1//===-- tsan_fd.cpp -------------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file is a part of ThreadSanitizer (TSan), a race detector.
10//
11//===----------------------------------------------------------------------===//
12
13#include "tsan_fd.h"
14
15#include <sanitizer_common/sanitizer_atomic.h>
16
17#include "tsan_interceptors.h"
18#include "tsan_rtl.h"
19
20namespace __tsan {
21
22const int kTableSizeL1 = 1024;
23const int kTableSizeL2 = 1024;
24const int kTableSize = kTableSizeL1 * kTableSizeL2;
25
26struct FdSync {
27  atomic_uint64_t rc;
28};
29
30struct FdDesc {
31  FdSync *sync;
32  // This is used to establish write -> epoll_wait synchronization
33  // where epoll_wait receives notification about the write.
34  atomic_uintptr_t aux_sync;  // FdSync*
35  Tid creation_tid;
36  StackID creation_stack;
37  bool closed;
38};
39
40struct FdContext {
41  atomic_uintptr_t tab[kTableSizeL1];
42  // Addresses used for synchronization.
43  FdSync globsync;
44  FdSync filesync;
45  FdSync socksync;
46  u64 connectsync;
47};
48
49static FdContext fdctx;
50
51static bool bogusfd(int fd) {
52  // Apparently a bogus fd value.
53  return fd < 0 || fd >= kTableSize;
54}
55
56static FdSync *allocsync(ThreadState *thr, uptr pc) {
57  FdSync *s = (FdSync*)user_alloc_internal(thr, pc, sizeof(FdSync),
58      kDefaultAlignment, false);
59  atomic_store(&s->rc, 1, memory_order_relaxed);
60  return s;
61}
62
63static FdSync *ref(FdSync *s) {
64  if (s && atomic_load(&s->rc, memory_order_relaxed) != (u64)-1)
65    atomic_fetch_add(&s->rc, 1, memory_order_relaxed);
66  return s;
67}
68
69static void unref(ThreadState *thr, uptr pc, FdSync *s) {
70  if (s && atomic_load(&s->rc, memory_order_relaxed) != (u64)-1) {
71    if (atomic_fetch_sub(&s->rc, 1, memory_order_acq_rel) == 1) {
72      CHECK_NE(s, &fdctx.globsync);
73      CHECK_NE(s, &fdctx.filesync);
74      CHECK_NE(s, &fdctx.socksync);
75      user_free(thr, pc, s, false);
76    }
77  }
78}
79
80static FdDesc *fddesc(ThreadState *thr, uptr pc, int fd) {
81  CHECK_GE(fd, 0);
82  CHECK_LT(fd, kTableSize);
83  atomic_uintptr_t *pl1 = &fdctx.tab[fd / kTableSizeL2];
84  uptr l1 = atomic_load(pl1, memory_order_consume);
85  if (l1 == 0) {
86    uptr size = kTableSizeL2 * sizeof(FdDesc);
87    // We need this to reside in user memory to properly catch races on it.
88    void *p = user_alloc_internal(thr, pc, size, kDefaultAlignment, false);
89    internal_memset(p, 0, size);
90    MemoryResetRange(thr, (uptr)&fddesc, (uptr)p, size);
91    if (atomic_compare_exchange_strong(pl1, &l1, (uptr)p, memory_order_acq_rel))
92      l1 = (uptr)p;
93    else
94      user_free(thr, pc, p, false);
95  }
96  FdDesc *fds = reinterpret_cast<FdDesc *>(l1);
97  return &fds[fd % kTableSizeL2];
98}
99
100// pd must be already ref'ed.
101static void init(ThreadState *thr, uptr pc, int fd, FdSync *s,
102    bool write = true) {
103  FdDesc *d = fddesc(thr, pc, fd);
104  // As a matter of fact, we don't intercept all close calls.
105  // See e.g. libc __res_iclose().
