1//===-- IteratorModeling.cpp --------------------------------------*- C++ -*--//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// Defines a modeling-checker for modeling STL iterator-like iterators.
10//
11//===----------------------------------------------------------------------===//
12//
13// In the code, iterator can be represented as a:
14// * type-I: typedef-ed pointer. Operations over such iterator, such as
15//           comparisons or increments, are modeled straightforwardly by the
16//           analyzer.
17// * type-II: structure with its method bodies available.  Operations over such
18//            iterator are inlined by the analyzer, and results of modeling
19//            these operations are exposing implementation details of the
20//            iterators, which is not necessarily helping.
21// * type-III: completely opaque structure. Operations over such iterator are
22//             modeled conservatively, producing conjured symbols everywhere.
23//
24// To handle all these types in a common way we introduce a structure called
25// IteratorPosition which is an abstraction of the position the iterator
26// represents using symbolic expressions. The checker handles all the
27// operations on this structure.
28//
29// Additionally, depending on the circumstances, operators of types II and III
30// can be represented as:
31// * type-IIa, type-IIIa: conjured structure symbols - when returned by value
32//                        from conservatively evaluated methods such as
33//                        `.begin()`.
34// * type-IIb, type-IIIb: memory regions of iterator-typed objects, such as
35//                        variables or temporaries, when the iterator object is
36//                        currently treated as an lvalue.
37// * type-IIc, type-IIIc: compound values of iterator-typed objects, when the
38//                        iterator object is treated as an rvalue taken of a
39//                        particular lvalue, eg. a copy of "type-a" iterator
40//                        object, or an iterator that existed before the
41//                        analysis has started.
42//
43// To handle any of these three different representations stored in an SVal we
44// use setter and getters functions which separate the three cases. To store
45// them we use a pointer union of symbol and memory region.
46//
47// The checker works the following way: We record the begin and the
48// past-end iterator for all containers whenever their `.begin()` and `.end()`
49// are called. Since the Constraint Manager cannot handle such SVals we need
50// to take over its role. We post-check equality and non-equality comparisons
51// and record that the two sides are equal if we are in the 'equal' branch
52// (true-branch for `==` and false-branch for `!=`).
53//
54// In case of type-I or type-II iterators we get a concrete integer as a result
55// of the comparison (1 or 0) but in case of type-III we only get a Symbol. In
56// this latter case we record the symbol and reload it in evalAssume() and do
57// the propagation there. We also handle (maybe double) negated comparisons
58// which are represented in the form of (x == 0 or x != 0) where x is the
59// comparison itself.
60//
61// Since `SimpleConstraintManager` cannot handle complex symbolic expressions
62// we only use expressions of the format S, S+n or S-n for iterator positions
63// where S is a conjured symbol and n is an unsigned concrete integer. When
64// making an assumption e.g. `S1 + n == S2 + m` we store `S1 - S2 == m - n` as
65// a constraint which we later retrieve when doing an actual comparison.
