1//===- AArch64ErrataFix.cpp -----------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8// This file implements Section Patching for the purpose of working around
9// the AArch64 Cortex-53 errata 843419 that affects r0p0, r0p1, r0p2 and r0p4
10// versions of the core.
11//
12// The general principle is that an erratum sequence of one or
13// more instructions is detected in the instruction stream, one of the
14// instructions in the sequence is replaced with a branch to a patch sequence
15// of replacement instructions. At the end of the replacement sequence the
16// patch branches back to the instruction stream.
17
18// This technique is only suitable for fixing an erratum when:
19// - There is a set of necessary conditions required to trigger the erratum that
20// can be detected at static link time.
21// - There is a set of replacement instructions that can be used to remove at
22// least one of the necessary conditions that trigger the erratum.
23// - We can overwrite an instruction in the erratum sequence with a branch to
24// the replacement sequence.
25// - We can place the replacement sequence within range of the branch.
26//===----------------------------------------------------------------------===//
27
28#include "AArch64ErrataFix.h"
29#include "InputFiles.h"
30#include "LinkerScript.h"
31#include "OutputSections.h"
32#include "Relocations.h"
33#include "Symbols.h"
34#include "SyntheticSections.h"
35#include "Target.h"
36#include "lld/Common/CommonLinkerContext.h"
37#include "lld/Common/Strings.h"
38#include "llvm/Support/Endian.h"
39#include <algorithm>
40
41using namespace llvm;
42using namespace llvm::ELF;
43using namespace llvm::object;
44using namespace llvm::support;
45using namespace llvm::support::endian;
46using namespace lld;
47using namespace lld::elf;
48
49// Helper functions to identify instructions and conditions needed to trigger
50// the Cortex-A53-843419 erratum.
51
52// ADRP
53// | 1 | immlo (2) | 1 | 0 0 0 0 | immhi (19) | Rd (5) |
54static bool isADRP(uint32_t instr) {
55  return (instr & 0x9f000000) == 0x90000000;
56}
57
58// Load and store bit patterns from ARMv8-A.
59// Instructions appear in order of appearance starting from table in
60// C4.1.3 Loads and Stores.
61
62// All loads and stores have 1 (at bit position 27), (0 at bit position 25).
63// | op0 x op1 (2) | 1 op2 0 op3 (2) | x | op4 (5) | xxxx | op5 (2) | x (10) |
64static bool isLoadStoreClass(uint32_t instr) {
65  return (instr & 0x0a000000) == 0x08000000;
66}
67
68// LDN/STN multiple no offset
69// | 0 Q 00 | 1100 | 0 L 00 | 0000 | opcode (4) | size (2) | Rn (5) | Rt (5) |
70// LDN/STN multiple post-indexed
71// | 0 Q 00 | 1100 | 1 L 0 | Rm (5)| opcode (4) | size (2) | Rn (5) | Rt (5) |
72// L == 0 for stores.
73
74// Utility routine to decode opcode field of LDN/STN multiple structure
75// instructions to find the ST1 instructions.
76// opcode == 0010 ST1 4 registers.
77// opcode == 0110 ST1 3 registers.
78// opcode == 0111 ST1 1 register.
79// opcode == 1010 ST1 2 registers.
80static bool isST1MultipleOpcode(uint32_t instr) {
81  return (instr & 0x0000f000) == 0x00002000 ||
82         (instr & 0x0000f000) == 0x00006000 ||
83         (instr & 0x0000f000) == 0x00007000 ||
84         (instr & 0x0000f000) == 0x0000a000;
85}
86
87static bool isST1Multiple(uint32_t instr) {
88  return (instr & 0xbfff0000) == 0x0c000000 && isST1MultipleOpcode(instr);
89}
90
91// Writes to Rn (writeback).
92static bool isST1MultiplePost(uint32_t instr) {
93  return (instr & 0xbfe00000) == 0x0c800000 && isST1MultipleOpcode(instr);
94}
95
96// LDN/STN single no offset
97// | 0 Q 00 | 1101 | 0 L R 0 | 0000 | opc (3) S | size (2) | Rn (5) | Rt (5)|
98// LDN/STN single post-indexed
99// | 0 Q 00 | 1101 | 1 L R | Rm (5) | opc (3) S | size (2) | Rn (5) | Rt (5)|
100// L == 0 for stores
101
102// Utility routine to decode opcode field of LDN/STN single structure
103// instructions to find the ST1 instructions.