106  if (d->sync) {
107    unref(thr, pc, d->sync);
108    d->sync = 0;
109  }
110  unref(thr, pc,
111        reinterpret_cast<FdSync *>(
112            atomic_load(&d->aux_sync, memory_order_relaxed)));
113  atomic_store(&d->aux_sync, 0, memory_order_relaxed);
114  if (flags()->io_sync == 0) {
115    unref(thr, pc, s);
116  } else if (flags()->io_sync == 1) {
117    d->sync = s;
118  } else if (flags()->io_sync == 2) {
119    unref(thr, pc, s);
120    d->sync = &fdctx.globsync;
121  }
122  d->creation_tid = thr->tid;
123  d->creation_stack = CurrentStackId(thr, pc);
124  d->closed = false;
125  // This prevents false positives on fd_close_norace3.cpp test.
126  // The mechanics of the false positive are not completely clear,
127  // but it happens only if global reset is enabled (flush_memory_ms=1)
128  // and may be related to lost writes during asynchronous MADV_DONTNEED.
129  SlotLocker locker(thr);
130  if (write) {
131    // To catch races between fd usage and open.
132    MemoryRangeImitateWrite(thr, pc, (uptr)d, 8);
133  } else {
134    // See the dup-related comment in FdClose.
135    MemoryAccess(thr, pc, (uptr)d, 8, kAccessRead | kAccessSlotLocked);
136  }
137}
138
139void FdInit() {
140  atomic_store(&fdctx.globsync.rc, (u64)-1, memory_order_relaxed);
141  atomic_store(&fdctx.filesync.rc, (u64)-1, memory_order_relaxed);
142  atomic_store(&fdctx.socksync.rc, (u64)-1, memory_order_relaxed);
143}
144
145void FdOnFork(ThreadState *thr, uptr pc) {
146  // On fork() we need to reset all fd's, because the child is going
147  // close all them, and that will cause races between previous read/write
148  // and the close.
149  for (int l1 = 0; l1 < kTableSizeL1; l1++) {
150    FdDesc *tab = (FdDesc*)atomic_load(&fdctx.tab[l1], memory_order_relaxed);
151    if (tab == 0)
152      break;
153    for (int l2 = 0; l2 < kTableSizeL2; l2++) {
154      FdDesc *d = &tab[l2];
155      MemoryResetRange(thr, pc, (uptr)d, 8);
156    }
157  }
158}
159
160bool FdLocation(uptr addr, int *fd, Tid *tid, StackID *stack, bool *closed) {
161  for (int l1 = 0; l1 < kTableSizeL1; l1++) {
162    FdDesc *tab = (FdDesc*)atomic_load(&fdctx.tab[l1], memory_order_relaxed);
163    if (tab == 0)
164      break;
165    if (addr >= (uptr)tab && addr < (uptr)(tab + kTableSizeL2)) {
166      int l2 = (addr - (uptr)tab) / sizeof(FdDesc);
167      FdDesc *d = &tab[l2];
168      *fd = l1 * kTableSizeL1 + l2;
169      *tid = d->creation_tid;
170      *stack = d->creation_stack;
171      *closed = d->closed;
172      return true;
173    }
174  }
175  return false;
176}
177
178void FdAcquire(ThreadState *thr, uptr pc, int fd) {
179  if (bogusfd(fd))
180    return;
181  FdDesc *d = fddesc(thr, pc, fd);
182  FdSync *s = d->sync;
183  DPrintf("#%d: FdAcquire(%d) -> %p\n", thr->tid, fd, s);
184  MemoryAccess(thr, pc, (uptr)d, 8, kAccessRead);
185  if (s)
186    Acquire(thr, pc, (uptr)s);
187}
188
189void FdRelease(ThreadState *thr, uptr pc, int fd) {
190  if (bogusfd(fd))
191    return;
192  FdDesc *d = fddesc(thr, pc, fd);
193  FdSync *s = d->sync;
194  DPrintf("#%d: FdRelease(%d) -> %p\n", thr->tid, fd, s);
195  MemoryAccess(thr, pc, (uptr)d, 8, kAccessRead);
196  if (s)
197    Release(thr, pc, (uptr)s);
198  if (uptr aux_sync = atomic_load(&d->aux_sync, memory_order_acquire))
199    Release(thr, pc, aux_sync);
200}
201
202void FdAccess(ThreadState *thr, uptr pc, int fd) {
203  DPrintf("#%d: FdAccess(%d)\n", thr->tid, fd);
204  if (bogusfd(fd))
205    return;
206  FdDesc *d = fddesc(thr, pc, fd);
207  MemoryAccess(thr, pc, (uptr)d, 8, kAccessRead);
208}
209
210void FdClose(ThreadState *thr, uptr pc, int fd, bool write) {
211  DPrintf("#%d: FdClose(%d)\n", thr->tid, fd);
212  if (bogusfd(fd))
213    return;
214  FdDesc *d = fddesc(thr, pc, fd);
215  {
216    // Need to lock the slot to make MemoryAccess and MemoryResetRange atomic
217    // with respect to global reset. See the comment in MemoryRangeFreed.