66
67#include "clang/AST/DeclTemplate.h"
68#include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
69#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
70#include "clang/StaticAnalyzer/Core/Checker.h"
71#include "clang/StaticAnalyzer/Core/PathSensitive/CallDescription.h"
72#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
73#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
74#include "clang/StaticAnalyzer/Core/PathSensitive/DynamicType.h"
75
76#include "Iterator.h"
77
78#include <utility>
79
80using namespace clang;
81using namespace ento;
82using namespace iterator;
83
84namespace {
85
86class IteratorModeling
87    : public Checker<check::PostCall, check::PostStmt<UnaryOperator>,
88                     check::PostStmt<BinaryOperator>,
89                     check::PostStmt<MaterializeTemporaryExpr>,
90                     check::Bind, check::LiveSymbols, check::DeadSymbols> {
91
92  using AdvanceFn = void (IteratorModeling::*)(CheckerContext &, const Expr *,
93                                               SVal, SVal, SVal) const;
94
95  void handleOverloadedOperator(CheckerContext &C, const CallEvent &Call,
96                                OverloadedOperatorKind Op) const;
97  void handleAdvanceLikeFunction(CheckerContext &C, const CallEvent &Call,
98                                 const Expr *OrigExpr,
99                                 const AdvanceFn *Handler) const;
100
101  void handleComparison(CheckerContext &C, const Expr *CE, SVal RetVal,
102                        const SVal &LVal, const SVal &RVal,
103                        OverloadedOperatorKind Op) const;
104  void processComparison(CheckerContext &C, ProgramStateRef State,
105                         SymbolRef Sym1, SymbolRef Sym2, const SVal &RetVal,
106                         OverloadedOperatorKind Op) const;
107  void handleIncrement(CheckerContext &C, const SVal &RetVal, const SVal &Iter,
108                       bool Postfix) const;
109  void handleDecrement(CheckerContext &C, const SVal &RetVal, const SVal &Iter,
110                       bool Postfix) const;
111  void handleRandomIncrOrDecr(CheckerContext &C, const Expr *CE,
112                              OverloadedOperatorKind Op, const SVal &RetVal,
113                              const SVal &Iterator, const SVal &Amount) const;
114  void handlePtrIncrOrDecr(CheckerContext &C, const Expr *Iterator,
115                           OverloadedOperatorKind OK, SVal Offset) const;
116  void handleAdvance(CheckerContext &C, const Expr *CE, SVal RetVal, SVal Iter,
117                     SVal Amount) const;
118  void handlePrev(CheckerContext &C, const Expr *CE, SVal RetVal, SVal Iter,
119                  SVal Amount) const;
120  void handleNext(CheckerContext &C, const Expr *CE, SVal RetVal, SVal Iter,
121                  SVal Amount) const;
122  void assignToContainer(CheckerContext &C, const Expr *CE, const SVal &RetVal,
123                         const MemRegion *Cont) const;
124  bool noChangeInAdvance(CheckerContext &C, SVal Iter, const Expr *CE) const;
125  void printState(raw_ostream &Out, ProgramStateRef State, const char *NL,
126                  const char *Sep) const override;
127
128  // std::advance, std::prev & std::next
129  CallDescriptionMap<AdvanceFn> AdvanceLikeFunctions = {
130      // template<class InputIt, class Distance>
131      // void advance(InputIt& it, Distance n);
132      {{{"std", "advance"}, 2}, &IteratorModeling::handleAdvance},
133
134      // template<class BidirIt>
135      // BidirIt prev(
136      //   BidirIt it,
137      //   typename std::iterator_traits<BidirIt>::difference_type n = 1);
138      {{{"std", "prev"}, 2}, &IteratorModeling::handlePrev},
139
140      // template<class ForwardIt>
141      // ForwardIt next(
142      //   ForwardIt it,
143      //   typename std::iterator_traits<ForwardIt>::difference_type n = 1);
144      {{{"std", "next"}, 2}, &IteratorModeling::handleNext},
145  };
146
147public:
148  IteratorModeling() = default;
149
150  void checkPostCall(const CallEvent &Call, CheckerContext &C) const;
151  void checkBind(SVal Loc, SVal Val, const Stmt *S, CheckerContext &C) const;
152  void checkPostStmt(const UnaryOperator *UO, CheckerContext &C) const;
153  void checkPostStmt(const BinaryOperator *BO, CheckerContext &C) const;
154  void checkPostStmt(const MaterializeTemporaryExpr *MTE,
155                     CheckerContext &C) const;
156  void checkLiveSymbols(ProgramStateRef State, SymbolReaper &SR) const;
157  void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const;
158};
159
160bool isSimpleComparisonOperator(OverloadedOperatorKind OK);
161bool isSimpleComparisonOperator(BinaryOperatorKind OK);
162ProgramStateRef removeIteratorPosition(ProgramStateRef State, const SVal &Val);
163ProgramStateRef relateSymbols(ProgramStateRef State, SymbolRef Sym1,
164                              SymbolRef Sym2, bool Equal);
165bool isBoundThroughLazyCompoundVal(const Environment &Env,
166                                   const MemRegion *Reg);
167const ExplodedNode *findCallEnter(const ExplodedNode *Node, const Expr *Call);
168
169} // namespace
170
171void IteratorModeling::checkPostCall(const CallEvent &Call,
172                                     CheckerContext &C) const {
173  // Record new iterator positions and iterator position changes
174  const auto *Func = dyn_cast_or_null<FunctionDecl>(Call.getDecl());
175  if (!Func)
176    return;
177
178  if (Func->isOverloadedOperator()) {
179    const auto Op = Func->getOverloadedOperator();
180    handleOverloadedOperator(C, Call, Op);
181    return;
182  }
183
184  const auto *OrigExpr = Call.getOriginExpr();
185  if (!OrigExpr)
186    return;
187
188  const AdvanceFn *Handler = AdvanceLikeFunctions.lookup(Call);
189  if (Handler) {
190    handleAdvanceLikeFunction(C, Call, OrigExpr, Handler);
191    return;
192  }
193
194  if (!isIteratorType(Call.getResultType()))
195    return;
196
197  auto State = C.getState();
198
199  // Already bound to container?