104// R == 0 for ST1 and ST3, R == 1 for ST2 and ST4.
105// opcode == 000 ST1 8-bit.
106// opcode == 010 ST1 16-bit.
107// opcode == 100 ST1 32 or 64-bit (Size determines which).
108static bool isST1SingleOpcode(uint32_t instr) {
109  return (instr & 0x0040e000) == 0x00000000 ||
110         (instr & 0x0040e000) == 0x00004000 ||
111         (instr & 0x0040e000) == 0x00008000;
112}
113
114static bool isST1Single(uint32_t instr) {
115  return (instr & 0xbfff0000) == 0x0d000000 && isST1SingleOpcode(instr);
116}
117
118// Writes to Rn (writeback).
119static bool isST1SinglePost(uint32_t instr) {
120  return (instr & 0xbfe00000) == 0x0d800000 && isST1SingleOpcode(instr);
121}
122
123static bool isST1(uint32_t instr) {
124  return isST1Multiple(instr) || isST1MultiplePost(instr) ||
125         isST1Single(instr) || isST1SinglePost(instr);
126}
127
128// Load/store exclusive
129// | size (2) 00 | 1000 | o2 L o1 | Rs (5) | o0 | Rt2 (5) | Rn (5) | Rt (5) |
130// L == 0 for Stores.
131static bool isLoadStoreExclusive(uint32_t instr) {
132  return (instr & 0x3f000000) == 0x08000000;
133}
134
135static bool isLoadExclusive(uint32_t instr) {
136  return (instr & 0x3f400000) == 0x08400000;
137}
138
139// Load register literal
140// | opc (2) 01 | 1 V 00 | imm19 | Rt (5) |
141static bool isLoadLiteral(uint32_t instr) {
142  return (instr & 0x3b000000) == 0x18000000;
143}
144
145// Load/store no-allocate pair
146// (offset)
147// | opc (2) 10 | 1 V 00 | 0 L | imm7 | Rt2 (5) | Rn (5) | Rt (5) |
148// L == 0 for stores.
149// Never writes to register
150static bool isSTNP(uint32_t instr) {
151  return (instr & 0x3bc00000) == 0x28000000;
152}
153
154// Load/store register pair
155// (post-indexed)
156// | opc (2) 10 | 1 V 00 | 1 L | imm7 | Rt2 (5) | Rn (5) | Rt (5) |
157// L == 0 for stores, V == 0 for Scalar, V == 1 for Simd/FP
158// Writes to Rn.
159static bool isSTPPost(uint32_t instr) {
160  return (instr & 0x3bc00000) == 0x28800000;
161}
162
163// (offset)
164// | opc (2) 10 | 1 V 01 | 0 L | imm7 | Rt2 (5) | Rn (5) | Rt (5) |
165static bool isSTPOffset(uint32_t instr) {
166  return (instr & 0x3bc00000) == 0x29000000;
167}
168
169// (pre-index)
170// | opc (2) 10 | 1 V 01 | 1 L | imm7 | Rt2 (5) | Rn (5) | Rt (5) |
171// Writes to Rn.
172static bool isSTPPre(uint32_t instr) {
173  return (instr & 0x3bc00000) == 0x29800000;
174}
175
176static bool isSTP(uint32_t instr) {
177  return isSTPPost(instr) || isSTPOffset(instr) || isSTPPre(instr);
178}
179
180// Load/store register (unscaled immediate)
181// | size (2) 11 | 1 V 00 | opc (2) 0 | imm9 | 00 | Rn (5) | Rt (5) |
182// V == 0 for Scalar, V == 1 for Simd/FP.
