1//===- PPC64.cpp ----------------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "InputFiles.h"
10#include "OutputSections.h"
11#include "SymbolTable.h"
12#include "Symbols.h"
13#include "SyntheticSections.h"
14#include "Target.h"
15#include "Thunks.h"
16#include "lld/Common/CommonLinkerContext.h"
17#include "llvm/Support/Endian.h"
18
19using namespace llvm;
20using namespace llvm::object;
21using namespace llvm::support::endian;
22using namespace llvm::ELF;
23using namespace lld;
24using namespace lld::elf;
25
26constexpr uint64_t ppc64TocOffset = 0x8000;
27constexpr uint64_t dynamicThreadPointerOffset = 0x8000;
28
29// The instruction encoding of bits 21-30 from the ISA for the Xform and Dform
30// instructions that can be used as part of the initial exec TLS sequence.
31enum XFormOpcd {
32  LBZX = 87,
33  LHZX = 279,
34  LWZX = 23,
35  LDX = 21,
36  STBX = 215,
37  STHX = 407,
38  STWX = 151,
39  STDX = 149,
40  ADD = 266,
41};
42
43enum DFormOpcd {
44  LBZ = 34,
45  LBZU = 35,
46  LHZ = 40,
47  LHZU = 41,
48  LHAU = 43,
49  LWZ = 32,
50  LWZU = 33,
51  LFSU = 49,
52  LD = 58,
53  LFDU = 51,
54  STB = 38,
55  STBU = 39,
56  STH = 44,
57  STHU = 45,
58  STW = 36,
59  STWU = 37,
60  STFSU = 53,
61  STFDU = 55,
62  STD = 62,
63  ADDI = 14
64};
65
66constexpr uint32_t NOP = 0x60000000;
67
68enum class PPCLegacyInsn : uint32_t {
69  NOINSN = 0,
70  // Loads.
71  LBZ = 0x88000000,
72  LHZ = 0xa0000000,
73  LWZ = 0x80000000,
74  LHA = 0xa8000000,
75  LWA = 0xe8000002,
76  LD = 0xe8000000,
77  LFS = 0xC0000000,
78  LXSSP = 0xe4000003,
79  LFD = 0xc8000000,
80  LXSD = 0xe4000002,
81  LXV = 0xf4000001,
82  LXVP = 0x18000000,
83
84  // Stores.
85  STB = 0x98000000,
86  STH = 0xb0000000,
87  STW = 0x90000000,
88  STD = 0xf8000000,
89  STFS = 0xd0000000,
90  STXSSP = 0xf4000003,
91  STFD = 0xd8000000,
92  STXSD = 0xf4000002,
93  STXV = 0xf4000005,
94  STXVP = 0x18000001
95};
96enum class PPCPrefixedInsn : uint64_t {
97  NOINSN = 0,
98  PREFIX_MLS = 0x0610000000000000,
99  PREFIX_8LS = 0x0410000000000000,
100
101  // Loads.
102  PLBZ = PREFIX_MLS,
103  PLHZ = PREFIX_MLS,
104  PLWZ = PREFIX_MLS,
105  PLHA = PREFIX_MLS,
106  PLWA = PREFIX_8LS | 0xa4000000,
107  PLD = PREFIX_8LS | 0xe4000000,
108  PLFS = PREFIX_MLS,
109  PLXSSP = PREFIX_8LS | 0xac000000,
110  PLFD = PREFIX_MLS,
111  PLXSD = PREFIX_8LS | 0xa8000000,
112  PLXV = PREFIX_8LS | 0xc8000000,
113  PLXVP = PREFIX_8LS | 0xe8000000,
114
115  // Stores.
116  PSTB = PREFIX_MLS,
117  PSTH = PREFIX_MLS,
118  PSTW = PREFIX_MLS,
119  PSTD = PREFIX_8LS | 0xf4000000,
120  PSTFS = PREFIX_MLS,
121  PSTXSSP = PREFIX_8LS | 0xbc000000,
122  PSTFD = PREFIX_MLS,
123  PSTXSD = PREFIX_8LS | 0xb8000000,
124  PSTXV = PREFIX_8LS | 0xd8000000,
125  PSTXVP = PREFIX_8LS | 0xf8000000
126};
127static bool checkPPCLegacyInsn(uint32_t encoding) {
128  PPCLegacyInsn insn = static_cast<PPCLegacyInsn>(encoding);
129  if (insn == PPCLegacyInsn::NOINSN)
130    return false;
131#define PCREL_OPT(Legacy, PCRel, InsnMask)                                     \
132  if (insn == PPCLegacyInsn::Legacy)                                           \
133    return true;
134#include "PPCInsns.def"
135#undef PCREL_OPT
136  return false;
137}
138
139// Masks to apply to legacy instructions when converting them to prefixed,
140// pc-relative versions. For the most part, the primary opcode is shared
141// between the legacy instruction and the suffix of its prefixed version.
142// However, there are some instances where that isn't the case (DS-Form and
143// DQ-form instructions).
144enum class LegacyToPrefixMask : uint64_t {
145  NOMASK = 0x0,
146  OPC_AND_RST = 0xffe00000, // Primary opc (0-5) and R[ST] (6-10).
147  ONLY_RST = 0x3e00000,     // [RS]T (6-10).
148  ST_STX28_TO5 =
149      0x8000000003e00000, // S/T (6-10) - The [S/T]X bit moves from 28 to 5.
150};
151
152namespace {
153class PPC64 final : public TargetInfo {
154public:
155  PPC64();
156  int getTlsGdRelaxSkip(RelType type) const override;
157  uint32_t calcEFlags() const override;
158  RelExpr getRelExpr(RelType type, const Symbol &s,
159                     const uint8_t *loc) const override;
160  RelType getDynRel(RelType type) const override;
161  int64_t getImplicitAddend(const uint8_t *buf, RelType type) const override;
162  void writePltHeader(uint8_t *buf) const override;
163  void writePlt(uint8_t *buf, const Symbol &sym,
164                uint64_t pltEntryAddr) const override;
165  void writeIplt(uint8_t *buf, const Symbol &sym,
166                 uint64_t pltEntryAddr) const override;
167  void relocate(uint8_t *loc, const Relocation &rel,
168                uint64_t val) const override;
169  void writeGotHeader(uint8_t *buf) const override;
170  bool needsThunk(RelExpr expr, RelType type, const InputFile *file,
171                  uint64_t branchAddr, const Symbol &s,
172                  int64_t a) const override;
173  uint32_t getThunkSectionSpacing() const override;
174  bool inBranchRange(RelType type, uint64_t src, uint64_t dst) const override;
175  RelExpr adjustTlsExpr(RelType type, RelExpr expr) const override;
176  RelExpr adjustGotPcExpr(RelType type, int64_t addend,
177                          const uint8_t *loc) const override;
178  void relaxGot(uint8_t *loc, const Relocation &rel, uint64_t val) const;
179  void relocateAlloc(InputSectionBase &sec, uint8_t *buf) const override;
180
181  bool adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end,
182                                        uint8_t stOther) const override;
183
184private:
185  void relaxTlsGdToIe(uint8_t *loc, const Relocation &rel, uint64_t val) const;
186  void relaxTlsGdToLe(uint8_t *loc, const Relocation &rel, uint64_t val) const;
187  void relaxTlsLdToLe(uint8_t *loc, const Relocation &rel, uint64_t val) const;
188  void relaxTlsIeToLe(uint8_t *loc, const Relocation &rel, uint64_t val) const;
189};
190} // namespace
191
192uint64_t elf::getPPC64TocBase() {
193  // The TOC consists of sections .got, .toc, .tocbss, .plt in that order. The
194  // TOC starts where the first of these sections starts. We always create a
195  // .got when we see a relocation that uses it, so for us the start is always
196  // the .got.
197  uint64_t tocVA = in.got->getVA();
198
199  // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
200  // thus permitting a full 64 Kbytes segment. Note that the glibc startup
201  // code (crt1.o) assumes that you can get from the TOC base to the
202  // start of the .toc section with only a single (signed) 16-bit relocation.
203  return tocVA + ppc64TocOffset;
204}
205
206unsigned elf::getPPC64GlobalEntryToLocalEntryOffset(uint8_t stOther) {
207  // The offset is encoded into the 3 most significant bits of the st_other
208  // field, with some special values described in section 3.4.1 of the ABI:
209  // 0   --> Zero offset between the GEP and LEP, and the function does NOT use
210  //         the TOC pointer (r2). r2 will hold the same value on returning from
211  //         the function as it did on entering the function.
212  // 1   --> Zero offset between the GEP and LEP, and r2 should be treated as a
213  //         caller-saved register for all callers.
214  // 2-6 --> The  binary logarithm of the offset eg:
215  //         2 --> 2^2 = 4 bytes -->  1 instruction.
216  //         6 --> 2^6 = 64 bytes --> 16 instructions.
217  // 7   --> Reserved.
218  uint8_t gepToLep = (stOther >> 5) & 7;
219  if (gepToLep < 2)
220    return 0;
221
222  // The value encoded in the st_other bits is the
223  // log-base-2(offset).
224  if (gepToLep < 7)
225    return 1 << gepToLep;
226
227  error("reserved value of 7 in the 3 most-significant-bits of st_other");
228  return 0;
229}
230
231void elf::writePrefixedInstruction(uint8_t *loc, uint64_t insn) {
232  insn = config->isLE ? insn << 32 | insn >> 32 : insn;
233  write64(loc, insn);
234}
235
236static bool addOptional(StringRef name, uint64_t value,
237                        std::vector<Defined *> &defined) {
238  Symbol *sym = symtab.find(name);
239  if (!sym || sym->isDefined())
240    return false;
241  sym->resolve(Defined{/*file=*/nullptr, StringRef(), STB_GLOBAL, STV_HIDDEN,
242                       STT_FUNC, value,
243                       /*size=*/0, /*section=*/nullptr});
244  defined.push_back(cast<Defined>(sym));
245  return true;
246}
247
248// If from is 14, write ${prefix}14: firstInsn; ${prefix}15:
249// firstInsn+0x200008; ...; ${prefix}31: firstInsn+(31-14)*0x200008; $tail
250// The labels are defined only if they exist in the symbol table.