200  if (getIteratorPosition(State, Call.getReturnValue()))
201    return;
202
203  // Copy-like and move constructors
204  if (isa<CXXConstructorCall>(&Call) && Call.getNumArgs() == 1) {
205    if (const auto *Pos = getIteratorPosition(State, Call.getArgSVal(0))) {
206      State = setIteratorPosition(State, Call.getReturnValue(), *Pos);
207      if (cast<CXXConstructorDecl>(Func)->isMoveConstructor()) {
208        State = removeIteratorPosition(State, Call.getArgSVal(0));
209      }
210      C.addTransition(State);
211      return;
212    }
213  }
214
215  // Assumption: if return value is an iterator which is not yet bound to a
216  //             container, then look for the first iterator argument of the
217  //             same type as the return value and bind the return value to
218  //             the same container. This approach works for STL algorithms.
219  // FIXME: Add a more conservative mode
220  for (unsigned i = 0; i < Call.getNumArgs(); ++i) {
221    if (isIteratorType(Call.getArgExpr(i)->getType()) &&
222        Call.getArgExpr(i)->getType().getNonReferenceType().getDesugaredType(
223            C.getASTContext()).getTypePtr() ==
224        Call.getResultType().getDesugaredType(C.getASTContext()).getTypePtr()) {
225      if (const auto *Pos = getIteratorPosition(State, Call.getArgSVal(i))) {
226        assignToContainer(C, OrigExpr, Call.getReturnValue(),
227                          Pos->getContainer());
228        return;
229      }
230    }
231  }
232}
233
234void IteratorModeling::checkBind(SVal Loc, SVal Val, const Stmt *S,
235                                 CheckerContext &C) const {
236  auto State = C.getState();
237  const auto *Pos = getIteratorPosition(State, Val);
238  if (Pos) {
239    State = setIteratorPosition(State, Loc, *Pos);
240    C.addTransition(State);
241  } else {
242    const auto *OldPos = getIteratorPosition(State, Loc);
243    if (OldPos) {
244      State = removeIteratorPosition(State, Loc);
245      C.addTransition(State);
246    }
247  }
248}
249
250void IteratorModeling::checkPostStmt(const UnaryOperator *UO,
251                                     CheckerContext &C) const {
252  UnaryOperatorKind OK = UO->getOpcode();
253  if (!isIncrementOperator(OK) && !isDecrementOperator(OK))
254    return;
255
256  auto &SVB = C.getSValBuilder();
257  handlePtrIncrOrDecr(C, UO->getSubExpr(),
258                      isIncrementOperator(OK) ? OO_Plus : OO_Minus,
259                      SVB.makeArrayIndex(1));
260}
261
262void IteratorModeling::checkPostStmt(const BinaryOperator *BO,
263                                     CheckerContext &C) const {
264  const ProgramStateRef State = C.getState();
265  const BinaryOperatorKind OK = BO->getOpcode();
266  const Expr *const LHS = BO->getLHS();
267  const Expr *const RHS = BO->getRHS();
268  const SVal LVal = State->getSVal(LHS, C.getLocationContext());
269  const SVal RVal = State->getSVal(RHS, C.getLocationContext());
270
271  if (isSimpleComparisonOperator(BO->getOpcode())) {
272    SVal Result = State->getSVal(BO, C.getLocationContext());
273    handleComparison(C, BO, Result, LVal, RVal,
274                     BinaryOperator::getOverloadedOperator(OK));
275  } else if (isRandomIncrOrDecrOperator(OK)) {
276    // In case of operator+ the iterator can be either on the LHS (eg.: it + 1),
277    // or on the RHS (eg.: 1 + it). Both cases are modeled.
