += p.second.count;
739  return num;
740}
741
742size_t MipsGotSection::FileGot::getIndexedEntriesNum() const {
743  size_t count = getPageEntriesNum() + local16.size() + global.size();
744  // If there are relocation-only entries in the GOT, TLS entries
745  // are allocated after them. TLS entries should be addressable
746  // by 16-bit index so count both reloc-only and TLS entries.
747  if (!tls.empty() || !dynTlsSymbols.empty())
748    count += relocs.size() + tls.size() + dynTlsSymbols.size() * 2;
749  return count;
750}
751
752MipsGotSection::FileGot &MipsGotSection::getGot(InputFile &f) {
753  if (f.mipsGotIndex == uint32_t(-1)) {
754    gots.emplace_back();
755    gots.back().file = &f;
756    f.mipsGotIndex = gots.size() - 1;
757  }
758  return gots[f.mipsGotIndex];
759}
760
761uint64_t MipsGotSection::getPageEntryOffset(const InputFile *f,
762                                            const Symbol &sym,
763                                            int64_t addend) const {
764  const FileGot &g = gots[f->mipsGotIndex];
765  uint64_t index = 0;
766  if (const OutputSection *outSec = sym.getOutputSection()) {
767    uint64_t secAddr = getMipsPageAddr(outSec->addr);
768    uint64_t symAddr = getMipsPageAddr(sym.getVA(addend));
769    index = g.pagesMap.lookup(outSec).firstIndex + (symAddr - secAddr) / 0xffff;
770  } else {
771    index = g.local16.lookup({nullptr, getMipsPageAddr(sym.getVA(addend))});
772  }
773  return index * config->wordsize;
774}
775
776uint64_t MipsGotSection::getSymEntryOffset(const InputFile *f, const Symbol &s,
777                                           int64_t addend) const {
778  const FileGot &g = gots[f->mipsGotIndex];
779  Symbol *sym = const_cast<Symbol *>(&s);
780  if (sym->isTls())
781    return g.tls.lookup(sym) * config->wordsize;
782  if (sym->isPreemptible)
783    return g.global.lookup(sym) * config->wordsize;
784  return g.local16.lookup({sym, addend}) * config->wordsize;
785}
786
787uint64_t MipsGotSection::getTlsIndexOffset(const InputFile *f) const {
788  const FileGot &g = gots[f->mipsGotIndex];
789  return g.dynTlsSymbols.lookup(nullptr) * config->wordsize;
790}
791
792uint64_t MipsGotSection::getGlobalDynOffset(const InputFile *f,
793                                            const Symbol &s) const {
794  const FileGot &g = gots[f->mipsGotIndex];
795  Symbol *sym = const_cast<Symbol *>(&s);
796  return g.dynTlsSymbols.lookup(sym) * config->wordsize;
797}
798
799const Symbol *MipsGotSection::getFirstGlobalEntry() const {
800  if (gots.empty())
801    return nullptr;
802  const FileGot &primGot = gots.front();
803  if (!primGot.global.empty())
804    return primGot.global.front().first;
805  if (!primGot.relocs.empty())
806    return primGot.relocs.front().first;
807  return nullptr;
808}
809
810unsigned MipsGotSection::getLocalEntriesNum() const {
811  if (gots.empty())
812    return headerEntriesNum;
813  return headerEntriesNum + gots.front().getPageEntriesNum() +
814         gots.front().local16.size();
815}
816
817bool MipsGotSection::tryMergeGots(FileGot &dst, FileGot &src, bool isPrimary) {
818  FileGot tmp = dst;
819  set_union(tmp.pagesMap, src.pagesMap);
820  set_union(tmp.local16, src.local16);
821  set_union(tmp.global, src.global);
822  set_union(tmp.relocs, src.relocs);
823  set_union(tmp.tls, src.tls);
824  set_union(tmp.dynTlsSymbols, src.dynTlsSymbols);
825
826  size_t count = isPrimary ? headerEntriesNum : 0;
827  count += tmp.getIndexedEntriesNum();
828
829  if (count * config->wordsize > config->mipsGotSize)
830    return false;
831
832  std::swap(tmp, dst);
833  return true;
834}
835
836void MipsGotSection::finalizeContents() { updateAllocSize(); }
837
838bool MipsGotSection::updateAllocSize() {
839  size = headerEntriesNum * config->wordsize;
840  for (const FileGot &g : gots)
841    size += g.getEntriesNum() * config->wordsize;
842  return false;
843}
844
845void MipsGotSection::build() {
846  if (gots.empty())
847    return;
848
849  std::vector<FileGot> mergedGots(1);
850
851  // For each GOT move non-preemptible symbols from the `Global`
852  // to `Local16` list. Preemptible symbol might become non-preemptible
853  // one if, for example, it gets a related copy relocation.
854  for (FileGot &got : gots) {
855    for (auto &p: got.global)
856      if (!p.first->isPreemptible)
857        got.local16.insert({{p.first, 0}, 0});
858    got.global.remove_if([&](const std::pair<Symbol *, size_t> &p) {
859      return !p.first->isPreemptible;
860    });
861  }
862
863  // For each GOT remove "reloc-only" entry if there is "global"
864  // entry for the same symbol. And add local entries which indexed
865  // using 32-bit value at the end of 16-bit entries.
866  for (FileGot &got : gots) {
867    got.relocs.remove_if([&](const std::pair<Symbol *, size_t> &p) {
868      return got.global.count(p.first);
869    });
870    set_union(got.local16, got.local32);
871    got.local32.clear();
872  }
873
874  // Evaluate number of "reloc-only" entries in the resulting GOT.
875  // To do that put all unique "reloc-only" and "global" entries
876  // from all GOTs to the future primary GOT.
877  FileGot *primGot = &mergedGots.front();
878  for (FileGot &got : gots) {
879    set_union(primGot->relocs, got.global);
880    set_union(primGot->relocs, got.relocs);
881    got.relocs.clear();
882  }
883
884  // Evaluate number of "page" entries in each GOT.
885  for (FileGot &got : gots) {
886    for (std::pair<const OutputSection *, FileGot::PageBlock> &p :
887         got.pagesMap) {
888      const OutputSection *os = p.first;
889      uint64_t secSize = 0;
890      for (SectionCommand *cmd : os->commands) {
891        if (auto *isd = dyn_cast<InputSectionDescription>(cmd))
892          for (InputSection *isec : isd->sections) {
893            uint64_t off = alignToPowerOf2(secSize, isec->addralign);
894            secSize = off + isec->getSize();
895          }
896      }
897      p.second.count = getMipsPageCount(secSize);
898    }
899  }
900
901  // Merge GOTs. Try to join as much as possible GOTs but do not exceed
902  // maximum GOT size. At first, try to fill the primary GOT because
903  // the primary GOT can be accessed in the most effective way. If it
904  // is not possible, try to fill the last GOT in the list, and finally
905  // create a new GOT if both attempts failed.
906  for (FileGot &srcGot : gots) {
907    InputFile *file = srcGot.file;
908    if (tryMergeGots(mergedGots.front(), srcGot, true)) {
909      file->mipsGotIndex = 0;
910    } else {
911      // If this is the first time we failed to merge with the primary GOT,
912      // MergedGots.back() will also be the primary GOT. We must make sure not
913      // to try to merge again with isPrimary=false, as otherwise, if the
914      // inputs are just right, we could allow the primary GOT to become 1 or 2
915      // words bigger due to ignoring the header size.
916      if (mergedGots.size() == 1 ||
917          !tryMergeGots(mergedGots.back(), srcGot, false)) {
918        mergedGots.emplace_back();
919        std::swap(mergedGots.back(), srcGot);
920      }
921      file->mipsGotIndex = mergedGots.size() - 1;
922    }
923  }
924  std::swap(gots, mergedGots);
925
926  // Reduce number of "reloc-only" entries in the primary GOT
927  // by subtracting "global" entries in the primary GOT.
928  primGot = &gots.front();
929  primGot->relocs.remove_if([&](const std::pair<Symbol *, size_t> &p) {
930    return primGot->global.count(p.first);
931  });
932
933  // Calculate indexes for each GOT entry.
934  size_t index = headerEntriesNum;
935  for (FileGot &got : gots) {
936    got.startIndex = &got == primGot ? 0 : index;
937    for (std::pair<const OutputSection *, FileGot::PageBlock> &p :
938         got.pagesMap) {
939      // For each output section referenced by GOT page relocations calculate
940      // and save into pagesMap an upper bound of MIPS GOT entries required
941      // to store page addresses of local symbols. We assume the worst case -
942      // each 64kb page of the output section has at least one GOT relocation
943      // against it. And take in account the case when the section intersects
944      // page boundaries.
945      p.second.firstIndex = index;
946      index += p.second.count;
947    }
948    for (auto &p: got.local16)
949      p.second = index++;
950    for (auto &p: got.global)
951      p.second = index++;
952    for (auto &p: got.relocs)
953      p.second = index++;
954    for (auto &p: got.tls)
955      p.second = index++;
956    for (auto &p: got.dynTlsSymbols) {
957      p.second = index;
958      index += 2;
959    }
960  }
961
962  // Update SymbolAux::gotIdx field to use this
963  // value later in the `sortMipsSymbols` function.
964  for (auto &p : primGot->global) {
965    if (p.first->auxIdx == 0)
966      p.first->allocateAux();
967    symAux.back().gotIdx = p.second;
968  }
969  for (auto &p : primGot->relocs) {
970    if (p.first->auxIdx == 0)
971      p.first->allocateAux();
972    symAux.back().gotIdx = p.second;
973  }
974
975  // Create dynamic relocations.
976  for (FileGot &got : gots) {
977    // Create dynamic relocations for TLS entries.
978    for (std::pair<Symbol *, size_t> &p : got.tls) {
979      Symbol *s = p.first;
980      uint64_t offset = p.second * config->wordsize;
981      // When building a shared library we still need a dynamic relocation
982      // for the TP-relative offset as we don't know how much other data will
983      // be allocated before us in the static TLS block.
984      if (s->isPreemptible || config->shared)
985        mainPart->relaDyn->addReloc({target->tlsGotRel, this, offset,
986                                     DynamicReloc::AgainstSymbolWithTargetVA,
987                                     *s, 0, R_ABS});
988    }
989    for (std::pair<Symbol *, size_t> &p : got.dynTlsSymbols) {
990      Symbol *s = p.first;
991      uint64_t offset = p.second * config->wordsize;
992      if (s == nullptr) {
993        if (!config->shared)
994          continue;
995        mainPart->relaDyn->addReloc({target->tlsModuleIndexRel, this, offset});
996      } else {
997        // When building a shared library we still need a dynamic relocation
998        // for the module index. Therefore only checking for
999        // S->isPreemptible is not sufficient (this happens e.g. for
1000        // thread-locals that have been marked as local through a linker script)
1001        if (!s->isPreemptible && !config->shared)
1002          continue;
1003        mainPart->relaDyn->addSymbolReloc(target->tlsModuleIndexRel, *this,
1004                                          offset, *s);
1005        // However, we can skip writing the TLS offset reloc for non-preemptible
1006        // symbols since it is known even in shared libraries
1007        if (!s->isPreemptible)
1008          continue;
1009        offset += config->wordsize;
1010        mainPart->relaDyn->addSymbolReloc(target->tlsOffsetRel, *this, offset,
1011                                          *s);
1012      }
1013    }
1014
1015    // Do not create dynamic relocations for non-TLS
1016    // entries in the primary GOT.
1017    if (&got == primGot)
1018      continue;
1019
1020    // Dynamic relocations for "global" entries.
1021    for (const std::pair<Symbol *, size_t> &p : got.global) {
1022      uint64_t offset = p.second * config->wordsize;
1023      mainPart->relaDyn->addSymbolReloc(target->relativeRel, *this, offset,
1024                                        *p.first);
1025    }
1026    if (!config->isPic)
1027      continue;
1028    // Dynamic relocations for "local" entries in case of PIC.
1029    for (const std::pair<const OutputSection *, FileGot::PageBlock> &l :
1030         got.pagesMap) {
1031      size_t pageCount = l.second.count;
1032      for (size_t pi = 0; pi < pageCount; ++pi) {
1033        uint64_t offset = (l.second.firstIndex + pi) * config->wordsize;
1034        mainPart->relaDyn->addReloc({target->relativeRel, this, offset, l.first,
1035                                     int64_t(pi * 0x10000)});
1036      }
1037    }
1038    for (const std::pair<GotEntry, size_t> &p : got.local16) {
1039      uint64_t offset = p.second * config->wordsize;
1040      mainPart->relaDyn->addReloc({target->relativeRel, this, offset,
1041                                   DynamicReloc::AddendOnlyWithTargetVA,
1042                                   *p.first.first, p.first.second, R_ABS});
1043    }
1044  }
1045}
1046
1047bool MipsGotSection::isNeeded() const {
1048  // We add the .got section to the result for dynamic MIPS target because
1049  // its address and properties are mentioned in the .dynamic section.
1050  return !config->relocatable;
1051}
1052
1053uint64_t MipsGotSection::getGp(const InputFile *f) const {
1054  // For files without related GOT or files refer a primary GOT
1055  // returns "common" _gp value. For secondary GOTs calculate
1056  // individual _gp values.
1057  if (!f || f->mipsGotIndex == uint32_t(-1) || f->mipsGotIndex == 0)
1058    return ElfSym::mipsGp->getVA(0);
1059  return getVA() + gots[f->mipsGotIndex].startIndex * config->wordsize + 0x7ff0;
1060}
1061
1062void MipsGotSection::writeTo(uint8_t *buf) {
1063  // Set the MSB of the second GOT slot. This is not required by any
1064  // MIPS ABI documentation, though.
1065  //
1066  // There is a comment in glibc saying that "The MSB of got[1] of a
1067  // gnu object is set to identify gnu objects," and in GNU gold it
1068  // says "the second entry will be used by some runtime loaders".
1069  // But how this field is being used is unclear.
1070  //
1071  // We are not really willing to mimic other linkers behaviors
1072  // without understanding why they do that, but because all files
1073  // generated by GNU tools have this special GOT value, and because
1074  // we've been doing this for years, it is probably a safe bet to
1075  // keep doing this for now. We really need to revisit this to see
1076  // if we had to do this.
1077  writeUint(buf + config->wordsize, (uint64_t)1 << (config->wordsize * 8 - 1));
1078  for (const FileGot &g : gots) {
1079    auto write = [&](size_t i, const Symbol *s, int64_t a) {
1080      uint64_t va = a;
1081      if (s)
1082        va = s->getVA(a);
1083      writeUint(buf + i * config->wordsize, va);
1084    };
1085    // Write 'page address' entries to the local part of the GOT.
1086    for (const std::pair<const OutputSection *, FileGot::PageBlock> &l :
1087         g.pagesMap) {
1088      size_t pageCount = l.second.count;
1089      uint64_t firstPageAddr = getMipsPageAddr(l.first->addr);
1090      for (size_t pi = 0; pi < pageCount; ++pi)
1091        write(l.second.firstIndex + pi, nullptr, firstPageAddr + pi * 0x10000);
1092    }
1093    // Local, global, TLS, reloc-only  entries.
1094    // If TLS entry has a corresponding dynamic relocations, leave it
1095    // initialized by zero. Write down adjusted TLS symbol's values otherwise.
1096    // To calculate the adjustments use offsets for thread-local storage.
1097    // http://web.archive.org/web/20190324223224/https://www.linux-mips.org/wiki/NPTL
1098    for (const std::pair<GotEntry, size_t> &p : g.local16)
1099      write(p.second, p.first.first, p.first.second);
1100    // Write VA to the primary GOT only. For secondary GOTs that
1101    // will be done by REL32 dynamic relocations.
1102    if (&g == &gots.front())
1103      for (const std::pair<Symbol *, size_t> &p : g.global)
1104        write(p.second, p.first, 0);
1105    for (const std::pair<Symbol *, size_t> &p : g.relocs)
1106      write(p.second, p.first, 0);
1107    for (const std::pair<Symbol *, size_t> &p : g.tls)
1108      write(p.second, p.first,
1109            p.first->isPreemptible || config->shared ? 0 : -0x7000);
1110    for (const std::pair<Symbol *, size_t> &p : g.dynTlsSymbols) {
1111      if (p.first == nullptr && !config->shared)
1112        write(p.second, nullptr, 1);
1113      else if (p.first && !p.first->isPreemptible) {
1114        // If we are emitting a shared library with relocations we mustn't write
1115        // anything to the GOT here. When using Elf_Rel relocations the value
1116        // one will be treated as an addend and will cause crashes at runtime
1117        if (!config->shared)
1118          write(p.second, nullptr, 1);
1119        write(p.second + 1, p.first, -0x8000);
1120      }
1121    }
1122  }
1123}
1124
1125// On PowerPC the .plt section is used to hold the table of function addresses
1126// instead of the .got.plt, and the type is SHT_NOBITS similar to a .bss
1127// section. I don't know why we have a BSS style type for the section but it is
1128// consistent across both 64-bit PowerPC ABIs as well as the 32-bit PowerPC ABI.
1129GotPltSection::GotPltSection()
1130    : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, config->wordsize,
1131                       ".got.plt") {
1132  if (config->emachine == EM_PPC) {
1133    name = ".plt";
1134  } else if (config->emachine == EM_PPC64) {
1135    type = SHT_NOBITS;
1136    name = ".plt";
1137  }
1138}
1139
1140void GotPltSection::addEntry(Symbol &sym) {
1141  assert(sym.auxIdx == symAux.size() - 1 &&
1142         symAux.back().pltIdx == entries.size());
1143  entries.push_back(&sym);
1144}
1145
1146size_t GotPltSection::getSize() const {
1147  return (target->gotPltHeaderEntriesNum + entries.size()) *
1148         target->gotEntrySize;
1149}
1150
1151void GotPltSection::writeTo(uint8_t *buf) {
1152  target->writeGotPltHeader(buf);
1153  buf += target->gotPltHeaderEntriesNum * target->gotEntrySize;
1154  for (const Symbol *b : entries) {
1155    target->writeGotPlt(buf, *b);
1156    buf += target->gotEntrySize;
1157  }
1158}
1159
1160bool GotPltSection::isNeeded() const {
1161  // We need to emit GOTPLT even if it's empty if there's a relocation relative
1162  // to it.
