1//===- InputSection.cpp ---------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "InputSection.h"
10#include "Config.h"
11#include "InputFiles.h"
12#include "OutputSections.h"
13#include "Relocations.h"
14#include "SymbolTable.h"
15#include "Symbols.h"
16#include "SyntheticSections.h"
17#include "Target.h"
18#include "lld/Common/CommonLinkerContext.h"
19#include "llvm/Support/Compiler.h"
20#include "llvm/Support/Compression.h"
21#include "llvm/Support/Endian.h"
22#include "llvm/Support/xxhash.h"
23#include <algorithm>
24#include <mutex>
25#include <vector>
26
27using namespace llvm;
28using namespace llvm::ELF;
29using namespace llvm::object;
30using namespace llvm::support;
31using namespace llvm::support::endian;
32using namespace llvm::sys;
33using namespace lld;
34using namespace lld::elf;
35
36DenseSet<std::pair<const Symbol *, uint64_t>> elf::ppc64noTocRelax;
37
38// Returns a string to construct an error message.
39std::string lld::toString(const InputSectionBase *sec) {
40  return (toString(sec->file) + ":(" + sec->name + ")").str();
41}
42
43template <class ELFT>
44static ArrayRef<uint8_t> getSectionContents(ObjFile<ELFT> &file,
45                                            const typename ELFT::Shdr &hdr) {
46  if (hdr.sh_type == SHT_NOBITS)
47    return ArrayRef<uint8_t>(nullptr, hdr.sh_size);
48  return check(file.getObj().getSectionContents(hdr));
49}
50
51InputSectionBase::InputSectionBase(InputFile *file, uint64_t flags,
52                                   uint32_t type, uint64_t entsize,
53                                   uint32_t link, uint32_t info,
54                                   uint32_t addralign, ArrayRef<uint8_t> data,
55                                   StringRef name, Kind sectionKind)
56    : SectionBase(sectionKind, name, flags, entsize, addralign, type, info,
57                  link),
58      file(file), content_(data.data()), size(data.size()) {
59  // In order to reduce memory allocation, we assume that mergeable
60  // sections are smaller than 4 GiB, which is not an unreasonable
61  // assumption as of 2017.
62  if (sectionKind == SectionBase::Merge && content().size() > UINT32_MAX)
63    error(toString(this) + ": section too large");
64
65  // The ELF spec states that a value of 0 means the section has
66  // no alignment constraints.
67  uint32_t v = std::max<uint32_t>(addralign, 1);
68  if (!isPowerOf2_64(v))
69    fatal(toString(this) + ": sh_addralign is not a power of 2");
70  this->addralign = v;
71
72  // If SHF_COMPRESSED is set, parse the header. The legacy .zdebug format is no
73  // longer supported.
74  if (flags & SHF_COMPRESSED)
75    invokeELFT(parseCompressedHeader);
76}
77
78// Drop SHF_GROUP bit unless we are producing a re-linkable object file.
79// SHF_GROUP is a marker that a section belongs to some comdat group.
80// That flag doesn't make sense in an executable.
81static uint64_t getFlags(uint64_t flags) {
82  flags &= ~(uint64_t)SHF_INFO_LINK;
83  if (!config->relocatable)
84    flags &= ~(uint64_t)SHF_GROUP;
85  return flags;
86}
87
88template <class ELFT>
89InputSectionBase::InputSectionBase(ObjFile<ELFT> &file,
90                                   const typename ELFT::Shdr &hdr,
91                                   StringRef name, Kind sectionKind)
92    : InputSectionBase(&file, getFlags(hdr.sh_flags), hdr.sh_type,
93                       hdr.sh_entsize, hdr.sh_link, hdr.sh_info,
94                       hdr.sh_addralign, getSectionContents(file, hdr), name,
95                       sectionKind) {
96  // We reject object files having insanely large alignments even though
97  // they are allowed by the spec. I think 4GB is a reasonable limitation.
98  // We might want to relax this in the future.
99  if (hdr.sh_addralign > UINT32_MAX)
100    fatal(toString(&file) + ": section sh_addralign is too large");
101}
102
103size_t InputSectionBase::getSize() const {
104  if (auto *s = dyn_cast<SyntheticSection>(this))
105    return s->getSize();
106  return size - bytesDropped;
107}
108
109template <class ELFT>
110static void decompressAux(const InputSectionBase &sec, uint8_t *out,
111                          size_t size) {
112  auto *hdr = reinterpret_cast<const typename ELFT::Chdr *>(sec.content_);
113  auto compressed = ArrayRef<uint8_t>(sec.content_, sec.compressedSize)
114                        .slice(sizeof(typename ELFT::Chdr));
115  if (Error e = hdr->ch_type == ELFCOMPRESS_ZLIB
116                    ? compression::zlib::decompress(compressed, out, size)
117                    : compression::zstd::decompress(compressed, out, size))
118    fatal(toString(&sec) +
119          ": decompress failed: " + llvm::toString(std::move(e)));
120}
121
122void InputSectionBase::decompress() const {
123  uint8_t *uncompressedBuf;
124  {
125    static std::mutex mu;
126    std::lock_guard<std::mutex> lock(mu);
127    uncompressedBuf = bAlloc().Allocate<uint8_t>(size);
128  }
129
130  invokeELFT(decompressAux, *this, uncompressedBuf, size);
131  content_ = uncompressedBuf;
132  compressed = false;
133}
134
135template <class ELFT> RelsOrRelas<ELFT> InputSectionBase::relsOrRelas() const {
136  if (relSecIdx == 0)
137    return {};
138  RelsOrRelas<ELFT> ret;
139  typename ELFT::Shdr shdr =
140      cast<ELFFileBase>(file)->getELFShdrs<ELFT>()[relSecIdx];
141  if (shdr.sh_type == SHT_REL) {
142    ret.rels = ArrayRef(reinterpret_cast<const typename ELFT::Rel *>(
143                            file->mb.getBufferStart() + shdr.sh_offset),
144                        shdr.sh_size / sizeof(typename ELFT::Rel));
145  } else {
146    assert(shdr.sh_type == SHT_RELA);
147    ret.relas = ArrayRef(reinterpret_cast<const typename ELFT::Rela *>(
148                             file->mb.getBufferStart() + shdr.sh_offset),
149                         shdr.sh_size / sizeof(typename ELFT::Rela));
150  }
151  return ret;
152}
153
154uint64_t SectionBase::getOffset(uint64_t offset) const {
155  switch (kind()) {
156  case Output: {
157    auto *os = cast<OutputSection>(this);
158    // For output sections we treat offset -1 as the end of the section.
159    return offset == uint64_t(-1) ? os->size : offset;
160  }
161  case Regular:
162  case Synthetic:
163    return cast<InputSection>(this)->outSecOff + offset;
164  case EHFrame: {
165    // Two code paths may reach here. First, clang_rt.crtbegin.o and GCC
166    // crtbeginT.o may reference the start of an empty .eh_frame to identify the
167    // start of the output .eh_frame. Just return offset.
168    //
169    // Second, InputSection::copyRelocations on .eh_frame. Some pieces may be
170    // discarded due to GC/ICF. We should compute the output section offset.