278    const bool IsIterOnLHS = BO->getLHS()->getType()->isPointerType();
279    const Expr *const &IterExpr = IsIterOnLHS ? LHS : RHS;
280    const Expr *const &AmountExpr = IsIterOnLHS ? RHS : LHS;
281
282    // The non-iterator side must have an integral or enumeration type.
283    if (!AmountExpr->getType()->isIntegralOrEnumerationType())
284      return;
285    const SVal &AmountVal = IsIterOnLHS ? RVal : LVal;
286    handlePtrIncrOrDecr(C, IterExpr, BinaryOperator::getOverloadedOperator(OK),
287                        AmountVal);
288  }
289}
290
291void IteratorModeling::checkPostStmt(const MaterializeTemporaryExpr *MTE,
292                                     CheckerContext &C) const {
293  /* Transfer iterator state to temporary objects */
294  auto State = C.getState();
295  const auto *Pos = getIteratorPosition(State, C.getSVal(MTE->getSubExpr()));
296  if (!Pos)
297    return;
298  State = setIteratorPosition(State, C.getSVal(MTE), *Pos);
299  C.addTransition(State);
300}
301
302void IteratorModeling::checkLiveSymbols(ProgramStateRef State,
303                                        SymbolReaper &SR) const {
304  // Keep symbolic expressions of iterator positions alive
305  auto RegionMap = State->get<IteratorRegionMap>();
306  for (const auto &Reg : RegionMap) {
307    const auto Offset = Reg.second.getOffset();
308    for (auto i = Offset->symbol_begin(); i != Offset->symbol_end(); ++i)
309      if (isa<SymbolData>(*i))
310        SR.markLive(*i);
311  }
312
313  auto SymbolMap = State->get<IteratorSymbolMap>();
314  for (const auto &Sym : SymbolMap) {
315    const auto Offset = Sym.second.getOffset();
316    for (auto i = Offset->symbol_begin(); i != Offset->symbol_end(); ++i)
317      if (isa<SymbolData>(*i))
318        SR.markLive(*i);
319  }
320
321}
322
323void IteratorModeling::checkDeadSymbols(SymbolReaper &SR,
324                                        CheckerContext &C) const {
325  // Cleanup
326  auto State = C.getState();
327
328  auto RegionMap = State->get<IteratorRegionMap>();
329  for (const auto &Reg : RegionMap) {
330    if (!SR.isLiveRegion(Reg.first)) {
331      // The region behind the `LazyCompoundVal` is often cleaned up before
332      // the `LazyCompoundVal` itself. If there are iterator positions keyed
333      // by these regions their cleanup must be deferred.