1163  return !entries.empty() || hasGotPltOffRel;
1164}
1165
1166static StringRef getIgotPltName() {
1167  // On ARM the IgotPltSection is part of the GotSection.
1168  if (config->emachine == EM_ARM)
1169    return ".got";
1170
1171  // On PowerPC64 the GotPltSection is renamed to '.plt' so the IgotPltSection
1172  // needs to be named the same.
1173  if (config->emachine == EM_PPC64)
1174    return ".plt";
1175
1176  return ".got.plt";
1177}
1178
1179// On PowerPC64 the GotPltSection type is SHT_NOBITS so we have to follow suit
1180// with the IgotPltSection.
1181IgotPltSection::IgotPltSection()
1182    : SyntheticSection(SHF_ALLOC | SHF_WRITE,
1183                       config->emachine == EM_PPC64 ? SHT_NOBITS : SHT_PROGBITS,
1184                       target->gotEntrySize, getIgotPltName()) {}
1185
1186void IgotPltSection::addEntry(Symbol &sym) {
1187  assert(symAux.back().pltIdx == entries.size());
1188  entries.push_back(&sym);
1189}
1190
1191size_t IgotPltSection::getSize() const {
1192  return entries.size() * target->gotEntrySize;
1193}
1194
1195void IgotPltSection::writeTo(uint8_t *buf) {
1196  for (const Symbol *b : entries) {
1197    target->writeIgotPlt(buf, *b);
1198    buf += target->gotEntrySize;
1199  }
1200}
1201
1202StringTableSection::StringTableSection(StringRef name, bool dynamic)
1203    : SyntheticSection(dynamic ? (uint64_t)SHF_ALLOC : 0, SHT_STRTAB, 1, name),
1204      dynamic(dynamic) {
1205  // ELF string tables start with a NUL byte.
1206  strings.push_back("");
1207  stringMap.try_emplace(CachedHashStringRef(""), 0);
1208  size = 1;
1209}
1210
1211// Adds a string to the string table. If `hashIt` is true we hash and check for
1212// duplicates. It is optional because the name of global symbols are already
1213// uniqued and hashing them again has a big cost for a small value: uniquing
1214// them with some other string that happens to be the same.
1215unsigned StringTableSection::addString(StringRef s, bool hashIt) {
1216  if (hashIt) {
1217    auto r = stringMap.try_emplace(CachedHashStringRef(s), size);
1218    if (!r.second)
1219      return r.first->second;
1220  }
1221  if (s.empty())
1222    return 0;
1223  unsigned ret = this->size;
1224  this->size = this->size + s.size() + 1;
1225  strings.push_back(s);
1226  return ret;
1227}
1228
1229void StringTableSection::writeTo(uint8_t *buf) {
1230  for (StringRef s : strings) {
1231    memcpy(buf, s.data(), s.size());
1232    buf[s.size()] = '\0';
1233    buf += s.size() + 1;
1234  }
1235}
1236
1237// Returns the number of entries in .gnu.version_d: the number of
1238// non-VER_NDX_LOCAL-non-VER_NDX_GLOBAL definitions, plus 1.
1239// Note that we don't support vd_cnt > 1 yet.
1240static unsigned getVerDefNum() {
1241  return namedVersionDefs().size() + 1;
1242}
1243
1244template <class ELFT>
1245DynamicSection<ELFT>::DynamicSection()
1246    : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_DYNAMIC, config->wordsize,
1247                       ".dynamic") {
1248  this->entsize = ELFT::Is64Bits ? 16 : 8;
1249
1250  // .dynamic section is not writable on MIPS and on Fuchsia OS
1251  // which passes -z rodynamic.
1252  // See "Special Section" in Chapter 4 in the following document:
1253  // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
1254  if (config->emachine == EM_MIPS || config->zRodynamic)
1255    this->flags = SHF_ALLOC;
1256}
1257
1258// The output section .rela.dyn may include these synthetic sections:
1259//
1260// - part.relaDyn
1261// - in.relaIplt: this is included if in.relaIplt is named .rela.dyn
1262// - in.relaPlt: this is included if a linker script places .rela.plt inside
1263//   .rela.dyn
1264//
1265// DT_RELASZ is the total size of the included sections.
1266static uint64_t addRelaSz(const RelocationBaseSection &relaDyn) {
1267  size_t size = relaDyn.getSize();
1268  if (in.relaIplt->getParent() == relaDyn.getParent())
1269    size += in.relaIplt->getSize();
1270  if (in.relaPlt->getParent() == relaDyn.getParent())
1271    size += in.relaPlt->getSize();
1272  return size;
1273}
1274
1275// A Linker script may assign the RELA relocation sections to the same
1276// output section. When this occurs we cannot just use the OutputSection
1277// Size. Moreover the [DT_JMPREL, DT_JMPREL + DT_PLTRELSZ) is permitted to
1278// overlap with the [DT_RELA, DT_RELA + DT_RELASZ).
1279static uint64_t addPltRelSz() {
1280  size_t size = in.relaPlt->getSize();
1281  if (in.relaIplt->getParent() == in.relaPlt->getParent() &&
1282      in.relaIplt->name == in.relaPlt->name)
1283    size += in.relaIplt->getSize();
1284  return size;
1285}
1286
1287// Add remaining entries to complete .dynamic contents.
1288template <class ELFT>
1289std::vector<std::pair<int32_t, uint64_t>>
1290DynamicSection<ELFT>::computeContents() {
1291  elf::Partition &part = getPartition();
1292  bool isMain = part.name.empty();
1293  std::vector<std::pair<int32_t, uint64_t>> entries;
1294
1295  auto addInt = [&](int32_t tag, uint64_t val) {
1296    entries.emplace_back(tag, val);
1297  };
1298  auto addInSec = [&](int32_t tag, const InputSection &sec) {
1299    entries.emplace_back(tag, sec.getVA());
1300  };
1301
1302  for (StringRef s : config->filterList)
1303    addInt(DT_FILTER, part.dynStrTab->addString(s));
1304  for (StringRef s : config->auxiliaryList)
1305    addInt(DT_AUXILIARY, part.dynStrTab->addString(s));
1306
1307  if (!config->rpath.empty())
1308    addInt(config->enableNewDtags ? DT_RUNPATH : DT_RPATH,
1309           part.dynStrTab->addString(config->rpath));
1310
1311  for (SharedFile *file : ctx.sharedFiles)
1312    if (file->isNeeded)
1313      addInt(DT_NEEDED, part.dynStrTab->addString(file->soName));
1314
1315  if (isMain) {
1316    if (!config->soName.empty())
1317      addInt(DT_SONAME, part.dynStrTab->addString(config->soName));
1318  } else {
1319    if (!config->soName.empty())
1320      addInt(DT_NEEDED, part.dynStrTab->addString(config->soName));
1321    addInt(DT_SONAME, part.dynStrTab->addString(part.name));
1322  }
1323
1324  // Set DT_FLAGS and DT_FLAGS_1.
1325  uint32_t dtFlags = 0;
1326  uint32_t dtFlags1 = 0;
1327  if (config->bsymbolic == BsymbolicKind::All)
1328    dtFlags |= DF_SYMBOLIC;
1329  if (config->zGlobal)
1330    dtFlags1 |= DF_1_GLOBAL;
1331  if (config->zInitfirst)
1332    dtFlags1 |= DF_1_INITFIRST;
1333  if (config->zInterpose)
1334    dtFlags1 |= DF_1_INTERPOSE;
1335  if (config->zNodefaultlib)
1336    dtFlags1 |= DF_1_NODEFLIB;
1337  if (config->zNodelete)
1338    dtFlags1 |= DF_1_NODELETE;
1339  if (config->zNodlopen)
1340    dtFlags1 |= DF_1_NOOPEN;
1341  if (config->pie)
1342    dtFlags1 |= DF_1_PIE;
1343  if (config->zNow) {
1344    dtFlags |= DF_BIND_NOW;
1345    dtFlags1 |= DF_1_NOW;
1346  }
1347  if (config->zOrigin) {
1348    dtFlags |= DF_ORIGIN;
1349    dtFlags1 |= DF_1_ORIGIN;
1350  }
1351  if (!config->zText)
1352    dtFlags |= DF_TEXTREL;
1353  if (ctx.hasTlsIe && config->shared)
1354    dtFlags |= DF_STATIC_TLS;
1355
1356  if (dtFlags)
1357    addInt(DT_FLAGS, dtFlags);
1358  if (dtFlags1)
1359    addInt(DT_FLAGS_1, dtFlags1);
1360
1361  // DT_DEBUG is a pointer to debug information used by debuggers at runtime. We
1362  // need it for each process, so we don't write it for DSOs. The loader writes
1363  // the pointer into this entry.
1364  //
1365  // DT_DEBUG is the only .dynamic entry that needs to be written to. Some
1366  // systems (currently only Fuchsia OS) provide other means to give the
1367  // debugger this information. Such systems may choose make .dynamic read-only.
1368  // If the target is such a system (used -z rodynamic) don't write DT_DEBUG.
1369  if (!config->shared && !config->relocatable && !config->zRodynamic)
1370    addInt(DT_DEBUG, 0);
1371
1372  if (part.relaDyn->isNeeded() ||
1373      (in.relaIplt->isNeeded() &&
1374       part.relaDyn->getParent() == in.relaIplt->getParent())) {
1375    addInSec(part.relaDyn->dynamicTag, *part.relaDyn);
1376    entries.emplace_back(part.relaDyn->sizeDynamicTag,
1377                         addRelaSz(*part.relaDyn));
1378
1379    bool isRela = config->isRela;
1380    addInt(isRela ? DT_RELAENT : DT_RELENT,
1381           isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel));
1382
1383    // MIPS dynamic loader does not support RELCOUNT tag.
1384    // The problem is in the tight relation between dynamic
1385    // relocations and GOT. So do not emit this tag on MIPS.
1386    if (config->emachine != EM_MIPS) {
1387      size_t numRelativeRels = part.relaDyn->getRelativeRelocCount();
1388      if (config->zCombreloc && numRelativeRels)
1389        addInt(isRela ? DT_RELACOUNT : DT_RELCOUNT, numRelativeRels);
1390    }
1391  }
1392  if (part.relrDyn && part.relrDyn->getParent() &&
1393      !part.relrDyn->relocs.empty()) {
1394    addInSec(config->useAndroidRelrTags ? DT_ANDROID_RELR : DT_RELR,
1395             *part.relrDyn);
1396    addInt(config->useAndroidRelrTags ? DT_ANDROID_RELRSZ : DT_RELRSZ,
1397           part.relrDyn->getParent()->size);
1398    addInt(config->useAndroidRelrTags ? DT_ANDROID_RELRENT : DT_RELRENT,
1399           sizeof(Elf_Relr));
1400  }
1401  // .rel[a].plt section usually consists of two parts, containing plt and
1402  // iplt relocations. It is possible to have only iplt relocations in the
1403  // output. In that case relaPlt is empty and have zero offset, the same offset
1404  // as relaIplt has. And we still want to emit proper dynamic tags for that
1405  // case, so here we always use relaPlt as marker for the beginning of
1406  // .rel[a].plt section.
1407  if (isMain && (in.relaPlt->isNeeded() || in.relaIplt->isNeeded())) {
1408    addInSec(DT_JMPREL, *in.relaPlt);
1409    entries.emplace_back(DT_PLTRELSZ, addPltRelSz());
1410    switch (config->emachine) {
1411    case EM_MIPS:
1412      addInSec(DT_MIPS_PLTGOT, *in.gotPlt);
1413      break;
1414    case EM_SPARCV9:
1415      addInSec(DT_PLTGOT, *in.plt);
1416      break;
1417    case EM_AARCH64:
1418      if (llvm::find_if(in.relaPlt->relocs, [](const DynamicReloc &r) {
1419           return r.type == target->pltRel &&
1420                  r.sym->stOther & STO_AARCH64_VARIANT_PCS;
1421          }) != in.relaPlt->relocs.end())
1422        addInt(DT_AARCH64_VARIANT_PCS, 0);
1423      addInSec(DT_PLTGOT, *in.gotPlt);
1424      break;
1425    case EM_RISCV:
1426      if (llvm::any_of(in.relaPlt->relocs, [](const DynamicReloc &r) {
1427            return r.type == target->pltRel &&
1428                   (r.sym->stOther & STO_RISCV_VARIANT_CC);
1429          }))
1430        addInt(DT_RISCV_VARIANT_CC, 0);
1431      [[fallthrough]];
1432    default:
1433      addInSec(DT_PLTGOT, *in.gotPlt);
1434      break;
1435    }
1436    addInt(DT_PLTREL, config->isRela ? DT_RELA : DT_REL);
1437  }
1438
1439  if (config->emachine == EM_AARCH64) {
1440    if (config->andFeatures & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
1441      addInt(DT_AARCH64_BTI_PLT, 0);
1442    if (config->zPacPlt)
1443      addInt(DT_AARCH64_PAC_PLT, 0);
1444  }
1445
1446  addInSec(DT_SYMTAB, *part.dynSymTab);
1447  addInt(DT_SYMENT, sizeof(Elf_Sym));
1448  addInSec(DT_STRTAB, *part.dynStrTab);
1449  addInt(DT_STRSZ, part.dynStrTab->getSize());
1450  if (!config->zText)
1451    addInt(DT_TEXTREL, 0);
1452  if (part.gnuHashTab && part.gnuHashTab->getParent())
1453    addInSec(DT_GNU_HASH, *part.gnuHashTab);
1454  if (part.hashTab && part.hashTab->getParent())
1455    addInSec(DT_HASH, *part.hashTab);
1456
1457  if (isMain) {
1458    if (Out::preinitArray) {
1459      addInt(DT_PREINIT_ARRAY, Out::preinitArray->addr);
1460      addInt(DT_PREINIT_ARRAYSZ, Out::preinitArray->size);
1461    }
1462    if (Out::initArray) {
1463      addInt(DT_INIT_ARRAY, Out::initArray->addr);
1464      addInt(DT_INIT_ARRAYSZ, Out::initArray->size);
1465    }
1466    if (Out::finiArray) {
1467      addInt(DT_FINI_ARRAY, Out::finiArray->addr);
1468      addInt(DT_FINI_ARRAYSZ, Out::finiArray->size);
1469    }
1470
1471    if (Symbol *b = symtab.find(config->init))
1472      if (b->isDefined())
1473        addInt(DT_INIT, b->getVA());
1474    if (Symbol *b = symtab.find(config->fini))
1475      if (b->isDefined())
1476        addInt(DT_FINI, b->getVA());
1477  }
1478
1479  if (part.verSym && part.verSym->isNeeded())
1480    addInSec(DT_VERSYM, *part.verSym);
1481  if (part.verDef && part.verDef->isLive()) {
1482    addInSec(DT_VERDEF, *part.verDef);
1483    addInt(DT_VERDEFNUM, getVerDefNum());
1484  }
1485  if (part.verNeed && part.verNeed->isNeeded()) {
1486    addInSec(DT_VERNEED, *part.verNeed);
1487    unsigned needNum = 0;
1488    for (SharedFile *f : ctx.sharedFiles)
1489      if (!f->vernauxs.empty())
1490        ++needNum;
1491    addInt(DT_VERNEEDNUM, needNum);
1492  }
1493
1494  if (config->emachine == EM_MIPS) {
1495    addInt(DT_MIPS_RLD_VERSION, 1);
1496    addInt(DT_MIPS_FLAGS, RHF_NOTPOT);
1497    addInt(DT_MIPS_BASE_ADDRESS, target->getImageBase());
1498    addInt(DT_MIPS_SYMTABNO, part.dynSymTab->getNumSymbols());
1499    addInt(DT_MIPS_LOCAL_GOTNO, in.mipsGot->getLocalEntriesNum());
1500
1501    if (const Symbol *b = in.mipsGot->getFirstGlobalEntry())
1502      addInt(DT_MIPS_GOTSYM, b->dynsymIndex);
1503    else
1504      addInt(DT_MIPS_GOTSYM, part.dynSymTab->getNumSymbols());
1505    addInSec(DT_PLTGOT, *in.mipsGot);
1506    if (in.mipsRldMap) {
1507      if (!config->pie)
1508        addInSec(DT_MIPS_RLD_MAP, *in.mipsRldMap);
1509      // Store the offset to the .rld_map section
1510      // relative to the address of the tag.
1511      addInt(DT_MIPS_RLD_MAP_REL,
1512             in.mipsRldMap->getVA() - (getVA() + entries.size() * entsize));
1513    }
1514  }
1515
1516  // DT_PPC_GOT indicates to glibc Secure PLT is used. If DT_PPC_GOT is absent,
1517  // glibc assumes the old-style BSS PLT layout which we don't support.
1518  if (config->emachine == EM_PPC)
1519    addInSec(DT_PPC_GOT, *in.got);
1520
1521  // Glink dynamic tag is required by the V2 abi if the plt section isn't empty.
1522  if (config->emachine == EM_PPC64 && in.plt->isNeeded()) {
1523    // The Glink tag points to 32 bytes before the first lazy symbol resolution
1524    // stub, which starts directly after the header.