251static void writeSequence(MutableArrayRef<uint32_t> buf, const char *prefix,
252                          int from, uint32_t firstInsn,
253                          ArrayRef<uint32_t> tail) {
254  std::vector<Defined *> defined;
255  char name[16];
256  int first;
257  uint32_t *ptr = buf.data();
258  for (int r = from; r < 32; ++r) {
259    format("%s%d", prefix, r).snprint(name, sizeof(name));
260    if (addOptional(name, 4 * (r - from), defined) && defined.size() == 1)
261      first = r - from;
262    write32(ptr++, firstInsn + 0x200008 * (r - from));
263  }
264  for (uint32_t insn : tail)
265    write32(ptr++, insn);
266  assert(ptr == &*buf.end());
267
268  if (defined.empty())
269    return;
270  // The full section content has the extent of [begin, end). We drop unused
271  // instructions and write [first,end).
272  auto *sec = make<InputSection>(
273      nullptr, SHF_ALLOC, SHT_PROGBITS, 4,
274      ArrayRef(reinterpret_cast<uint8_t *>(buf.data() + first),
275               4 * (buf.size() - first)),
276      ".text");
277  ctx.inputSections.push_back(sec);
278  for (Defined *sym : defined) {
279    sym->section = sec;
280    sym->value -= 4 * first;
281  }
282}
283
284// Implements some save and restore functions as described by ELF V2 ABI to be
285// compatible with GCC. With GCC -Os, when the number of call-saved registers
286// exceeds a certain threshold, GCC generates _savegpr0_* _restgpr0_* calls and
287// expects the linker to define them. See
288// https://sourceware.org/pipermail/binutils/2002-February/017444.html and
289// https://sourceware.org/pipermail/binutils/2004-August/036765.html . This is
290// weird because libgcc.a would be the natural place. The linker generation
291// approach has the advantage that the linker can generate multiple copies to
292// avoid long branch thunks. However, we don't consider the advantage
293// significant enough to complicate our trunk implementation, so we take the
294// simple approach and synthesize .text sections providing the implementation.
295void elf::addPPC64SaveRestore() {
296  static uint32_t savegpr0[20], restgpr0[21], savegpr1[19], restgpr1[19];
297  constexpr uint32_t blr = 0x4e800020, mtlr_0 = 0x7c0803a6;
298
299  // _restgpr0_14: ld 14, -144(1); _restgpr0_15: ld 15, -136(1); ...
300  // Tail: ld 0, 16(1); mtlr 0; blr
301  writeSequence(restgpr0, "_restgpr0_", 14, 0xe9c1ff70,
302                {0xe8010010, mtlr_0, blr});
303  // _restgpr1_14: ld 14, -144(12); _restgpr1_15: ld 15, -136(12); ...
304  // Tail: blr
305  writeSequence(restgpr1, "_restgpr1_", 14, 0xe9ccff70, {blr});
306  // _savegpr0_14: std 14, -144(1); _savegpr0_15: std 15, -136(1); ...
307  // Tail: std 0, 16(1); blr
308  writeSequence(savegpr0, "_savegpr0_", 14, 0xf9c1ff70, {0xf8010010, blr});
309  // _savegpr1_14: std 14, -144(12); _savegpr1_15: std 15, -136(12); ...
310  // Tail: blr
311  writeSequence(savegpr1, "_savegpr1_", 14, 0xf9ccff70, {blr});
312}
313
314// Find the R_PPC64_ADDR64 in .rela.toc with matching offset.
315template <typename ELFT>
316static std::pair<Defined *, int64_t>
317getRelaTocSymAndAddend(InputSectionBase *tocSec, uint64_t offset) {
318  // .rela.toc contains exclusively R_PPC64_ADDR64 relocations sorted by
319  // r_offset: 0, 8, 16, etc. For a given Offset, Offset / 8 gives us the
320  // relocation index in most cases.
321  //
322  // In rare cases a TOC entry may store a constant that doesn't need an
323  // R_PPC64_ADDR64, the corresponding r_offset is therefore missing. Offset / 8
324  // points to a relocation with larger r_offset. Do a linear probe then.
325  // Constants are extremely uncommon in .toc and the extra number of array
326  // accesses can be seen as a small constant.
327  ArrayRef<typename ELFT::Rela> relas =
328      tocSec->template relsOrRelas<ELFT>().relas;
329  if (relas.empty())
330    return {};
331  uint64_t index = std::min<uint64_t>(offset / 8, relas.size() - 1);
332  for (;;) {
333    if (relas[index].r_offset == offset) {
334      Symbol &sym = tocSec->getFile<ELFT>()->getRelocTargetSym(relas[index]);
335      return {dyn_cast<Defined>(&sym), getAddend<ELFT>(relas[index])};
336    }
337    if (relas[index].r_offset < offset || index == 0)
338      break;
339    --index;
340  }
341  return {};
342}
343
344// When accessing a symbol defined in another translation unit, compilers
345// reserve a .toc entry, allocate a local label and generate toc-indirect
346// instructions:
347//
348//   addis 3, 2, .LC0@toc@ha  # R_PPC64_TOC16_HA
349//   ld    3, .LC0@toc@l(3)   # R_PPC64_TOC16_LO_DS, load the address from a .toc entry
350//   ld/lwa 3, 0(3)           # load the value from the address
351//
352//   .section .toc,"aw",@progbits
353//   .LC0: .tc var[TC],var
354//
355// If var is defined, non-preemptable and addressable with a 32-bit signed
356// offset from the toc base, the address of var can be computed by adding an
357// offset to the toc base, saving a load.
358//
359//   addis 3,2,var@toc@ha     # this may be relaxed to a nop,
360//   addi  3,3,var@toc@l      # then this becomes addi 3,2,var@toc
361//   ld/lwa 3, 0(3)           # load the value from the address
362//
363// Returns true if the relaxation is performed.
364static bool tryRelaxPPC64TocIndirection(const Relocation &rel,
365                                        uint8_t *bufLoc) {
366  assert(config->tocOptimize);
367  if (rel.addend < 0)
368    return false;
369
370  // If the symbol is not the .toc section, this isn't a toc-indirection.
371  Defined *defSym = dyn_cast<Defined>(rel.sym);
372  if (!defSym || !defSym->isSection() || defSym->section->name != ".toc")
373    return false;
374
375  Defined *d;
376  int64_t addend;
377  auto *tocISB = cast<InputSectionBase>(defSym->section);
378  std::tie(d, addend) =
379      config->isLE ? getRelaTocSymAndAddend<ELF64LE>(tocISB, rel.addend)
380                   : getRelaTocSymAndAddend<ELF64BE>(tocISB, rel.addend);
381
382  // Only non-preemptable defined symbols can be relaxed.
383  if (!d || d->isPreemptible)
384    return false;
385
386  // R_PPC64_ADDR64 should have created a canonical PLT for the non-preemptable
387  // ifunc and changed its type to STT_FUNC.
388  assert(!d->isGnuIFunc());
389
390  // Two instructions can materialize a 32-bit signed offset from the toc base.
391  uint64_t tocRelative = d->getVA(addend) - getPPC64TocBase();
392  if (!isInt<32>(tocRelative))
393    return false;
394
395  // Add PPC64TocOffset that will be subtracted by PPC64::relocate().
396  static_cast<const PPC64 &>(*target).relaxGot(bufLoc, rel,
397                                               tocRelative + ppc64TocOffset);
398  return true;
399}
400
401// Relocation masks following the #lo(value), #hi(value), #ha(value),
402// #higher(value), #highera(value), #highest(value), and #highesta(value)
403// macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
404// document.
405static uint16_t lo(uint64_t v) { return v; }
406static uint16_t hi(uint64_t v) { return v >> 16; }
407static uint64_t ha(uint64_t v) { return (v + 0x8000) >> 16; }
408static uint16_t higher(uint64_t v) { return v >> 32; }
409static uint16_t highera(uint64_t v) { return (v + 0x8000) >> 32; }
410static uint16_t highest(uint64_t v) { return v >> 48; }
411static uint16_t highesta(uint64_t v) { return (v + 0x8000) >> 48; }
412
413// Extracts the 'PO' field of an instruction encoding.
414static uint8_t getPrimaryOpCode(uint32_t encoding) { return (encoding >> 26); }
415
416static bool isDQFormInstruction(uint32_t encoding) {
417  switch (getPrimaryOpCode(encoding)) {
418  default:
419    return false;
420  case 6: // Power10 paired loads/stores (lxvp, stxvp).
421  case 56:
422    // The only instruction with a primary opcode of 56 is `lq`.
423    return true;
424  case 61:
425    // There are both DS and DQ instruction forms with this primary opcode.
426    // Namely `lxv` and `stxv` are the DQ-forms that use it.
427    // The DS 'XO' bits being set to 01 is restricted to DQ form.
428    return (encoding & 3) == 0x1;
429  }
430}
431
432static bool isDSFormInstruction(PPCLegacyInsn insn) {
433  switch (insn) {
434  default:
435    return false;
436  case PPCLegacyInsn::LWA:
437  case PPCLegacyInsn::LD:
438  case PPCLegacyInsn::LXSD:
439  case PPCLegacyInsn::LXSSP:
440  case PPCLegacyInsn::STD:
441  case PPCLegacyInsn::STXSD:
442  case PPCLegacyInsn::STXSSP:
443    return true;
444  }
445}
446
447static PPCLegacyInsn getPPCLegacyInsn(uint32_t encoding) {
448  uint32_t opc = encoding & 0xfc000000;
449
450  // If the primary opcode is shared between multiple instructions, we need to
451  // fix it up to match the actual instruction we are after.
452  if ((opc == 0xe4000000 || opc == 0xe8000000 || opc == 0xf4000000 ||
453       opc == 0xf8000000) &&
454      !isDQFormInstruction(encoding))
455    opc = encoding & 0xfc000003;
456  else if (opc == 0xf4000000)
457    opc = encoding & 0xfc000007;
458  else if (opc == 0x18000000)
459    opc = encoding & 0xfc00000f;
460
461  // If the value is not one of the enumerators in PPCLegacyInsn, we want to
462  // return PPCLegacyInsn::NOINSN.