334      if (!isBoundThroughLazyCompoundVal(State->getEnvironment(), Reg.first)) {
335        State = State->remove<IteratorRegionMap>(Reg.first);
336      }
337    }
338  }
339
340  auto SymbolMap = State->get<IteratorSymbolMap>();
341  for (const auto &Sym : SymbolMap) {
342    if (!SR.isLive(Sym.first)) {
343      State = State->remove<IteratorSymbolMap>(Sym.first);
344    }
345  }
346
347  C.addTransition(State);
348}
349
350void
351IteratorModeling::handleOverloadedOperator(CheckerContext &C,
352                                           const CallEvent &Call,
353                                           OverloadedOperatorKind Op) const {
354    if (isSimpleComparisonOperator(Op)) {
355      const auto *OrigExpr = Call.getOriginExpr();
356      if (!OrigExpr)
357        return;
358
359      if (const auto *InstCall = dyn_cast<CXXInstanceCall>(&Call)) {
360        handleComparison(C, OrigExpr, Call.getReturnValue(),
361                         InstCall->getCXXThisVal(), Call.getArgSVal(0), Op);
362        return;
363      }
364
365      handleComparison(C, OrigExpr, Call.getReturnValue(), Call.getArgSVal(0),
366                         Call.getArgSVal(1), Op);
367      return;
368    } else if (isRandomIncrOrDecrOperator(Op)) {
369      const auto *OrigExpr = Call.getOriginExpr();
370      if (!OrigExpr)
371        return;
372
373      if (const auto *InstCall = dyn_cast<CXXInstanceCall>(&Call)) {
374        if (Call.getNumArgs() >= 1 &&
375              Call.getArgExpr(0)->getType()->isIntegralOrEnumerationType()) {
376          handleRandomIncrOrDecr(C, OrigExpr, Op, Call.getReturnValue(),
377                                 InstCall->getCXXThisVal(), Call.getArgSVal(0));
378          return;
379        }
380      } else if (Call.getNumArgs() >= 2) {
381        const Expr *FirstArg = Call.getArgExpr(0);
382        const Expr *SecondArg = Call.getArgExpr(1);
383        const QualType FirstType = FirstArg->getType();
384        const QualType SecondType = SecondArg->getType();
385
386        if (FirstType->isIntegralOrEnumerationType() ||
387            SecondType->isIntegralOrEnumerationType()) {
388          // In case of operator+ the iterator can be either on the LHS (eg.:
389          // it + 1), or on the RHS (eg.: 1 + it). Both cases are modeled.
390          const bool IsIterFirst = FirstType->isStructureOrClassType();
391          const SVal FirstArg = Call.getArgSVal(0);
392          const SVal SecondArg = Call.getArgSVal(1);
393          const SVal &Iterator = IsIterFirst ? FirstArg : SecondArg;
394          const SVal &Amount = IsIterFirst ? SecondArg : FirstArg;
395
396          handleRandomIncrOrDecr(C, OrigExpr, Op, Call.getReturnValue(),
397                                 Iterator, Amount);
398          return;
399        }
400      }
401    } else if (isIncrementOperator(Op)) {
402      if (const auto *InstCall = dyn_cast<CXXInstanceCall>(&Call)) {
403        handleIncrement(C, Call.getReturnValue(), InstCall->getCXXThisVal(),
404                        Call.getNumArgs());
405        return;
406      }
407
408      handleIncrement(C, Call.getReturnValue(), Call.getArgSVal(0),
409                      Call.getNumArgs());
410      return;
411    } else if (isDecrementOperator(Op)) {
412      if (const auto *InstCall = dyn_cast<CXXInstanceCall>(&Call)) {
413        handleDecrement(C, Call.getReturnValue(), InstCall->getCXXThisVal(),
414                        Call.getNumArgs());
415        return;
416      }
417
418      handleDecrement(C, Call.getReturnValue(), Call.getArgSVal(0),
419                        Call.getNumArgs());
420      return;
421    }
422}
423
424void
425IteratorModeling::handleAdvanceLikeFunction(CheckerContext &C,
426                                            const CallEvent &Call,
427                                            const Expr *OrigExpr,
428                                            const AdvanceFn *Handler) const {
429  if (!C.wasInlined) {
430    (this->**Handler)(C, OrigExpr, Call.getReturnValue(),
431                      Call.getArgSVal(0), Call.getArgSVal(1));
432    return;
433  }
434
435  // If std::advance() was inlined, but a non-standard function it calls inside
436  // was not, then we have to model it explicitly
437  const auto *IdInfo = cast<FunctionDecl>(Call.getDecl())->getIdentifier();
438  if (IdInfo) {
439    if (IdInfo->getName() == "advance") {
440      if (noChangeInAdvance(C, Call.getArgSVal(0), OrigExpr)) {
441        (this->**Handler)(C, OrigExpr, Call.getReturnValue(),
442                          Call.getArgSVal(0), Call.getArgSVal(1));
443      }
444    }
445  }
446}
447
448void IteratorModeling::handleComparison(CheckerContext &C, const Expr *CE,
449                                       SVal RetVal, const SVal &LVal,
450                                       const SVal &RVal,
451                                       OverloadedOperatorKind Op) const {
452  // Record the operands and the operator of the comparison for the next
453  // evalAssume, if the result is a symbolic expression. If it is a concrete
454  // value (only one branch is possible), then transfer the state between
455  // the operands according to the operator and the result
456   auto State = C.getState();
457  const auto *LPos = getIteratorPosition(State, LVal);
458  const auto *RPos = getIteratorPosition(State, RVal);
459  const MemRegion *Cont = nullptr;
460  if (LPos) {
461    Cont = LPos->getContainer();
462  } else if (RPos) {
463    Cont = RPos->getContainer();
464  }
465  if (!Cont)
466    return;
467
468  // At least one of the iterators has recorded positions. If one of them does
469  // not then create a new symbol for the offset.