171    const EhInputSection *es = cast<EhInputSection>(this);
172    if (!es->content().empty())
173      if (InputSection *isec = es->getParent())
174        return isec->outSecOff + es->getParentOffset(offset);
175    return offset;
176  }
177  case Merge:
178    const MergeInputSection *ms = cast<MergeInputSection>(this);
179    if (InputSection *isec = ms->getParent())
180      return isec->outSecOff + ms->getParentOffset(offset);
181    return ms->getParentOffset(offset);
182  }
183  llvm_unreachable("invalid section kind");
184}
185
186uint64_t SectionBase::getVA(uint64_t offset) const {
187  const OutputSection *out = getOutputSection();
188  return (out ? out->addr : 0) + getOffset(offset);
189}
190
191OutputSection *SectionBase::getOutputSection() {
192  InputSection *sec;
193  if (auto *isec = dyn_cast<InputSection>(this))
194    sec = isec;
195  else if (auto *ms = dyn_cast<MergeInputSection>(this))
196    sec = ms->getParent();
197  else if (auto *eh = dyn_cast<EhInputSection>(this))
198    sec = eh->getParent();
199  else
200    return cast<OutputSection>(this);
201  return sec ? sec->getParent() : nullptr;
202}
203
204// When a section is compressed, `rawData` consists with a header followed
205// by zlib-compressed data. This function parses a header to initialize
206// `uncompressedSize` member and remove the header from `rawData`.
207template <typename ELFT> void InputSectionBase::parseCompressedHeader() {
208  flags &= ~(uint64_t)SHF_COMPRESSED;
209
210  // New-style header
211  if (content().size() < sizeof(typename ELFT::Chdr)) {
212    error(toString(this) + ": corrupted compressed section");
213    return;
214  }
215
216  auto *hdr = reinterpret_cast<const typename ELFT::Chdr *>(content().data());
217  if (hdr->ch_type == ELFCOMPRESS_ZLIB) {
218    if (!compression::zlib::isAvailable())
219      error(toString(this) + " is compressed with ELFCOMPRESS_ZLIB, but lld is "
220                             "not built with zlib support");
221  } else if (hdr->ch_type == ELFCOMPRESS_ZSTD) {
222    if (!compression::zstd::isAvailable())
223      error(toString(this) + " is compressed with ELFCOMPRESS_ZSTD, but lld is "
224                             "not built with zstd support");
225  } else {
226    error(toString(this) + ": unsupported compression type (" +
227          Twine(hdr->ch_type) + ")");
228    return;
229  }
230
231  compressed = true;
232  compressedSize = size;
233  size = hdr->ch_size;
234  addralign = std::max<uint32_t>(hdr->ch_addralign, 1);
235}
236
237InputSection *InputSectionBase::getLinkOrderDep() const {
238  assert(flags & SHF_LINK_ORDER);
239  if (!link)
240    return nullptr;
241  return cast<InputSection>(file->getSections()[link]);
242}
243
244// Find a function symbol that encloses a given location.
245Defined *InputSectionBase::getEnclosingFunction(uint64_t offset) {
246  for (Symbol *b : file->getSymbols())
247    if (Defined *d = dyn_cast<Defined>(b))
248      if (d->section == this && d->type == STT_FUNC && d->value <= offset &&
249          offset < d->value + d->size)
250        return d;
251  return nullptr;
252}
253
254// Returns an object file location string. Used to construct an error message.
255std::string InputSectionBase::getLocation(uint64_t offset) {
256  std::string secAndOffset =
257      (name + "+0x" + Twine::utohexstr(offset) + ")").str();
258
259  // We don't have file for synthetic sections.
260  if (file == nullptr)
261    return (config->outputFile + ":(" + secAndOffset).str();
262
263  std::string filename = toString(file);
264  if (Defined *d = getEnclosingFunction(offset))
265    return filename + ":(function " + toString(*d) + ": " + secAndOffset;
266
267  return filename + ":(" + secAndOffset;
268}
269
270// This function is intended to be used for constructing an error message.
271// The returned message looks like this:
272//
273//   foo.c:42 (/home/alice/possibly/very/long/path/foo.c:42)
274//
275//  Returns an empty string if there's no way to get line info.
276std::string InputSectionBase::getSrcMsg(const Symbol &sym, uint64_t offset) {
277  return file->getSrcMsg(sym, *this, offset);
278}
279
280// Returns a filename string along with an optional section name. This
281// function is intended to be used for constructing an error
282// message. The returned message looks like this:
283//
284//   path/to/foo.o:(function bar)
285//
286// or
287//
288//   path/to/foo.o:(function bar) in archive path/to/bar.a
289std::string InputSectionBase::getObjMsg(uint64_t off) {
290  std::string filename = std::string(file->getName());
291
292  std::string archive;
293  if (!file->archiveName.empty())
294    archive = (" in archive " + file->archiveName).str();
295
296  // Find a symbol that encloses a given location. getObjMsg may be called
297  // before ObjFile::initSectionsAndLocalSyms where local symbols are
298  // initialized.
299  for (Symbol *b : file->getSymbols())
300    if (auto *d = dyn_cast_or_null<Defined>(b))
301      if (d->section == this && d->value <= off && off < d->value + d->size)
302        return filename + ":(" + toString(*d) + ")" + archive;
303
304  // If there's no symbol, print out the offset in the section.
305  return (filename + ":(" + name + "+0x" + utohexstr(off) + ")" + archive)
306      .str();
307}
308
309InputSection InputSection::discarded(nullptr, 0, 0, 0, ArrayRef<uint8_t>(), "");
310
311InputSection::InputSection(InputFile *f, uint64_t flags, uint32_t type,
312                           uint32_t addralign, ArrayRef<uint8_t> data,
313                           StringRef name, Kind k)
314    : InputSectionBase(f, flags, type,
315                       /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, addralign, data,
316                       name, k) {}
317
318template <class ELFT>
319InputSection::InputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header,
320                           StringRef name)
321    : InputSectionBase(f, header, name, InputSectionBase::Regular) {}
322
323// Copy SHT_GROUP section contents. Used only for the -r option.
324template <class ELFT> void InputSection::copyShtGroup(uint8_t *buf) {
325  // ELFT::Word is the 32-bit integral type in the target endianness.
326  using u32 = typename ELFT::Word;
327  ArrayRef<u32> from = getDataAs<u32>();
328  auto *to = reinterpret_cast<u32 *>(buf);
329
330  // The first entry is not a section number but a flag.
331  *to++ = from[0];
332
333  // Adjust section numbers because section numbers in an input object files are
334  // different in the output. We also need to handle combined or discarded
335  // members.
336  ArrayRef<InputSectionBase *> sections = file->getSections();
337  DenseSet<uint32_t> seen;
338  for (uint32_t idx : from.slice(1)) {
339    OutputSection *osec = sections[idx]->getOutputSection();
340    if (osec && seen.insert(osec->sectionIndex).second)
341      *to++ = osec->sectionIndex;
342  }
343}
344
345InputSectionBase *InputSection::getRelocatedSection() const {
346  if (!file || (type != SHT_RELA && type != SHT_REL))
347    return nullptr;
348  ArrayRef<InputSectionBase *> sections = file->getSections();
349  return sections[info];
350}
351
352// This is used for -r and --emit-relocs. We can't use memcpy to copy
353// relocations because we need to update symbol table offset and section index
354// for each relocation. So we copy relocations one by one.
355template <class ELFT, class RelTy>
356void InputSection::copyRelocations(uint8_t *buf, ArrayRef<RelTy> rels) {
357  const TargetInfo &target = *elf::target;
358  InputSectionBase *sec = getRelocatedSection();
359  (void)sec->contentMaybeDecompress(); // uncompress if needed
360
361  for (const RelTy &rel : rels) {
362    RelType type = rel.getType(config->isMips64EL);
363    const ObjFile<ELFT> *file = getFile<ELFT>();
364    Symbol &sym = file->getRelocTargetSym(rel);
365
366    auto *p = reinterpret_cast<typename ELFT::Rela *>(buf);
367    buf += sizeof(RelTy);
368
369    if (RelTy::IsRela)
370      p->r_addend = getAddend<ELFT>(rel);
371
372    // Output section VA is zero for -r, so r_offset is an offset within the
373    // section, but for --emit-relocs it is a virtual address.