218    SlotLocker locker(thr);
219    if (!MustIgnoreInterceptor(thr)) {
220      if (write) {
221        // To catch races between fd usage and close.
222        MemoryAccess(thr, pc, (uptr)d, 8,
223                     kAccessWrite | kAccessCheckOnly | kAccessSlotLocked);
224      } else {
225        // This path is used only by dup2/dup3 calls.
226        // We do read instead of write because there is a number of legitimate
227        // cases where write would lead to false positives:
228        // 1. Some software dups a closed pipe in place of a socket before
229        // closing
230        //    the socket (to prevent races actually).
231        // 2. Some daemons dup /dev/null in place of stdin/stdout.
232        // On the other hand we have not seen cases when write here catches real
233        // bugs.
234        MemoryAccess(thr, pc, (uptr)d, 8,
235                     kAccessRead | kAccessCheckOnly | kAccessSlotLocked);
236      }
237    }
238    // We need to clear it, because if we do not intercept any call out there
239    // that creates fd, we will hit false postives.
240    MemoryResetRange(thr, pc, (uptr)d, 8);
241  }
242  unref(thr, pc, d->sync);
243  d->sync = 0;
244  unref(thr, pc,
245        reinterpret_cast<FdSync *>(
246            atomic_load(&d->aux_sync, memory_order_relaxed)));
247  atomic_store(&d->aux_sync, 0, memory_order_relaxed);
248  d->closed = true;
249  d->creation_tid = thr->tid;
250  d->creation_stack = CurrentStackId(thr, pc);
251}
252
253void FdFileCreate(ThreadState *thr, uptr pc, int fd) {
254  DPrintf("#%d: FdFileCreate(%d)\n", thr->tid, fd);
255  if (bogusfd(fd))
256    return;
257  init(thr, pc, fd, &fdctx.filesync);
258}
259
260void FdDup(ThreadState *thr, uptr pc, int oldfd, int newfd, bool write) {
261  DPrintf("#%d: FdDup(%d, %d)\n", thr->tid, oldfd, newfd);
262  if (bogusfd(oldfd) || bogusfd(newfd))
263    return;
264  // Ignore the case when user dups not yet connected socket.