463  if (!checkPPCLegacyInsn(opc))
464    return PPCLegacyInsn::NOINSN;
465  return static_cast<PPCLegacyInsn>(opc);
466}
467
468static PPCPrefixedInsn getPCRelativeForm(PPCLegacyInsn insn) {
469  switch (insn) {
470#define PCREL_OPT(Legacy, PCRel, InsnMask)                                     \
471  case PPCLegacyInsn::Legacy:                                                  \
472    return PPCPrefixedInsn::PCRel
473#include "PPCInsns.def"
474#undef PCREL_OPT
475  }
476  return PPCPrefixedInsn::NOINSN;
477}
478
479static LegacyToPrefixMask getInsnMask(PPCLegacyInsn insn) {
480  switch (insn) {
481#define PCREL_OPT(Legacy, PCRel, InsnMask)                                     \
482  case PPCLegacyInsn::Legacy:                                                  \
483    return LegacyToPrefixMask::InsnMask
484#include "PPCInsns.def"
485#undef PCREL_OPT
486  }
487  return LegacyToPrefixMask::NOMASK;
488}
489static uint64_t getPCRelativeForm(uint32_t encoding) {
490  PPCLegacyInsn origInsn = getPPCLegacyInsn(encoding);
491  PPCPrefixedInsn pcrelInsn = getPCRelativeForm(origInsn);
492  if (pcrelInsn == PPCPrefixedInsn::NOINSN)
493    return UINT64_C(-1);
494  LegacyToPrefixMask origInsnMask = getInsnMask(origInsn);
495  uint64_t pcrelEncoding =
496      (uint64_t)pcrelInsn | (encoding & (uint64_t)origInsnMask);
497
498  // If the mask requires moving bit 28 to bit 5, do that now.
499  if (origInsnMask == LegacyToPrefixMask::ST_STX28_TO5)
500    pcrelEncoding |= (encoding & 0x8) << 23;
501  return pcrelEncoding;
502}
503
504static bool isInstructionUpdateForm(uint32_t encoding) {
505  switch (getPrimaryOpCode(encoding)) {
506  default:
507    return false;
508  case LBZU:
509  case LHAU:
510  case LHZU:
511  case LWZU:
512  case LFSU:
513  case LFDU:
514  case STBU:
515  case STHU:
516  case STWU:
517  case STFSU:
518  case STFDU:
519    return true;
520    // LWA has the same opcode as LD, and the DS bits is what differentiates
521    // between LD/LDU/LWA
522  case LD:
523  case STD:
524    return (encoding & 3) == 1;
525  }
526}
527
528// Compute the total displacement between the prefixed instruction that gets
529// to the start of the data and the load/store instruction that has the offset
530// into the data structure.
531// For example:
532// paddi 3, 0, 1000, 1
533// lwz 3, 20(3)
534// Should add up to 1020 for total displacement.
535static int64_t getTotalDisp(uint64_t prefixedInsn, uint32_t accessInsn) {
536  int64_t disp34 = llvm::SignExtend64(
537      ((prefixedInsn & 0x3ffff00000000) >> 16) | (prefixedInsn & 0xffff), 34);
538  int32_t disp16 = llvm::SignExtend32(accessInsn & 0xffff, 16);
539  // For DS and DQ form instructions, we need to mask out the XO bits.
540  if (isDQFormInstruction(accessInsn))
541    disp16 &= ~0xf;
542  else if (isDSFormInstruction(getPPCLegacyInsn(accessInsn)))
543    disp16 &= ~0x3;
544  return disp34 + disp16;
545}
546
547// There are a number of places when we either want to read or write an
548// instruction when handling a half16 relocation type. On big-endian the buffer
549// pointer is pointing into the middle of the word we want to extract, and on
550// little-endian it is pointing to the start of the word. These 2 helpers are to
551// simplify reading and writing in that context.
552static void writeFromHalf16(uint8_t *loc, uint32_t insn) {
553  write32(config->isLE ? loc : loc - 2, insn);
554}
555
556static uint32_t readFromHalf16(const uint8_t *loc) {
557  return read32(config->isLE ? loc : loc - 2);
558}
559
560static uint64_t readPrefixedInstruction(const uint8_t *loc) {
561  uint64_t fullInstr = read64(loc);
562  return config->isLE ? (fullInstr << 32 | fullInstr >> 32) : fullInstr;
563}
564
565PPC64::PPC64() {
566  copyRel = R_PPC64_COPY;
567  gotRel = R_PPC64_GLOB_DAT;
568  pltRel = R_PPC64_JMP_SLOT;
569  relativeRel = R_PPC64_RELATIVE;
570  iRelativeRel = R_PPC64_IRELATIVE;
571  symbolicRel = R_PPC64_ADDR64;
572#ifdef __OpenBSD__
573  pltHeaderSize = 52;
574#else
575  pltHeaderSize = 60;
576#endif
577  pltEntrySize = 4;
578  ipltEntrySize = 16; // PPC64PltCallStub::size
579  gotHeaderEntriesNum = 1;
580  gotPltHeaderEntriesNum = 2;
581  needsThunks = true;
582
583  tlsModuleIndexRel = R_PPC64_DTPMOD64;
584  tlsOffsetRel = R_PPC64_DTPREL64;
585
586  tlsGotRel = R_PPC64_TPREL64;
587
588  needsMoreStackNonSplit = false;
589
590  // We need 64K pages (at least under glibc/Linux, the loader won't
591  // set different permissions on a finer granularity than that).
592  defaultMaxPageSize = 65536;
593
594  // The PPC64 ELF ABI v1 spec, says:
595  //
596  //   It is normally desirable to put segments with different characteristics
597  //   in separate 256 Mbyte portions of the address space, to give the
598  //   operating system full paging flexibility in the 64-bit address space.
599  //
600  // And because the lowest non-zero 256M boundary is 0x10000000, PPC64 linkers
601  // use 0x10000000 as the starting address.
602  defaultImageBase = 0x10000000;
603
604  write32(trapInstr.data(), 0x7fe00008);
605}
606
607int PPC64::getTlsGdRelaxSkip(RelType type) const {
608  // A __tls_get_addr call instruction is marked with 2 relocations:
609  //
610  //   R_PPC64_TLSGD / R_PPC64_TLSLD: marker relocation
611  //   R_PPC64_REL24: __tls_get_addr
612  //
613  // After the relaxation we no longer call __tls_get_addr and should skip both
614  // relocations to not create a false dependence on __tls_get_addr being
615  // defined.
616  if (type == R_PPC64_TLSGD || type == R_PPC64_TLSLD)
617    return 2;
618  return 1;
619}
620
621static uint32_t getEFlags(InputFile *file) {
622  if (file->ekind == ELF64BEKind)
623    return cast<ObjFile<ELF64BE>>(file)->getObj().getHeader().e_flags;
624  return cast<ObjFile<ELF64LE>>(file)->getObj().getHeader().e_flags;
625}
626
627// This file implements v2 ABI. This function makes sure that all
628// object files have v2 or an unspecified version as an ABI version.
629uint32_t PPC64::calcEFlags() const {
630  for (InputFile *f : ctx.objectFiles) {
631    uint32_t flag = getEFlags(f);
632    if (flag == 1)
633      error(toString(f) + ": ABI version 1 is not supported");
634    else if (flag > 2)
635      error(toString(f) + ": unrecognized e_flags: " + Twine(flag));
636  }
637  return 2;
638}
639
640void PPC64::relaxGot(uint8_t *loc, const Relocation &rel, uint64_t val) const {
641  switch (rel.type) {
642  case R_PPC64_TOC16_HA:
643    // Convert "addis reg, 2, .LC0@toc@h" to "addis reg, 2, var@toc@h" or "nop".
644    relocate(loc, rel, val);
645    break;
646  case R_PPC64_TOC16_LO_DS: {
647    // Convert "ld reg, .LC0@toc@l(reg)" to "addi reg, reg, var@toc@l" or
648    // "addi reg, 2, var@toc".
649    uint32_t insn = readFromHalf16(loc);
650    if (getPrimaryOpCode(insn) != LD)
651      error("expected a 'ld' for got-indirect to toc-relative relaxing");
652    writeFromHalf16(loc, (insn & 0x03ffffff) | 0x38000000);
653    relocateNoSym(loc, R_PPC64_TOC16_LO, val);
654    break;
655  }
656  case R_PPC64_GOT_PCREL34: {
657    // Clear the first 8 bits of the prefix and the first 6 bits of the
658    // instruction (the primary opcode).
659    uint64_t insn = readPrefixedInstruction(loc);
660    if ((insn & 0xfc000000) != 0xe4000000)
661      error("expected a 'pld' for got-indirect to pc-relative relaxing");
662    insn &= ~0xff000000fc000000;
663
664    // Replace the cleared bits with the values for PADDI (0x600000038000000);
665    insn |= 0x600000038000000;
666    writePrefixedInstruction(loc, insn);
667    relocate(loc, rel, val);
668    break;
669  }
670  case R_PPC64_PCREL_OPT: {
671    // We can only relax this if the R_PPC64_GOT_PCREL34 at this offset can
672    // be relaxed. The eligibility for the relaxation needs to be determined
673    // on that relocation since this one does not relocate a symbol.
674    uint64_t insn = readPrefixedInstruction(loc);
675    uint32_t accessInsn = read32(loc + rel.addend);
676    uint64_t pcRelInsn = getPCRelativeForm(accessInsn);
677
678    // This error is not necessary for correctness but is emitted for now
679    // to ensure we don't miss these opportunities in real code. It can be
680    // removed at a later date.
681    if (pcRelInsn == UINT64_C(-1)) {
682      errorOrWarn(
683          "unrecognized instruction for R_PPC64_PCREL_OPT relaxation: 0x" +
684          Twine::utohexstr(accessInsn));
685      break;
686    }
687
688    int64_t totalDisp = getTotalDisp(insn, accessInsn);
689    if (!isInt<34>(totalDisp))
690      break; // Displacement doesn't fit.