374    p->r_offset = sec->getVA(rel.r_offset);
375    p->setSymbolAndType(in.symTab->getSymbolIndex(&sym), type,
376                        config->isMips64EL);
377
378    if (sym.type == STT_SECTION) {
379      // We combine multiple section symbols into only one per
380      // section. This means we have to update the addend. That is
381      // trivial for Elf_Rela, but for Elf_Rel we have to write to the
382      // section data. We do that by adding to the Relocation vector.
383
384      // .eh_frame is horribly special and can reference discarded sections. To
385      // avoid having to parse and recreate .eh_frame, we just replace any
386      // relocation in it pointing to discarded sections with R_*_NONE, which
387      // hopefully creates a frame that is ignored at runtime. Also, don't warn
388      // on .gcc_except_table and debug sections.
389      //
390      // See the comment in maybeReportUndefined for PPC32 .got2 and PPC64 .toc
391      auto *d = dyn_cast<Defined>(&sym);
392      if (!d) {
393        if (!isDebugSection(*sec) && sec->name != ".eh_frame" &&
394            sec->name != ".gcc_except_table" && sec->name != ".got2" &&
395            sec->name != ".toc") {
396          uint32_t secIdx = cast<Undefined>(sym).discardedSecIdx;
397          Elf_Shdr_Impl<ELFT> sec = file->template getELFShdrs<ELFT>()[secIdx];
398          warn("relocation refers to a discarded section: " +
399               CHECK(file->getObj().getSectionName(sec), file) +
400               "\n>>> referenced by " + getObjMsg(p->r_offset));
401        }
402        p->setSymbolAndType(0, 0, false);
403        continue;
404      }
405      SectionBase *section = d->section;
406      if (!section->isLive()) {
407        p->setSymbolAndType(0, 0, false);
408        continue;
409      }
410
411      int64_t addend = getAddend<ELFT>(rel);
412      const uint8_t *bufLoc = sec->content().begin() + rel.r_offset;
413      if (!RelTy::IsRela)
414        addend = target.getImplicitAddend(bufLoc, type);
415
416      if (config->emachine == EM_MIPS &&
417          target.getRelExpr(type, sym, bufLoc) == R_MIPS_GOTREL) {
418        // Some MIPS relocations depend on "gp" value. By default,
419        // this value has 0x7ff0 offset from a .got section. But
420        // relocatable files produced by a compiler or a linker
421        // might redefine this default value and we must use it
422        // for a calculation of the relocation result. When we
423        // generate EXE or DSO it's trivial. Generating a relocatable
424        // output is more difficult case because the linker does
425        // not calculate relocations in this mode and loses
426        // individual "gp" values used by each input object file.
427        // As a workaround we add the "gp" value to the relocation
428        // addend and save it back to the file.
429        addend += sec->getFile<ELFT>()->mipsGp0;
430      }
431
432      if (RelTy::IsRela)
433        p->r_addend = sym.getVA(addend) - section->getOutputSection()->addr;
434      else if (config->relocatable && type != target.noneRel)
435        sec->addReloc({R_ABS, type, rel.r_offset, addend, &sym});
436    } else if (config->emachine == EM_PPC && type == R_PPC_PLTREL24 &&
437               p->r_addend >= 0x8000 && sec->file->ppc32Got2) {
438      // Similar to R_MIPS_GPREL{16,32}. If the addend of R_PPC_PLTREL24
439      // indicates that r30 is relative to the input section .got2
440      // (r_addend>=0x8000), after linking, r30 should be relative to the output
441      // section .got2 . To compensate for the shift, adjust r_addend by
442      // ppc32Got->outSecOff.
443      p->r_addend += sec->file->ppc32Got2->outSecOff;
444    }
445  }
446}
447
448// The ARM and AArch64 ABI handle pc-relative relocations to undefined weak
449// references specially. The general rule is that the value of the symbol in
450// this context is the address of the place P. A further special case is that
451// branch relocations to an undefined weak reference resolve to the next
452// instruction.
453static uint32_t getARMUndefinedRelativeWeakVA(RelType type, uint32_t a,
454                                              uint32_t p) {
455  switch (type) {
456  // Unresolved branch relocations to weak references resolve to next
457  // instruction, this will be either 2 or 4 bytes on from P.
458  case R_ARM_THM_JUMP8:
459  case R_ARM_THM_JUMP11:
460    return p + 2 + a;
461  case R_ARM_CALL:
462  case R_ARM_JUMP24:
463  case R_ARM_PC24:
464  case R_ARM_PLT32:
465  case R_ARM_PREL31:
466  case R_ARM_THM_JUMP19:
467  case R_ARM_THM_JUMP24:
468    return p + 4 + a;
469  case R_ARM_THM_CALL:
470    // We don't want an interworking BLX to ARM
471    return p + 5 + a;
472  // Unresolved non branch pc-relative relocations
473  // R_ARM_TARGET2 which can be resolved relatively is not present as it never
474  // targets a weak-reference.
475  case R_ARM_MOVW_PREL_NC:
476  case R_ARM_MOVT_PREL:
477  case R_ARM_REL32:
478  case R_ARM_THM_ALU_PREL_11_0:
479  case R_ARM_THM_MOVW_PREL_NC:
480  case R_ARM_THM_MOVT_PREL:
481  case R_ARM_THM_PC12:
482    return p + a;
483  // p + a is unrepresentable as negative immediates can't be encoded.
484  case R_ARM_THM_PC8:
485    return p;
486  }
487  llvm_unreachable("ARM pc-relative relocation expected\n");
488}
489
490// The comment above getARMUndefinedRelativeWeakVA applies to this function.
491static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t type, uint64_t p) {
492  switch (type) {
493  // Unresolved branch relocations to weak references resolve to next
494  // instruction, this is 4 bytes on from P.
495  case R_AARCH64_CALL26:
496  case R_AARCH64_CONDBR19:
497  case R_AARCH64_JUMP26:
498  case R_AARCH64_TSTBR14:
499    return p + 4;
500  // Unresolved non branch pc-relative relocations
501  case R_AARCH64_PREL16:
502  case R_AARCH64_PREL32:
503  case R_AARCH64_PREL64:
504  case R_AARCH64_ADR_PREL_LO21:
505  case R_AARCH64_LD_PREL_LO19:
506  case R_AARCH64_PLT32:
507    return p;
508  }
509  llvm_unreachable("AArch64 pc-relative relocation expected\n");
510}
511
512static uint64_t getRISCVUndefinedRelativeWeakVA(uint64_t type, uint64_t p) {
513  switch (type) {
514  case R_RISCV_BRANCH:
515  case R_RISCV_JAL:
516  case R_RISCV_CALL:
517  case R_RISCV_CALL_PLT:
518  case R_RISCV_RVC_BRANCH:
519  case R_RISCV_RVC_JUMP:
520    return p;
521  default:
522    return 0;
523  }
524}
525
526// ARM SBREL relocations are of the form S + A - B where B is the static base
527// The ARM ABI defines base to be "addressing origin of the output segment
528// defining the symbol S". We defined the "addressing origin"/static base to be
529// the base of the PT_LOAD segment containing the Sym.
530// The procedure call standard only defines a Read Write Position Independent
531// RWPI variant so in practice we should expect the static base to be the base
532// of the RW segment.
533static uint64_t getARMStaticBase(const Symbol &sym) {
534  OutputSection *os = sym.getOutputSection();
535  if (!os || !os->ptLoad || !os->ptLoad->firstSec)
536    fatal("SBREL relocation to " + sym.getName() + " without static base");
537  return os->ptLoad->firstSec->addr;
538}
539
540// For R_RISCV_PC_INDIRECT (R_RISCV_PCREL_LO12_{I,S}), the symbol actually
541// points the corresponding R_RISCV_PCREL_HI20 relocation, and the target VA
542// is calculated using PCREL_HI20's symbol.