470  SymbolRef Sym;
471  if (!LPos || !RPos) {
472    auto &SymMgr = C.getSymbolManager();
473    Sym = SymMgr.conjureSymbol(CE, C.getLocationContext(),
474                               C.getASTContext().LongTy, C.blockCount());
475    State = assumeNoOverflow(State, Sym, 4);
476  }
477
478  if (!LPos) {
479    State = setIteratorPosition(State, LVal,
480                                IteratorPosition::getPosition(Cont, Sym));
481    LPos = getIteratorPosition(State, LVal);
482  } else if (!RPos) {
483    State = setIteratorPosition(State, RVal,
484                                IteratorPosition::getPosition(Cont, Sym));
485    RPos = getIteratorPosition(State, RVal);
486  }
487
488  // If the value for which we just tried to set a new iterator position is
489  // an `SVal`for which no iterator position can be set then the setting was
490  // unsuccessful. We cannot handle the comparison in this case.
491  if (!LPos || !RPos)
492    return;
493
494  // We cannot make assumptions on `UnknownVal`. Let us conjure a symbol
495  // instead.
496  if (RetVal.isUnknown()) {
497    auto &SymMgr = C.getSymbolManager();
498    auto *LCtx = C.getLocationContext();
499    RetVal = nonloc::SymbolVal(SymMgr.conjureSymbol(
500        CE, LCtx, C.getASTContext().BoolTy, C.blockCount()));
501    State = State->BindExpr(CE, LCtx, RetVal);
502  }
503
504  processComparison(C, State, LPos->getOffset(), RPos->getOffset(), RetVal, Op);
505}
506
507void IteratorModeling::processComparison(CheckerContext &C,
508                                         ProgramStateRef State, SymbolRef Sym1,
509                                         SymbolRef Sym2, const SVal &RetVal,
510                                         OverloadedOperatorKind Op) const {
511  if (const auto TruthVal = RetVal.getAs<nonloc::ConcreteInt>()) {
512    if ((State = relateSymbols(State, Sym1, Sym2,
513                              (Op == OO_EqualEqual) ==
514                               (TruthVal->getValue() != 0)))) {
515      C.addTransition(State);
516    } else {
517      C.generateSink(State, C.getPredecessor());
518    }
519    return;
520  }
521
522  const auto ConditionVal = RetVal.getAs<DefinedSVal>();
523  if (!ConditionVal)
524    return;
525
526  if (auto StateTrue = relateSymbols(State, Sym1, Sym2, Op == OO_EqualEqual)) {
527    StateTrue = StateTrue->assume(*ConditionVal, true);
528    C.addTransition(StateTrue);
529  }
530
531  if (auto StateFalse = relateSymbols(State, Sym1, Sym2, Op != OO_EqualEqual)) {
532    StateFalse = StateFalse->assume(*ConditionVal, false);
533    C.addTransition(StateFalse);
534  }
535}
536
537void IteratorModeling::handleIncrement(CheckerContext &C, const SVal &RetVal,
538                                       const SVal &Iter, bool Postfix) const {
539  // Increment the symbolic expressions which represents the position of the
540  // iterator
541  auto State = C.getState();
542  auto &BVF = C.getSymbolManager().getBasicVals();
543
544  const auto *Pos = getIteratorPosition(State, Iter);
545  if (!Pos)
546    return;
547
548  auto NewState =
549    advancePosition(State, Iter, OO_Plus,
550                    nonloc::ConcreteInt(BVF.getValue(llvm::APSInt::get(1))));
551  assert(NewState &&
552         "Advancing position by concrete int should always be successful");
553
554  const auto *NewPos = getIteratorPosition(NewState, Iter);
555  assert(NewPos &&
556         "Iterator should have position after successful advancement");
557
558  State = setIteratorPosition(State, Iter, *NewPos);
559  State = setIteratorPosition(State, RetVal, Postfix ? *Pos : *NewPos);
560  C.addTransition(State);
561}
562
563void IteratorModeling::handleDecrement(CheckerContext &C, const SVal &RetVal,