183static bool isLoadStoreUnscaled(uint32_t instr) {
184  return (instr & 0x3b000c00) == 0x38000000;
185}
186
187// Load/store register (immediate post-indexed)
188// | size (2) 11 | 1 V 00 | opc (2) 0 | imm9 | 01 | Rn (5) | Rt (5) |
189static bool isLoadStoreImmediatePost(uint32_t instr) {
190  return (instr & 0x3b200c00) == 0x38000400;
191}
192
193// Load/store register (unprivileged)
194// | size (2) 11 | 1 V 00 | opc (2) 0 | imm9 | 10 | Rn (5) | Rt (5) |
195static bool isLoadStoreUnpriv(uint32_t instr) {
196  return (instr & 0x3b200c00) == 0x38000800;
197}
198
199// Load/store register (immediate pre-indexed)
200// | size (2) 11 | 1 V 00 | opc (2) 0 | imm9 | 11 | Rn (5) | Rt (5) |
201static bool isLoadStoreImmediatePre(uint32_t instr) {
202  return (instr & 0x3b200c00) == 0x38000c00;
203}
204
205// Load/store register (register offset)
206// | size (2) 11 | 1 V 00 | opc (2) 1 | Rm (5) | option (3) S | 10 | Rn | Rt |
207static bool isLoadStoreRegisterOff(uint32_t instr) {
208  return (instr & 0x3b200c00) == 0x38200800;
209}
210
211// Load/store register (unsigned immediate)
212// | size (2) 11 | 1 V 01 | opc (2) | imm12 | Rn (5) | Rt (5) |
213static bool isLoadStoreRegisterUnsigned(uint32_t instr) {
214  return (instr & 0x3b000000) == 0x39000000;
215}
216
217// Rt is always in bit position 0 - 4.
218static uint32_t getRt(uint32_t instr) { return (instr & 0x1f); }
219
220// Rn is always in bit position 5 - 9.
221static uint32_t getRn(uint32_t instr) { return (instr >> 5) & 0x1f; }
222
223// C4.1.2 Branches, Exception Generating and System instructions
224// | op0 (3) 1 | 01 op1 (4) | x (22) |
225// op0 == 010 101 op1 == 0xxx Conditional Branch.
226// op0 == 110 101 op1 == 1xxx Unconditional Branch Register.
227// op0 == x00 101 op1 == xxxx Unconditional Branch immediate.
228// op0 == x01 101 op1 == 0xxx Compare and branch immediate.
229// op0 == x01 101 op1 == 1xxx Test and branch immediate.
230static bool isBranch(uint32_t instr) {
231  return ((instr & 0xfe000000) == 0xd6000000) || // Cond branch.
232         ((instr & 0xfe000000) == 0x54000000) || // Uncond branch reg.
233         ((instr & 0x7c000000) == 0x14000000) || // Uncond branch imm.
234         ((instr & 0x7c000000) == 0x34000000);   // Compare and test branch.
235}
236
237static bool isV8SingleRegisterNonStructureLoadStore(uint32_t instr) {
238  return isLoadStoreUnscaled(instr) || isLoadStoreImmediatePost(instr) ||
239         isLoadStoreUnpriv(instr) || isLoadStoreImmediatePre(instr) ||
240         isLoadStoreRegisterOff(instr) || isLoadStoreRegisterUnsigned(instr);
241}
242
243// Note that this function refers to v8.0 only and does not include the
244// additional load and store instructions added for in later revisions of
245// the architecture such as the Atomic memory operations introduced
246// in v8.1.
247static bool isV8NonStructureLoad(uint32_t instr) {
248  if (isLoadExclusive(instr))
249    return true;
250  if (isLoadLiteral(instr))
251    return true;
252  else if (isV8SingleRegisterNonStructureLoadStore(instr)) {
253    // For Load and Store single register, Loads are derived from a
254    // combination of the Size, V and Opc fields.
255    uint32_t size = (instr >> 30) & 0xff;
256    uint32_t v = (instr >> 26) & 0x1;
257    uint32_t opc = (instr >> 22) & 0x3;
258    // For the load and store instructions that we are decoding.
259    // Opc == 0 are all stores.
260    // Opc == 1 with a couple of exceptions are loads. The exceptions are:
261    // Size == 00 (0), V == 1, Opc == 10 (2) which is a store and
262    // Size == 11 (3), V == 0, Opc == 10 (2) which is a prefetch.
263    return opc != 0 && !(size == 0 && v == 1 && opc == 2) &&
264           !(size == 3 && v == 0 && opc == 2);
265  }
266  return false;
267}
268
269// The following decode instructions are only complete up to the instructions
270// needed for errata 843419.
271
272// Instruction with writeback updates the index register after the load/store.