543//
544// This function returns the R_RISCV_PCREL_HI20 relocation from
545// R_RISCV_PCREL_LO12's symbol and addend.
546static Relocation *getRISCVPCRelHi20(const Symbol *sym, uint64_t addend) {
547  const Defined *d = cast<Defined>(sym);
548  if (!d->section) {
549    errorOrWarn("R_RISCV_PCREL_LO12 relocation points to an absolute symbol: " +
550                sym->getName());
551    return nullptr;
552  }
553  InputSection *isec = cast<InputSection>(d->section);
554
555  if (addend != 0)
556    warn("non-zero addend in R_RISCV_PCREL_LO12 relocation to " +
557         isec->getObjMsg(d->value) + " is ignored");
558
559  // Relocations are sorted by offset, so we can use std::equal_range to do
560  // binary search.
561  Relocation r;
562  r.offset = d->value;
563  auto range =
564      std::equal_range(isec->relocs().begin(), isec->relocs().end(), r,
565                       [](const Relocation &lhs, const Relocation &rhs) {
566                         return lhs.offset < rhs.offset;
567                       });
568
569  for (auto it = range.first; it != range.second; ++it)
570    if (it->type == R_RISCV_PCREL_HI20 || it->type == R_RISCV_GOT_HI20 ||
571        it->type == R_RISCV_TLS_GD_HI20 || it->type == R_RISCV_TLS_GOT_HI20)
572      return &*it;
573
574  errorOrWarn("R_RISCV_PCREL_LO12 relocation points to " +
575              isec->getObjMsg(d->value) +
576              " without an associated R_RISCV_PCREL_HI20 relocation");
577  return nullptr;
578}
579
580// A TLS symbol's virtual address is relative to the TLS segment. Add a
581// target-specific adjustment to produce a thread-pointer-relative offset.
582static int64_t getTlsTpOffset(const Symbol &s) {
583  // On targets that support TLSDESC, _TLS_MODULE_BASE_@tpoff = 0.
584  if (&s == ElfSym::tlsModuleBase)
585    return 0;
586
587  // There are 2 TLS layouts. Among targets we support, x86 uses TLS Variant 2
588  // while most others use Variant 1. At run time TP will be aligned to p_align.
589
590  // Variant 1. TP will be followed by an optional gap (which is the size of 2
591  // pointers on ARM/AArch64, 0 on other targets), followed by alignment
592  // padding, then the static TLS blocks. The alignment padding is added so that
593  // (TP + gap + padding) is congruent to p_vaddr modulo p_align.
594  //
595  // Variant 2. Static TLS blocks, followed by alignment padding are placed
596  // before TP. The alignment padding is added so that (TP - padding -
597  // p_memsz) is congruent to p_vaddr modulo p_align.
598  PhdrEntry *tls = Out::tlsPhdr;
599  switch (config->emachine) {
600    // Variant 1.
601  case EM_ARM:
602  case EM_AARCH64:
603    return s.getVA(0) + config->wordsize * 2 +
604           ((tls->p_vaddr - config->wordsize * 2) & (tls->p_align - 1));
605  case EM_MIPS:
606  case EM_PPC:
607  case EM_PPC64:
608    // Adjusted Variant 1. TP is placed with a displacement of 0x7000, which is
609    // to allow a signed 16-bit offset to reach 0x1000 of TCB/thread-library
610    // data and 0xf000 of the program's TLS segment.
611    return s.getVA(0) + (tls->p_vaddr & (tls->p_align - 1)) - 0x7000;
612  case EM_RISCV:
613    return s.getVA(0) + (tls->p_vaddr & (tls->p_align - 1));
614
615    // Variant 2.
616  case EM_HEXAGON:
617  case EM_SPARCV9:
618  case EM_386:
619  case EM_X86_64:
620    return s.getVA(0) - tls->p_memsz -
621           ((-tls->p_vaddr - tls->p_memsz) & (tls->p_align - 1));
622  default:
623    llvm_unreachable("unhandled Config->EMachine");
624  }
625}
626
627uint64_t InputSectionBase::getRelocTargetVA(const InputFile *file, RelType type,
628                                            int64_t a, uint64_t p,
629                                            const Symbol &sym, RelExpr expr) {
630  switch (expr) {
631  case R_ABS:
632  case R_DTPREL:
633  case R_RELAX_TLS_LD_TO_LE_ABS:
634  case R_RELAX_GOT_PC_NOPIC:
635  case R_RISCV_ADD:
636    return sym.getVA(a);
637  case R_ADDEND:
638    return a;
639  case R_RELAX_HINT:
640    return 0;
641  case R_ARM_SBREL:
642    return sym.getVA(a) - getARMStaticBase(sym);
643  case R_GOT:
644  case R_RELAX_TLS_GD_TO_IE_ABS:
645    return sym.getGotVA() + a;
646  case R_GOTONLY_PC:
647    return in.got->getVA() + a - p;
648  case R_GOTPLTONLY_PC:
649    return in.gotPlt->getVA() + a - p;
650  case R_GOTREL:
651  case R_PPC64_RELAX_TOC:
652    return sym.getVA(a) - in.got->getVA();
653  case R_GOTPLTREL:
654    return sym.getVA(a) - in.gotPlt->getVA();
655  case R_GOTPLT:
656  case R_RELAX_TLS_GD_TO_IE_GOTPLT:
657    return sym.getGotVA() + a - in.gotPlt->getVA();
658  case R_TLSLD_GOT_OFF:
659  case R_GOT_OFF:
660  case R_RELAX_TLS_GD_TO_IE_GOT_OFF:
661    return sym.getGotOffset() + a;
662  case R_AARCH64_GOT_PAGE_PC:
663  case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC:
664    return getAArch64Page(sym.getGotVA() + a) - getAArch64Page(p);
665  case R_AARCH64_GOT_PAGE:
666    return sym.getGotVA() + a - getAArch64Page(in.got->getVA());
667  case R_GOT_PC:
668  case R_RELAX_TLS_GD_TO_IE:
669    return sym.getGotVA() + a - p;
670  case R_MIPS_GOTREL:
671    return sym.getVA(a) - in.mipsGot->getGp(file);
672  case R_MIPS_GOT_GP:
673    return in.mipsGot->getGp(file) + a;
674  case R_MIPS_GOT_GP_PC: {
675    // R_MIPS_LO16 expression has R_MIPS_GOT_GP_PC type iif the target
676    // is _gp_disp symbol. In that case we should use the following
677    // formula for calculation "AHL + GP - P + 4". For details see p. 4-19 at
678    // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
679    // microMIPS variants of these relocations use slightly different
680    // expressions: AHL + GP - P + 3 for %lo() and AHL + GP - P - 1 for %hi()
681    // to correctly handle less-significant bit of the microMIPS symbol.
682    uint64_t v = in.mipsGot->getGp(file) + a - p;
683    if (type == R_MIPS_LO16 || type == R_MICROMIPS_LO16)
684      v += 4;
685    if (type == R_MICROMIPS_LO16 || type == R_MICROMIPS_HI16)
686      v -= 1;
687    return v;
688  }
689  case R_MIPS_GOT_LOCAL_PAGE:
690    // If relocation against MIPS local symbol requires GOT entry, this entry
691    // should be initialized by 'page address'. This address is high 16-bits
692    // of sum the symbol's value and the addend.