691    // Convert the PADDI to the prefixed version of accessInsn and convert
692    // accessInsn to a nop.
693    writePrefixedInstruction(loc, pcRelInsn |
694                                      ((totalDisp & 0x3ffff0000) << 16) |
695                                      (totalDisp & 0xffff));
696    write32(loc + rel.addend, NOP); // nop accessInsn.
697    break;
698  }
699  default:
700    llvm_unreachable("unexpected relocation type");
701  }
702}
703
704void PPC64::relaxTlsGdToLe(uint8_t *loc, const Relocation &rel,
705                           uint64_t val) const {
706  // Reference: 3.7.4.2 of the 64-bit ELF V2 abi supplement.
707  // The general dynamic code sequence for a global `x` will look like:
708  // Instruction                    Relocation                Symbol
709  // addis r3, r2, x@got@tlsgd@ha   R_PPC64_GOT_TLSGD16_HA      x
710  // addi  r3, r3, x@got@tlsgd@l    R_PPC64_GOT_TLSGD16_LO      x
711  // bl __tls_get_addr(x@tlsgd)     R_PPC64_TLSGD               x
712  //                                R_PPC64_REL24               __tls_get_addr
713  // nop                            None                       None
714
715  // Relaxing to local exec entails converting:
716  // addis r3, r2, x@got@tlsgd@ha    into      nop
717  // addi  r3, r3, x@got@tlsgd@l     into      addis r3, r13, x@tprel@ha
718  // bl __tls_get_addr(x@tlsgd)      into      nop
719  // nop                             into      addi r3, r3, x@tprel@l
720
721  switch (rel.type) {
722  case R_PPC64_GOT_TLSGD16_HA:
723    writeFromHalf16(loc, NOP);
724    break;
725  case R_PPC64_GOT_TLSGD16:
726  case R_PPC64_GOT_TLSGD16_LO:
727    writeFromHalf16(loc, 0x3c6d0000); // addis r3, r13
728    relocateNoSym(loc, R_PPC64_TPREL16_HA, val);
729    break;
730  case R_PPC64_GOT_TLSGD_PCREL34:
731    // Relax from paddi r3, 0, x@got@tlsgd@pcrel, 1 to
732    //            paddi r3, r13, x@tprel, 0
733    writePrefixedInstruction(loc, 0x06000000386d0000);
734    relocateNoSym(loc, R_PPC64_TPREL34, val);
735    break;
736  case R_PPC64_TLSGD: {
737    // PC Relative Relaxation:
738    // Relax from bl __tls_get_addr@notoc(x@tlsgd) to
739    //            nop
740    // TOC Relaxation:
741    // Relax from bl __tls_get_addr(x@tlsgd)
742    //            nop
743    // to
744    //            nop
745    //            addi r3, r3, x@tprel@l
746    const uintptr_t locAsInt = reinterpret_cast<uintptr_t>(loc);
747    if (locAsInt % 4 == 0) {
748      write32(loc, NOP);            // nop
749      write32(loc + 4, 0x38630000); // addi r3, r3
750      // Since we are relocating a half16 type relocation and Loc + 4 points to
751      // the start of an instruction we need to advance the buffer by an extra
752      // 2 bytes on BE.
753      relocateNoSym(loc + 4 + (config->ekind == ELF64BEKind ? 2 : 0),
754                    R_PPC64_TPREL16_LO, val);
755    } else if (locAsInt % 4 == 1) {
756      write32(loc - 1, NOP);
757    } else {
758      errorOrWarn("R_PPC64_TLSGD has unexpected byte alignment");
759    }
760    break;
761  }
762  default:
763    llvm_unreachable("unsupported relocation for TLS GD to LE relaxation");
764  }
765}
766
767void PPC64::relaxTlsLdToLe(uint8_t *loc, const Relocation &rel,
768                           uint64_t val) const {
769  // Reference: 3.7.4.3 of the 64-bit ELF V2 abi supplement.
770  // The local dynamic code sequence for a global `x` will look like:
771  // Instruction                    Relocation                Symbol
772  // addis r3, r2, x@got@tlsld@ha   R_PPC64_GOT_TLSLD16_HA      x
773  // addi  r3, r3, x@got@tlsld@l    R_PPC64_GOT_TLSLD16_LO      x
774  // bl __tls_get_addr(x@tlsgd)     R_PPC64_TLSLD               x
775  //                                R_PPC64_REL24               __tls_get_addr
776  // nop                            None                       None
777
778  // Relaxing to local exec entails converting:
779  // addis r3, r2, x@got@tlsld@ha   into      nop
780  // addi  r3, r3, x@got@tlsld@l    into      addis r3, r13, 0
781  // bl __tls_get_addr(x@tlsgd)     into      nop
782  // nop                            into      addi r3, r3, 4096
783
784  switch (rel.type) {
785  case R_PPC64_GOT_TLSLD16_HA:
786    writeFromHalf16(loc, NOP);
787    break;
788  case R_PPC64_GOT_TLSLD16_LO:
789    writeFromHalf16(loc, 0x3c6d0000); // addis r3, r13, 0
790    break;
791  case R_PPC64_GOT_TLSLD_PCREL34:
792    // Relax from paddi r3, 0, x1@got@tlsld@pcrel, 1 to
793    //            paddi r3, r13, 0x1000, 0
794    writePrefixedInstruction(loc, 0x06000000386d1000);
795    break;
796  case R_PPC64_TLSLD: {
797    // PC Relative Relaxation:
798    // Relax from bl __tls_get_addr@notoc(x@tlsld)
799    // to
800    //            nop
801    // TOC Relaxation:
802    // Relax from bl __tls_get_addr(x@tlsld)
803    //            nop
804    // to
805    //            nop
806    //            addi r3, r3, 4096
807    const uintptr_t locAsInt = reinterpret_cast<uintptr_t>(loc);
808    if (locAsInt % 4 == 0) {
809      write32(loc, NOP);
810      write32(loc + 4, 0x38631000); // addi r3, r3, 4096
811    } else if (locAsInt % 4 == 1) {
812      write32(loc - 1, NOP);
813    } else {
814      errorOrWarn("R_PPC64_TLSLD has unexpected byte alignment");
815    }
816    break;
817  }
818  case R_PPC64_DTPREL16:
819  case R_PPC64_DTPREL16_HA:
820  case R_PPC64_DTPREL16_HI:
821  case R_PPC64_DTPREL16_DS:
822  case R_PPC64_DTPREL16_LO:
823  case R_PPC64_DTPREL16_LO_DS:
824  case R_PPC64_DTPREL34:
825    relocate(loc, rel, val);
826    break;
827  default:
828    llvm_unreachable("unsupported relocation for TLS LD to LE relaxation");
829  }
830}
831
832unsigned elf::getPPCDFormOp(unsigned secondaryOp) {
833  switch (secondaryOp) {
834  case LBZX:
835    return LBZ;
836  case LHZX:
837    return LHZ;
838  case LWZX:
839    return LWZ;
840  case LDX:
841    return LD;
842  case STBX:
843    return STB;
844  case STHX:
845    return STH;
846  case STWX:
847    return STW;
848  case STDX:
849    return STD;
850  case ADD:
851    return ADDI;
852  default:
853    return 0;
854  }
855}
856
857void PPC64::relaxTlsIeToLe(uint8_t *loc, const Relocation &rel,
858                           uint64_t val) const {
859  // The initial exec code sequence for a global `x` will look like:
860  // Instruction                    Relocation                Symbol
861  // addis r9, r2, x@got@tprel@ha   R_PPC64_GOT_TPREL16_HA      x
862  // ld    r9, x@got@tprel@l(r9)    R_PPC64_GOT_TPREL16_LO_DS   x
863  // add r9, r9, x@tls              R_PPC64_TLS                 x
864
865  // Relaxing to local exec entails converting:
866  // addis r9, r2, x@got@tprel@ha       into        nop
867  // ld r9, x@got@tprel@l(r9)           into        addis r9, r13, x@tprel@ha
868  // add r9, r9, x@tls                  into        addi r9, r9, x@tprel@l
869
870  // x@tls R_PPC64_TLS is a relocation which does not compute anything,
871  // it is replaced with r13 (thread pointer).
872
873  // The add instruction in the initial exec sequence has multiple variations
874  // that need to be handled. If we are building an address it will use an add
875  // instruction, if we are accessing memory it will use any of the X-form
876  // indexed load or store instructions.
877
878  unsigned offset = (config->ekind == ELF64BEKind) ? 2 : 0;
879  switch (rel.type) {
880  case R_PPC64_GOT_TPREL16_HA:
881    write32(loc - offset, NOP);
882    break;
883  case R_PPC64_GOT_TPREL16_LO_DS:
884  case R_PPC64_GOT_TPREL16_DS: {
885    uint32_t regNo = read32(loc - offset) & 0x03E00000; // bits 6-10
886    write32(loc - offset, 0x3C0D0000 | regNo);          // addis RegNo, r13
887    relocateNoSym(loc, R_PPC64_TPREL16_HA, val);
888    break;
889  }
890  case R_PPC64_GOT_TPREL_PCREL34: {
891    const uint64_t pldRT = readPrefixedInstruction(loc) & 0x0000000003e00000;
892    // paddi RT(from pld), r13, symbol@tprel, 0
893    writePrefixedInstruction(loc, 0x06000000380d0000 | pldRT);
894    relocateNoSym(loc, R_PPC64_TPREL34, val);
895    break;
896  }
897  case R_PPC64_TLS: {
898    const uintptr_t locAsInt = reinterpret_cast<uintptr_t>(loc);
899    if (locAsInt % 4 == 0) {
900      uint32_t primaryOp = getPrimaryOpCode(read32(loc));
901      if (primaryOp != 31)
902        error("unrecognized instruction for IE to LE R_PPC64_TLS");
903      uint32_t secondaryOp = (read32(loc) & 0x000007FE) >> 1; // bits 21-30
904      uint32_t dFormOp = getPPCDFormOp(secondaryOp);
905      if (dFormOp == 0)
906        error("unrecognized instruction for IE to LE R_PPC64_TLS");
907      write32(loc, ((dFormOp << 26) | (read32(loc) & 0x03FFFFFF)));
908      relocateNoSym(loc + offset, R_PPC64_TPREL16_LO, val);
909    } else if (locAsInt % 4 == 1) {
910      // If the offset is not 4 byte aligned then we have a PCRel type reloc.