273static bool hasWriteback(uint32_t instr) {
274  return isLoadStoreImmediatePre(instr) || isLoadStoreImmediatePost(instr) ||
275         isSTPPre(instr) || isSTPPost(instr) || isST1SinglePost(instr) ||
276         isST1MultiplePost(instr);
277}
278
279// For the load and store class of instructions, a load can write to the
280// destination register, a load and a store can write to the base register when
281// the instruction has writeback.
282static bool doesLoadStoreWriteToReg(uint32_t instr, uint32_t reg) {
283  return (isV8NonStructureLoad(instr) && getRt(instr) == reg) ||
284         (hasWriteback(instr) && getRn(instr) == reg);
285}
286
287// Scanner for Cortex-A53 errata 843419
288// Full details are available in the Cortex A53 MPCore revision 0 Software
289// Developers Errata Notice (ARM-EPM-048406).
290//
291// The instruction sequence that triggers the erratum is common in compiled
292// AArch64 code, however it is sensitive to the offset of the sequence within
293// a 4k page. This means that by scanning and fixing the patch after we have
294// assigned addresses we only need to disassemble and fix instances of the
295// sequence in the range of affected offsets.
296//
297// In summary the erratum conditions are a series of 4 instructions:
298// 1.) An ADRP instruction that writes to register Rn with low 12 bits of
299//     address of instruction either 0xff8 or 0xffc.
300// 2.) A load or store instruction that can be:
301// - A single register load or store, of either integer or vector registers.
302// - An STP or STNP, of either integer or vector registers.
303// - An Advanced SIMD ST1 store instruction.
304// - Must not write to Rn, but may optionally read from it.
305// 3.) An optional instruction that is not a branch and does not write to Rn.
306// 4.) A load or store from the  Load/store register (unsigned immediate) class
307//     that uses Rn as the base address register.
308//
309// Note that we do not attempt to scan for Sequence 2 as described in the
310// Software Developers Errata Notice as this has been assessed to be extremely
311// unlikely to occur in compiled code. This matches gold and ld.bfd behavior.
312
313// Return true if the Instruction sequence Adrp, Instr2, and Instr4 match
314// the erratum sequence. The Adrp, Instr2 and Instr4 correspond to 1.), 2.),
315// and 4.) in the Scanner for Cortex-A53 errata comment above.
316static bool is843419ErratumSequence(uint32_t instr1, uint32_t instr2,
317                                    uint32_t instr4) {
318  if (!isADRP(instr1))
319    return false;
320
321  uint32_t rn = getRt(instr1);
322  return isLoadStoreClass(instr2) &&
323         (isLoadStoreExclusive(instr2) || isLoadLiteral(instr2) ||
324          isV8SingleRegisterNonStructureLoadStore(instr2) || isSTP(instr2) ||
325          isSTNP(instr2) || isST1(instr2)) &&
326         !doesLoadStoreWriteToReg(instr2, rn) &&
327         isLoadStoreRegisterUnsigned(instr4) && getRn(instr4) == rn;
328}
329
330// Scan the instruction sequence starting at Offset Off from the base of
331// InputSection isec. We update Off in this function rather than in the caller
332// as we can skip ahead much further into the section when we know how many
333// instructions we've scanned.
334// Return the offset of the load or store instruction in isec that we want to
335// patch or 0 if no patch required.
336static uint64_t scanCortexA53Errata843419(InputSection *isec, uint64_t &off,
337                                          uint64_t limit) {
338  uint64_t isecAddr = isec->getVA(0);
339
340  // Advance Off so that (isecAddr + Off) modulo 0x1000 is at least 0xff8.
341  uint64_t initialPageOff = (isecAddr + off) & 0xfff;
342  if (initialPageOff < 0xff8)
343    off += 0xff8 - initialPageOff;
344
345  bool optionalAllowed = limit - off > 12;
346  if (off >= limit || limit - off < 12) {
347    // Need at least 3 4-byte sized instructions to trigger erratum.