1525    addInt(DT_PPC64_GLINK, in.plt->getVA() + target->pltHeaderSize - 32);
1526  }
1527
1528  addInt(DT_NULL, 0);
1529  return entries;
1530}
1531
1532template <class ELFT> void DynamicSection<ELFT>::finalizeContents() {
1533  if (OutputSection *sec = getPartition().dynStrTab->getParent())
1534    getParent()->link = sec->sectionIndex;
1535  this->size = computeContents().size() * this->entsize;
1536}
1537
1538template <class ELFT> void DynamicSection<ELFT>::writeTo(uint8_t *buf) {
1539  auto *p = reinterpret_cast<Elf_Dyn *>(buf);
1540
1541  for (std::pair<int32_t, uint64_t> kv : computeContents()) {
1542    p->d_tag = kv.first;
1543    p->d_un.d_val = kv.second;
1544    ++p;
1545  }
1546}
1547
1548uint64_t DynamicReloc::getOffset() const {
1549  return inputSec->getVA(offsetInSec);
1550}
1551
1552int64_t DynamicReloc::computeAddend() const {
1553  switch (kind) {
1554  case AddendOnly:
1555    assert(sym == nullptr);
1556    return addend;
1557  case AgainstSymbol:
1558    assert(sym != nullptr);
1559    return addend;
1560  case AddendOnlyWithTargetVA:
1561  case AgainstSymbolWithTargetVA:
1562    return InputSection::getRelocTargetVA(inputSec->file, type, addend,
1563                                          getOffset(), *sym, expr);
1564  case MipsMultiGotPage:
1565    assert(sym == nullptr);
1566    return getMipsPageAddr(outputSec->addr) + addend;
1567  }
1568  llvm_unreachable("Unknown DynamicReloc::Kind enum");
1569}
1570
1571uint32_t DynamicReloc::getSymIndex(SymbolTableBaseSection *symTab) const {
1572  if (!needsDynSymIndex())
1573    return 0;
1574
1575  size_t index = symTab->getSymbolIndex(sym);
1576  assert((index != 0 || (type != target->gotRel && type != target->pltRel) ||
1577          !mainPart->dynSymTab->getParent()) &&
1578         "GOT or PLT relocation must refer to symbol in dynamic symbol table");
1579  return index;
1580}
1581
1582RelocationBaseSection::RelocationBaseSection(StringRef name, uint32_t type,
1583                                             int32_t dynamicTag,
1584                                             int32_t sizeDynamicTag,
1585                                             bool combreloc,
1586                                             unsigned concurrency)
1587    : SyntheticSection(SHF_ALLOC, type, config->wordsize, name),
1588      dynamicTag(dynamicTag), sizeDynamicTag(sizeDynamicTag),
1589      relocsVec(concurrency), combreloc(combreloc) {}
1590
1591void RelocationBaseSection::addSymbolReloc(
1592    RelType dynType, InputSectionBase &isec, uint64_t offsetInSec, Symbol &sym,
1593    int64_t addend, std::optional<RelType> addendRelType) {
1594  addReloc(DynamicReloc::AgainstSymbol, dynType, isec, offsetInSec, sym, addend,
1595           R_ADDEND, addendRelType ? *addendRelType : target->noneRel);
1596}
1597
1598void RelocationBaseSection::addAddendOnlyRelocIfNonPreemptible(
1599    RelType dynType, GotSection &sec, uint64_t offsetInSec, Symbol &sym,
1600    RelType addendRelType) {
1601  // No need to write an addend to the section for preemptible symbols.
1602  if (sym.isPreemptible)
1603    addReloc({dynType, &sec, offsetInSec, DynamicReloc::AgainstSymbol, sym, 0,
1604              R_ABS});
1605  else
1606    addReloc(DynamicReloc::AddendOnlyWithTargetVA, dynType, sec, offsetInSec,
1607             sym, 0, R_ABS, addendRelType);
1608}
1609
1610void RelocationBaseSection::mergeRels() {
1611  size_t newSize = relocs.size();
1612  for (const auto &v : relocsVec)
1613    newSize += v.size();
1614  relocs.reserve(newSize);
1615  for (const auto &v : relocsVec)
1616    llvm::append_range(relocs, v);
1617  relocsVec.clear();
1618}
1619
1620void RelocationBaseSection::partitionRels() {
1621  if (!combreloc)
1622    return;
1623  const RelType relativeRel = target->relativeRel;
1624  numRelativeRelocs =
1625      llvm::partition(relocs, [=](auto &r) { return r.type == relativeRel; }) -
1626      relocs.begin();
1627}
1628
1629void RelocationBaseSection::finalizeContents() {
1630  SymbolTableBaseSection *symTab = getPartition().dynSymTab.get();
1631
1632  // When linking glibc statically, .rel{,a}.plt contains R_*_IRELATIVE
1633  // relocations due to IFUNC (e.g. strcpy). sh_link will be set to 0 in that
1634  // case.
1635  if (symTab && symTab->getParent())
1636    getParent()->link = symTab->getParent()->sectionIndex;
1637  else
1638    getParent()->link = 0;
1639
1640  if (in.relaPlt.get() == this && in.gotPlt->getParent()) {
1641    getParent()->flags |= ELF::SHF_INFO_LINK;
1642    getParent()->info = in.gotPlt->getParent()->sectionIndex;
1643  }
1644  if (in.relaIplt.get() == this && in.igotPlt->getParent()) {
1645    getParent()->flags |= ELF::SHF_INFO_LINK;
1646    getParent()->info = in.igotPlt->getParent()->sectionIndex;
1647  }
1648}
1649
1650void DynamicReloc::computeRaw(SymbolTableBaseSection *symtab) {
1651  r_offset = getOffset();
1652  r_sym = getSymIndex(symtab);
1653  addend = computeAddend();
1654  kind = AddendOnly; // Catch errors
1655}
1656
1657void RelocationBaseSection::computeRels() {
1658  SymbolTableBaseSection *symTab = getPartition().dynSymTab.get();
1659  parallelForEach(relocs,
1660                  [symTab](DynamicReloc &rel) { rel.computeRaw(symTab); });
1661  // Sort by (!IsRelative,SymIndex,r_offset). DT_REL[A]COUNT requires us to
1662  // place R_*_RELATIVE first. SymIndex is to improve locality, while r_offset
1663  // is to make results easier to read.
1664  if (combreloc) {
1665    auto nonRelative = relocs.begin() + numRelativeRelocs;
1666    parallelSort(relocs.begin(), nonRelative,
1667                 [&](auto &a, auto &b) { return a.r_offset < b.r_offset; });
1668    // Non-relative relocations are few, so don't bother with parallelSort.
1669    llvm::sort(nonRelative, relocs.end(), [&](auto &a, auto &b) {
1670      return std::tie(a.r_sym, a.r_offset) < std::tie(b.r_sym, b.r_offset);
1671    });
1672  }
1673}
1674
1675template <class ELFT>
1676RelocationSection<ELFT>::RelocationSection(StringRef name, bool combreloc,
1677                                           unsigned concurrency)
1678    : RelocationBaseSection(name, config->isRela ? SHT_RELA : SHT_REL,
1679                            config->isRela ? DT_RELA : DT_REL,
1680                            config->isRela ? DT_RELASZ : DT_RELSZ, combreloc,
1681                            concurrency) {
1682  this->entsize = config->isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel);
1683}
1684
1685template <class ELFT> void RelocationSection<ELFT>::writeTo(uint8_t *buf) {
1686  computeRels();
1687  for (const DynamicReloc &rel : relocs) {
1688    auto *p = reinterpret_cast<Elf_Rela *>(buf);
1689    p->r_offset = rel.r_offset;
1690    p->setSymbolAndType(rel.r_sym, rel.type, config->isMips64EL);
1691    if (config->isRela)
1692      p->r_addend = rel.addend;
1693    buf += config->isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel);
1694  }
1695}
1696
1697RelrBaseSection::RelrBaseSection(unsigned concurrency)
1698    : SyntheticSection(SHF_ALLOC,
1699                       config->useAndroidRelrTags ? SHT_ANDROID_RELR : SHT_RELR,
1700                       config->wordsize, ".relr.dyn"),
1701      relocsVec(concurrency) {}
1702
1703void RelrBaseSection::mergeRels() {
1704  size_t newSize = relocs.size();
1705  for (const auto &v : relocsVec)
1706    newSize += v.size();
1707  relocs.reserve(newSize);
1708  for (const auto &v : relocsVec)
1709    llvm::append_range(relocs, v);
1710  relocsVec.clear();
1711}
1712
1713template <class ELFT>
1714AndroidPackedRelocationSection<ELFT>::AndroidPackedRelocationSection(
1715    StringRef name, unsigned concurrency)
1716    : RelocationBaseSection(
1717          name, config->isRela ? SHT_ANDROID_RELA : SHT_ANDROID_REL,
1718          config->isRela ? DT_ANDROID_RELA : DT_ANDROID_REL,
1719          config->isRela ? DT_ANDROID_RELASZ : DT_ANDROID_RELSZ,
1720          /*combreloc=*/false, concurrency) {
1721  this->entsize = 1;
1722}
1723
1724template <class ELFT>
1725bool AndroidPackedRelocationSection<ELFT>::updateAllocSize() {
1726  // This function computes the contents of an Android-format packed relocation
1727  // section.
1728  //
1729  // This format compresses relocations by using relocation groups to factor out
1730  // fields that are common between relocations and storing deltas from previous
1731  // relocations in SLEB128 format (which has a short representation for small
1732  // numbers). A good example of a relocation type with common fields is
1733  // R_*_RELATIVE, which is normally used to represent function pointers in
1734  // vtables. In the REL format, each relative relocation has the same r_info
1735  // field, and is only different from other relative relocations in terms of
1736  // the r_offset field. By sorting relocations by offset, grouping them by
1737  // r_info and representing each relocation with only the delta from the
1738  // previous offset, each 8-byte relocation can be compressed to as little as 1
1739  // byte (or less with run-length encoding). This relocation packer was able to
1740  // reduce the size of the relocation section in an Android Chromium DSO from
1741  // 2,911,184 bytes to 174,693 bytes, or 6% of the original size.
1742  //
1743  // A relocation section consists of a header containing the literal bytes
1744  // 'APS2' followed by a sequence of SLEB128-encoded integers. The first two
1745  // elements are the total number of relocations in the section and an initial
1746  // r_offset value. The remaining elements define a sequence of relocation
1747  // groups. Each relocation group starts with a header consisting of the
1748  // following elements:
1749  //
1750  // - the number of relocations in the relocation group
1751  // - flags for the relocation group
1752  // - (if RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG is set) the r_offset delta
1753  //   for each relocation in the group.
1754  // - (if RELOCATION_GROUPED_BY_INFO_FLAG is set) the value of the r_info
1755  //   field for each relocation in the group.
1756  // - (if RELOCATION_GROUP_HAS_ADDEND_FLAG and
1757  //   RELOCATION_GROUPED_BY_ADDEND_FLAG are set) the r_addend delta for
1758  //   each relocation in the group.
1759  //
1760  // Following the relocation group header are descriptions of each of the
1761  // relocations in the group. They consist of the following elements:
1762  //
1763  // - (if RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG is not set) the r_offset
1764  //   delta for this relocation.
1765  // - (if RELOCATION_GROUPED_BY_INFO_FLAG is not set) the value of the r_info
1766  //   field for this relocation.
1767  // - (if RELOCATION_GROUP_HAS_ADDEND_FLAG is set and
1768  //   RELOCATION_GROUPED_BY_ADDEND_FLAG is not set) the r_addend delta for
1769  //   this relocation.
1770
1771  size_t oldSize = relocData.size();
1772
1773  relocData = {'A', 'P', 'S', '2'};
1774  raw_svector_ostream os(relocData);
1775  auto add = [&](int64_t v) { encodeSLEB128(v, os); };
1776
1777  // The format header includes the number of relocations and the initial
1778  // offset (we set this to zero because the first relocation group will
1779  // perform the initial adjustment).
1780  add(relocs.size());
1781  add(0);
1782
1783  std::vector<Elf_Rela> relatives, nonRelatives;
1784
1785  for (const DynamicReloc &rel : relocs) {
1786    Elf_Rela r;
1787    r.r_offset = rel.getOffset();
1788    r.setSymbolAndType(rel.getSymIndex(getPartition().dynSymTab.get()),
1789                       rel.type, false);
1790    r.r_addend = config->isRela ? rel.computeAddend() : 0;
1791
1792    if (r.getType(config->isMips64EL) == target->relativeRel)
1793      relatives.push_back(r);
1794    else
1795      nonRelatives.push_back(r);
1796  }
1797
1798  llvm::sort(relatives, [](const Elf_Rel &a, const Elf_Rel &b) {
1799    return a.r_offset < b.r_offset;
1800  });
1801
1802  // Try to find groups of relative relocations which are spaced one word
1803  // apart from one another. These generally correspond to vtable entries. The
1804  // format allows these groups to be encoded using a sort of run-length
1805  // encoding, but each group will cost 7 bytes in addition to the offset from
1806  // the previous group, so it is only profitable to do this for groups of
1807  // size 8 or larger.
1808  std::vector<Elf_Rela> ungroupedRelatives;
1809  std::vector<std::vector<Elf_Rela>> relativeGroups;
1810  for (auto i = relatives.begin(), e = relatives.end(); i != e;) {
1811    std::vector<Elf_Rela> group;
1812    do {
1813      group.push_back(*i++);
1814    } while (i != e && (i - 1)->r_offset + config->wordsize == i->r_offset);
1815
1816    if (group.size() < 8)
1817      ungroupedRelatives.insert(ungroupedRelatives.end(), group.begin(),
1818                                group.end());
1819    else
1820      relativeGroups.emplace_back(std::move(group));
1821  }
1822
1823  // For non-relative relocations, we would like to:
1824  //   1. Have relocations with the same symbol offset to be consecutive, so
1825  //      that the runtime linker can speed-up symbol lookup by implementing an
1826  //      1-entry cache.
1827  //   2. Group relocations by r_info to reduce the size of the relocation
1828  //      section.
1829  // Since the symbol offset is the high bits in r_info, sorting by r_info
1830  // allows us to do both.
1831  //
1832  // For Rela, we also want to sort by r_addend when r_info is the same. This
1833  // enables us to group by r_addend as well.
1834  llvm::sort(nonRelatives, [](const Elf_Rela &a, const Elf_Rela &b) {
1835    if (a.r_info != b.r_info)
1836      return a.r_info < b.r_info;
1837    if (a.r_addend != b.r_addend)
1838      return a.r_addend < b.r_addend;
1839    return a.r_offset < b.r_offset;
1840  });
1841
1842  // Group relocations with the same r_info. Note that each group emits a group
1843  // header and that may make the relocation section larger. It is hard to
1844  // estimate the size of a group header as the encoded size of that varies
1845  // based on r_info. However, we can approximate this trade-off by the number
1846  // of values encoded. Each group header contains 3 values, and each relocation
1847  // in a group encodes one less value, as compared to when it is not grouped.
1848  // Therefore, we only group relocations if there are 3 or more of them with
1849  // the same r_info.
1850  //
1851  // For Rela, the addend for most non-relative relocations is zero, and thus we
1852  // can usually get a smaller relocation section if we group relocations with 0
1853  // addend as well.
1854  std::vector<Elf_Rela> ungroupedNonRelatives;
1855  std::vector<std::vector<Elf_Rela>> nonRelativeGroups;
1856  for (auto i = nonRelatives.begin(), e = nonRelatives.end(); i != e;) {
1857    auto j = i + 1;
1858    while (j != e && i->r_info == j->r_info &&
1859           (!config->isRela || i->r_addend == j->r_addend))
1860      ++j;
1861    if (j - i < 3 || (config->isRela && i->r_addend != 0))
1862      ungroupedNonRelatives.insert(ungroupedNonRelatives.end(), i, j);
1863    else
1864      nonRelativeGroups.emplace_back(i, j);
1865    i = j;
1866  }
1867
1868  // Sort ungrouped relocations by offset to minimize the encoded length.
1869  llvm::sort(ungroupedNonRelatives, [](const Elf_Rela &a, const Elf_Rela &b) {
1870    return a.r_offset < b.r_offset;
1871  });
1872
1873  unsigned hasAddendIfRela =
1874      config->isRela ? RELOCATION_GROUP_HAS_ADDEND_FLAG : 0;
1875
1876  uint64_t offset = 0;
1877  uint64_t addend = 0;
1878
1879  // Emit the run-length encoding for the groups of adjacent relative
1880  // relocations. Each group is represented using two groups in the packed
1881  // format. The first is used to set the current offset to the start of the
1882  // group (and also encodes the first relocation), and the second encodes the
1883  // remaining relocations.
1884  for (std::vector<Elf_Rela> &g : relativeGroups) {
1885    // The first relocation in the group.
1886    add(1);
1887    add(RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG |
1888        RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela);
1889    add(g[0].r_offset - offset);
1890    add(target->relativeRel);
1891    if (config->isRela) {
1892      add(g[0].r_addend - addend);
1893      addend = g[0].r_addend;
1894    }
1895
1896    // The remaining relocations.
1897    add(g.size() - 1);
1898    add(RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG |
1899        RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela);
1900    add(config->wordsize);
1901    add(target->relativeRel);
1902    if (config->isRela) {
1903      for (const auto &i : llvm::drop_begin(g)) {
1904        add(i.r_addend - addend);
1905        addend = i.r_addend;
1906      }
1907    }
1908
1909    offset = g.back().r_offset;
1910  }
1911
1912  // Now the ungrouped relatives.
1913  if (!ungroupedRelatives.empty()) {
1914    add(ungroupedRelatives.size());
1915    add(RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela);
1916    add(target->relativeRel);
1917    for (Elf_Rela &r : ungroupedRelatives) {
1918      add(r.r_offset - offset);
1919      offset = r.r_offset;
1920      if (config->isRela) {
1921        add(r.r_addend - addend);
1922        addend = r.r_addend;
1923      }
1924    }
1925  }
1926
1927  // Grouped non-relatives.
1928  for (ArrayRef<Elf_Rela> g : nonRelativeGroups) {
1929    add(g.size());
1930    add(RELOCATION_GROUPED_BY_INFO_FLAG);
1931    add(g[0].r_info);
1932    for (const Elf_Rela &r : g) {
1933      add(r.r_offset - offset);
1934      offset = r.r_offset;
1935    }
1936    addend = 0;
1937  }
1938
1939  // Finally the ungrouped non-relative relocations.
1940  if (!ungroupedNonRelatives.empty()) {
1941    add(ungroupedNonRelatives.size());
1942    add(hasAddendIfRela);
1943    for (Elf_Rela &r : ungroupedNonRelatives) {
1944      add(r.r_offset - offset);
1945      offset = r.r_offset;
1946      add(r.r_info);
1947      if (config->isRela) {
1948        add(r.r_addend - addend);
1949        addend = r.r_addend;
1950      }
1951    }
1952  }
1953
1954  // Don't allow the section to shrink; otherwise the size of the section can
1955  // oscillate infinitely.
1956  if (relocData.size() < oldSize)
1957    relocData.append(oldSize - relocData.size(), 0);
1958
1959  // Returns whether the section size changed. We need to keep recomputing both
1960  // section layout and the contents of this section until the size converges
1961  // because changing this section's size can affect section layout, which in
1962  // turn can affect the sizes of the LEB-encoded integers stored in this
1963  // section.