911      // This version of the relocation is offset by one byte from the
912      // instruction it references.
913      uint32_t tlsInstr = read32(loc - 1);
914      uint32_t primaryOp = getPrimaryOpCode(tlsInstr);
915      if (primaryOp != 31)
916        errorOrWarn("unrecognized instruction for IE to LE R_PPC64_TLS");
917      uint32_t secondaryOp = (tlsInstr & 0x000007FE) >> 1; // bits 21-30
918      // The add is a special case and should be turned into a nop. The paddi
919      // that comes before it will already have computed the address of the
920      // symbol.
921      if (secondaryOp == 266) {
922        // Check if the add uses the same result register as the input register.
923        uint32_t rt = (tlsInstr & 0x03E00000) >> 21; // bits 6-10
924        uint32_t ra = (tlsInstr & 0x001F0000) >> 16; // bits 11-15
925        if (ra == rt) {
926          write32(loc - 1, NOP);
927        } else {
928          // mr rt, ra
929          write32(loc - 1, 0x7C000378 | (rt << 16) | (ra << 21) | (ra << 11));
930        }
931      } else {
932        uint32_t dFormOp = getPPCDFormOp(secondaryOp);
933        if (dFormOp == 0)
934          errorOrWarn("unrecognized instruction for IE to LE R_PPC64_TLS");
935        write32(loc - 1, ((dFormOp << 26) | (tlsInstr & 0x03FF0000)));
936      }
937    } else {
938      errorOrWarn("R_PPC64_TLS must be either 4 byte aligned or one byte "
939                  "offset from 4 byte aligned");
940    }
941    break;
942  }
943  default:
944    llvm_unreachable("unknown relocation for IE to LE");
945    break;
946  }
947}
948
949RelExpr PPC64::getRelExpr(RelType type, const Symbol &s,
950                          const uint8_t *loc) const {
951  switch (type) {
952  case R_PPC64_NONE:
953    return R_NONE;
954  case R_PPC64_ADDR16:
955  case R_PPC64_ADDR16_DS:
956  case R_PPC64_ADDR16_HA:
957  case R_PPC64_ADDR16_HI:
958  case R_PPC64_ADDR16_HIGH:
959  case R_PPC64_ADDR16_HIGHER:
960  case R_PPC64_ADDR16_HIGHERA:
961  case R_PPC64_ADDR16_HIGHEST:
962  case R_PPC64_ADDR16_HIGHESTA:
963  case R_PPC64_ADDR16_LO:
964  case R_PPC64_ADDR16_LO_DS:
965  case R_PPC64_ADDR32:
966  case R_PPC64_ADDR64:
967    return R_ABS;
968  case R_PPC64_GOT16:
969  case R_PPC64_GOT16_DS:
970  case R_PPC64_GOT16_HA:
971  case R_PPC64_GOT16_HI:
972  case R_PPC64_GOT16_LO:
973  case R_PPC64_GOT16_LO_DS:
974    return R_GOT_OFF;
975  case R_PPC64_TOC16:
976  case R_PPC64_TOC16_DS:
977  case R_PPC64_TOC16_HI:
978  case R_PPC64_TOC16_LO:
979    return R_GOTREL;
980  case R_PPC64_GOT_PCREL34:
981  case R_PPC64_GOT_TPREL_PCREL34:
982  case R_PPC64_PCREL_OPT:
983    return R_GOT_PC;
984  case R_PPC64_TOC16_HA:
985  case R_PPC64_TOC16_LO_DS:
986    return config->tocOptimize ? R_PPC64_RELAX_TOC : R_GOTREL;
987  case R_PPC64_TOC:
988    return R_PPC64_TOCBASE;
989  case R_PPC64_REL14:
990  case R_PPC64_REL24:
991    return R_PPC64_CALL_PLT;
992  case R_PPC64_REL24_NOTOC:
993    return R_PLT_PC;
994  case R_PPC64_REL16_LO:
995  case R_PPC64_REL16_HA:
996  case R_PPC64_REL16_HI:
997  case R_PPC64_REL32:
998  case R_PPC64_REL64:
999  case R_PPC64_PCREL34:
1000    return R_PC;
1001  case R_PPC64_GOT_TLSGD16:
1002  case R_PPC64_GOT_TLSGD16_HA:
1003  case R_PPC64_GOT_TLSGD16_HI:
1004  case R_PPC64_GOT_TLSGD16_LO:
1005    return R_TLSGD_GOT;
1006  case R_PPC64_GOT_TLSGD_PCREL34:
1007    return R_TLSGD_PC;
1008  case R_PPC64_GOT_TLSLD16:
1009  case R_PPC64_GOT_TLSLD16_HA:
1010  case R_PPC64_GOT_TLSLD16_HI:
1011  case R_PPC64_GOT_TLSLD16_LO:
1012    return R_TLSLD_GOT;
1013  case R_PPC64_GOT_TLSLD_PCREL34:
1014    return R_TLSLD_PC;
1015  case R_PPC64_GOT_TPREL16_HA:
1016  case R_PPC64_GOT_TPREL16_LO_DS:
1017  case R_PPC64_GOT_TPREL16_DS:
1018  case R_PPC64_GOT_TPREL16_HI:
1019    return R_GOT_OFF;
1020  case R_PPC64_GOT_DTPREL16_HA:
1021  case R_PPC64_GOT_DTPREL16_LO_DS:
1022  case R_PPC64_GOT_DTPREL16_DS:
1023  case R_PPC64_GOT_DTPREL16_HI:
1024    return R_TLSLD_GOT_OFF;
1025  case R_PPC64_TPREL16:
1026  case R_PPC64_TPREL16_HA:
1027  case R_PPC64_TPREL16_LO:
1028  case R_PPC64_TPREL16_HI:
1029  case R_PPC64_TPREL16_DS:
1030  case R_PPC64_TPREL16_LO_DS:
1031  case R_PPC64_TPREL16_HIGHER:
1032  case R_PPC64_TPREL16_HIGHERA:
1033  case R_PPC64_TPREL16_HIGHEST:
1034  case R_PPC64_TPREL16_HIGHESTA:
1035  case R_PPC64_TPREL34:
1036    return R_TPREL;
1037  case R_PPC64_DTPREL16:
1038  case R_PPC64_DTPREL16_DS:
1039  case R_PPC64_DTPREL16_HA:
1040  case R_PPC64_DTPREL16_HI:
1041  case R_PPC64_DTPREL16_HIGHER:
1042  case R_PPC64_DTPREL16_HIGHERA:
1043  case R_PPC64_DTPREL16_HIGHEST:
1044  case R_PPC64_DTPREL16_HIGHESTA:
1045  case R_PPC64_DTPREL16_LO:
1046  case R_PPC64_DTPREL16_LO_DS:
1047  case R_PPC64_DTPREL64:
1048  case R_PPC64_DTPREL34:
1049    return R_DTPREL;
1050  case R_PPC64_TLSGD:
1051    return R_TLSDESC_CALL;
1052  case R_PPC64_TLSLD:
1053    return R_TLSLD_HINT;
1054  case R_PPC64_TLS:
1055    return R_TLSIE_HINT;
1056  default:
1057    error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) +
1058          ") against symbol " + toString(s));
1059    return R_NONE;
1060  }
1061}
1062
1063RelType PPC64::getDynRel(RelType type) const {
1064  if (type == R_PPC64_ADDR64 || type == R_PPC64_TOC)
1065    return R_PPC64_ADDR64;
1066  return R_PPC64_NONE;
1067}
1068
1069int64_t PPC64::getImplicitAddend(const uint8_t *buf, RelType type) const {
1070  switch (type) {
1071  case R_PPC64_NONE:
1072  case R_PPC64_GLOB_DAT:
1073  case R_PPC64_JMP_SLOT:
1074    return 0;
1075  case R_PPC64_REL32:
1076    return SignExtend64<32>(read32(buf));
1077  case R_PPC64_ADDR64:
1078  case R_PPC64_REL64:
1079  case R_PPC64_RELATIVE:
1080  case R_PPC64_IRELATIVE:
1081  case R_PPC64_DTPMOD64:
1082  case R_PPC64_DTPREL64:
1083  case R_PPC64_TPREL64:
1084    return read64(buf);
1085  default:
1086    internalLinkerError(getErrorLocation(buf),
1087                        "cannot read addend for relocation " + toString(type));
1088    return 0;
1089  }
1090}
1091
1092void PPC64::writeGotHeader(uint8_t *buf) const {
1093  write64(buf, getPPC64TocBase());
1094}
1095
1096void PPC64::writePltHeader(uint8_t *buf) const {
1097  int64_t gotPltOffset = in.gotPlt->getVA() - (in.plt->getVA() + 8);
1098
1099  // The generic resolver stub goes first.
1100  write32(buf +  0, 0x7c0802a6); // mflr r0
1101  write32(buf +  4, 0x429f0005); // bcl  20,4*cr7+so,8 <_glink+0x8>
1102  write32(buf +  8, 0x7d6802a6); // mflr r11
1103  write32(buf + 12, 0x7c0803a6); // mtlr r0
1104  write32(buf + 16, 0x7d8b6050); // subf r12, r11, r12
1105#ifdef __OpenBSD__
1106  write32(buf + 20, 0x380cffd4); // subi r0,r12,44
1107#else
1108  write32(buf + 20, 0x380cffcc); // subi r0,r12,52
1109#endif
1110  write32(buf + 24, 0x7800f082); // srdi r0,r0,62,2
1111#ifdef __OpenBSD__
1112  write32(buf + 28, 0x3d6b0000 | ha(gotPltOffset)); // addis r11,r11,offset@ha
1113  write32(buf + 32, 0x396b0000 | lo(gotPltOffset)); // addi  r11,r11,offset@l
1114#else
1115  write32(buf + 28, 0xe98b002c); // ld   r12,44(r11)
1116  write32(buf + 32, 0x7d6c5a14); // add  r11,r12,r11
1117#endif
1118  write32(buf + 36, 0xe98b0000); // ld   r12,0(r11)
1119  write32(buf + 40, 0xe96b0008); // ld   r11,8(r11)
1120  write32(buf + 44, 0x7d8903a6); // mtctr   r12
1121  write32(buf + 48, 0x4e800420); // bctr
1122
1123#ifndef __OpenBSD__
1124  // The 'bcl' instruction will set the link register to the address of the
1125  // following instruction ('mflr r11'). Here we store the offset from that
1126  // instruction  to the first entry in the GotPlt section.