693    return in.mipsGot->getVA() + in.mipsGot->getPageEntryOffset(file, sym, a) -
694           in.mipsGot->getGp(file);
695  case R_MIPS_GOT_OFF:
696  case R_MIPS_GOT_OFF32:
697    // In case of MIPS if a GOT relocation has non-zero addend this addend
698    // should be applied to the GOT entry content not to the GOT entry offset.
699    // That is why we use separate expression type.
700    return in.mipsGot->getVA() + in.mipsGot->getSymEntryOffset(file, sym, a) -
701           in.mipsGot->getGp(file);
702  case R_MIPS_TLSGD:
703    return in.mipsGot->getVA() + in.mipsGot->getGlobalDynOffset(file, sym) -
704           in.mipsGot->getGp(file);
705  case R_MIPS_TLSLD:
706    return in.mipsGot->getVA() + in.mipsGot->getTlsIndexOffset(file) -
707           in.mipsGot->getGp(file);
708  case R_AARCH64_PAGE_PC: {
709    uint64_t val = sym.isUndefWeak() ? p + a : sym.getVA(a);
710    return getAArch64Page(val) - getAArch64Page(p);
711  }
712  case R_RISCV_PC_INDIRECT: {
713    if (const Relocation *hiRel = getRISCVPCRelHi20(&sym, a))
714      return getRelocTargetVA(file, hiRel->type, hiRel->addend, sym.getVA(),
715                              *hiRel->sym, hiRel->expr);
716    return 0;
717  }
718  case R_PC:
719  case R_ARM_PCA: {
720    uint64_t dest;
721    if (expr == R_ARM_PCA)
722      // Some PC relative ARM (Thumb) relocations align down the place.
723      p = p & 0xfffffffc;
724    if (sym.isUndefined()) {
725      // On ARM and AArch64 a branch to an undefined weak resolves to the next
726      // instruction, otherwise the place. On RISCV, resolve an undefined weak
727      // to the same instruction to cause an infinite loop (making the user
728      // aware of the issue) while ensuring no overflow.
729      // Note: if the symbol is hidden, its binding has been converted to local,
730      // so we just check isUndefined() here.
731      if (config->emachine == EM_ARM)
732        dest = getARMUndefinedRelativeWeakVA(type, a, p);
733      else if (config->emachine == EM_AARCH64)
734        dest = getAArch64UndefinedRelativeWeakVA(type, p) + a;
735      else if (config->emachine == EM_PPC)
736        dest = p;
737      else if (config->emachine == EM_RISCV)
738        dest = getRISCVUndefinedRelativeWeakVA(type, p) + a;
739      else
740        dest = sym.getVA(a);
741    } else {
742      dest = sym.getVA(a);
743    }
744    return dest - p;
745  }
746  case R_PLT:
747    return sym.getPltVA() + a;
748  case R_PLT_PC:
749  case R_PPC64_CALL_PLT:
750    return sym.getPltVA() + a - p;
751  case R_PLT_GOTPLT:
752    return sym.getPltVA() + a - in.gotPlt->getVA();
753  case R_PPC32_PLTREL:
754    // R_PPC_PLTREL24 uses the addend (usually 0 or 0x8000) to indicate r30
755    // stores _GLOBAL_OFFSET_TABLE_ or .got2+0x8000. The addend is ignored for
756    // target VA computation.
757    return sym.getPltVA() - p;
758  case R_PPC64_CALL: {
759    uint64_t symVA = sym.getVA(a);
760    // If we have an undefined weak symbol, we might get here with a symbol
761    // address of zero. That could overflow, but the code must be unreachable,
762    // so don't bother doing anything at all.
763    if (!symVA)
764      return 0;
765
766    // PPC64 V2 ABI describes two entry points to a function. The global entry
767    // point is used for calls where the caller and callee (may) have different
768    // TOC base pointers and r2 needs to be modified to hold the TOC base for
769    // the callee. For local calls the caller and callee share the same
770    // TOC base and so the TOC pointer initialization code should be skipped by
771    // branching to the local entry point.
772    return symVA - p + getPPC64GlobalEntryToLocalEntryOffset(sym.stOther);
773  }
774  case R_PPC64_TOCBASE:
775    return getPPC64TocBase() + a;
776  case R_RELAX_GOT_PC:
777  case R_PPC64_RELAX_GOT_PC:
778    return sym.getVA(a) - p;
779  case R_RELAX_TLS_GD_TO_LE:
780  case R_RELAX_TLS_IE_TO_LE:
781  case R_RELAX_TLS_LD_TO_LE:
782  case R_TPREL:
783    // It is not very clear what to return if the symbol is undefined. With
784    // --noinhibit-exec, even a non-weak undefined reference may reach here.
785    // Just return A, which matches R_ABS, and the behavior of some dynamic
786    // loaders.
787    if (sym.isUndefined())
788      return a;
789    return getTlsTpOffset(sym) + a;
790  case R_RELAX_TLS_GD_TO_LE_NEG:
791  case R_TPREL_NEG:
792    if (sym.isUndefined())
793      return a;
794    return -getTlsTpOffset(sym) + a;
795  case R_SIZE:
796    return sym.getSize() + a;
797  case R_TLSDESC:
798    return in.got->getTlsDescAddr(sym) + a;
799  case R_TLSDESC_PC:
800    return in.got->getTlsDescAddr(sym) + a - p;
801  case R_TLSDESC_GOTPLT:
802    return in.got->getTlsDescAddr(sym) + a - in.gotPlt->getVA();
803  case R_AARCH64_TLSDESC_PAGE:
804    return getAArch64Page(in.got->getTlsDescAddr(sym) + a) - getAArch64Page(p);
805  case R_TLSGD_GOT:
806    return in.got->getGlobalDynOffset(sym) + a;
807  case R_TLSGD_GOTPLT:
808    return in.got->getGlobalDynAddr(sym) + a - in.gotPlt->getVA();
809  case R_TLSGD_PC:
810    return in.got->getGlobalDynAddr(sym) + a - p;
811  case R_TLSLD_GOTPLT:
812    return in.got->getVA() + in.got->getTlsIndexOff() + a - in.gotPlt->getVA();
813  case R_TLSLD_GOT:
814    return in.got->getTlsIndexOff() + a;
815  case R_TLSLD_PC:
816    return in.got->getTlsIndexVA() + a - p;
817  default:
818    llvm_unreachable("invalid expression");
819  }
820}
821
822// This function applies relocations to sections without SHF_ALLOC bit.
823// Such sections are never mapped to memory at runtime. Debug sections are
824// an example. Relocations in non-alloc sections are much easier to
825// handle than in allocated sections because it will never need complex
826// treatment such as GOT or PLT (because at runtime no one refers them).
827// So, we handle relocations for non-alloc sections directly in this
828// function as a performance optimization.
829template <class ELFT, class RelTy>
830void InputSection::relocateNonAlloc(uint8_t *buf, ArrayRef<RelTy> rels) {
831  const unsigned bits = sizeof(typename ELFT::uint) * 8;
832  const TargetInfo &target = *elf::target;
833  const bool isDebug = isDebugSection(*this);
834  const bool isDebugLocOrRanges =
835      isDebug && (name == ".debug_loc" || name == ".debug_ranges");
836  const bool isDebugLine = isDebug && name == ".debug_line";
837  std::optional<uint64_t> tombstone;
838  for (const auto &patAndValue : llvm::reverse(config->deadRelocInNonAlloc))
839    if (patAndValue.first.match(this->name)) {
840      tombstone = patAndValue.second;
841      break;
842    }
843
844  for (const RelTy &rel : rels) {
845    RelType type = rel.getType(config->isMips64EL);
846
847    // GCC 8.0 or earlier have a bug that they emit R_386_GOTPC relocations
848    // against _GLOBAL_OFFSET_TABLE_ for .debug_info. The bug has been fixed
849    // in 2017 (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82630), but we
850    // need to keep this bug-compatible code for a while.