1964  return relocData.size() != oldSize;
1965}
1966
1967template <class ELFT>
1968RelrSection<ELFT>::RelrSection(unsigned concurrency)
1969    : RelrBaseSection(concurrency) {
1970  this->entsize = config->wordsize;
1971}
1972
1973template <class ELFT> bool RelrSection<ELFT>::updateAllocSize() {
1974  // This function computes the contents of an SHT_RELR packed relocation
1975  // section.
1976  //
1977  // Proposal for adding SHT_RELR sections to generic-abi is here:
1978  //   https://groups.google.com/forum/#!topic/generic-abi/bX460iggiKg
1979  //
1980  // The encoded sequence of Elf64_Relr entries in a SHT_RELR section looks
1981  // like [ AAAAAAAA BBBBBBB1 BBBBBBB1 ... AAAAAAAA BBBBBB1 ... ]
1982  //
1983  // i.e. start with an address, followed by any number of bitmaps. The address
1984  // entry encodes 1 relocation. The subsequent bitmap entries encode up to 63
1985  // relocations each, at subsequent offsets following the last address entry.
1986  //
1987  // The bitmap entries must have 1 in the least significant bit. The assumption
1988  // here is that an address cannot have 1 in lsb. Odd addresses are not
1989  // supported.
1990  //
1991  // Excluding the least significant bit in the bitmap, each non-zero bit in
1992  // the bitmap represents a relocation to be applied to a corresponding machine
1993  // word that follows the base address word. The second least significant bit
1994  // represents the machine word immediately following the initial address, and
1995  // each bit that follows represents the next word, in linear order. As such,
1996  // a single bitmap can encode up to 31 relocations in a 32-bit object, and
1997  // 63 relocations in a 64-bit object.
1998  //
1999  // This encoding has a couple of interesting properties:
2000  // 1. Looking at any entry, it is clear whether it's an address or a bitmap:
2001  //    even means address, odd means bitmap.
2002  // 2. Just a simple list of addresses is a valid encoding.
2003
2004  size_t oldSize = relrRelocs.size();
2005  relrRelocs.clear();
2006
2007  // Same as Config->Wordsize but faster because this is a compile-time
2008  // constant.
2009  const size_t wordsize = sizeof(typename ELFT::uint);
2010
2011  // Number of bits to use for the relocation offsets bitmap.
2012  // Must be either 63 or 31.
2013  const size_t nBits = wordsize * 8 - 1;
2014
2015  // Get offsets for all relative relocations and sort them.
2016  std::unique_ptr<uint64_t[]> offsets(new uint64_t[relocs.size()]);
2017  for (auto [i, r] : llvm::enumerate(relocs))
2018    offsets[i] = r.getOffset();
2019  llvm::sort(offsets.get(), offsets.get() + relocs.size());
2020
2021  // For each leading relocation, find following ones that can be folded
2022  // as a bitmap and fold them.
2023  for (size_t i = 0, e = relocs.size(); i != e;) {
2024    // Add a leading relocation.
2025    relrRelocs.push_back(Elf_Relr(offsets[i]));
2026    uint64_t base = offsets[i] + wordsize;
2027    ++i;
2028
2029    // Find foldable relocations to construct bitmaps.
2030    for (;;) {
2031      uint64_t bitmap = 0;
2032      for (; i != e; ++i) {
2033        uint64_t d = offsets[i] - base;
2034        if (d >= nBits * wordsize || d % wordsize)
2035          break;
2036        bitmap |= uint64_t(1) << (d / wordsize);
2037      }
2038      if (!bitmap)
2039        break;
2040      relrRelocs.push_back(Elf_Relr((bitmap << 1) | 1));
2041      base += nBits * wordsize;
2042    }
2043  }
2044
2045  // Don't allow the section to shrink; otherwise the size of the section can
2046  // oscillate infinitely. Trailing 1s do not decode to more relocations.
2047  if (relrRelocs.size() < oldSize) {
2048    log(".relr.dyn needs " + Twine(oldSize - relrRelocs.size()) +
2049        " padding word(s)");
2050    relrRelocs.resize(oldSize, Elf_Relr(1));
2051  }
2052
2053  return relrRelocs.size() != oldSize;
2054}
2055
2056SymbolTableBaseSection::SymbolTableBaseSection(StringTableSection &strTabSec)
2057    : SyntheticSection(strTabSec.isDynamic() ? (uint64_t)SHF_ALLOC : 0,
2058                       strTabSec.isDynamic() ? SHT_DYNSYM : SHT_SYMTAB,
2059                       config->wordsize,
2060                       strTabSec.isDynamic() ? ".dynsym" : ".symtab"),
2061      strTabSec(strTabSec) {}
2062
2063// Orders symbols according to their positions in the GOT,
2064// in compliance with MIPS ABI rules.
2065// See "Global Offset Table" in Chapter 5 in the following document
2066// for detailed description:
2067// ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
2068static bool sortMipsSymbols(const SymbolTableEntry &l,
2069                            const SymbolTableEntry &r) {
2070  // Sort entries related to non-local preemptible symbols by GOT indexes.
2071  // All other entries go to the beginning of a dynsym in arbitrary order.
2072  if (l.sym->isInGot() && r.sym->isInGot())
2073    return l.sym->getGotIdx() < r.sym->getGotIdx();
2074  if (!l.sym->isInGot() && !r.sym->isInGot())
2075    return false;
2076  return !l.sym->isInGot();
2077}
2078
2079void SymbolTableBaseSection::finalizeContents() {
2080  if (OutputSection *sec = strTabSec.getParent())
2081    getParent()->link = sec->sectionIndex;
2082
2083  if (this->type != SHT_DYNSYM) {
2084    sortSymTabSymbols();
2085    return;
2086  }
2087
2088  // If it is a .dynsym, there should be no local symbols, but we need
2089  // to do a few things for the dynamic linker.
2090
2091  // Section's Info field has the index of the first non-local symbol.
2092  // Because the first symbol entry is a null entry, 1 is the first.
2093  getParent()->info = 1;
2094
2095  if (getPartition().gnuHashTab) {
2096    // NB: It also sorts Symbols to meet the GNU hash table requirements.
2097    getPartition().gnuHashTab->addSymbols(symbols);
2098  } else if (config->emachine == EM_MIPS) {
2099    llvm::stable_sort(symbols, sortMipsSymbols);
2100  }
2101
2102  // Only the main partition's dynsym indexes are stored in the symbols
2103  // themselves. All other partitions use a lookup table.
2104  if (this == mainPart->dynSymTab.get()) {
2105    size_t i = 0;
2106    for (const SymbolTableEntry &s : symbols)
2107      s.sym->dynsymIndex = ++i;
2108  }
2109}
2110
2111// The ELF spec requires that all local symbols precede global symbols, so we
2112// sort symbol entries in this function. (For .dynsym, we don't do that because
2113// symbols for dynamic linking are inherently all globals.)
2114//
2115// Aside from above, we put local symbols in groups starting with the STT_FILE
2116// symbol. That is convenient for purpose of identifying where are local symbols
2117// coming from.
2118void SymbolTableBaseSection::sortSymTabSymbols() {
2119  // Move all local symbols before global symbols.
2120  auto e = std::stable_partition(
2121      symbols.begin(), symbols.end(),
2122      [](const SymbolTableEntry &s) { return s.sym->isLocal(); });
2123  size_t numLocals = e - symbols.begin();
2124  getParent()->info = numLocals + 1;
2125
2126  // We want to group the local symbols by file. For that we rebuild the local
2127  // part of the symbols vector. We do not need to care about the STT_FILE
2128  // symbols, they are already naturally placed first in each group. That
2129  // happens because STT_FILE is always the first symbol in the object and hence
2130  // precede all other local symbols we add for a file.
2131  MapVector<InputFile *, SmallVector<SymbolTableEntry, 0>> arr;
2132  for (const SymbolTableEntry &s : llvm::make_range(symbols.begin(), e))
2133    arr[s.sym->file].push_back(s);
2134
2135  auto i = symbols.begin();
2136  for (auto &p : arr)
2137    for (SymbolTableEntry &entry : p.second)
2138      *i++ = entry;
2139}
2140
2141void SymbolTableBaseSection::addSymbol(Symbol *b) {
2142  // Adding a local symbol to a .dynsym is a bug.
2143  assert(this->type != SHT_DYNSYM || !b->isLocal());
2144  symbols.push_back({b, strTabSec.addString(b->getName(), false)});
2145}
2146
2147size_t SymbolTableBaseSection::getSymbolIndex(Symbol *sym) {
2148  if (this == mainPart->dynSymTab.get())
2149    return sym->dynsymIndex;
2150
2151  // Initializes symbol lookup tables lazily. This is used only for -r,
2152  // --emit-relocs and dynsyms in partitions other than the main one.
2153  llvm::call_once(onceFlag, [&] {
2154    symbolIndexMap.reserve(symbols.size());
2155    size_t i = 0;
2156    for (const SymbolTableEntry &e : symbols) {
2157      if (e.sym->type == STT_SECTION)
2158        sectionIndexMap[e.sym->getOutputSection()] = ++i;
2159      else
2160        symbolIndexMap[e.sym] = ++i;
2161    }
2162  });
2163
2164  // Section symbols are mapped based on their output sections
2165  // to maintain their semantics.
2166  if (sym->type == STT_SECTION)
2167    return sectionIndexMap.lookup(sym->getOutputSection());
2168  return symbolIndexMap.lookup(sym);
2169}
2170
2171template <class ELFT>
2172SymbolTableSection<ELFT>::SymbolTableSection(StringTableSection &strTabSec)
2173    : SymbolTableBaseSection(strTabSec) {
2174  this->entsize = sizeof(Elf_Sym);
2175}
2176
2177static BssSection *getCommonSec(Symbol *sym) {
2178  if (config->relocatable)
2179    if (auto *d = dyn_cast<Defined>(sym))
2180      return dyn_cast_or_null<BssSection>(d->section);
2181  return nullptr;
2182}
2183
2184static uint32_t getSymSectionIndex(Symbol *sym) {
2185  assert(!(sym->hasFlag(NEEDS_COPY) && sym->isObject()));
2186  if (!isa<Defined>(sym) || sym->hasFlag(NEEDS_COPY))
2187    return SHN_UNDEF;
2188  if (const OutputSection *os = sym->getOutputSection())
2189    return os->sectionIndex >= SHN_LORESERVE ? (uint32_t)SHN_XINDEX
2190                                             : os->sectionIndex;
2191  return SHN_ABS;
2192}
2193
2194// Write the internal symbol table contents to the output symbol table.
2195template <class ELFT> void SymbolTableSection<ELFT>::writeTo(uint8_t *buf) {
2196  // The first entry is a null entry as per the ELF spec.
2197  buf += sizeof(Elf_Sym);
2198
2199  auto *eSym = reinterpret_cast<Elf_Sym *>(buf);
2200
2201  for (SymbolTableEntry &ent : symbols) {
2202    Symbol *sym = ent.sym;
2203    bool isDefinedHere = type == SHT_SYMTAB || sym->partition == partition;
2204
2205    // Set st_name, st_info and st_other.
2206    eSym->st_name = ent.strTabOffset;
2207    eSym->setBindingAndType(sym->binding, sym->type);
2208    eSym->st_other = sym->stOther;
2209
2210    if (BssSection *commonSec = getCommonSec(sym)) {
2211      // When -r is specified, a COMMON symbol is not allocated. Its st_shndx
2212      // holds SHN_COMMON and st_value holds the alignment.
2213      eSym->st_shndx = SHN_COMMON;
2214      eSym->st_value = commonSec->addralign;
2215      eSym->st_size = cast<Defined>(sym)->size;
2216    } else {
2217      const uint32_t shndx = getSymSectionIndex(sym);
2218      if (isDefinedHere) {
2219        eSym->st_shndx = shndx;
2220        eSym->st_value = sym->getVA();
2221        // Copy symbol size if it is a defined symbol. st_size is not
2222        // significant for undefined symbols, so whether copying it or not is up
2223        // to us if that's the case. We'll leave it as zero because by not
2224        // setting a value, we can get the exact same outputs for two sets of
2225        // input files that differ only in undefined symbol size in DSOs.
2226        eSym->st_size = shndx != SHN_UNDEF ? cast<Defined>(sym)->size : 0;
2227      } else {
2228        eSym->st_shndx = 0;
2229        eSym->st_value = 0;
2230        eSym->st_size = 0;
2231      }
2232    }
2233
2234    ++eSym;
2235  }
2236
2237  // On MIPS we need to mark symbol which has a PLT entry and requires
2238  // pointer equality by STO_MIPS_PLT flag. That is necessary to help
2239  // dynamic linker distinguish such symbols and MIPS lazy-binding stubs.
2240  // https://sourceware.org/ml/binutils/2008-07/txt00000.txt
2241  if (config->emachine == EM_MIPS) {
2242    auto *eSym = reinterpret_cast<Elf_Sym *>(buf);
2243
2244    for (SymbolTableEntry &ent : symbols) {
2245      Symbol *sym = ent.sym;
2246      if (sym->isInPlt() && sym->hasFlag(NEEDS_COPY))
2247        eSym->st_other |= STO_MIPS_PLT;
2248      if (isMicroMips()) {
2249        // We already set the less-significant bit for symbols
2250        // marked by the `STO_MIPS_MICROMIPS` flag and for microMIPS PLT
2251        // records. That allows us to distinguish such symbols in
2252        // the `MIPS<ELFT>::relocate()` routine. Now we should
2253        // clear that bit for non-dynamic symbol table, so tools
2254        // like `objdump` will be able to deal with a correct
2255        // symbol position.
2256        if (sym->isDefined() &&
2257            ((sym->stOther & STO_MIPS_MICROMIPS) || sym->hasFlag(NEEDS_COPY))) {
2258          if (!strTabSec.isDynamic())
2259            eSym->st_value &= ~1;
2260          eSym->st_other |= STO_MIPS_MICROMIPS;
2261        }
2262      }
2263      if (config->relocatable)
2264        if (auto *d = dyn_cast<Defined>(sym))
2265          if (isMipsPIC<ELFT>(d))
2266            eSym->st_other |= STO_MIPS_PIC;
2267      ++eSym;
2268    }
2269  }
2270}
2271
2272SymtabShndxSection::SymtabShndxSection()
2273    : SyntheticSection(0, SHT_SYMTAB_SHNDX, 4, ".symtab_shndx") {
2274  this->entsize = 4;
2275}
2276
2277void SymtabShndxSection::writeTo(uint8_t *buf) {
2278  // We write an array of 32 bit values, where each value has 1:1 association
2279  // with an entry in .symtab. If the corresponding entry contains SHN_XINDEX,
2280  // we need to write actual index, otherwise, we must write SHN_UNDEF(0).
2281  buf += 4; // Ignore .symtab[0] entry.
2282  for (const SymbolTableEntry &entry : in.symTab->getSymbols()) {
2283    if (!getCommonSec(entry.sym) && getSymSectionIndex(entry.sym) == SHN_XINDEX)
2284      write32(buf, entry.sym->getOutputSection()->sectionIndex);
2285    buf += 4;
2286  }
2287}
2288
2289bool SymtabShndxSection::isNeeded() const {
2290  // SHT_SYMTAB can hold symbols with section indices values up to
2291  // SHN_LORESERVE. If we need more, we want to use extension SHT_SYMTAB_SHNDX
2292  // section. Problem is that we reveal the final section indices a bit too
2293  // late, and we do not know them here. For simplicity, we just always create
2294  // a .symtab_shndx section when the amount of output sections is huge.
2295  size_t size = 0;
2296  for (SectionCommand *cmd : script->sectionCommands)
2297    if (isa<OutputDesc>(cmd))
2298      ++size;
2299  return size >= SHN_LORESERVE;
2300}
2301
2302void SymtabShndxSection::finalizeContents() {
2303  getParent()->link = in.symTab->getParent()->sectionIndex;
2304}
2305
2306size_t SymtabShndxSection::getSize() const {
2307  return in.symTab->getNumSymbols() * 4;
2308}
2309
2310// .hash and .gnu.hash sections contain on-disk hash tables that map
2311// symbol names to their dynamic symbol table indices. Their purpose
2312// is to help the dynamic linker resolve symbols quickly. If ELF files
2313// don't have them, the dynamic linker has to do linear search on all
2314// dynamic symbols, which makes programs slower. Therefore, a .hash
2315// section is added to a DSO by default.
2316//
2317// The Unix semantics of resolving dynamic symbols is somewhat expensive.
2318// Each ELF file has a list of DSOs that the ELF file depends on and a
2319// list of dynamic symbols that need to be resolved from any of the
2320// DSOs. That means resolving all dynamic symbols takes O(m)*O(n)
2321// where m is the number of DSOs and n is the number of dynamic
2322// symbols. For modern large programs, both m and n are large.  So
2323// making each step faster by using hash tables substantially
2324// improves time to load programs.
2325//
2326// (Note that this is not the only way to design the shared library.
2327// For instance, the Windows DLL takes a different approach. On
2328// Windows, each dynamic symbol has a name of DLL from which the symbol
2329// has to be resolved. That makes the cost of symbol resolution O(n).
2330// This disables some hacky techniques you can use on Unix such as
2331// LD_PRELOAD, but this is arguably better semantics than the Unix ones.)
2332//
2333// Due to historical reasons, we have two different hash tables, .hash
2334// and .gnu.hash. They are for the same purpose, and .gnu.hash is a new
2335// and better version of .hash. .hash is just an on-disk hash table, but
2336// .gnu.hash has a bloom filter in addition to a hash table to skip
2337// DSOs very quickly. If you are sure that your dynamic linker knows
2338// about .gnu.hash, you want to specify --hash-style=gnu. Otherwise, a
2339// safe bet is to specify --hash-style=both for backward compatibility.
2340GnuHashTableSection::GnuHashTableSection()
2341    : SyntheticSection(SHF_ALLOC, SHT_GNU_HASH, config->wordsize, ".gnu.hash") {
2342}
2343
2344void GnuHashTableSection::finalizeContents() {
2345  if (OutputSection *sec = getPartition().dynSymTab->getParent())
2346    getParent()->link = sec->sectionIndex;
2347
2348  // Computes bloom filter size in word size. We want to allocate 12
2349  // bits for each symbol. It must be a power of two.