1127  write64(buf + 52, gotPltOffset);
1128#endif
1129}
1130
1131void PPC64::writePlt(uint8_t *buf, const Symbol &sym,
1132                     uint64_t /*pltEntryAddr*/) const {
1133  int32_t offset = pltHeaderSize + sym.getPltIdx() * pltEntrySize;
1134  // bl __glink_PLTresolve
1135  write32(buf, 0x48000000 | ((-offset) & 0x03FFFFFc));
1136}
1137
1138void PPC64::writeIplt(uint8_t *buf, const Symbol &sym,
1139                      uint64_t /*pltEntryAddr*/) const {
1140  writePPC64LoadAndBranch(buf, sym.getGotPltVA() - getPPC64TocBase());
1141}
1142
1143static std::pair<RelType, uint64_t> toAddr16Rel(RelType type, uint64_t val) {
1144  // Relocations relative to the toc-base need to be adjusted by the Toc offset.
1145  uint64_t tocBiasedVal = val - ppc64TocOffset;
1146  // Relocations relative to dtv[dtpmod] need to be adjusted by the DTP offset.
1147  uint64_t dtpBiasedVal = val - dynamicThreadPointerOffset;
1148
1149  switch (type) {
1150  // TOC biased relocation.
1151  case R_PPC64_GOT16:
1152  case R_PPC64_GOT_TLSGD16:
1153  case R_PPC64_GOT_TLSLD16:
1154  case R_PPC64_TOC16:
1155    return {R_PPC64_ADDR16, tocBiasedVal};
1156  case R_PPC64_GOT16_DS:
1157  case R_PPC64_TOC16_DS:
1158  case R_PPC64_GOT_TPREL16_DS:
1159  case R_PPC64_GOT_DTPREL16_DS:
1160    return {R_PPC64_ADDR16_DS, tocBiasedVal};
1161  case R_PPC64_GOT16_HA:
1162  case R_PPC64_GOT_TLSGD16_HA:
1163  case R_PPC64_GOT_TLSLD16_HA:
1164  case R_PPC64_GOT_TPREL16_HA:
1165  case R_PPC64_GOT_DTPREL16_HA:
1166  case R_PPC64_TOC16_HA:
1167    return {R_PPC64_ADDR16_HA, tocBiasedVal};
1168  case R_PPC64_GOT16_HI:
1169  case R_PPC64_GOT_TLSGD16_HI:
1170  case R_PPC64_GOT_TLSLD16_HI:
1171  case R_PPC64_GOT_TPREL16_HI:
1172  case R_PPC64_GOT_DTPREL16_HI:
1173  case R_PPC64_TOC16_HI:
1174    return {R_PPC64_ADDR16_HI, tocBiasedVal};
1175  case R_PPC64_GOT16_LO:
1176  case R_PPC64_GOT_TLSGD16_LO:
1177  case R_PPC64_GOT_TLSLD16_LO:
1178  case R_PPC64_TOC16_LO:
1179    return {R_PPC64_ADDR16_LO, tocBiasedVal};
1180  case R_PPC64_GOT16_LO_DS:
1181  case R_PPC64_TOC16_LO_DS:
1182  case R_PPC64_GOT_TPREL16_LO_DS:
1183  case R_PPC64_GOT_DTPREL16_LO_DS:
1184    return {R_PPC64_ADDR16_LO_DS, tocBiasedVal};
1185
1186  // Dynamic Thread pointer biased relocation types.
1187  case R_PPC64_DTPREL16:
1188    return {R_PPC64_ADDR16, dtpBiasedVal};
1189  case R_PPC64_DTPREL16_DS:
1190    return {R_PPC64_ADDR16_DS, dtpBiasedVal};
1191  case R_PPC64_DTPREL16_HA:
1192    return {R_PPC64_ADDR16_HA, dtpBiasedVal};
1193  case R_PPC64_DTPREL16_HI:
1194    return {R_PPC64_ADDR16_HI, dtpBiasedVal};
1195  case R_PPC64_DTPREL16_HIGHER:
1196    return {R_PPC64_ADDR16_HIGHER, dtpBiasedVal};
1197  case R_PPC64_DTPREL16_HIGHERA:
1198    return {R_PPC64_ADDR16_HIGHERA, dtpBiasedVal};
1199  case R_PPC64_DTPREL16_HIGHEST:
1200    return {R_PPC64_ADDR16_HIGHEST, dtpBiasedVal};
1201  case R_PPC64_DTPREL16_HIGHESTA:
1202    return {R_PPC64_ADDR16_HIGHESTA, dtpBiasedVal};
1203  case R_PPC64_DTPREL16_LO:
1204    return {R_PPC64_ADDR16_LO, dtpBiasedVal};
1205  case R_PPC64_DTPREL16_LO_DS:
1206    return {R_PPC64_ADDR16_LO_DS, dtpBiasedVal};
1207  case R_PPC64_DTPREL64:
1208    return {R_PPC64_ADDR64, dtpBiasedVal};
1209
1210  default:
1211    return {type, val};
1212  }
1213}
1214
1215static bool isTocOptType(RelType type) {
1216  switch (type) {
1217  case R_PPC64_GOT16_HA:
1218  case R_PPC64_GOT16_LO_DS:
1219  case R_PPC64_TOC16_HA:
1220  case R_PPC64_TOC16_LO_DS:
1221  case R_PPC64_TOC16_LO:
1222    return true;
1223  default:
1224    return false;
1225  }
1226}
1227
1228void PPC64::relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const {
1229  RelType type = rel.type;
1230  bool shouldTocOptimize =  isTocOptType(type);
1231  // For dynamic thread pointer relative, toc-relative, and got-indirect
1232  // relocations, proceed in terms of the corresponding ADDR16 relocation type.
1233  std::tie(type, val) = toAddr16Rel(type, val);
1234
1235  switch (type) {
1236  case R_PPC64_ADDR14: {
1237    checkAlignment(loc, val, 4, rel);
1238    // Preserve the AA/LK bits in the branch instruction
1239    uint8_t aalk = loc[3];
1240    write16(loc + 2, (aalk & 3) | (val & 0xfffc));
1241    break;
1242  }
1243  case R_PPC64_ADDR16:
1244    checkIntUInt(loc, val, 16, rel);
1245    write16(loc, val);
1246    break;
1247  case R_PPC64_ADDR32:
1248    checkIntUInt(loc, val, 32, rel);
1249    write32(loc, val);
1250    break;
1251  case R_PPC64_ADDR16_DS:
1252  case R_PPC64_TPREL16_DS: {
1253    checkInt(loc, val, 16, rel);
1254    // DQ-form instructions use bits 28-31 as part of the instruction encoding
1255    // DS-form instructions only use bits 30-31.
1256    uint16_t mask = isDQFormInstruction(readFromHalf16(loc)) ? 0xf : 0x3;
1257    checkAlignment(loc, lo(val), mask + 1, rel);
1258    write16(loc, (read16(loc) & mask) | lo(val));
1259  } break;
1260  case R_PPC64_ADDR16_HA:
1261  case R_PPC64_REL16_HA:
1262  case R_PPC64_TPREL16_HA:
1263    if (config->tocOptimize && shouldTocOptimize && ha(val) == 0)
1264      writeFromHalf16(loc, NOP);
1265    else {
1266      checkInt(loc, val + 0x8000, 32, rel);
1267      write16(loc, ha(val));
1268    }
1269    break;
1270  case R_PPC64_ADDR16_HI:
1271  case R_PPC64_REL16_HI:
1272  case R_PPC64_TPREL16_HI:
1273    checkInt(loc, val, 32, rel);
1274    write16(loc, hi(val));
1275    break;
1276  case R_PPC64_ADDR16_HIGH:
1277    write16(loc, hi(val));
1278    break;
1279  case R_PPC64_ADDR16_HIGHER:
1280  case R_PPC64_TPREL16_HIGHER:
1281    write16(loc, higher(val));
1282    break;
1283  case R_PPC64_ADDR16_HIGHERA:
1284  case R_PPC64_TPREL16_HIGHERA:
1285    write16(loc, highera(val));
1286    break;
1287  case R_PPC64_ADDR16_HIGHEST:
1288  case R_PPC64_TPREL16_HIGHEST:
1289    write16(loc, highest(val));
1290    break;
1291  case R_PPC64_ADDR16_HIGHESTA:
1292  case R_PPC64_TPREL16_HIGHESTA:
1293    write16(loc, highesta(val));
1294    break;
1295  case R_PPC64_ADDR16_LO:
1296  case R_PPC64_REL16_LO:
1297  case R_PPC64_TPREL16_LO:
1298    // When the high-adjusted part of a toc relocation evaluates to 0, it is
1299    // changed into a nop. The lo part then needs to be updated to use the
1300    // toc-pointer register r2, as the base register.
1301    if (config->tocOptimize && shouldTocOptimize && ha(val) == 0) {
1302      uint32_t insn = readFromHalf16(loc);
1303      if (isInstructionUpdateForm(insn))
1304        error(getErrorLocation(loc) +
1305              "can't toc-optimize an update instruction: 0x" +
1306              utohexstr(insn));
1307      writeFromHalf16(loc, (insn & 0xffe00000) | 0x00020000 | lo(val));
1308    } else {
1309      write16(loc, lo(val));
1310    }
1311    break;
1312  case R_PPC64_ADDR16_LO_DS:
1313  case R_PPC64_TPREL16_LO_DS: {
1314    // DQ-form instructions use bits 28-31 as part of the instruction encoding
1315    // DS-form instructions only use bits 30-31.