851    if (config->emachine == EM_386 && type == R_386_GOTPC)
852      continue;
853
854    uint64_t offset = rel.r_offset;
855    uint8_t *bufLoc = buf + offset;
856    int64_t addend = getAddend<ELFT>(rel);
857    if (!RelTy::IsRela)
858      addend += target.getImplicitAddend(bufLoc, type);
859
860    Symbol &sym = getFile<ELFT>()->getRelocTargetSym(rel);
861    RelExpr expr = target.getRelExpr(type, sym, bufLoc);
862    if (expr == R_NONE)
863      continue;
864
865    if (tombstone ||
866        (isDebug && (type == target.symbolicRel || expr == R_DTPREL))) {
867      // Resolve relocations in .debug_* referencing (discarded symbols or ICF
868      // folded section symbols) to a tombstone value. Resolving to addend is
869      // unsatisfactory because the result address range may collide with a
870      // valid range of low address, or leave multiple CUs claiming ownership of
871      // the same range of code, which may confuse consumers.
872      //
873      // To address the problems, we use -1 as a tombstone value for most
874      // .debug_* sections. We have to ignore the addend because we don't want
875      // to resolve an address attribute (which may have a non-zero addend) to
876      // -1+addend (wrap around to a low address).
877      //
878      // R_DTPREL type relocations represent an offset into the dynamic thread
879      // vector. The computed value is st_value plus a non-negative offset.
880      // Negative values are invalid, so -1 can be used as the tombstone value.
881      //
882      // If the referenced symbol is discarded (made Undefined), or the
883      // section defining the referenced symbol is garbage collected,
884      // sym.getOutputSection() is nullptr. `ds->folded` catches the ICF folded
885      // case. However, resolving a relocation in .debug_line to -1 would stop
886      // debugger users from setting breakpoints on the folded-in function, so
887      // exclude .debug_line.
888      //
889      // For pre-DWARF-v5 .debug_loc and .debug_ranges, -1 is a reserved value
890      // (base address selection entry), use 1 (which is used by GNU ld for
891      // .debug_ranges).
892      //
893      // TODO To reduce disruption, we use 0 instead of -1 as the tombstone
894      // value. Enable -1 in a future release.
895      auto *ds = dyn_cast<Defined>(&sym);
896      if (!sym.getOutputSection() || (ds && ds->folded && !isDebugLine)) {
897        // If -z dead-reloc-in-nonalloc= is specified, respect it.
898        const uint64_t value = tombstone ? SignExtend64<bits>(*tombstone)
899                                         : (isDebugLocOrRanges ? 1 : 0);
900        target.relocateNoSym(bufLoc, type, value);
901        continue;
902      }
903    }
904
905    // For a relocatable link, only tombstone values are applied.
906    if (config->relocatable)
907      continue;
908
909    if (expr == R_SIZE) {
910      target.relocateNoSym(bufLoc, type,
911                           SignExtend64<bits>(sym.getSize() + addend));
912      continue;
913    }
914
915    // R_ABS/R_DTPREL and some other relocations can be used from non-SHF_ALLOC
916    // sections.
917    if (expr == R_ABS || expr == R_DTPREL || expr == R_GOTPLTREL ||
918        expr == R_RISCV_ADD) {
919      target.relocateNoSym(bufLoc, type, SignExtend64<bits>(sym.getVA(addend)));
920      continue;
921    }
922
923    std::string msg = getLocation(offset) + ": has non-ABS relocation " +
924                      toString(type) + " against symbol '" + toString(sym) +
925                      "'";
926    if (expr != R_PC && expr != R_ARM_PCA) {
927      error(msg);
928      return;
929    }
930
931    // If the control reaches here, we found a PC-relative relocation in a
932    // non-ALLOC section. Since non-ALLOC section is not loaded into memory
933    // at runtime, the notion of PC-relative doesn't make sense here. So,
934    // this is a usage error. However, GNU linkers historically accept such
935    // relocations without any errors and relocate them as if they were at
936    // address 0. For bug-compatibility, we accept them with warnings. We
937    // know Steel Bank Common Lisp as of 2018 have this bug.
938    warn(msg);
939    target.relocateNoSym(
940        bufLoc, type,
941        SignExtend64<bits>(sym.getVA(addend - offset - outSecOff)));
942  }
943}
944
945// This is used when '-r' is given.
946// For REL targets, InputSection::copyRelocations() may store artificial
947// relocations aimed to update addends. They are handled in relocateAlloc()
948// for allocatable sections, and this function does the same for
949// non-allocatable sections, such as sections with debug information.
950static void relocateNonAllocForRelocatable(InputSection *sec, uint8_t *buf) {
951  const unsigned bits = config->is64 ? 64 : 32;
952
953  for (const Relocation &rel : sec->relocs()) {
954    // InputSection::copyRelocations() adds only R_ABS relocations.
955    assert(rel.expr == R_ABS);
956    uint8_t *bufLoc = buf + rel.offset;
957    uint64_t targetVA = SignExtend64(rel.sym->getVA(rel.addend), bits);
958    target->relocate(bufLoc, rel, targetVA);
959  }
960}
961
962template <class ELFT>
963void InputSectionBase::relocate(uint8_t *buf, uint8_t *bufEnd) {
964  if ((flags & SHF_EXECINSTR) && LLVM_UNLIKELY(getFile<ELFT>()->splitStack))
965    adjustSplitStackFunctionPrologues<ELFT>(buf, bufEnd);
966
967  if (flags & SHF_ALLOC) {
968    target->relocateAlloc(*this, buf);
969    return;
970  }
971
972  auto *sec = cast<InputSection>(this);
973  if (config->relocatable)
974    relocateNonAllocForRelocatable(sec, buf);
975  // For a relocatable link, also call relocateNonAlloc() to rewrite applicable
976  // locations with tombstone values.
977  const RelsOrRelas<ELFT> rels = sec->template relsOrRelas<ELFT>();
978  if (rels.areRelocsRel())
979    sec->relocateNonAlloc<ELFT>(buf, rels.rels);
980  else
981    sec->relocateNonAlloc<ELFT>(buf, rels.relas);
982}
983
984// For each function-defining prologue, find any calls to __morestack,
985// and replace them with calls to __morestack_non_split.
986static void switchMorestackCallsToMorestackNonSplit(
987    DenseSet<Defined *> &prologues,
988    SmallVector<Relocation *, 0> &morestackCalls) {
989
990  // If the target adjusted a function's prologue, all calls to
991  // __morestack inside that function should be switched to
992  // __morestack_non_split.
993  Symbol *moreStackNonSplit = symtab.find("__morestack_non_split");
994  if (!moreStackNonSplit) {
995    error("mixing split-stack objects requires a definition of "
996          "__morestack_non_split");
997    return;
998  }
999
1000  // Sort both collections to compare addresses efficiently.
1001  llvm::sort(morestackCalls, [](const Relocation *l, const Relocation *r) {
1002    return l->offset < r->offset;
1003  });
1004  std::vector<Defined *> functions(prologues.begin(), prologues.end());
1005  llvm::sort(functions, [](const Defined *l, const Defined *r) {
1006    return l->value < r->value;
1007  });
1008
1009  auto it = morestackCalls.begin();
1010  for (Defined *f : functions) {
1011    // Find the first call to __morestack within the function.
1012    while (it != morestackCalls.end() && (*it)->offset < f->value)
1013      ++it;
1014    // Adjust all calls inside the function.