564                                       const SVal &Iter, bool Postfix) const {
565  // Decrement the symbolic expressions which represents the position of the
566  // iterator
567  auto State = C.getState();
568  auto &BVF = C.getSymbolManager().getBasicVals();
569
570  const auto *Pos = getIteratorPosition(State, Iter);
571  if (!Pos)
572    return;
573
574  auto NewState =
575    advancePosition(State, Iter, OO_Minus,
576                    nonloc::ConcreteInt(BVF.getValue(llvm::APSInt::get(1))));
577  assert(NewState &&
578         "Advancing position by concrete int should always be successful");
579
580  const auto *NewPos = getIteratorPosition(NewState, Iter);
581  assert(NewPos &&
582         "Iterator should have position after successful advancement");
583
584  State = setIteratorPosition(State, Iter, *NewPos);
585  State = setIteratorPosition(State, RetVal, Postfix ? *Pos : *NewPos);
586  C.addTransition(State);
587}
588
589void IteratorModeling::handleRandomIncrOrDecr(CheckerContext &C, const Expr *CE,
590                                              OverloadedOperatorKind Op,
591                                              const SVal &RetVal,
592                                              const SVal &Iterator,
593                                              const SVal &Amount) const {
594  // Increment or decrement the symbolic expressions which represents the
595  // position of the iterator
596  auto State = C.getState();
597
598  const auto *Pos = getIteratorPosition(State, Iterator);
599  if (!Pos)
600    return;
601
602  const auto *Value = &Amount;
603  SVal Val;
604  if (auto LocAmount = Amount.getAs<Loc>()) {
605    Val = State->getRawSVal(*LocAmount);
606    Value = &Val;
607  }
608
609  const auto &TgtVal =
610      (Op == OO_PlusEqual || Op == OO_MinusEqual) ? Iterator : RetVal;
611
612  // `AdvancedState` is a state where the position of `LHS` is advanced. We
613  // only need this state to retrieve the new position, but we do not want
614  // to change the position of `LHS` (in every case).
615  auto AdvancedState = advancePosition(State, Iterator, Op, *Value);
616  if (AdvancedState) {
617    const auto *NewPos = getIteratorPosition(AdvancedState, Iterator);
618    assert(NewPos &&
619           "Iterator should have position after successful advancement");
620
621    State = setIteratorPosition(State, TgtVal, *NewPos);
622    C.addTransition(State);
623  } else {
624    assignToContainer(C, CE, TgtVal, Pos->getContainer());
625  }
626}
627
628void IteratorModeling::handlePtrIncrOrDecr(CheckerContext &C,
629                                           const Expr *Iterator,
630                                           OverloadedOperatorKind OK,
631                                           SVal Offset) const {
632  if (!isa<DefinedSVal>(Offset))
633    return;
634
635  QualType PtrType = Iterator->getType();
636  if (!PtrType->isPointerType())
637    return;
638  QualType ElementType = PtrType->getPointeeType();
639
640  ProgramStateRef State = C.getState();
641  SVal OldVal = State->getSVal(Iterator, C.getLocationContext());
642
643  const IteratorPosition *OldPos = getIteratorPosition(State, OldVal);
644  if (!OldPos)
645    return;
646
647  SVal NewVal;
648  if (OK == OO_Plus || OK == OO_PlusEqual) {
649    NewVal = State->getLValue(ElementType, Offset, OldVal);
650  } else {
651    auto &SVB = C.getSValBuilder();
652    SVal NegatedOffset = SVB.evalMinus(Offset.castAs<NonLoc>());
653    NewVal = State->getLValue(ElementType, NegatedOffset, OldVal);
654  }
655
656  // `AdvancedState` is a state where the position of `Old` is advanced. We
657  // only need this state to retrieve the new position, but we do not want
658  // ever to change the position of `OldVal`.