265  FdDesc *od = fddesc(thr, pc, oldfd);
266  MemoryAccess(thr, pc, (uptr)od, 8, kAccessRead);
267  FdClose(thr, pc, newfd, write);
268  init(thr, pc, newfd, ref(od->sync), write);
269}
270
271void FdPipeCreate(ThreadState *thr, uptr pc, int rfd, int wfd) {
272  DPrintf("#%d: FdCreatePipe(%d, %d)\n", thr->tid, rfd, wfd);
273  FdSync *s = allocsync(thr, pc);
274  init(thr, pc, rfd, ref(s));
275  init(thr, pc, wfd, ref(s));
276  unref(thr, pc, s);
277}
278
279void FdEventCreate(ThreadState *thr, uptr pc, int fd) {
280  DPrintf("#%d: FdEventCreate(%d)\n", thr->tid, fd);
281  if (bogusfd(fd))
282    return;
283  init(thr, pc, fd, allocsync(thr, pc));
284}
285
286void FdSignalCreate(ThreadState *thr, uptr pc, int fd) {
287  DPrintf("#%d: FdSignalCreate(%d)\n", thr->tid, fd);
288  if (bogusfd(fd))
289    return;
290  init(thr, pc, fd, 0);
291}
292
293void FdInotifyCreate(ThreadState *thr, uptr pc, int fd) {
294  DPrintf("#%d: FdInotifyCreate(%d)\n", thr->tid, fd);
295  if (bogusfd(fd))
296    return;
297  init(thr, pc, fd, 0);
298}
299
300void FdPollCreate(ThreadState *thr, uptr pc, int fd) {
301  DPrintf("#%d: FdPollCreate(%d)\n", thr->tid, fd);
302  if (bogusfd(fd))
303    return;
304  init(thr, pc, fd, allocsync(thr, pc));
305}
306
307void FdPollAdd(ThreadState *thr, uptr pc, int epfd, int fd) {
308  DPrintf("#%d: FdPollAdd(%d, %d)\n", thr->tid, epfd, fd);
309  if (bogusfd(epfd) || bogusfd(fd))
310    return;
311  FdDesc *d = fddesc(thr, pc, fd);
312  // Associate fd with epoll fd only once.
313  // While an fd can be associated with multiple epolls at the same time,
314  // or with different epolls during different phases of lifetime,
315  // synchronization semantics (and examples) of this are unclear.
316  // So we don't support this for now.
317  // If we change the association, it will also create lifetime management
318  // problem for FdRelease which accesses the aux_sync.
319  if (atomic_load(&d->aux_sync, memory_order_relaxed))
320    return;
321  FdDesc *epd = fddesc(thr, pc, epfd);
322  FdSync *s = epd->sync;
323  if (!s)
324    return;
325  uptr cmp = 0;
326  if (atomic_compare_exchange_strong(
327          &d->aux_sync, &cmp, reinterpret_cast<uptr>(s), memory_order_release))
328    ref(s);
329}
330
331void FdSocketCreate(ThreadState *thr, uptr pc, int fd) {
332  DPrintf("#%d: FdSocketCreate(%d)\n", thr->tid, fd);
333  if (bogusfd(fd))
334    return;
335  // It can be a UDP socket.
336  init(thr, pc, fd, &fdctx.socksync);
337}
338
339void FdSocketAccept(ThreadState *thr, uptr pc, int fd, int newfd) {
340  DPrintf("#%d: FdSocketAccept(%d, %d)\n", thr->tid, fd, newfd);
341  if (bogusfd(fd))
342    return;
343  // Synchronize connect->accept.
344  Acquire(thr, pc, (uptr)&fdctx.connectsync);
345  init(thr, pc, newfd, &fdctx.socksync);
346}
347
348void FdSocketConnecting(ThreadState *thr, uptr pc, int fd) {
349  DPrintf("#%d: FdSocketConnecting(%d)\n", thr->tid, fd);
350  if (bogusfd(fd))
351    return;
352  // Synchronize connect->accept.
353  Release(thr, pc, (uptr)&fdctx.connectsync);
354}
355
356void FdSocketConnect(ThreadState *thr, uptr pc, int fd) {
357  DPrintf("#%d: FdSocketConnect(%d)\n", thr->tid, fd);
358  if (bogusfd(fd))
359    return;
360  init(thr, pc, fd, &fdctx.socksync);
361}
362
363uptr File2addr(const char *path) {
364  (void)path;
365  static u64 addr;
366  return (uptr)&addr;
367}
368
369uptr Dir2addr(const char *path) {
370  (void)path;
371  static u64 addr;
372  return (uptr)&addr;
373}
374
375}  //  namespace __tsan
376