1015    while (it != morestackCalls.end() && (*it)->offset < f->value + f->size) {
1016      (*it)->sym = moreStackNonSplit;
1017      ++it;
1018    }
1019  }
1020}
1021
1022static bool enclosingPrologueAttempted(uint64_t offset,
1023                                       const DenseSet<Defined *> &prologues) {
1024  for (Defined *f : prologues)
1025    if (f->value <= offset && offset < f->value + f->size)
1026      return true;
1027  return false;
1028}
1029
1030// If a function compiled for split stack calls a function not
1031// compiled for split stack, then the caller needs its prologue
1032// adjusted to ensure that the called function will have enough stack
1033// available. Find those functions, and adjust their prologues.
1034template <class ELFT>
1035void InputSectionBase::adjustSplitStackFunctionPrologues(uint8_t *buf,
1036                                                         uint8_t *end) {
1037  DenseSet<Defined *> prologues;
1038  SmallVector<Relocation *, 0> morestackCalls;
1039
1040  for (Relocation &rel : relocs()) {
1041    // Ignore calls into the split-stack api.
1042    if (rel.sym->getName().startswith("__morestack")) {
1043      if (rel.sym->getName().equals("__morestack"))
1044        morestackCalls.push_back(&rel);
1045      continue;
1046    }
1047
1048    // A relocation to non-function isn't relevant. Sometimes
1049    // __morestack is not marked as a function, so this check comes
1050    // after the name check.
1051    if (rel.sym->type != STT_FUNC)
1052      continue;
1053
1054    // If the callee's-file was compiled with split stack, nothing to do.  In
1055    // this context, a "Defined" symbol is one "defined by the binary currently
1056    // being produced". So an "undefined" symbol might be provided by a shared
1057    // library. It is not possible to tell how such symbols were compiled, so be
1058    // conservative.
1059    if (Defined *d = dyn_cast<Defined>(rel.sym))
1060      if (InputSection *isec = cast_or_null<InputSection>(d->section))
1061        if (!isec || !isec->getFile<ELFT>() || isec->getFile<ELFT>()->splitStack)
1062          continue;
1063
1064    if (enclosingPrologueAttempted(rel.offset, prologues))
1065      continue;
1066
1067    if (Defined *f = getEnclosingFunction(rel.offset)) {
1068      prologues.insert(f);
1069      if (target->adjustPrologueForCrossSplitStack(buf + f->value, end,
1070                                                   f->stOther))
1071        continue;
1072      if (!getFile<ELFT>()->someNoSplitStack)
1073        error(lld::toString(this) + ": " + f->getName() +
1074              " (with -fsplit-stack) calls " + rel.sym->getName() +
1075              " (without -fsplit-stack), but couldn't adjust its prologue");
1076    }
1077  }
1078
1079  if (target->needsMoreStackNonSplit)
1080    switchMorestackCallsToMorestackNonSplit(prologues, morestackCalls);
1081}
1082
1083template <class ELFT> void InputSection::writeTo(uint8_t *buf) {
1084  if (LLVM_UNLIKELY(type == SHT_NOBITS))
1085    return;
1086  // If -r or --emit-relocs is given, then an InputSection
1087  // may be a relocation section.
1088  if (LLVM_UNLIKELY(type == SHT_RELA)) {
1089    copyRelocations<ELFT>(buf, getDataAs<typename ELFT::Rela>());
1090    return;
1091  }
1092  if (LLVM_UNLIKELY(type == SHT_REL)) {
1093    copyRelocations<ELFT>(buf, getDataAs<typename ELFT::Rel>());
1094    return;
1095  }
1096
1097  // If -r is given, we may have a SHT_GROUP section.
1098  if (LLVM_UNLIKELY(type == SHT_GROUP)) {
1099    copyShtGroup<ELFT>(buf);
1100    return;
1101  }
1102
1103  // If this is a compressed section, uncompress section contents directly
1104  // to the buffer.
1105  if (compressed) {
1106    auto *hdr = reinterpret_cast<const typename ELFT::Chdr *>(content_);
1107    auto compressed = ArrayRef<uint8_t>(content_, compressedSize)
1108                          .slice(sizeof(typename ELFT::Chdr));
1109    size_t size = this->size;
1110    if (Error e = hdr->ch_type == ELFCOMPRESS_ZLIB
1111                      ? compression::zlib::decompress(compressed, buf, size)
1112                      : compression::zstd::decompress(compressed, buf, size))
1113      fatal(toString(this) +
1114            ": decompress failed: " + llvm::toString(std::move(e)));
1115    uint8_t *bufEnd = buf + size;
1116    relocate<ELFT>(buf, bufEnd);
1117    return;
1118  }
1119
1120  // Copy section contents from source object file to output file
1121  // and then apply relocations.
1122  memcpy(buf, content().data(), content().size());
1123  relocate<ELFT>(buf, buf + content().size());
1124}
1125
1126void InputSection::replace(InputSection *other) {
1127  addralign = std::max(addralign, other->addralign);
1128
1129  // When a section is replaced with another section that was allocated to
1130  // another partition, the replacement section (and its associated sections)
1131  // need to be placed in the main partition so that both partitions will be
1132  // able to access it.
1133  if (partition != other->partition) {
1134    partition = 1;
1135    for (InputSection *isec : dependentSections)
1136      isec->partition = 1;
1137  }
1138
1139  other->repl = repl;
1140  other->markDead();
1141}
1142
1143template <class ELFT>
1144EhInputSection::EhInputSection(ObjFile<ELFT> &f,
1145                               const typename ELFT::Shdr &header,
1146                               StringRef name)
1147    : InputSectionBase(f, header, name, InputSectionBase::EHFrame) {}
1148
1149SyntheticSection *EhInputSection::getParent() const {
1150  return cast_or_null<SyntheticSection>(parent);
1151}
1152
1153// .eh_frame is a sequence of CIE or FDE records.
1154// This function splits an input section into records and returns them.
1155template <class ELFT> void EhInputSection::split() {
1156  const RelsOrRelas<ELFT> rels = relsOrRelas<ELFT>();
1157  // getReloc expects the relocations to be sorted by r_offset. See the comment
1158  // in scanRelocs.
1159  if (rels.areRelocsRel()) {
1160    SmallVector<typename ELFT::Rel, 0> storage;
1161    split<ELFT>(sortRels(rels.rels, storage));
1162  } else {
1163    SmallVector<typename ELFT::Rela, 0> storage;
1164    split<ELFT>(sortRels(rels.relas, storage));
1165  }
1166}
1167
1168template <class ELFT, class RelTy>
1169void EhInputSection::split(ArrayRef<RelTy> rels) {
1170  ArrayRef<uint8_t> d = content();
1171  const char *msg = nullptr;
1172  unsigned relI = 0;
1173  while (!d.empty()) {
1174    if (d.size() < 4) {
1175      msg = "CIE/FDE too small";
1176      break;
1177    }
1178    uint64_t size = endian::read32<ELFT::TargetEndianness>(d.data());
1179    if (size == 0) // ZERO terminator
1180      break;
1181    uint32_t id = endian::read32<ELFT::TargetEndianness>(d.data() + 4);
1182    size += 4;
1183    if (LLVM_UNLIKELY(size > d.size())) {
1184      // If it is 0xFFFFFFFF, the next 8 bytes contain the size instead,
1185      // but we do not support that format yet.
1186      msg = size == UINT32_MAX + uint64_t(4)
1187                ? "CIE/FDE too large"
1188                : "CIE/FDE ends past the end of the section";
1189      break;
1190    }
1191
1192    // Find the first relocation that points to [off,off+size). Relocations
1193    // have been sorted by r_offset.