348    off = limit;
349    return 0;
350  }
351
352  uint64_t patchOff = 0;
353  const uint8_t *buf = isec->content().begin();
354  const ulittle32_t *instBuf = reinterpret_cast<const ulittle32_t *>(buf + off);
355  uint32_t instr1 = *instBuf++;
356  uint32_t instr2 = *instBuf++;
357  uint32_t instr3 = *instBuf++;
358  if (is843419ErratumSequence(instr1, instr2, instr3)) {
359    patchOff = off + 8;
360  } else if (optionalAllowed && !isBranch(instr3)) {
361    uint32_t instr4 = *instBuf++;
362    if (is843419ErratumSequence(instr1, instr2, instr4))
363      patchOff = off + 12;
364  }
365  if (((isecAddr + off) & 0xfff) == 0xff8)
366    off += 4;
367  else
368    off += 0xffc;
369  return patchOff;
370}
371
372class elf::Patch843419Section final : public SyntheticSection {
373public:
374  Patch843419Section(InputSection *p, uint64_t off);
375
376  void writeTo(uint8_t *buf) override;
377
378  size_t getSize() const override { return 8; }
379
380  uint64_t getLDSTAddr() const;
381
382  static bool classof(const SectionBase *d) {
383    return d->kind() == InputSectionBase::Synthetic && d->name == ".text.patch";
384  }
385
386  // The Section we are patching.
387  const InputSection *patchee;
388  // The offset of the instruction in the patchee section we are patching.
389  uint64_t patcheeOffset;
390  // A label for the start of the Patch that we can use as a relocation target.
391  Symbol *patchSym;
392};
393
394Patch843419Section::Patch843419Section(InputSection *p, uint64_t off)
395    : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 4,
396                       ".text.patch"),
397      patchee(p), patcheeOffset(off) {
398  this->parent = p->getParent();
399  patchSym = addSyntheticLocal(
400      saver().save("__CortexA53843419_" + utohexstr(getLDSTAddr())), STT_FUNC,
401      0, getSize(), *this);
402  addSyntheticLocal(saver().save("$x"), STT_NOTYPE, 0, 0, *this);
403}
404
405uint64_t Patch843419Section::getLDSTAddr() const {
406  return patchee->getVA(patcheeOffset);
407}
408
409void Patch843419Section::writeTo(uint8_t *buf) {
410  // Copy the instruction that we will be replacing with a branch in the
411  // patchee Section.
412  write32le(buf, read32le(patchee->content().begin() + patcheeOffset));
413
414  // Apply any relocation transferred from the original patchee section.
415  target->relocateAlloc(*this, buf);
416
417  // Return address is the next instruction after the one we have just copied.
418  uint64_t s = getLDSTAddr() + 4;
419  uint64_t p = patchSym->getVA() + 4;
420  target->relocateNoSym(buf + 4, R_AARCH64_JUMP26, s - p);
421}
422
423void AArch64Err843419Patcher::init() {
424  // The AArch64 ABI permits data in executable sections. We must avoid scanning
425  // this data as if it were instructions to avoid false matches. We use the
426  // mapping symbols in the InputObjects to identify this data, caching the
427  // results in sectionMap so we don't have to recalculate it each pass.
428
429  // The ABI Section 4.5.4 Mapping symbols; defines local symbols that describe
430  // half open intervals [Symbol Value, Next Symbol Value) of code and data
431  // within sections. If there is no next symbol then the half open interval is
432  // [Symbol Value, End of section). The type, code or data, is determined by
433  // the mapping symbol name, $x for code, $d for data.
434  auto isCodeMapSymbol = [](const Symbol *b) {
435    return b->getName() == "$x" || b->getName().startswith("$x.");
436  };
437  auto isDataMapSymbol = [](const Symbol *b) {
438    return b->getName() == "$d" || b->getName().startswith("$d.");
439  };
440
441  // Collect mapping symbols for every executable InputSection.
442  for (ELFFileBase *file : ctx.objectFiles) {
443    for (Symbol *b : file->getLocalSymbols()) {
444      auto *def = dyn_cast<Defined>(b);
445      if (!def)
446        continue;
447      if (!isCodeMapSymbol(def) && !isDataMapSymbol(def))
448        continue;
449      if (auto *sec = dyn_cast_or_null<InputSection>(def->section))
450        if (sec->flags & SHF_EXECINSTR)
451          sectionMap[sec].push_back(def);
452    }
453  }
454  // For each InputSection make sure the mapping symbols are in sorted in
455  // ascending order and free from consecutive runs of mapping symbols with
456  // the same type. For example we must remove the redundant $d.1 from $x.0
457  // $d.0 $d.1 $x.1.