1316    uint32_t insn = readFromHalf16(loc);
1317    uint16_t mask = isDQFormInstruction(insn) ? 0xf : 0x3;
1318    checkAlignment(loc, lo(val), mask + 1, rel);
1319    if (config->tocOptimize && shouldTocOptimize && ha(val) == 0) {
1320      // When the high-adjusted part of a toc relocation evaluates to 0, it is
1321      // changed into a nop. The lo part then needs to be updated to use the toc
1322      // pointer register r2, as the base register.
1323      if (isInstructionUpdateForm(insn))
1324        error(getErrorLocation(loc) +
1325              "Can't toc-optimize an update instruction: 0x" +
1326              Twine::utohexstr(insn));
1327      insn &= 0xffe00000 | mask;
1328      writeFromHalf16(loc, insn | 0x00020000 | lo(val));
1329    } else {
1330      write16(loc, (read16(loc) & mask) | lo(val));
1331    }
1332  } break;
1333  case R_PPC64_TPREL16:
1334    checkInt(loc, val, 16, rel);
1335    write16(loc, val);
1336    break;
1337  case R_PPC64_REL32:
1338    checkInt(loc, val, 32, rel);
1339    write32(loc, val);
1340    break;
1341  case R_PPC64_ADDR64:
1342  case R_PPC64_REL64:
1343  case R_PPC64_TOC:
1344    write64(loc, val);
1345    break;
1346  case R_PPC64_REL14: {
1347    uint32_t mask = 0x0000FFFC;
1348    checkInt(loc, val, 16, rel);
1349    checkAlignment(loc, val, 4, rel);
1350    write32(loc, (read32(loc) & ~mask) | (val & mask));
1351    break;
1352  }
1353  case R_PPC64_REL24:
1354  case R_PPC64_REL24_NOTOC: {
1355    uint32_t mask = 0x03FFFFFC;
1356    checkInt(loc, val, 26, rel);
1357    checkAlignment(loc, val, 4, rel);
1358    write32(loc, (read32(loc) & ~mask) | (val & mask));
1359    break;
1360  }
1361  case R_PPC64_DTPREL64:
1362    write64(loc, val - dynamicThreadPointerOffset);
1363    break;
1364  case R_PPC64_DTPREL34:
1365    // The Dynamic Thread Vector actually points 0x8000 bytes past the start
1366    // of the TLS block. Therefore, in the case of R_PPC64_DTPREL34 we first
1367    // need to subtract that value then fallthrough to the general case.
1368    val -= dynamicThreadPointerOffset;
1369    [[fallthrough]];
1370  case R_PPC64_PCREL34:
1371  case R_PPC64_GOT_PCREL34:
1372  case R_PPC64_GOT_TLSGD_PCREL34:
1373  case R_PPC64_GOT_TLSLD_PCREL34:
1374  case R_PPC64_GOT_TPREL_PCREL34:
1375  case R_PPC64_TPREL34: {
1376    const uint64_t si0Mask = 0x00000003ffff0000;
1377    const uint64_t si1Mask = 0x000000000000ffff;
1378    const uint64_t fullMask = 0x0003ffff0000ffff;
1379    checkInt(loc, val, 34, rel);
1380
1381    uint64_t instr = readPrefixedInstruction(loc) & ~fullMask;
1382    writePrefixedInstruction(loc, instr | ((val & si0Mask) << 16) |
1383                             (val & si1Mask));
1384    break;
1385  }
1386  // If we encounter a PCREL_OPT relocation that we won't optimize.
1387  case R_PPC64_PCREL_OPT:
1388    break;
1389  default:
1390    llvm_unreachable("unknown relocation");
1391  }
1392}
1393
1394bool PPC64::needsThunk(RelExpr expr, RelType type, const InputFile *file,
1395                       uint64_t branchAddr, const Symbol &s, int64_t a) const {
1396  if (type != R_PPC64_REL14 && type != R_PPC64_REL24 &&
1397      type != R_PPC64_REL24_NOTOC)
1398    return false;
1399
1400  // If a function is in the Plt it needs to be called with a call-stub.
1401  if (s.isInPlt())
1402    return true;
1403
1404  // This check looks at the st_other bits of the callee with relocation
1405  // R_PPC64_REL14 or R_PPC64_REL24. If the value is 1, then the callee
1406  // clobbers the TOC and we need an R2 save stub.
1407  if (type != R_PPC64_REL24_NOTOC && (s.stOther >> 5) == 1)
1408    return true;
1409
1410  if (type == R_PPC64_REL24_NOTOC && (s.stOther >> 5) > 1)
1411    return true;
1412
1413  // An undefined weak symbol not in a PLT does not need a thunk. If it is
1414  // hidden, its binding has been converted to local, so we just check
1415  // isUndefined() here. A undefined non-weak symbol has been errored.
1416  if (s.isUndefined())
1417    return false;
1418
1419  // If the offset exceeds the range of the branch type then it will need
1420  // a range-extending thunk.
1421  // See the comment in getRelocTargetVA() about R_PPC64_CALL.
1422  return !inBranchRange(type, branchAddr,
1423                        s.getVA(a) +
1424                            getPPC64GlobalEntryToLocalEntryOffset(s.stOther));
1425}
1426
1427uint32_t PPC64::getThunkSectionSpacing() const {
1428  // See comment in Arch/ARM.cpp for a more detailed explanation of
1429  // getThunkSectionSpacing(). For PPC64 we pick the constant here based on
1430  // R_PPC64_REL24, which is used by unconditional branch instructions.
1431  // 0x2000000 = (1 << 24-1) * 4
1432  return 0x2000000;
1433}
1434
1435bool PPC64::inBranchRange(RelType type, uint64_t src, uint64_t dst) const {
1436  int64_t offset = dst - src;
1437  if (type == R_PPC64_REL14)
1438    return isInt<16>(offset);
1439  if (type == R_PPC64_REL24 || type == R_PPC64_REL24_NOTOC)
1440    return isInt<26>(offset);
1441  llvm_unreachable("unsupported relocation type used in branch");
1442}
1443
1444RelExpr PPC64::adjustTlsExpr(RelType type, RelExpr expr) const {
1445  if (type != R_PPC64_GOT_TLSGD_PCREL34 && expr == R_RELAX_TLS_GD_TO_IE)
1446    return R_RELAX_TLS_GD_TO_IE_GOT_OFF;
1447  if (expr == R_RELAX_TLS_LD_TO_LE)
1448    return R_RELAX_TLS_LD_TO_LE_ABS;
1449  return expr;
1450}
1451
1452RelExpr PPC64::adjustGotPcExpr(RelType type, int64_t addend,
1453                               const uint8_t *loc) const {
1454  if ((type == R_PPC64_GOT_PCREL34 || type == R_PPC64_PCREL_OPT) &&
1455      config->pcRelOptimize) {
1456    // It only makes sense to optimize pld since paddi means that the address
1457    // of the object in the GOT is required rather than the object itself.
1458    if ((readPrefixedInstruction(loc) & 0xfc000000) == 0xe4000000)
1459      return R_PPC64_RELAX_GOT_PC;
1460  }
1461  return R_GOT_PC;
1462}
1463
1464// Reference: 3.7.4.1 of the 64-bit ELF V2 abi supplement.
1465// The general dynamic code sequence for a global `x` uses 4 instructions.
1466// Instruction                    Relocation                Symbol
1467// addis r3, r2, x@got@tlsgd@ha   R_PPC64_GOT_TLSGD16_HA      x
1468// addi  r3, r3, x@got@tlsgd@l    R_PPC64_GOT_TLSGD16_LO      x
1469// bl __tls_get_addr(x@tlsgd)     R_PPC64_TLSGD               x
1470//                                R_PPC64_REL24               __tls_get_addr
1471// nop                            None                       None
1472//
1473// Relaxing to initial-exec entails:
1474// 1) Convert the addis/addi pair that builds the address of the tls_index
1475//    struct for 'x' to an addis/ld pair that loads an offset from a got-entry.
1476// 2) Convert the call to __tls_get_addr to a nop.
1477// 3) Convert the nop following the call to an add of the loaded offset to the
1478//    thread pointer.
1479// Since the nop must directly follow the call, the R_PPC64_TLSGD relocation is
1480// used as the relaxation hint for both steps 2 and 3.
1481void PPC64::relaxTlsGdToIe(uint8_t *loc, const Relocation &rel,
1482                           uint64_t val) const {
1483  switch (rel.type) {
1484  case R_PPC64_GOT_TLSGD16_HA:
1485    // This is relaxed from addis rT, r2, sym@got@tlsgd@ha to
1486    //                      addis rT, r2, sym@got@tprel@ha.