2350  if (symbols.empty()) {
2351    maskWords = 1;
2352  } else {
2353    uint64_t numBits = symbols.size() * 12;
2354    maskWords = NextPowerOf2(numBits / (config->wordsize * 8));
2355  }
2356
2357  size = 16;                            // Header
2358  size += config->wordsize * maskWords; // Bloom filter
2359  size += nBuckets * 4;                 // Hash buckets
2360  size += symbols.size() * 4;           // Hash values
2361}
2362
2363void GnuHashTableSection::writeTo(uint8_t *buf) {
2364  // Write a header.
2365  write32(buf, nBuckets);
2366  write32(buf + 4, getPartition().dynSymTab->getNumSymbols() - symbols.size());
2367  write32(buf + 8, maskWords);
2368  write32(buf + 12, Shift2);
2369  buf += 16;
2370
2371  // Write the 2-bit bloom filter.
2372  const unsigned c = config->is64 ? 64 : 32;
2373  for (const Entry &sym : symbols) {
2374    // When C = 64, we choose a word with bits [6:...] and set 1 to two bits in
2375    // the word using bits [0:5] and [26:31].
2376    size_t i = (sym.hash / c) & (maskWords - 1);
2377    uint64_t val = readUint(buf + i * config->wordsize);
2378    val |= uint64_t(1) << (sym.hash % c);
2379    val |= uint64_t(1) << ((sym.hash >> Shift2) % c);
2380    writeUint(buf + i * config->wordsize, val);
2381  }
2382  buf += config->wordsize * maskWords;
2383
2384  // Write the hash table.
2385  uint32_t *buckets = reinterpret_cast<uint32_t *>(buf);
2386  uint32_t oldBucket = -1;
2387  uint32_t *values = buckets + nBuckets;
2388  for (auto i = symbols.begin(), e = symbols.end(); i != e; ++i) {
2389    // Write a hash value. It represents a sequence of chains that share the
2390    // same hash modulo value. The last element of each chain is terminated by
2391    // LSB 1.
2392    uint32_t hash = i->hash;
2393    bool isLastInChain = (i + 1) == e || i->bucketIdx != (i + 1)->bucketIdx;
2394    hash = isLastInChain ? hash | 1 : hash & ~1;
2395    write32(values++, hash);
2396
2397    if (i->bucketIdx == oldBucket)
2398      continue;
2399    // Write a hash bucket. Hash buckets contain indices in the following hash
2400    // value table.
2401    write32(buckets + i->bucketIdx,
2402            getPartition().dynSymTab->getSymbolIndex(i->sym));
2403    oldBucket = i->bucketIdx;
2404  }
2405}
2406
2407// Add symbols to this symbol hash table. Note that this function
2408// destructively sort a given vector -- which is needed because
2409// GNU-style hash table places some sorting requirements.
2410void GnuHashTableSection::addSymbols(SmallVectorImpl<SymbolTableEntry> &v) {
2411  // We cannot use 'auto' for Mid because GCC 6.1 cannot deduce
2412  // its type correctly.
2413  auto mid =
2414      std::stable_partition(v.begin(), v.end(), [&](const SymbolTableEntry &s) {
2415        return !s.sym->isDefined() || s.sym->partition != partition;
2416      });
2417
2418  // We chose load factor 4 for the on-disk hash table. For each hash
2419  // collision, the dynamic linker will compare a uint32_t hash value.
2420  // Since the integer comparison is quite fast, we believe we can
2421  // make the load factor even larger. 4 is just a conservative choice.
2422  //
2423  // Note that we don't want to create a zero-sized hash table because
2424  // Android loader as of 2018 doesn't like a .gnu.hash containing such
2425  // table. If that's the case, we create a hash table with one unused
2426  // dummy slot.
2427  nBuckets = std::max<size_t>((v.end() - mid) / 4, 1);
2428
2429  if (mid == v.end())
2430    return;
2431
2432  for (SymbolTableEntry &ent : llvm::make_range(mid, v.end())) {
2433    Symbol *b = ent.sym;
2434    uint32_t hash = hashGnu(b->getName());
2435    uint32_t bucketIdx = hash % nBuckets;
2436    symbols.push_back({b, ent.strTabOffset, hash, bucketIdx});
2437  }
2438
2439  llvm::sort(symbols, [](const Entry &l, const Entry &r) {
2440    return std::tie(l.bucketIdx, l.strTabOffset) <
2441           std::tie(r.bucketIdx, r.strTabOffset);
2442  });
2443
2444  v.erase(mid, v.end());
2445  for (const Entry &ent : symbols)
2446    v.push_back({ent.sym, ent.strTabOffset});
2447}
2448
2449HashTableSection::HashTableSection()
2450    : SyntheticSection(SHF_ALLOC, SHT_HASH, 4, ".hash") {
2451  this->entsize = 4;
2452}
2453
2454void HashTableSection::finalizeContents() {
2455  SymbolTableBaseSection *symTab = getPartition().dynSymTab.get();
2456
2457  if (OutputSection *sec = symTab->getParent())
2458    getParent()->link = sec->sectionIndex;
2459
2460  unsigned numEntries = 2;               // nbucket and nchain.
2461  numEntries += symTab->getNumSymbols(); // The chain entries.
2462
2463  // Create as many buckets as there are symbols.
2464  numEntries += symTab->getNumSymbols();
2465  this->size = numEntries * 4;
2466}
2467
2468void HashTableSection::writeTo(uint8_t *buf) {
2469  SymbolTableBaseSection *symTab = getPartition().dynSymTab.get();
2470  unsigned numSymbols = symTab->getNumSymbols();
2471
2472  uint32_t *p = reinterpret_cast<uint32_t *>(buf);
2473  write32(p++, numSymbols); // nbucket
2474  write32(p++, numSymbols); // nchain
2475
2476  uint32_t *buckets = p;
2477  uint32_t *chains = p + numSymbols;
2478
2479  for (const SymbolTableEntry &s : symTab->getSymbols()) {
2480    Symbol *sym = s.sym;
2481    StringRef name = sym->getName();
2482    unsigned i = sym->dynsymIndex;
2483    uint32_t hash = hashSysV(name) % numSymbols;
2484    chains[i] = buckets[hash];
2485    write32(buckets + hash, i);
2486  }
2487}
2488
2489PltSection::PltSection()
2490    : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16, ".plt"),
2491      headerSize(target->pltHeaderSize) {
2492  // On PowerPC, this section contains lazy symbol resolvers.
2493  if (config->emachine == EM_PPC64) {
2494    name = ".glink";
2495    addralign = 4;
2496  }
2497
2498  // On x86 when IBT is enabled, this section contains the second PLT (lazy
2499  // symbol resolvers).
2500  if ((config->emachine == EM_386 || config->emachine == EM_X86_64) &&
2501      (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT))
2502    name = ".plt.sec";
2503#ifdef __OpenBSD__
2504  else if (config->emachine == EM_X86_64)
2505    name = ".plt.sec";
2506#endif
2507
2508  // The PLT needs to be writable on SPARC as the dynamic linker will
2509  // modify the instructions in the PLT entries.
2510  if (config->emachine == EM_SPARCV9)
2511    this->flags |= SHF_WRITE;
2512}
2513
2514void PltSection::writeTo(uint8_t *buf) {
2515  // At beginning of PLT, we have code to call the dynamic
2516  // linker to resolve dynsyms at runtime. Write such code.
2517  target->writePltHeader(buf);
2518  size_t off = headerSize;
2519
2520  for (const Symbol *sym : entries) {
2521    target->writePlt(buf + off, *sym, getVA() + off);
2522    off += target->pltEntrySize;
2523  }
2524}
2525
2526void PltSection::addEntry(Symbol &sym) {
2527  assert(sym.auxIdx == symAux.size() - 1);
2528  symAux.back().pltIdx = entries.size();
2529  entries.push_back(&sym);
2530}
2531
2532size_t PltSection::getSize() const {
2533  return headerSize + entries.size() * target->pltEntrySize;
2534}
2535
2536bool PltSection::isNeeded() const {
2537  // For -z retpolineplt, .iplt needs the .plt header.
2538  return !entries.empty() || (config->zRetpolineplt && in.iplt->isNeeded());
2539}
2540
2541// Used by ARM to add mapping symbols in the PLT section, which aid
2542// disassembly.
2543void PltSection::addSymbols() {
2544  target->addPltHeaderSymbols(*this);
2545
2546  size_t off = headerSize;
2547  for (size_t i = 0; i < entries.size(); ++i) {
2548    target->addPltSymbols(*this, off);
2549    off += target->pltEntrySize;
2550  }
2551}
2552
2553IpltSection::IpltSection()
2554    : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16, ".iplt") {
2555  if (config->emachine == EM_PPC || config->emachine == EM_PPC64) {
2556    name = ".glink";
2557    addralign = 4;
2558  }
2559}
2560
2561void IpltSection::writeTo(uint8_t *buf) {
2562  uint32_t off = 0;
2563  for (const Symbol *sym : entries) {
2564    target->writeIplt(buf + off, *sym, getVA() + off);
2565    off += target->ipltEntrySize;
2566  }
2567}
2568
2569size_t IpltSection::getSize() const {
2570  return entries.size() * target->ipltEntrySize;
2571}
2572
2573void IpltSection::addEntry(Symbol &sym) {
2574  assert(sym.auxIdx == symAux.size() - 1);
2575  symAux.back().pltIdx = entries.size();
2576  entries.push_back(&sym);
2577}
2578
2579// ARM uses mapping symbols to aid disassembly.
2580void IpltSection::addSymbols() {
2581  size_t off = 0;
2582  for (size_t i = 0, e = entries.size(); i != e; ++i) {
2583    target->addPltSymbols(*this, off);
2584    off += target->pltEntrySize;
2585  }
2586}
2587
2588PPC32GlinkSection::PPC32GlinkSection() {
2589  name = ".glink";
2590  addralign = 4;
2591}
2592
2593void PPC32GlinkSection::writeTo(uint8_t *buf) {
2594  writePPC32GlinkSection(buf, entries.size());
2595}
2596
2597size_t PPC32GlinkSection::getSize() const {
2598  return headerSize + entries.size() * target->pltEntrySize + footerSize;
2599}
2600
2601// This is an x86-only extra PLT section and used only when a security
2602// enhancement feature called CET is enabled. In this comment, I'll explain what
2603// the feature is and why we have two PLT sections if CET is enabled.
2604//
2605// So, what does CET do? CET introduces a new restriction to indirect jump
2606// instructions. CET works this way. Assume that CET is enabled. Then, if you
2607// execute an indirect jump instruction, the processor verifies that a special
2608// "landing pad" instruction (which is actually a repurposed NOP instruction and
2609// now called "endbr32" or "endbr64") is at the jump target. If the jump target
2610// does not start with that instruction, the processor raises an exception
2611// instead of continuing executing code.
2612//
2613// If CET is enabled, the compiler emits endbr to all locations where indirect
2614// jumps may jump to.
2615//
2616// This mechanism makes it extremely hard to transfer the control to a middle of
2617// a function that is not supporsed to be a indirect jump target, preventing
2618// certain types of attacks such as ROP or JOP.
2619//
2620// Note that the processors in the market as of 2019 don't actually support the
2621// feature. Only the spec is available at the moment.
2622//
2623// Now, I'll explain why we have this extra PLT section for CET.
2624//
2625// Since you can indirectly jump to a PLT entry, we have to make PLT entries
2626// start with endbr. The problem is there's no extra space for endbr (which is 4
2627// bytes long), as the PLT entry is only 16 bytes long and all bytes are already
2628// used.
2629//
2630// In order to deal with the issue, we split a PLT entry into two PLT entries.
2631// Remember that each PLT entry contains code to jump to an address read from
2632// .got.plt AND code to resolve a dynamic symbol lazily. With the 2-PLT scheme,
2633// the former code is written to .plt.sec, and the latter code is written to
2634// .plt.
2635//
2636// Lazy symbol resolution in the 2-PLT scheme works in the usual way, except
2637// that the regular .plt is now called .plt.sec and .plt is repurposed to
2638// contain only code for lazy symbol resolution.
2639//
2640// In other words, this is how the 2-PLT scheme works. Application code is
2641// supposed to jump to .plt.sec to call an external function. Each .plt.sec
2642// entry contains code to read an address from a corresponding .got.plt entry
2643// and jump to that address. Addresses in .got.plt initially point to .plt, so
2644// when an application calls an external function for the first time, the
2645// control is transferred to a function that resolves a symbol name from
2646// external shared object files. That function then rewrites a .got.plt entry
2647// with a resolved address, so that the subsequent function calls directly jump
2648// to a desired location from .plt.sec.
2649//
2650// There is an open question as to whether the 2-PLT scheme was desirable or
2651// not. We could have simply extended the PLT entry size to 32-bytes to
2652// accommodate endbr, and that scheme would have been much simpler than the
2653// 2-PLT scheme. One reason to split PLT was, by doing that, we could keep hot
2654// code (.plt.sec) from cold code (.plt). But as far as I know no one proved
2655// that the optimization actually makes a difference.
2656//
2657// That said, the 2-PLT scheme is a part of the ABI, debuggers and other tools
2658// depend on it, so we implement the ABI.
2659IBTPltSection::IBTPltSection()
2660    : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16, ".plt") {}
2661
2662void IBTPltSection::writeTo(uint8_t *buf) {
2663  target->writeIBTPlt(buf, in.plt->getNumEntries());
2664}
2665
2666size_t IBTPltSection::getSize() const {
2667  // 16 is the header size of .plt.
2668  return 16 + in.plt->getNumEntries() * target->pltEntrySize;
2669}
2670
2671bool IBTPltSection::isNeeded() const { return in.plt->getNumEntries() > 0; }
2672
2673// The string hash function for .gdb_index.
2674static uint32_t computeGdbHash(StringRef s) {
2675  uint32_t h = 0;
2676  for (uint8_t c : s)
2677    h = h * 67 + toLower(c) - 113;
2678  return h;
2679}
2680
2681GdbIndexSection::GdbIndexSection()
2682    : SyntheticSection(0, SHT_PROGBITS, 1, ".gdb_index") {}
2683
2684// Returns the desired size of an on-disk hash table for a .gdb_index section.
2685// There's a tradeoff between size and collision rate. We aim 75% utilization.
2686size_t GdbIndexSection::computeSymtabSize() const {
2687  return std::max<size_t>(NextPowerOf2(symbols.size() * 4 / 3), 1024);
2688}
2689
2690static SmallVector<GdbIndexSection::CuEntry, 0>
2691readCuList(DWARFContext &dwarf) {
2692  SmallVector<GdbIndexSection::CuEntry, 0> ret;
2693  for (std::unique_ptr<DWARFUnit> &cu : dwarf.compile_units())
2694    ret.push_back({cu->getOffset(), cu->getLength() + 4});
2695  return ret;
2696}
2697
2698static SmallVector<GdbIndexSection::AddressEntry, 0>
2699readAddressAreas(DWARFContext &dwarf, InputSection *sec) {
2700  SmallVector<GdbIndexSection::AddressEntry, 0> ret;
2701
2702  uint32_t cuIdx = 0;
2703  for (std::unique_ptr<DWARFUnit> &cu : dwarf.compile_units()) {
2704    if (Error e = cu->tryExtractDIEsIfNeeded(false)) {
2705      warn(toString(sec) + ": " + toString(std::move(e)));
2706      return {};
2707    }
2708    Expected<DWARFAddressRangesVector> ranges = cu->collectAddressRanges();
2709    if (!ranges) {
2710      warn(toString(sec) + ": " + toString(ranges.takeError()));
2711      return {};
2712    }
2713
2714    ArrayRef<InputSectionBase *> sections = sec->file->getSections();
2715    for (DWARFAddressRange &r : *ranges) {
2716      if (r.SectionIndex == -1ULL)
2717        continue;
2718      // Range list with zero size has no effect.
2719      InputSectionBase *s = sections[r.SectionIndex];
2720      if (s && s != &InputSection::discarded && s->isLive())
2721        if (r.LowPC != r.HighPC)
2722          ret.push_back({cast<InputSection>(s), r.LowPC, r.HighPC, cuIdx});
2723    }
2724    ++cuIdx;
2725  }
2726
2727  return ret;
2728}
2729
2730template <class ELFT>
2731static SmallVector<GdbIndexSection::NameAttrEntry, 0>
2732readPubNamesAndTypes(const LLDDwarfObj<ELFT> &obj,
2733                     const SmallVectorImpl<GdbIndexSection::CuEntry> &cus) {
2734  const LLDDWARFSection &pubNames = obj.getGnuPubnamesSection();
2735  const LLDDWARFSection &pubTypes = obj.getGnuPubtypesSection();
2736
2737  SmallVector<GdbIndexSection::NameAttrEntry, 0> ret;
2738  for (const LLDDWARFSection *pub : {&pubNames, &pubTypes}) {
2739    DWARFDataExtractor data(obj, *pub, config->isLE, config->wordsize);
2740    DWARFDebugPubTable table;
2741    table.extract(data, /*GnuStyle=*/true, [&](Error e) {
2742      warn(toString(pub->sec) + ": " + toString(std::move(e)));
2743    });
2744    for (const DWARFDebugPubTable::Set &set : table.getData()) {
2745      // The value written into the constant pool is kind << 24 | cuIndex. As we
2746      // don't know how many compilation units precede this object to compute
2747      // cuIndex, we compute (kind << 24 | cuIndexInThisObject) instead, and add
2748      // the number of preceding compilation units later.
2749      uint32_t i = llvm::partition_point(cus,
2750                                         [&](GdbIndexSection::CuEntry cu) {
2751                                           return cu.cuOffset < set.Offset;
2752                                         }) -
2753                   cus.begin();
2754      for (const DWARFDebugPubTable::Entry &ent : set.Entries)
2755        ret.push_back({{ent.Name, computeGdbHash(ent.Name)},
2756                       (ent.Descriptor.toBits() << 24) | i});
2757    }
2758  }
2759  return ret;
2760}
2761
2762// Create a list of symbols from a given list of symbol names and types
2763// by uniquifying them by name.