458  for (auto &kv : sectionMap) {
459    std::vector<const Defined *> &mapSyms = kv.second;
460    llvm::stable_sort(mapSyms, [](const Defined *a, const Defined *b) {
461      return a->value < b->value;
462    });
463    mapSyms.erase(
464        std::unique(mapSyms.begin(), mapSyms.end(),
465                    [=](const Defined *a, const Defined *b) {
466                      return isCodeMapSymbol(a) == isCodeMapSymbol(b);
467                    }),
468        mapSyms.end());
469    // Always start with a Code Mapping Symbol.
470    if (!mapSyms.empty() && !isCodeMapSymbol(mapSyms.front()))
471      mapSyms.erase(mapSyms.begin());
472  }
473  initialized = true;
474}
475
476// Insert the PatchSections we have created back into the
477// InputSectionDescription. As inserting patches alters the addresses of
478// InputSections that follow them, we try and place the patches after all the
479// executable sections, although we may need to insert them earlier if the
480// InputSectionDescription is larger than the maximum branch range.
481void AArch64Err843419Patcher::insertPatches(
482    InputSectionDescription &isd, std::vector<Patch843419Section *> &patches) {
483  uint64_t isecLimit;
484  uint64_t prevIsecLimit = isd.sections.front()->outSecOff;
485  uint64_t patchUpperBound = prevIsecLimit + target->getThunkSectionSpacing();
486  uint64_t outSecAddr = isd.sections.front()->getParent()->addr;
487
488  // Set the outSecOff of patches to the place where we want to insert them.
489  // We use a similar strategy to Thunk placement. Place patches roughly
490  // every multiple of maximum branch range.
491  auto patchIt = patches.begin();
492  auto patchEnd = patches.end();
493  for (const InputSection *isec : isd.sections) {
494    isecLimit = isec->outSecOff + isec->getSize();
495    if (isecLimit > patchUpperBound) {
496      while (patchIt != patchEnd) {
497        if ((*patchIt)->getLDSTAddr() - outSecAddr >= prevIsecLimit)
498          break;
499        (*patchIt)->outSecOff = prevIsecLimit;
500        ++patchIt;
501      }
502      patchUpperBound = prevIsecLimit + target->getThunkSectionSpacing();
503    }
504    prevIsecLimit = isecLimit;
505  }
506  for (; patchIt != patchEnd; ++patchIt) {
507    (*patchIt)->outSecOff = isecLimit;
508  }
509
510  // Merge all patch sections. We use the outSecOff assigned above to
511  // determine the insertion point. This is ok as we only merge into an
512  // InputSectionDescription once per pass, and at the end of the pass
513  // assignAddresses() will recalculate all the outSecOff values.
514  SmallVector<InputSection *, 0> tmp;
515  tmp.reserve(isd.sections.size() + patches.size());
516  auto mergeCmp = [](const InputSection *a, const InputSection *b) {
517    if (a->outSecOff != b->outSecOff)
518      return a->outSecOff < b->outSecOff;
519    return isa<Patch843419Section>(a) && !isa<Patch843419Section>(b);
520  };
521  std::merge(isd.sections.begin(), isd.sections.end(), patches.begin(),
522             patches.end(), std::back_inserter(tmp), mergeCmp);
523  isd.sections = std::move(tmp);
524}
525
526// Given an erratum sequence that starts at address adrpAddr, with an
527// instruction that we need to patch at patcheeOffset from the start of
528// InputSection isec, create a Patch843419 Section and add it to the
529// Patches that we need to insert.
530static void implementPatch(uint64_t adrpAddr, uint64_t patcheeOffset,
531                           InputSection *isec,
532                           std::vector<Patch843419Section *> &patches) {
533  // There may be a relocation at the same offset that we are patching. There
534  // are four cases that we need to consider.
535  // Case 1: R_AARCH64_JUMP26 branch relocation. We have already patched this
536  // instance of the erratum on a previous patch and altered the relocation. We
537  // have nothing more to do.
538  // Case 2: A TLS Relaxation R_RELAX_TLS_IE_TO_LE. In this case the ADRP that
539  // we read will be transformed into a MOVZ later so we actually don't match
540  // the sequence and have nothing more to do.
541  // Case 3: A load/store register (unsigned immediate) class relocation. There
542  // are two of these R_AARCH_LD64_ABS_LO12_NC and R_AARCH_LD64_GOT_LO12_NC and
543  // they are both absolute. We need to add the same relocation to the patch,
544  // and replace the relocation with a R_AARCH_JUMP26 branch relocation.