1194    const uint64_t off = d.data() - content().data();
1195    while (relI != rels.size() && rels[relI].r_offset < off)
1196      ++relI;
1197    unsigned firstRel = -1;
1198    if (relI != rels.size() && rels[relI].r_offset < off + size)
1199      firstRel = relI;
1200    (id == 0 ? cies : fdes).emplace_back(off, this, size, firstRel);
1201    d = d.slice(size);
1202  }
1203  if (msg)
1204    errorOrWarn("corrupted .eh_frame: " + Twine(msg) + "\n>>> defined in " +
1205                getObjMsg(d.data() - content().data()));
1206}
1207
1208// Return the offset in an output section for a given input offset.
1209uint64_t EhInputSection::getParentOffset(uint64_t offset) const {
1210  auto it = partition_point(
1211      fdes, [=](EhSectionPiece p) { return p.inputOff <= offset; });
1212  if (it == fdes.begin() || it[-1].inputOff + it[-1].size <= offset) {
1213    it = partition_point(
1214        cies, [=](EhSectionPiece p) { return p.inputOff <= offset; });
1215    if (it == cies.begin()) // invalid piece
1216      return offset;
1217  }
1218  if (it[-1].outputOff == -1) // invalid piece
1219    return offset - it[-1].inputOff;
1220  return it[-1].outputOff + (offset - it[-1].inputOff);
1221}
1222
1223static size_t findNull(StringRef s, size_t entSize) {
1224  for (unsigned i = 0, n = s.size(); i != n; i += entSize) {
1225    const char *b = s.begin() + i;
1226    if (std::all_of(b, b + entSize, [](char c) { return c == 0; }))
1227      return i;
1228  }
1229  llvm_unreachable("");
1230}
1231
1232// Split SHF_STRINGS section. Such section is a sequence of
1233// null-terminated strings.
1234void MergeInputSection::splitStrings(StringRef s, size_t entSize) {
1235  const bool live = !(flags & SHF_ALLOC) || !config->gcSections;
1236  const char *p = s.data(), *end = s.data() + s.size();
1237  if (!std::all_of(end - entSize, end, [](char c) { return c == 0; }))
1238    fatal(toString(this) + ": string is not null terminated");
1239  if (entSize == 1) {
1240    // Optimize the common case.
1241    do {
1242      size_t size = strlen(p);
1243      pieces.emplace_back(p - s.begin(), xxHash64(StringRef(p, size)), live);
1244      p += size + 1;
1245    } while (p != end);
1246  } else {
1247    do {
1248      size_t size = findNull(StringRef(p, end - p), entSize);
1249      pieces.emplace_back(p - s.begin(), xxHash64(StringRef(p, size)), live);
1250      p += size + entSize;
1251    } while (p != end);
1252  }
1253}
1254
1255// Split non-SHF_STRINGS section. Such section is a sequence of
1256// fixed size records.
1257void MergeInputSection::splitNonStrings(ArrayRef<uint8_t> data,
1258                                        size_t entSize) {
1259  size_t size = data.size();
1260  assert((size % entSize) == 0);
1261  const bool live = !(flags & SHF_ALLOC) || !config->gcSections;
1262
1263  pieces.resize_for_overwrite(size / entSize);
1264  for (size_t i = 0, j = 0; i != size; i += entSize, j++)
1265    pieces[j] = {i, (uint32_t)xxHash64(data.slice(i, entSize)), live};
1266}
1267
1268template <class ELFT>
1269MergeInputSection::MergeInputSection(ObjFile<ELFT> &f,
1270                                     const typename ELFT::Shdr &header,
1271                                     StringRef name)
1272    : InputSectionBase(f, header, name, InputSectionBase::Merge) {}
1273
1274MergeInputSection::MergeInputSection(uint64_t flags, uint32_t type,
1275                                     uint64_t entsize, ArrayRef<uint8_t> data,
1276                                     StringRef name)
1277    : InputSectionBase(nullptr, flags, type, entsize, /*Link*/ 0, /*Info*/ 0,
1278                       /*Alignment*/ entsize, data, name, SectionBase::Merge) {}
1279
1280// This function is called after we obtain a complete list of input sections
1281// that need to be linked. This is responsible to split section contents
1282// into small chunks for further processing.
1283//
1284// Note that this function is called from parallelForEach. This must be
1285// thread-safe (i.e. no memory allocation from the pools).
1286void MergeInputSection::splitIntoPieces() {
1287  assert(pieces.empty());
1288
1289  if (flags & SHF_STRINGS)
1290    splitStrings(toStringRef(contentMaybeDecompress()), entsize);
1291  else
1292    splitNonStrings(contentMaybeDecompress(), entsize);
1293}
1294
1295SectionPiece &MergeInputSection::getSectionPiece(uint64_t offset) {
1296  if (content().size() <= offset)
1297    fatal(toString(this) + ": offset is outside the section");
1298  return partition_point(
1299      pieces, [=](SectionPiece p) { return p.inputOff <= offset; })[-1];
1300}
1301
1302// Return the offset in an output section for a given input offset.
1303uint64_t MergeInputSection::getParentOffset(uint64_t offset) const {
1304  const SectionPiece &piece = getSectionPiece(offset);
1305  return piece.outputOff + (offset - piece.inputOff);
1306}
1307
1308template InputSection::InputSection(ObjFile<ELF32LE> &, const ELF32LE::Shdr &,
1309                                    StringRef);
1310template InputSection::InputSection(ObjFile<ELF32BE> &, const ELF32BE::Shdr &,
1311                                    StringRef);
1312template InputSection::InputSection(ObjFile<ELF64LE> &, const ELF64LE::Shdr &,
1313                                    StringRef);
1314template InputSection::InputSection(ObjFile<ELF64BE> &, const ELF64BE::Shdr &,
1315                                    StringRef);
1316
1317template void InputSection::writeTo<ELF32LE>(uint8_t *);
1318template void InputSection::writeTo<ELF32BE>(uint8_t *);
1319template void InputSection::writeTo<ELF64LE>(uint8_t *);
1320template void InputSection::writeTo<ELF64BE>(uint8_t *);
1321
1322template RelsOrRelas<ELF32LE> InputSectionBase::relsOrRelas<ELF32LE>() const;
1323template RelsOrRelas<ELF32BE> InputSectionBase::relsOrRelas<ELF32BE>() const;
1324template RelsOrRelas<ELF64LE> InputSectionBase::relsOrRelas<ELF64LE>() const;
1325template RelsOrRelas<ELF64BE> InputSectionBase::relsOrRelas<ELF64BE>() const;
1326
1327template MergeInputSection::MergeInputSection(ObjFile<ELF32LE> &,
1328                                              const ELF32LE::Shdr &, StringRef);
1329template MergeInputSection::MergeInputSection(ObjFile<ELF32BE> &,
1330                                              const ELF32BE::Shdr &, StringRef);
1331template MergeInputSection::MergeInputSection(ObjFile<ELF64LE> &,
1332                                              const ELF64LE::Shdr &, StringRef);
1333template MergeInputSection::MergeInputSection(ObjFile<ELF64BE> &,
1334                                              const ELF64BE::Shdr &, StringRef);
1335
1336template EhInputSection::EhInputSection(ObjFile<ELF32LE> &,
1337                                        const ELF32LE::Shdr &, StringRef);
1338template EhInputSection::EhInputSection(ObjFile<ELF32BE> &,
1339                                        const ELF32BE::Shdr &, StringRef);
1340template EhInputSection::EhInputSection(ObjFile<ELF64LE> &,
1341                                        const ELF64LE::Shdr &, StringRef);
1342template EhInputSection::EhInputSection(ObjFile<ELF64BE> &,
1343                                        const ELF64BE::Shdr &, StringRef);
1344
1345template void EhInputSection::split<ELF32LE>();
1346template void EhInputSection::split<ELF32BE>();
1347template void EhInputSection::split<ELF64LE>();
1348template void EhInputSection::split<ELF64BE>();
1349