2764static std::pair<SmallVector<GdbIndexSection::GdbSymbol, 0>, size_t>
2765createSymbols(
2766    ArrayRef<SmallVector<GdbIndexSection::NameAttrEntry, 0>> nameAttrs,
2767    const SmallVector<GdbIndexSection::GdbChunk, 0> &chunks) {
2768  using GdbSymbol = GdbIndexSection::GdbSymbol;
2769  using NameAttrEntry = GdbIndexSection::NameAttrEntry;
2770
2771  // For each chunk, compute the number of compilation units preceding it.
2772  uint32_t cuIdx = 0;
2773  std::unique_ptr<uint32_t[]> cuIdxs(new uint32_t[chunks.size()]);
2774  for (uint32_t i = 0, e = chunks.size(); i != e; ++i) {
2775    cuIdxs[i] = cuIdx;
2776    cuIdx += chunks[i].compilationUnits.size();
2777  }
2778
2779  // The number of symbols we will handle in this function is of the order
2780  // of millions for very large executables, so we use multi-threading to
2781  // speed it up.
2782  constexpr size_t numShards = 32;
2783  const size_t concurrency =
2784      PowerOf2Floor(std::min<size_t>(config->threadCount, numShards));
2785
2786  // A sharded map to uniquify symbols by name.
2787  auto map =
2788      std::make_unique<DenseMap<CachedHashStringRef, size_t>[]>(numShards);
2789  size_t shift = 32 - countTrailingZeros(numShards);
2790
2791  // Instantiate GdbSymbols while uniqufying them by name.
2792  auto symbols = std::make_unique<SmallVector<GdbSymbol, 0>[]>(numShards);
2793
2794  parallelFor(0, concurrency, [&](size_t threadId) {
2795    uint32_t i = 0;
2796    for (ArrayRef<NameAttrEntry> entries : nameAttrs) {
2797      for (const NameAttrEntry &ent : entries) {
2798        size_t shardId = ent.name.hash() >> shift;
2799        if ((shardId & (concurrency - 1)) != threadId)
2800          continue;
2801
2802        uint32_t v = ent.cuIndexAndAttrs + cuIdxs[i];
2803        size_t &idx = map[shardId][ent.name];
2804        if (idx) {
2805          symbols[shardId][idx - 1].cuVector.push_back(v);
2806          continue;
2807        }
2808
2809        idx = symbols[shardId].size() + 1;
2810        symbols[shardId].push_back({ent.name, {v}, 0, 0});
2811      }
2812      ++i;
2813    }
2814  });
2815
2816  size_t numSymbols = 0;
2817  for (ArrayRef<GdbSymbol> v : ArrayRef(symbols.get(), numShards))
2818    numSymbols += v.size();
2819
2820  // The return type is a flattened vector, so we'll copy each vector
2821  // contents to Ret.
2822  SmallVector<GdbSymbol, 0> ret;
2823  ret.reserve(numSymbols);
2824  for (SmallVector<GdbSymbol, 0> &vec :
2825       MutableArrayRef(symbols.get(), numShards))
2826    for (GdbSymbol &sym : vec)
2827      ret.push_back(std::move(sym));
2828
2829  // CU vectors and symbol names are adjacent in the output file.
2830  // We can compute their offsets in the output file now.
2831  size_t off = 0;
2832  for (GdbSymbol &sym : ret) {
2833    sym.cuVectorOff = off;
2834    off += (sym.cuVector.size() + 1) * 4;
2835  }
2836  for (GdbSymbol &sym : ret) {
2837    sym.nameOff = off;
2838    off += sym.name.size() + 1;
2839  }
2840  // If off overflows, the last symbol's nameOff likely overflows.
2841  if (!isUInt<32>(off))
2842    errorOrWarn("--gdb-index: constant pool size (" + Twine(off) +
2843                ") exceeds UINT32_MAX");
2844
2845  return {ret, off};
2846}
2847
2848// Returns a newly-created .gdb_index section.
2849template <class ELFT> GdbIndexSection *GdbIndexSection::create() {
2850  llvm::TimeTraceScope timeScope("Create gdb index");
2851
2852  // Collect InputFiles with .debug_info. See the comment in
2853  // LLDDwarfObj<ELFT>::LLDDwarfObj. If we do lightweight parsing in the future,
2854  // note that isec->data() may uncompress the full content, which should be
2855  // parallelized.
2856  SetVector<InputFile *> files;
2857  for (InputSectionBase *s : ctx.inputSections) {
2858    InputSection *isec = dyn_cast<InputSection>(s);
2859    if (!isec)
2860      continue;
2861    // .debug_gnu_pub{names,types} are useless in executables.
2862    // They are present in input object files solely for creating
2863    // a .gdb_index. So we can remove them from the output.
2864    if (s->name == ".debug_gnu_pubnames" || s->name == ".debug_gnu_pubtypes")
2865      s->markDead();
2866    else if (isec->name == ".debug_info")
2867      files.insert(isec->file);
2868  }
2869  // Drop .rel[a].debug_gnu_pub{names,types} for --emit-relocs.
2870  llvm::erase_if(ctx.inputSections, [](InputSectionBase *s) {
2871    if (auto *isec = dyn_cast<InputSection>(s))
2872      if (InputSectionBase *rel = isec->getRelocatedSection())
2873        return !rel->isLive();
2874    return !s->isLive();
2875  });
2876
2877  SmallVector<GdbChunk, 0> chunks(files.size());
2878  SmallVector<SmallVector<NameAttrEntry, 0>, 0> nameAttrs(files.size());
2879
2880  parallelFor(0, files.size(), [&](size_t i) {
2881    // To keep memory usage low, we don't want to keep cached DWARFContext, so
2882    // avoid getDwarf() here.
2883    ObjFile<ELFT> *file = cast<ObjFile<ELFT>>(files[i]);
2884    DWARFContext dwarf(std::make_unique<LLDDwarfObj<ELFT>>(file));
2885    auto &dobj = static_cast<const LLDDwarfObj<ELFT> &>(dwarf.getDWARFObj());
2886
2887    // If the are multiple compile units .debug_info (very rare ld -r --unique),
2888    // this only picks the last one. Other address ranges are lost.
2889    chunks[i].sec = dobj.getInfoSection();
2890    chunks[i].compilationUnits = readCuList(dwarf);
2891    chunks[i].addressAreas = readAddressAreas(dwarf, chunks[i].sec);
2892    nameAttrs[i] = readPubNamesAndTypes<ELFT>(dobj, chunks[i].compilationUnits);
2893  });
2894
2895  auto *ret = make<GdbIndexSection>();
2896  ret->chunks = std::move(chunks);
2897  std::tie(ret->symbols, ret->size) = createSymbols(nameAttrs, ret->chunks);
2898
2899  // Count the areas other than the constant pool.
2900  ret->size += sizeof(GdbIndexHeader) + ret->computeSymtabSize() * 8;
2901  for (GdbChunk &chunk : ret->chunks)
2902    ret->size +=
2903        chunk.compilationUnits.size() * 16 + chunk.addressAreas.size() * 20;
2904
2905  return ret;
2906}
2907
2908void GdbIndexSection::writeTo(uint8_t *buf) {
2909  // Write the header.
2910  auto *hdr = reinterpret_cast<GdbIndexHeader *>(buf);
2911  uint8_t *start = buf;
2912  hdr->version = 7;
2913  buf += sizeof(*hdr);
2914
2915  // Write the CU list.
2916  hdr->cuListOff = buf - start;
2917  for (GdbChunk &chunk : chunks) {
2918    for (CuEntry &cu : chunk.compilationUnits) {
2919      write64le(buf, chunk.sec->outSecOff + cu.cuOffset);
2920      write64le(buf + 8, cu.cuLength);
2921      buf += 16;
2922    }
2923  }
2924
2925  // Write the address area.
2926  hdr->cuTypesOff = buf - start;
2927  hdr->addressAreaOff = buf - start;
2928  uint32_t cuOff = 0;
2929  for (GdbChunk &chunk : chunks) {
2930    for (AddressEntry &e : chunk.addressAreas) {
2931      // In the case of ICF there may be duplicate address range entries.
2932      const uint64_t baseAddr = e.section->repl->getVA(0);
2933      write64le(buf, baseAddr + e.lowAddress);
2934      write64le(buf + 8, baseAddr + e.highAddress);
2935      write32le(buf + 16, e.cuIndex + cuOff);
2936      buf += 20;
2937    }
2938    cuOff += chunk.compilationUnits.size();
2939  }
2940
2941  // Write the on-disk open-addressing hash table containing symbols.
2942  hdr->symtabOff = buf - start;
2943  size_t symtabSize = computeSymtabSize();
2944  uint32_t mask = symtabSize - 1;
2945
2946  for (GdbSymbol &sym : symbols) {
2947    uint32_t h = sym.name.hash();
2948    uint32_t i = h & mask;
2949    uint32_t step = ((h * 17) & mask) | 1;
2950
2951    while (read32le(buf + i * 8))
2952      i = (i + step) & mask;
2953
2954    write32le(buf + i * 8, sym.nameOff);
2955    write32le(buf + i * 8 + 4, sym.cuVectorOff);
2956  }
2957
2958  buf += symtabSize * 8;
2959
2960  // Write the string pool.
2961  hdr->constantPoolOff = buf - start;
2962  parallelForEach(symbols, [&](GdbSymbol &sym) {
2963    memcpy(buf + sym.nameOff, sym.name.data(), sym.name.size());
2964  });
2965
2966  // Write the CU vectors.
2967  for (GdbSymbol &sym : symbols) {
2968    write32le(buf, sym.cuVector.size());
2969    buf += 4;
2970    for (uint32_t val : sym.cuVector) {
2971      write32le(buf, val);
2972      buf += 4;
2973    }
2974  }
2975}
2976
2977bool GdbIndexSection::isNeeded() const { return !chunks.empty(); }
2978
2979EhFrameHeader::EhFrameHeader()
2980    : SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 4, ".eh_frame_hdr") {}
2981
2982void EhFrameHeader::writeTo(uint8_t *buf) {
2983  // Unlike most sections, the EhFrameHeader section is written while writing
2984  // another section, namely EhFrameSection, which calls the write() function
2985  // below from its writeTo() function. This is necessary because the contents
2986  // of EhFrameHeader depend on the relocated contents of EhFrameSection and we
2987  // don't know which order the sections will be written in.
2988}
2989
2990// .eh_frame_hdr contains a binary search table of pointers to FDEs.
2991// Each entry of the search table consists of two values,
2992// the starting PC from where FDEs covers, and the FDE's address.
2993// It is sorted by PC.
2994void EhFrameHeader::write() {
2995  uint8_t *buf = Out::bufferStart + getParent()->offset + outSecOff;
2996  using FdeData = EhFrameSection::FdeData;
2997  SmallVector<FdeData, 0> fdes = getPartition().ehFrame->getFdeData();
2998
2999  buf[0] = 1;
3000  buf[1] = DW_EH_PE_pcrel | DW_EH_PE_sdata4;
3001  buf[2] = DW_EH_PE_udata4;
3002  buf[3] = DW_EH_PE_datarel | DW_EH_PE_sdata4;
3003  write32(buf + 4,
3004          getPartition().ehFrame->getParent()->addr - this->getVA() - 4);
3005  write32(buf + 8, fdes.size());
3006  buf += 12;
3007
3008  for (FdeData &fde : fdes) {
3009    write32(buf, fde.pcRel);
3010    write32(buf + 4, fde.fdeVARel);
3011    buf += 8;
3012  }
3013}
3014
3015size_t EhFrameHeader::getSize() const {
3016  // .eh_frame_hdr has a 12 bytes header followed by an array of FDEs.
3017  return 12 + getPartition().ehFrame->numFdes * 8;
3018}
3019
3020bool EhFrameHeader::isNeeded() const {
3021  return isLive() && getPartition().ehFrame->isNeeded();
3022}
3023
3024VersionDefinitionSection::VersionDefinitionSection()
3025    : SyntheticSection(SHF_ALLOC, SHT_GNU_verdef, sizeof(uint32_t),
3026                       ".gnu.version_d") {}
3027
3028StringRef VersionDefinitionSection::getFileDefName() {
3029  if (!getPartition().name.empty())
3030    return getPartition().name;
3031  if (!config->soName.empty())
3032    return config->soName;
3033  return config->outputFile;
3034}
3035
3036void VersionDefinitionSection::finalizeContents() {
3037  fileDefNameOff = getPartition().dynStrTab->addString(getFileDefName());
3038  for (const VersionDefinition &v : namedVersionDefs())
3039    verDefNameOffs.push_back(getPartition().dynStrTab->addString(v.name));
3040
3041  if (OutputSection *sec = getPartition().dynStrTab->getParent())
3042    getParent()->link = sec->sectionIndex;
3043
3044  // sh_info should be set to the number of definitions. This fact is missed in
3045  // documentation, but confirmed by binutils community:
3046  // https://sourceware.org/ml/binutils/2014-11/msg00355.html
3047  getParent()->info = getVerDefNum();
3048}
3049
3050void VersionDefinitionSection::writeOne(uint8_t *buf, uint32_t index,
3051                                        StringRef name, size_t nameOff) {
3052  uint16_t flags = index == 1 ? VER_FLG_BASE : 0;
3053
3054  // Write a verdef.
3055  write16(buf, 1);                  // vd_version
3056  write16(buf + 2, flags);          // vd_flags
3057  write16(buf + 4, index);          // vd_ndx
3058  write16(buf + 6, 1);              // vd_cnt
3059  write32(buf + 8, hashSysV(name)); // vd_hash
3060  write32(buf + 12, 20);            // vd_aux
3061  write32(buf + 16, 28);            // vd_next
3062
3063  // Write a veraux.
3064  write32(buf + 20, nameOff); // vda_name
3065  write32(buf + 24, 0);       // vda_next
3066}
3067
3068void VersionDefinitionSection::writeTo(uint8_t *buf) {
3069  writeOne(buf, 1, getFileDefName(), fileDefNameOff);
3070
3071  auto nameOffIt = verDefNameOffs.begin();
3072  for (const VersionDefinition &v : namedVersionDefs()) {
3073    buf += EntrySize;
3074    writeOne(buf, v.id, v.name, *nameOffIt++);
3075  }
3076
3077  // Need to terminate the last version definition.
3078  write32(buf + 16, 0); // vd_next
3079}
3080
3081size_t VersionDefinitionSection::getSize() const {
3082  return EntrySize * getVerDefNum();
3083}
3084
3085// .gnu.version is a table where each entry is 2 byte long.
3086VersionTableSection::VersionTableSection()
3087    : SyntheticSection(SHF_ALLOC, SHT_GNU_versym, sizeof(uint16_t),
3088                       ".gnu.version") {
3089  this->entsize = 2;
3090}
3091
3092void VersionTableSection::finalizeContents() {
3093  // At the moment of june 2016 GNU docs does not mention that sh_link field
3094  // should be set, but Sun docs do. Also readelf relies on this field.
3095  getParent()->link = getPartition().dynSymTab->getParent()->sectionIndex;
3096}
3097
3098size_t VersionTableSection::getSize() const {
3099  return (getPartition().dynSymTab->getSymbols().size() + 1) * 2;
3100}
3101
3102void VersionTableSection::writeTo(uint8_t *buf) {
3103  buf += 2;
3104  for (const SymbolTableEntry &s : getPartition().dynSymTab->getSymbols()) {
3105    // For an unextracted lazy symbol (undefined weak), it must have been
3106    // converted to Undefined and have VER_NDX_GLOBAL version here.
3107    assert(!s.sym->isLazy());
3108    write16(buf, s.sym->versionId);
3109    buf += 2;
3110  }
3111}
3112
3113bool VersionTableSection::isNeeded() const {
3114  return isLive() &&
3115         (getPartition().verDef || getPartition().verNeed->isNeeded());
3116}
3117
3118void elf::addVerneed(Symbol *ss) {
3119  auto &file = cast<SharedFile>(*ss->file);
3120  if (ss->verdefIndex == VER_NDX_GLOBAL) {
3121    ss->versionId = VER_NDX_GLOBAL;
3122    return;
3123  }
3124
3125  if (file.vernauxs.empty())
3126    file.vernauxs.resize(file.verdefs.size());
3127
3128  // Select a version identifier for the vernaux data structure, if we haven't
3129  // already allocated one. The verdef identifiers cover the range
3130  // [1..getVerDefNum()]; this causes the vernaux identifiers to start from
3131  // getVerDefNum()+1.
3132  if (file.vernauxs[ss->verdefIndex] == 0)
3133    file.vernauxs[ss->verdefIndex] = ++SharedFile::vernauxNum + getVerDefNum();
3134
3135  ss->versionId = file.vernauxs[ss->verdefIndex];
3136}
3137
3138template <class ELFT>
3139VersionNeedSection<ELFT>::VersionNeedSection()
3140    : SyntheticSection(SHF_ALLOC, SHT_GNU_verneed, sizeof(uint32_t),
3141                       ".gnu.version_r") {}
3142
3143template <class ELFT> void VersionNeedSection<ELFT>::finalizeContents() {
3144  for (SharedFile *f : ctx.sharedFiles) {
3145    if (f->vernauxs.empty())
3146      continue;
3147    verneeds.emplace_back();
3148    Verneed &vn = verneeds.back();
3149    vn.nameStrTab = getPartition().dynStrTab->addString(f->soName);
3150    bool isLibc = config->relrGlibc && f->soName.startswith("libc.so.");
3151    bool isGlibc2 = false;
3152    for (unsigned i = 0; i != f->vernauxs.size(); ++i) {
3153      if (f->vernauxs[i] == 0)
3154        continue;
3155      auto *verdef =
3156          reinterpret_cast<const typename ELFT::Verdef *>(f->verdefs[i]);
3157      StringRef ver(f->getStringTable().data() + verdef->getAux()->vda_name);
3158      if (isLibc && ver.startswith("GLIBC_2."))