545  // Case 4: No relocation. We must create a new R_AARCH64_JUMP26 branch
546  // relocation at the offset.
547  auto relIt = llvm::find_if(isec->relocs(), [=](const Relocation &r) {
548    return r.offset == patcheeOffset;
549  });
550  if (relIt != isec->relocs().end() &&
551      (relIt->type == R_AARCH64_JUMP26 || relIt->expr == R_RELAX_TLS_IE_TO_LE))
552    return;
553
554  log("detected cortex-a53-843419 erratum sequence starting at " +
555      utohexstr(adrpAddr) + " in unpatched output.");
556
557  auto *ps = make<Patch843419Section>(isec, patcheeOffset);
558  patches.push_back(ps);
559
560  auto makeRelToPatch = [](uint64_t offset, Symbol *patchSym) {
561    return Relocation{R_PC, R_AARCH64_JUMP26, offset, 0, patchSym};
562  };
563
564  if (relIt != isec->relocs().end()) {
565    ps->addReloc({relIt->expr, relIt->type, 0, relIt->addend, relIt->sym});
566    *relIt = makeRelToPatch(patcheeOffset, ps->patchSym);
567  } else
568    isec->addReloc(makeRelToPatch(patcheeOffset, ps->patchSym));
569}
570
571// Scan all the instructions in InputSectionDescription, for each instance of
572// the erratum sequence create a Patch843419Section. We return the list of
573// Patch843419Sections that need to be applied to the InputSectionDescription.
574std::vector<Patch843419Section *>
575AArch64Err843419Patcher::patchInputSectionDescription(
576    InputSectionDescription &isd) {
577  std::vector<Patch843419Section *> patches;
578  for (InputSection *isec : isd.sections) {
579    //  LLD doesn't use the erratum sequence in SyntheticSections.
580    if (isa<SyntheticSection>(isec))
581      continue;
582    // Use sectionMap to make sure we only scan code and not inline data.
583    // We have already sorted MapSyms in ascending order and removed consecutive
584    // mapping symbols of the same type. Our range of executable instructions to
585    // scan is therefore [codeSym->value, dataSym->value) or [codeSym->value,
586    // section size).
587    std::vector<const Defined *> &mapSyms = sectionMap[isec];
588
589    auto codeSym = mapSyms.begin();
590    while (codeSym != mapSyms.end()) {
591      auto dataSym = std::next(codeSym);
592      uint64_t off = (*codeSym)->value;
593      uint64_t limit = (dataSym == mapSyms.end()) ? isec->content().size()
594                                                  : (*dataSym)->value;
595
596      while (off < limit) {
597        uint64_t startAddr = isec->getVA(off);
598        if (uint64_t patcheeOffset =
599                scanCortexA53Errata843419(isec, off, limit))
600          implementPatch(startAddr, patcheeOffset, isec, patches);
601      }
602      if (dataSym == mapSyms.end())
603        break;
604      codeSym = std::next(dataSym);
605    }
606  }
607  return patches;
608}
609
610// For each InputSectionDescription make one pass over the executable sections
611// looking for the erratum sequence; creating a synthetic Patch843419Section
612// for each instance found. We insert these synthetic patch sections after the
613// executable code in each InputSectionDescription.
614//
615// PreConditions:
616// The Output and Input Sections have had their final addresses assigned.
617//
618// PostConditions:
619// Returns true if at least one patch was added. The addresses of the
620// Output and Input Sections may have been changed.
621// Returns false if no patches were required and no changes were made.
622bool AArch64Err843419Patcher::createFixes() {
623  if (!initialized)
624    init();
625
626  bool addressesChanged = false;
627  for (OutputSection *os : outputSections) {
628    if (!(os->flags & SHF_ALLOC) || !(os->flags & SHF_EXECINSTR))
629      continue;
630    for (SectionCommand *cmd : os->commands)
631      if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) {
632        std::vector<Patch843419Section *> patches =
633            patchInputSectionDescription(*isd);
634        if (!patches.empty()) {
635          insertPatches(*isd, patches);
636          addressesChanged = true;
637        }
638      }
639  }
640  return addressesChanged;
641}
642