1487    relocateNoSym(loc, R_PPC64_GOT_TPREL16_HA, val);
1488    return;
1489  case R_PPC64_GOT_TLSGD16:
1490  case R_PPC64_GOT_TLSGD16_LO: {
1491    // Relax from addi  r3, rA, sym@got@tlsgd@l to
1492    //            ld r3, sym@got@tprel@l(rA)
1493    uint32_t ra = (readFromHalf16(loc) & (0x1f << 16));
1494    writeFromHalf16(loc, 0xe8600000 | ra);
1495    relocateNoSym(loc, R_PPC64_GOT_TPREL16_LO_DS, val);
1496    return;
1497  }
1498  case R_PPC64_GOT_TLSGD_PCREL34: {
1499    // Relax from paddi r3, 0, sym@got@tlsgd@pcrel, 1 to
1500    //            pld r3, sym@got@tprel@pcrel
1501    writePrefixedInstruction(loc, 0x04100000e4600000);
1502    relocateNoSym(loc, R_PPC64_GOT_TPREL_PCREL34, val);
1503    return;
1504  }
1505  case R_PPC64_TLSGD: {
1506    // PC Relative Relaxation:
1507    // Relax from bl __tls_get_addr@notoc(x@tlsgd) to
1508    //            nop
1509    // TOC Relaxation:
1510    // Relax from bl __tls_get_addr(x@tlsgd)
1511    //            nop
1512    // to
1513    //            nop
1514    //            add r3, r3, r13
1515    const uintptr_t locAsInt = reinterpret_cast<uintptr_t>(loc);
1516    if (locAsInt % 4 == 0) {
1517      write32(loc, NOP);            // bl __tls_get_addr(sym@tlsgd) --> nop
1518      write32(loc + 4, 0x7c636A14); // nop --> add r3, r3, r13
1519    } else if (locAsInt % 4 == 1) {
1520      // bl __tls_get_addr(sym@tlsgd) --> add r3, r3, r13
1521      write32(loc - 1, 0x7c636a14);
1522    } else {
1523      errorOrWarn("R_PPC64_TLSGD has unexpected byte alignment");
1524    }
1525    return;
1526  }
1527  default:
1528    llvm_unreachable("unsupported relocation for TLS GD to IE relaxation");
1529  }
1530}
1531
1532void PPC64::relocateAlloc(InputSectionBase &sec, uint8_t *buf) const {
1533  uint64_t secAddr = sec.getOutputSection()->addr;
1534  if (auto *s = dyn_cast<InputSection>(&sec))
1535    secAddr += s->outSecOff;
1536  uint64_t lastPPCRelaxedRelocOff = -1;
1537  for (const Relocation &rel : sec.relocs()) {
1538    uint8_t *loc = buf + rel.offset;
1539    const uint64_t val =
1540        sec.getRelocTargetVA(sec.file, rel.type, rel.addend,
1541                             secAddr + rel.offset, *rel.sym, rel.expr);
1542    switch (rel.expr) {
1543    case R_PPC64_RELAX_GOT_PC: {
1544      // The R_PPC64_PCREL_OPT relocation must appear immediately after
1545      // R_PPC64_GOT_PCREL34 in the relocations table at the same offset.
1546      // We can only relax R_PPC64_PCREL_OPT if we have also relaxed
1547      // the associated R_PPC64_GOT_PCREL34 since only the latter has an
1548      // associated symbol. So save the offset when relaxing R_PPC64_GOT_PCREL34
1549      // and only relax the other if the saved offset matches.
1550      if (rel.type == R_PPC64_GOT_PCREL34)
1551        lastPPCRelaxedRelocOff = rel.offset;
1552      if (rel.type == R_PPC64_PCREL_OPT && rel.offset != lastPPCRelaxedRelocOff)
1553        break;
1554      relaxGot(loc, rel, val);
1555      break;
1556    }
1557    case R_PPC64_RELAX_TOC:
1558      // rel.sym refers to the STT_SECTION symbol associated to the .toc input
1559      // section. If an R_PPC64_TOC16_LO (.toc + addend) references the TOC
1560      // entry, there may be R_PPC64_TOC16_HA not paired with
1561      // R_PPC64_TOC16_LO_DS. Don't relax. This loses some relaxation
1562      // opportunities but is safe.
1563      if (ppc64noTocRelax.count({rel.sym, rel.addend}) ||
1564          !tryRelaxPPC64TocIndirection(rel, loc))
1565        relocate(loc, rel, val);
1566      break;
1567    case R_PPC64_CALL:
1568      // If this is a call to __tls_get_addr, it may be part of a TLS
1569      // sequence that has been relaxed and turned into a nop. In this
1570      // case, we don't want to handle it as a call.
1571      if (read32(loc) == 0x60000000) // nop
1572        break;
1573
1574      // Patch a nop (0x60000000) to a ld.
1575      if (rel.sym->needsTocRestore) {
1576        // gcc/gfortran 5.4, 6.3 and earlier versions do not add nop for
1577        // recursive calls even if the function is preemptible. This is not
1578        // wrong in the common case where the function is not preempted at
1579        // runtime. Just ignore.
1580        if ((rel.offset + 8 > sec.content().size() ||
1581             read32(loc + 4) != 0x60000000) &&
1582            rel.sym->file != sec.file) {
1583          // Use substr(6) to remove the "__plt_" prefix.
1584          errorOrWarn(getErrorLocation(loc) + "call to " +
1585                      lld::toString(*rel.sym).substr(6) +
1586                      " lacks nop, can't restore toc");
1587          break;
1588        }
1589        write32(loc + 4, 0xe8410018); // ld %r2, 24(%r1)
1590      }
1591      relocate(loc, rel, val);
1592      break;
1593    case R_RELAX_TLS_GD_TO_IE:
1594    case R_RELAX_TLS_GD_TO_IE_GOT_OFF:
1595      relaxTlsGdToIe(loc, rel, val);
1596      break;
1597    case R_RELAX_TLS_GD_TO_LE:
1598      relaxTlsGdToLe(loc, rel, val);
1599      break;
1600    case R_RELAX_TLS_LD_TO_LE_ABS:
1601      relaxTlsLdToLe(loc, rel, val);
1602      break;
1603    case R_RELAX_TLS_IE_TO_LE:
1604      relaxTlsIeToLe(loc, rel, val);
1605      break;
1606    default:
1607      relocate(loc, rel, val);
1608      break;
1609    }
1610  }
1611}
1612
1613// The prologue for a split-stack function is expected to look roughly
1614// like this:
1615//    .Lglobal_entry_point:
1616//      # TOC pointer initialization.
1617//      ...
1618//    .Llocal_entry_point:
1619//      # load the __private_ss member of the threads tcbhead.
1620//      ld r0,-0x7000-64(r13)
1621//      # subtract the functions stack size from the stack pointer.
1622//      addis r12, r1, ha(-stack-frame size)
1623//      addi  r12, r12, l(-stack-frame size)
1624//      # compare needed to actual and branch to allocate_more_stack if more
1625//      # space is needed, otherwise fallthrough to 'normal' function body.
1626//      cmpld cr7,r12,r0
1627//      blt- cr7, .Lallocate_more_stack
1628//
1629// -) The allocate_more_stack block might be placed after the split-stack
1630//    prologue and the `blt-` replaced with a `bge+ .Lnormal_func_body`
1631//    instead.
1632// -) If either the addis or addi is not needed due to the stack size being
1633//    smaller then 32K or a multiple of 64K they will be replaced with a nop,
1634//    but there will always be 2 instructions the linker can overwrite for the
1635//    adjusted stack size.
1636//
1637// The linkers job here is to increase the stack size used in the addis/addi
1638// pair by split-stack-size-adjust.
1639// addis r12, r1, ha(-stack-frame size - split-stack-adjust-size)
1640// addi  r12, r12, l(-stack-frame size - split-stack-adjust-size)
1641bool PPC64::adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end,
1642                                             uint8_t stOther) const {
1643  // If the caller has a global entry point adjust the buffer past it. The start
1644  // of the split-stack prologue will be at the local entry point.
1645  loc += getPPC64GlobalEntryToLocalEntryOffset(stOther);
1646
1647  // At the very least we expect to see a load of some split-stack data from the
1648  // tcb, and 2 instructions that calculate the ending stack address this
1649  // function will require. If there is not enough room for at least 3
1650  // instructions it can't be a split-stack prologue.
1651  if (loc + 12 >= end)
1652    return false;
1653
1654  // First instruction must be `ld r0, -0x7000-64(r13)`
1655  if (read32(loc) != 0xe80d8fc0)
1656    return false;
1657
1658  int16_t hiImm = 0;
1659  int16_t loImm = 0;
1660  // First instruction can be either an addis if the frame size is larger then
1661  // 32K, or an addi if the size is less then 32K.
1662  int32_t firstInstr = read32(loc + 4);
1663  if (getPrimaryOpCode(firstInstr) == 15) {
1664    hiImm = firstInstr & 0xFFFF;
1665  } else if (getPrimaryOpCode(firstInstr) == 14) {
1666    loImm = firstInstr & 0xFFFF;
1667  } else {
1668    return false;
1669  }
1670
1671  // Second instruction is either an addi or a nop. If the first instruction was
1672  // an addi then LoImm is set and the second instruction must be a nop.
1673  uint32_t secondInstr = read32(loc + 8);
1674  if (!loImm && getPrimaryOpCode(secondInstr) == 14) {
1675    loImm = secondInstr & 0xFFFF;
1676  } else if (secondInstr != NOP) {
1677    return false;
1678  }
1679
1680  // The register operands of the first instruction should be the stack-pointer
1681  // (r1) as the input (RA) and r12 as the output (RT). If the second
1682  // instruction is not a nop, then it should use r12 as both input and output.
1683  auto checkRegOperands = [](uint32_t instr, uint8_t expectedRT,
1684                             uint8_t expectedRA) {
1685    return ((instr & 0x3E00000) >> 21 == expectedRT) &&
1686           ((instr & 0x1F0000) >> 16 == expectedRA);
1687  };
1688  if (!checkRegOperands(firstInstr, 12, 1))
1689    return false;
1690  if (secondInstr != NOP && !checkRegOperands(secondInstr, 12, 12))
1691    return false;
1692
1693  int32_t stackFrameSize = (hiImm * 65536) + loImm;
1694  // Check that the adjusted size doesn't overflow what we can represent with 2
1695  // instructions.
1696  if (stackFrameSize < config->splitStackAdjustSize + INT32_MIN) {
1697    error(getErrorLocation(loc) + "split-stack prologue adjustment overflows");
1698    return false;
1699  }
1700
1701  int32_t adjustedStackFrameSize =
1702      stackFrameSize - config->splitStackAdjustSize;
1703
1704  loImm = adjustedStackFrameSize & 0xFFFF;
1705  hiImm = (adjustedStackFrameSize + 0x8000) >> 16;
1706  if (hiImm) {
1707    write32(loc + 4, 0x3D810000 | (uint16_t)hiImm);
1708    // If the low immediate is zero the second instruction will be a nop.
1709    secondInstr = loImm ? 0x398C0000 | (uint16_t)loImm : NOP;
1710    write32(loc + 8, secondInstr);
1711  } else {
1712    // addi r12, r1, imm
1713    write32(loc + 4, (0x39810000) | (uint16_t)loImm);
1714    write32(loc + 8, NOP);
1715  }
1716
1717  return true;
1718}
1719
1720TargetInfo *elf::getPPC64TargetInfo() {
1721  static PPC64 target;
1722  return &target;
1723}
1724