3159        isGlibc2 = true;
3160      vn.vernauxs.push_back({verdef->vd_hash, f->vernauxs[i],
3161                             getPartition().dynStrTab->addString(ver)});
3162    }
3163    if (isGlibc2) {
3164      const char *ver = "GLIBC_ABI_DT_RELR";
3165      vn.vernauxs.push_back({hashSysV(ver),
3166                             ++SharedFile::vernauxNum + getVerDefNum(),
3167                             getPartition().dynStrTab->addString(ver)});
3168    }
3169  }
3170
3171  if (OutputSection *sec = getPartition().dynStrTab->getParent())
3172    getParent()->link = sec->sectionIndex;
3173  getParent()->info = verneeds.size();
3174}
3175
3176template <class ELFT> void VersionNeedSection<ELFT>::writeTo(uint8_t *buf) {
3177  // The Elf_Verneeds need to appear first, followed by the Elf_Vernauxs.
3178  auto *verneed = reinterpret_cast<Elf_Verneed *>(buf);
3179  auto *vernaux = reinterpret_cast<Elf_Vernaux *>(verneed + verneeds.size());
3180
3181  for (auto &vn : verneeds) {
3182    // Create an Elf_Verneed for this DSO.
3183    verneed->vn_version = 1;
3184    verneed->vn_cnt = vn.vernauxs.size();
3185    verneed->vn_file = vn.nameStrTab;
3186    verneed->vn_aux =
3187        reinterpret_cast<char *>(vernaux) - reinterpret_cast<char *>(verneed);
3188    verneed->vn_next = sizeof(Elf_Verneed);
3189    ++verneed;
3190
3191    // Create the Elf_Vernauxs for this Elf_Verneed.
3192    for (auto &vna : vn.vernauxs) {
3193      vernaux->vna_hash = vna.hash;
3194      vernaux->vna_flags = 0;
3195      vernaux->vna_other = vna.verneedIndex;
3196      vernaux->vna_name = vna.nameStrTab;
3197      vernaux->vna_next = sizeof(Elf_Vernaux);
3198      ++vernaux;
3199    }
3200
3201    vernaux[-1].vna_next = 0;
3202  }
3203  verneed[-1].vn_next = 0;
3204}
3205
3206template <class ELFT> size_t VersionNeedSection<ELFT>::getSize() const {
3207  return verneeds.size() * sizeof(Elf_Verneed) +
3208         SharedFile::vernauxNum * sizeof(Elf_Vernaux);
3209}
3210
3211template <class ELFT> bool VersionNeedSection<ELFT>::isNeeded() const {
3212  return isLive() && SharedFile::vernauxNum != 0;
3213}
3214
3215void MergeSyntheticSection::addSection(MergeInputSection *ms) {
3216  ms->parent = this;
3217  sections.push_back(ms);
3218  assert(addralign == ms->addralign || !(ms->flags & SHF_STRINGS));
3219  addralign = std::max(addralign, ms->addralign);
3220}
3221
3222MergeTailSection::MergeTailSection(StringRef name, uint32_t type,
3223                                   uint64_t flags, uint32_t alignment)
3224    : MergeSyntheticSection(name, type, flags, alignment),
3225      builder(StringTableBuilder::RAW, llvm::Align(alignment)) {}
3226
3227size_t MergeTailSection::getSize() const { return builder.getSize(); }
3228
3229void MergeTailSection::writeTo(uint8_t *buf) { builder.write(buf); }
3230
3231void MergeTailSection::finalizeContents() {
3232  // Add all string pieces to the string table builder to create section
3233  // contents.
3234  for (MergeInputSection *sec : sections)
3235    for (size_t i = 0, e = sec->pieces.size(); i != e; ++i)
3236      if (sec->pieces[i].live)
3237        builder.add(sec->getData(i));
3238
3239  // Fix the string table content. After this, the contents will never change.
3240  builder.finalize();
3241
3242  // finalize() fixed tail-optimized strings, so we can now get
3243  // offsets of strings. Get an offset for each string and save it
3244  // to a corresponding SectionPiece for easy access.
3245  for (MergeInputSection *sec : sections)
3246    for (size_t i = 0, e = sec->pieces.size(); i != e; ++i)
3247      if (sec->pieces[i].live)
3248        sec->pieces[i].outputOff = builder.getOffset(sec->getData(i));
3249}
3250
3251void MergeNoTailSection::writeTo(uint8_t *buf) {
3252  parallelFor(0, numShards,
3253              [&](size_t i) { shards[i].write(buf + shardOffsets[i]); });
3254}
3255
3256// This function is very hot (i.e. it can take several seconds to finish)
3257// because sometimes the number of inputs is in an order of magnitude of
3258// millions. So, we use multi-threading.
3259//
3260// For any strings S and T, we know S is not mergeable with T if S's hash
3261// value is different from T's. If that's the case, we can safely put S and
3262// T into different string builders without worrying about merge misses.
3263// We do it in parallel.
3264void MergeNoTailSection::finalizeContents() {
3265  // Initializes string table builders.
3266  for (size_t i = 0; i < numShards; ++i)
3267    shards.emplace_back(StringTableBuilder::RAW, llvm::Align(addralign));
3268
3269  // Concurrency level. Must be a power of 2 to avoid expensive modulo
3270  // operations in the following tight loop.
3271  const size_t concurrency =
3272      PowerOf2Floor(std::min<size_t>(config->threadCount, numShards));
3273
3274  // Add section pieces to the builders.
3275  parallelFor(0, concurrency, [&](size_t threadId) {
3276    for (MergeInputSection *sec : sections) {
3277      for (size_t i = 0, e = sec->pieces.size(); i != e; ++i) {
3278        if (!sec->pieces[i].live)
3279          continue;
3280        size_t shardId = getShardId(sec->pieces[i].hash);
3281        if ((shardId & (concurrency - 1)) == threadId)
3282          sec->pieces[i].outputOff = shards[shardId].add(sec->getData(i));
3283      }
3284    }
3285  });
3286
3287  // Compute an in-section offset for each shard.
3288  size_t off = 0;
3289  for (size_t i = 0; i < numShards; ++i) {
3290    shards[i].finalizeInOrder();
3291    if (shards[i].getSize() > 0)
3292      off = alignToPowerOf2(off, addralign);
3293    shardOffsets[i] = off;
3294    off += shards[i].getSize();
3295  }
3296  size = off;
3297
3298  // So far, section pieces have offsets from beginning of shards, but
3299  // we want offsets from beginning of the whole section. Fix them.
3300  parallelForEach(sections, [&](MergeInputSection *sec) {
3301    for (size_t i = 0, e = sec->pieces.size(); i != e; ++i)
3302      if (sec->pieces[i].live)
3303        sec->pieces[i].outputOff +=
3304            shardOffsets[getShardId(sec->pieces[i].hash)];
3305  });
3306}
3307
3308template <class ELFT> void elf::splitSections() {
3309  llvm::TimeTraceScope timeScope("Split sections");
3310  // splitIntoPieces needs to be called on each MergeInputSection
3311  // before calling finalizeContents().
3312  parallelForEach(ctx.objectFiles, [](ELFFileBase *file) {
3313    for (InputSectionBase *sec : file->getSections()) {
3314      if (!sec)
3315        continue;
3316      if (auto *s = dyn_cast<MergeInputSection>(sec))
3317        s->splitIntoPieces();
3318      else if (auto *eh = dyn_cast<EhInputSection>(sec))
3319        eh->split<ELFT>();
3320    }
3321  });
3322}
3323
3324void elf::combineEhSections() {
3325  llvm::TimeTraceScope timeScope("Combine EH sections");
3326  for (EhInputSection *sec : ctx.ehInputSections) {
3327    EhFrameSection &eh = *sec->getPartition().ehFrame;
3328    sec->parent = &eh;
3329    eh.addralign = std::max(eh.addralign, sec->addralign);
3330    eh.sections.push_back(sec);
3331    llvm::append_range(eh.dependentSections, sec->dependentSections);
3332  }
3333
3334  if (!mainPart->armExidx)
3335    return;
3336  llvm::erase_if(ctx.inputSections, [](InputSectionBase *s) {
3337    // Ignore dead sections and the partition end marker (.part.end),
3338    // whose partition number is out of bounds.
3339    if (!s->isLive() || s->partition == 255)
3340      return false;
3341    Partition &part = s->getPartition();
3342    return s->kind() == SectionBase::Regular && part.armExidx &&
3343           part.armExidx->addSection(cast<InputSection>(s));
3344  });
3345}
3346
3347MipsRldMapSection::MipsRldMapSection()
3348    : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, config->wordsize,
3349                       ".rld_map") {}
3350
3351ARMExidxSyntheticSection::ARMExidxSyntheticSection()
3352    : SyntheticSection(SHF_ALLOC | SHF_LINK_ORDER, SHT_ARM_EXIDX,
3353                       config->wordsize, ".ARM.exidx") {}
3354
3355static InputSection *findExidxSection(InputSection *isec) {
3356  for (InputSection *d : isec->dependentSections)
3357    if (d->type == SHT_ARM_EXIDX && d->isLive())
3358      return d;
3359  return nullptr;
3360}
3361
3362static bool isValidExidxSectionDep(InputSection *isec) {
3363  return (isec->flags & SHF_ALLOC) && (isec->flags & SHF_EXECINSTR) &&
3364         isec->getSize() > 0;
3365}
3366
3367bool ARMExidxSyntheticSection::addSection(InputSection *isec) {
3368  if (isec->type == SHT_ARM_EXIDX) {
3369    if (InputSection *dep = isec->getLinkOrderDep())
3370      if (isValidExidxSectionDep(dep)) {
3371        exidxSections.push_back(isec);
3372        // Every exidxSection is 8 bytes, we need an estimate of
3373        // size before assignAddresses can be called. Final size
3374        // will only be known after finalize is called.
3375        size += 8;
3376      }
3377    return true;
3378  }
3379
3380  if (isValidExidxSectionDep(isec)) {
3381    executableSections.push_back(isec);
3382    return false;
3383  }
3384
3385  // FIXME: we do not output a relocation section when --emit-relocs is used
3386  // as we do not have relocation sections for linker generated table entries
3387  // and we would have to erase at a late stage relocations from merged entries.
3388  // Given that exception tables are already position independent and a binary
3389  // analyzer could derive the relocations we choose to erase the relocations.
3390  if (config->emitRelocs && isec->type == SHT_REL)
3391    if (InputSectionBase *ex = isec->getRelocatedSection())
3392      if (isa<InputSection>(ex) && ex->type == SHT_ARM_EXIDX)
3393        return true;
3394
3395  return false;
3396}
3397
3398// References to .ARM.Extab Sections have bit 31 clear and are not the
3399// special EXIDX_CANTUNWIND bit-pattern.
3400static bool isExtabRef(uint32_t unwind) {
3401  return (unwind & 0x80000000) == 0 && unwind != 0x1;
3402}
3403
3404// Return true if the .ARM.exidx section Cur can be merged into the .ARM.exidx
3405// section Prev, where Cur follows Prev in the table. This can be done if the
3406// unwinding instructions in Cur are identical to Prev. Linker generated
3407// EXIDX_CANTUNWIND entries are represented by nullptr as they do not have an
3408// InputSection.
3409static bool isDuplicateArmExidxSec(InputSection *prev, InputSection *cur) {
3410
3411  struct ExidxEntry {
3412    ulittle32_t fn;
3413    ulittle32_t unwind;
3414  };
3415  // Get the last table Entry from the previous .ARM.exidx section. If Prev is
3416  // nullptr then it will be a synthesized EXIDX_CANTUNWIND entry.
3417  ExidxEntry prevEntry = {ulittle32_t(0), ulittle32_t(1)};
3418  if (prev)
3419    prevEntry = prev->getDataAs<ExidxEntry>().back();
3420  if (isExtabRef(prevEntry.unwind))
3421    return false;
3422
3423  // We consider the unwind instructions of an .ARM.exidx table entry
3424  // a duplicate if the previous unwind instructions if:
3425  // - Both are the special EXIDX_CANTUNWIND.
3426  // - Both are the same inline unwind instructions.
3427  // We do not attempt to follow and check links into .ARM.extab tables as
3428  // consecutive identical entries are rare and the effort to check that they
3429  // are identical is high.
3430
3431  // If Cur is nullptr then this is synthesized EXIDX_CANTUNWIND entry.
3432  if (cur == nullptr)
3433    return prevEntry.unwind == 1;
3434
3435  for (const ExidxEntry entry : cur->getDataAs<ExidxEntry>())
3436    if (isExtabRef(entry.unwind) || entry.unwind != prevEntry.unwind)
3437      return false;
3438
3439  // All table entries in this .ARM.exidx Section can be merged into the
3440  // previous Section.
3441  return true;
3442}
3443
3444// The .ARM.exidx table must be sorted in ascending order of the address of the
3445// functions the table describes. std::optionally duplicate adjacent table
3446// entries can be removed. At the end of the function the executableSections
3447// must be sorted in ascending order of address, Sentinel is set to the
3448// InputSection with the highest address and any InputSections that have
3449// mergeable .ARM.exidx table entries are removed from it.
3450void ARMExidxSyntheticSection::finalizeContents() {
3451  // The executableSections and exidxSections that we use to derive the final
3452  // contents of this SyntheticSection are populated before
3453  // processSectionCommands() and ICF. A /DISCARD/ entry in SECTIONS command or
3454  // ICF may remove executable InputSections and their dependent .ARM.exidx
3455  // section that we recorded earlier.
3456  auto isDiscarded = [](const InputSection *isec) { return !isec->isLive(); };
3457  llvm::erase_if(exidxSections, isDiscarded);
3458  // We need to remove discarded InputSections and InputSections without
3459  // .ARM.exidx sections that if we generated the .ARM.exidx it would be out
3460  // of range.
3461  auto isDiscardedOrOutOfRange = [this](InputSection *isec) {
3462    if (!isec->isLive())
3463      return true;
3464    if (findExidxSection(isec))
3465      return false;
3466    int64_t off = static_cast<int64_t>(isec->getVA() - getVA());
3467    return off != llvm::SignExtend64(off, 31);
3468  };
3469  llvm::erase_if(executableSections, isDiscardedOrOutOfRange);
3470
3471  // Sort the executable sections that may or may not have associated
3472  // .ARM.exidx sections by order of ascending address. This requires the
3473  // relative positions of InputSections and OutputSections to be known.
3474  auto compareByFilePosition = [](const InputSection *a,
3475                                  const InputSection *b) {
3476    OutputSection *aOut = a->getParent();
3477    OutputSection *bOut = b->getParent();
3478
3479    if (aOut != bOut)
3480      return aOut->addr < bOut->addr;
3481    return a->outSecOff < b->outSecOff;
3482  };
3483  llvm::stable_sort(executableSections, compareByFilePosition);
3484  sentinel = executableSections.back();
3485  // std::optionally merge adjacent duplicate entries.
3486  if (config->mergeArmExidx) {
3487    SmallVector<InputSection *, 0> selectedSections;
3488    selectedSections.reserve(executableSections.size());
3489    selectedSections.push_back(executableSections[0]);
3490    size_t prev = 0;
3491    for (size_t i = 1; i < executableSections.size(); ++i) {
3492      InputSection *ex1 = findExidxSection(executableSections[prev]);
3493      InputSection *ex2 = findExidxSection(executableSections[i]);
3494      if (!isDuplicateArmExidxSec(ex1, ex2)) {
3495        selectedSections.push_back(executableSections[i]);
3496        prev = i;
3497      }
3498    }
3499    executableSections = std::move(selectedSections);
3500  }
3501
3502  size_t offset = 0;
3503  size = 0;
3504  for (InputSection *isec : executableSections) {
3505    if (InputSection *d = findExidxSection(isec)) {
3506      d->outSecOff = offset;
3507      d->parent = getParent();
3508      offset += d->getSize();
3509    } else {
3510      offset += 8;
3511    }
3512  }
3513  // Size includes Sentinel.
3514  size = offset + 8;
3515}
3516
3517InputSection *ARMExidxSyntheticSection::getLinkOrderDep() const {
3518  return executableSections.front();
3519}
3520
3521// To write the .ARM.exidx table from the ExecutableSections we have three cases
3522// 1.) The InputSection has a .ARM.exidx InputSection in its dependent sections.
3523//     We write the .ARM.exidx section contents and apply its relocations.
3524// 2.) The InputSection does not have a dependent .ARM.exidx InputSection. We
3525//     must write the contents of an EXIDX_CANTUNWIND directly. We use the
3526//     start of the InputSection as the purpose of the linker generated
3527//     section is to terminate the address range of the previous entry.
3528// 3.) A trailing EXIDX_CANTUNWIND sentinel section is required at the end of
3529//     the table to terminate the address range of the final entry.
3530void ARMExidxSyntheticSection::writeTo(uint8_t *buf) {
3531
3532  const uint8_t cantUnwindData[8] = {0, 0, 0, 0,  // PREL31 to target
3533                                     1, 0, 0, 0}; // EXIDX_CANTUNWIND
3534
3535  uint64_t offset = 0;
3536  for (InputSection *isec : executableSections) {
3537    assert(isec->getParent() != nullptr);
3538    if (InputSection *d = findExidxSection(isec)) {
3539      memcpy(buf + offset, d->content().data(), d->content().size());
3540      target->relocateAlloc(*d, buf + d->outSecOff);
3541      offset += d->getSize();
3542    } else {
3543      // A Linker generated CANTUNWIND section.
3544      memcpy(buf + offset, cantUnwindData, sizeof(cantUnwindData));
3545      uint64_t s = isec->getVA();
3546      uint64_t p = getVA() + offset;
3547      target->relocateNoSym(buf + offset, R_ARM_PREL31, s - p);
3548      offset += 8;
3549    }
3550  }
3551  // Write Sentinel.
3552  memcpy(buf + offset, cantUnwindData, sizeof(cantUnwindData));
3553  uint64_t s = sentinel->getVA(sentinel->getSize());
3554  uint64_t p = getVA() + offset;
3555  target->relocateNoSym(buf + offset, R_ARM_PREL31, s - p);
3556  assert(size == offset + 8);
3557}
3558
3559bool ARMExidxSyntheticSection::isNeeded() const {
3560  return llvm::any_of(exidxSections,
3561                      [](InputSection *isec) { return isec->isLive(); });
3562}
3563
3564ThunkSection::ThunkSection(OutputSection *os, uint64_t off)
3565    : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS,
3566                       config->emachine == EM_PPC64 ? 16 : 4, ".text.thunk") {
3567  this->parent = os;
3568  this->outSecOff = off;
3569}
3570
3571size_t ThunkSection::getSize() const {
3572  if (roundUpSizeForErrata)
3573    return alignTo(size, 4096);
3574  return size;
3575}
3576
3577void ThunkSection::addThunk(Thunk *t) {
3578  thunks.push_back(t);
3579  t->addSymbols(*this);
3580}
3581
3582void ThunkSection::writeTo(uint8_t *buf) {
3583  for (Thunk *t : thunks)
3584    t->writeTo(buf + t->offset);
3585}
3586
3587InputSection *ThunkSection::getTargetInputSection() const {
3588  if (thunks.empty())
3589    return nullptr;
3590  const Thunk *t = thunks.front();
3591  return t->getTargetInputSection();
3592}
3593
3594bool ThunkSection::assignOffsets() {
3595  uint64_t off = 0;
3596  for (Thunk *t : thunks) {
3597    off = alignToPowerOf2(off, t->alignment);
3598    t->setOffset(off);
3599    uint32_t size = t->size();
3600    t->getThunkTargetSym()->size = size;
3601    off += size;
3602  }
3603  bool changed = off != size;
3604  size = off;
3605  return changed;
3606}
3607
3608PPC32Got2Section::PPC32Got2Section()
3609    : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, 4, ".got2") {}
3610
3611bool PPC32Got2Section::isNeeded() const {
3612  // See the comment below. This is not needed if there is no other
3613  // InputSection.
3614  for (SectionCommand *cmd : getParent()->commands)
3615    if (auto *isd = dyn_cast<InputSectionDescription>(cmd))
3616      for (InputSection *isec : isd->sections)
3617        if (isec != this)
3618          return true;
3619  return false;
3620}
3621
3622void PPC32Got2Section::finalizeContents() {
3623  // PPC32 may create multiple GOT sections for -fPIC/-fPIE, one per file in
3624  // .got2 . This function computes outSecOff of each .got2 to be used in
3625  // PPC32PltCallStub::writeTo(). The purpose of this empty synthetic section is
3626  // to collect input sections named ".got2".
3627  for (SectionCommand *cmd : getParent()->commands)
3628    if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) {
3629      for (InputSection *isec : isd->sections) {
3630        // isec->file may be nullptr for MergeSyntheticSection.
3631        if (isec != this && isec->file)
3632          isec->file->ppc32Got2 = isec;
3633      }
3634    }
3635}
3636
3637// If linking position-dependent code then the table will store the addresses
3638// directly in the binary so the section has type SHT_PROGBITS. If linking
3639// position-independent code the section has type SHT_NOBITS since it will be
3640// allocated and filled in by the dynamic linker.
3641PPC64LongBranchTargetSection::PPC64LongBranchTargetSection()
3642    : SyntheticSection(SHF_ALLOC | SHF_WRITE,
3643                       config->isPic ? SHT_NOBITS : SHT_PROGBITS, 8,
3644                       ".branch_lt") {}
3645
3646uint64_t PPC64LongBranchTargetSection::getEntryVA(const Symbol *sym,
3647                                                  int64_t addend) {
3648  return getVA() + entry_index.find({sym, addend})->second * 8;
3649}
3650
3651std::optional<uint32_t>
3652PPC64LongBranchTargetSection::addEntry(const Symbol *sym, int64_t addend) {
3653  auto res =
3654      entry_index.try_emplace(std::make_pair(sym, addend), entries.size());
3655  if (!res.second)
3656    return std::nullopt;
3657  entries.emplace_back(sym, addend);
3658  return res.first->second;
3659}
3660
3661size_t PPC64LongBranchTargetSection::getSize() const {
3662  return entries.size() * 8;
3663}
3664
3665void PPC64LongBranchTargetSection::writeTo(uint8_t *buf) {
3666  // If linking non-pic we have the final addresses of the targets and they get
3667  // written to the table directly. For pic the dynamic linker will allocate
3668  // the section and fill it.
3669  if (config->isPic)
3670    return;
3671
3672  for (auto entry : entries) {
3673    const Symbol *sym = entry.first;
3674    int64_t addend = entry.second;
3675    assert(sym->getVA());
3676    // Need calls to branch to the local entry-point since a long-branch
3677    // must be a local-call.
3678    write64(buf, sym->getVA(addend) +
3679                     getPPC64GlobalEntryToLocalEntryOffset(sym->stOther));
3680    buf += 8;
3681  }
3682}
3683
3684bool PPC64LongBranchTargetSection::isNeeded() const {
3685  // `removeUnusedSyntheticSections()` is called before thunk allocation which
3686  // is too early to determine if this section will be empty or not. We need
3687  // Finalized to keep the section alive until after thunk creation. Finalized
3688  // only gets set to true once `finalizeSections()` is called after thunk
3689  // creation. Because of this, if we don't create any long-branch thunks we end
3690  // up with an empty .branch_lt section in the binary.
3691  return !finalized || !entries.empty();
3692}
3693
3694static uint8_t getAbiVersion() {
3695  // MIPS non-PIC executable gets ABI version 1.
3696  if (config->emachine == EM_MIPS) {
3697    if (!config->isPic && !config->relocatable &&
3698        (config->eflags & (EF_MIPS_PIC | EF_MIPS_CPIC)) == EF_MIPS_CPIC)
3699      return 1;
3700    return 0;
3701  }
3702
3703  if (config->emachine == EM_AMDGPU && !ctx.objectFiles.empty()) {
3704    uint8_t ver = ctx.objectFiles[0]->abiVersion;
3705    for (InputFile *file : ArrayRef(ctx.objectFiles).slice(1))
3706      if (file->abiVersion != ver)
3707        error("incompatible ABI version: " + toString(file));
3708    return ver;
3709  }
3710
3711  return 0;
3712}
3713
3714template <typename ELFT> void elf::writeEhdr(uint8_t *buf, Partition &part) {
3715  memcpy(buf, "\177ELF", 4);
3716
3717  auto *eHdr = reinterpret_cast<typename ELFT::Ehdr *>(buf);
3718  eHdr->e_ident[EI_CLASS] = config->is64 ? ELFCLASS64 : ELFCLASS32;
3719  eHdr->e_ident[EI_DATA] = config->isLE ? ELFDATA2LSB : ELFDATA2MSB;
3720  eHdr->e_ident[EI_VERSION] = EV_CURRENT;
3721  eHdr->e_ident[EI_OSABI] = config->osabi;
3722  eHdr->e_ident[EI_ABIVERSION] = getAbiVersion();
3723  eHdr->e_machine = config->emachine;
3724  eHdr->e_version = EV_CURRENT;
3725  eHdr->e_flags = config->eflags;
3726  eHdr->e_ehsize = sizeof(typename ELFT::Ehdr);
3727  eHdr->e_phnum = part.phdrs.size();
3728  eHdr->e_shentsize = sizeof(typename ELFT::Shdr);
3729
3730  if (!config->relocatable) {
3731    eHdr->e_phoff = sizeof(typename ELFT::Ehdr);
3732    eHdr->e_phentsize = sizeof(typename ELFT::Phdr);
3733  }
3734}
3735
3736template <typename ELFT> void elf::writePhdrs(uint8_t *buf, Partition &part) {
3737  // Write the program header table.
3738  auto *hBuf = reinterpret_cast<typename ELFT::Phdr *>(buf);
3739  for (PhdrEntry *p : part.phdrs) {
3740    hBuf->p_type = p->p_type;
3741    hBuf->p_flags = p->p_flags;
3742    hBuf->p_offset = p->p_offset;
3743    hBuf->p_vaddr = p->p_vaddr;
3744    hBuf->p_paddr = p->p_paddr;
3745    hBuf->p_filesz = p->p_filesz;
3746    hBuf->p_memsz = p->p_memsz;
3747    hBuf->p_align = p->p_align;
3748    ++hBuf;
3749  }
3750}
3751
3752template <typename ELFT>
3753PartitionElfHeaderSection<ELFT>::PartitionElfHeaderSection()
3754    : SyntheticSection(SHF_ALLOC, SHT_LLVM_PART_EHDR, 1, "") {}
3755
3756template <typename ELFT>
3757size_t PartitionElfHeaderSection<ELFT>::getSize() const {
3758  return sizeof(typename ELFT::Ehdr);
3759}
3760
3761template <typename ELFT>
3762void PartitionElfHeaderSection<ELFT>::writeTo(uint8_t *buf) {
3763  writeEhdr<ELFT>(buf, getPartition());
3764
3765  // Loadable partitions are always ET_DYN.
3766  auto *eHdr = reinterpret_cast<typename ELFT::Ehdr *>(buf);
3767  eHdr->e_type = ET_DYN;
3768}
3769
3770template <typename ELFT>
3771PartitionProgramHeadersSection<ELFT>::PartitionProgramHeadersSection()
3772    : SyntheticSection(SHF_ALLOC, SHT_LLVM_PART_PHDR, 1, ".phdrs") {}
3773
3774template <typename ELFT>
3775size_t PartitionProgramHeadersSection<ELFT>::getSize() const {
3776  return sizeof(typename ELFT::Phdr) * getPartition().phdrs.size();
3777}
3778
3779template <typename ELFT>
3780void PartitionProgramHeadersSection<ELFT>::writeTo(uint8_t *buf) {
3781  writePhdrs<ELFT>(buf, getPartition());
3782}
3783
3784PartitionIndexSection::PartitionIndexSection()
3785    : SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 4, ".rodata") {}
3786
3787size_t PartitionIndexSection::getSize() const {
3788  return 12 * (partitions.size() - 1);
3789}
3790
3791void PartitionIndexSection::finalizeContents() {
3792  for (size_t i = 1; i != partitions.size(); ++i)
3793    partitions[i].nameStrTab = mainPart->dynStrTab->addString(partitions[i].name);
3794}
3795
3796void PartitionIndexSection::writeTo(uint8_t *buf) {
3797  uint64_t va = getVA();
3798  for (size_t i = 1; i != partitions.size(); ++i) {
3799    write32(buf, mainPart->dynStrTab->getVA() + partitions[i].nameStrTab - va);
3800    write32(buf + 4, partitions[i].elfHeader->getVA() - (va + 4));
3801
3802    SyntheticSection *next = i == partitions.size() - 1
3803                                 ? in.partEnd.get()
3804                                 : partitions[i + 1].elfHeader.get();
3805    write32(buf + 8, next->getVA() - partitions[i].elfHeader->getVA());
3806
3807    va += 12;
3808    buf += 12;
3809  }
3810}
3811
3812void InStruct::reset() {
3813  attributes.reset();
3814  riscvAttributes.reset();
3815  bss.reset();
3816  bssRelRo.reset();
3817  got.reset();
3818  gotPlt.reset();
3819  igotPlt.reset();
3820  ppc64LongBranchTarget.reset();
3821  mipsAbiFlags.reset();
3822  mipsGot.reset();
3823  mipsOptions.reset();
3824  mipsReginfo.reset();
3825  mipsRldMap.reset();
3826  partEnd.reset();
3827  partIndex.reset();
3828  plt.reset();
3829  iplt.reset();
3830  ppc32Got2.reset();
3831  ibtPlt.reset();
3832  relaPlt.reset();
3833  relaIplt.reset();
3834  shStrTab.reset();
3835  strTab.reset();
3836  symTab.reset();
3837  symTabShndx.reset();
3838}
3839
3840constexpr char kMemtagAndroidNoteName[] = "Android";
3841void MemtagAndroidNote::writeTo(uint8_t *buf) {
3842  static_assert(sizeof(kMemtagAndroidNoteName) == 8,
3843                "ABI check for Android 11 & 12.");
3844  assert((config->androidMemtagStack || config->androidMemtagHeap) &&
3845         "Should only be synthesizing a note if heap || stack is enabled.");
3846
3847  write32(buf, sizeof(kMemtagAndroidNoteName));
3848  write32(buf + 4, sizeof(uint32_t));
3849  write32(buf + 8, ELF::NT_ANDROID_TYPE_MEMTAG);
3850  memcpy(buf + 12, kMemtagAndroidNoteName, sizeof(kMemtagAndroidNoteName));
3851  buf += 12 + sizeof(kMemtagAndroidNoteName);
3852
3853  uint32_t value = 0;
3854  value |= config->androidMemtagMode;
3855  if (config->androidMemtagHeap)
3856    value |= ELF::NT_MEMTAG_HEAP;
3857  // Note, MTE stack is an ABI break. Attempting to run an MTE stack-enabled
3858  // binary on Android 11 or 12 will result in a checkfail in the loader.
3859  if (config->androidMemtagStack)
3860    value |= ELF::NT_MEMTAG_STACK;
3861  write32(buf, value); // note value
3862}
3863
3864size_t MemtagAndroidNote::getSize() const {
3865  return sizeof(llvm::ELF::Elf64_Nhdr) +
3866         /*namesz=*/sizeof(kMemtagAndroidNoteName) +
3867         /*descsz=*/sizeof(uint32_t);
3868}
3869
3870void PackageMetadataNote::writeTo(uint8_t *buf) {
3871  write32(buf, 4);
3872  write32(buf + 4, config->packageMetadata.size() + 1);
3873  write32(buf + 8, FDO_PACKAGING_METADATA);
3874  memcpy(buf + 12, "FDO", 4);
3875  memcpy(buf + 16, config->packageMetadata.data(),
3876         config->packageMetadata.size());
3877}
3878
3879size_t PackageMetadataNote::getSize() const {
3880  return sizeof(llvm::ELF::Elf64_Nhdr) + 4 +
3881         alignTo(config->packageMetadata.size() + 1, 4);
3882}
3883
3884InStruct elf::in;
3885
3886std::vector<Partition> elf::partitions;
3887Partition *elf::mainPart;
3888
3889template GdbIndexSection *GdbIndexSection::create<ELF32LE>();
3890template GdbIndexSection *GdbIndexSection::create<ELF32BE>();
3891template GdbIndexSection *GdbIndexSection::create<ELF64LE>();
3892template GdbIndexSection *GdbIndexSection::create<ELF64BE>();
3893
3894template void elf::splitSections<ELF32LE>();
3895template void elf::splitSections<ELF32BE>();
3896template void elf::splitSections<ELF64LE>();
3897template void elf::splitSections<ELF64BE>();
3898
3899template class elf::MipsAbiFlagsSection<ELF32LE>;
3900template class elf::MipsAbiFlagsSection<ELF32BE>;
3901template class elf::MipsAbiFlagsSection<ELF64LE>;
3902template class elf::MipsAbiFlagsSection<ELF64BE>;
3903
3904template class elf::MipsOptionsSection<ELF32LE>;
3905template class elf::MipsOptionsSection<ELF32BE>;
3906template class elf::MipsOptionsSection<ELF64LE>;
3907template class elf::MipsOptionsSection<ELF64BE>;
3908
3909template void EhFrameSection::iterateFDEWithLSDA<ELF32LE>(
3910    function_ref<void(InputSection &)>);
3911template void EhFrameSection::iterateFDEWithLSDA<ELF32BE>(
3912    function_ref<void(InputSection &)>);
3913template void EhFrameSection::iterateFDEWithLSDA<ELF64LE>(
3914    function_ref<void(InputSection &)>);
3915template void EhFrameSection::iterateFDEWithLSDA<ELF64BE>(
3916    function_ref<void(InputSection &)>);
3917
3918template class elf::MipsReginfoSection<ELF32LE>;
3919template class elf::MipsReginfoSection<ELF32BE>;
3920template class elf::MipsReginfoSection<ELF64LE>;
3921template class elf::MipsReginfoSection<ELF64BE>;
3922
3923template class elf::DynamicSection<ELF32LE>;
3924template class elf::DynamicSection<ELF32BE>;
3925template class elf::DynamicSection<ELF64LE>;
3926template class elf::DynamicSection<ELF64BE>;
3927
3928template class elf::RelocationSection<ELF32LE>;
3929template class elf::RelocationSection<ELF32BE>;
3930template class elf::RelocationSection<ELF64LE>;
3931template class elf::RelocationSection<ELF64BE>;
3932
3933template class elf::AndroidPackedRelocationSection<ELF32LE>;
3934template class elf::AndroidPackedRelocationSection<ELF32BE>;
3935template class elf::AndroidPackedRelocationSection<ELF64LE>;
3936template class elf::AndroidPackedRelocationSection<ELF64BE>;
3937
3938template class elf::RelrSection<ELF32LE>;
3939template class elf::RelrSection<ELF32BE>;
3940template class elf::RelrSection<ELF64LE>;
3941template class elf::RelrSection<ELF64BE>;
3942
3943template class elf::SymbolTableSection<ELF32LE>;
3944template class elf::SymbolTableSection<ELF32BE>;
3945template class elf::SymbolTableSection<ELF64LE>;
3946template class elf::SymbolTableSection<ELF64BE>;
3947
3948template class elf::VersionNeedSection<ELF32LE>;
3949template class elf::VersionNeedSection<ELF32BE>;
3950template class elf::VersionNeedSection<ELF64LE>;
3951template class elf::VersionNeedSection<ELF64BE>;
3952
3953template void elf::writeEhdr<ELF32LE>(uint8_t *Buf, Partition &Part);
3954template void elf::writeEhdr<ELF32BE>(uint8_t *Buf, Partition &Part);
3955template void elf::writeEhdr<ELF64LE>(uint8_t *Buf, Partition &Part);
3956template void elf::writeEhdr<ELF64BE>(uint8_t *Buf, Partition &Part);
3957
3958template void elf::writePhdrs<ELF32LE>(uint8_t *Buf, Partition &Part);
3959template void elf::writePhdrs<ELF32BE>(uint8_t *Buf, Partition &Part);
3960template void elf::writePhdrs<ELF64LE>(uint8_t *Buf, Partition &Part);
3961template void elf::writePhdrs<ELF64BE>(uint8_t *Buf, Partition &Part);
3962
3963template class elf::PartitionElfHeaderSection<ELF32LE>;
3964template class elf::PartitionElfHeaderSection<ELF32BE>;
3965template class elf::PartitionElfHeaderSection<ELF64LE>;
3966template class elf::PartitionElfHeaderSection<ELF64BE>;
3967
3968template class elf::PartitionProgramHeadersSection<ELF32LE>;
3969template class elf::PartitionProgramHeadersSection<ELF32BE>;
3970template class elf::PartitionProgramHeadersSection<ELF64LE>;
3971template class elf::PartitionProgramHeadersSection<ELF64BE>;
3972