659  auto AdvancedState = advancePosition(State, OldVal, OK, Offset);
660  if (AdvancedState) {
661    const IteratorPosition *NewPos = getIteratorPosition(AdvancedState, OldVal);
662    assert(NewPos &&
663           "Iterator should have position after successful advancement");
664
665    ProgramStateRef NewState = setIteratorPosition(State, NewVal, *NewPos);
666    C.addTransition(NewState);
667  } else {
668    assignToContainer(C, Iterator, NewVal, OldPos->getContainer());
669  }
670}
671
672void IteratorModeling::handleAdvance(CheckerContext &C, const Expr *CE,
673                                     SVal RetVal, SVal Iter,
674                                     SVal Amount) const {
675  handleRandomIncrOrDecr(C, CE, OO_PlusEqual, RetVal, Iter, Amount);
676}
677
678void IteratorModeling::handlePrev(CheckerContext &C, const Expr *CE,
679                                  SVal RetVal, SVal Iter, SVal Amount) const {
680  handleRandomIncrOrDecr(C, CE, OO_Minus, RetVal, Iter, Amount);
681}
682
683void IteratorModeling::handleNext(CheckerContext &C, const Expr *CE,
684                                  SVal RetVal, SVal Iter, SVal Amount) const {
685  handleRandomIncrOrDecr(C, CE, OO_Plus, RetVal, Iter, Amount);
686}
687
688void IteratorModeling::assignToContainer(CheckerContext &C, const Expr *CE,
689                                         const SVal &RetVal,
690                                         const MemRegion *Cont) const {
691  Cont = Cont->getMostDerivedObjectRegion();
692
693  auto State = C.getState();
694  const auto *LCtx = C.getLocationContext();
695  State = createIteratorPosition(State, RetVal, Cont, CE, LCtx, C.blockCount());
696
697  C.addTransition(State);
698}
699
700bool IteratorModeling::noChangeInAdvance(CheckerContext &C, SVal Iter,
701                                         const Expr *CE) const {
702  // Compare the iterator position before and after the call. (To be called
703  // from `checkPostCall()`.)
704  const auto StateAfter = C.getState();
705
706  const auto *PosAfter = getIteratorPosition(StateAfter, Iter);
707  // If we have no position after the call of `std::advance`, then we are not
708  // interested. (Modeling of an inlined `std::advance()` should not remove the
709  // position in any case.)
710  if (!PosAfter)
711    return false;
712
713  const ExplodedNode *N = findCallEnter(C.getPredecessor(), CE);
714  assert(N && "Any call should have a `CallEnter` node.");
715
716  const auto StateBefore = N->getState();
717  const auto *PosBefore = getIteratorPosition(StateBefore, Iter);
718  // FIXME: `std::advance()` should not create a new iterator position but
719  //        change existing ones. However, in case of iterators implemented as
720  //        pointers the handling of parameters in `std::advance()`-like
721  //        functions is still incomplete which may result in cases where
722  //        the new position is assigned to the wrong pointer. This causes
723  //        crash if we use an assertion here.
724  if (!PosBefore)
725    return false;
726
727  return PosBefore->getOffset() == PosAfter->getOffset();
728}
729
730void IteratorModeling::printState(raw_ostream &Out, ProgramStateRef State,
731                                  const char *NL, const char *Sep) const {
732  auto SymbolMap = State->get<IteratorSymbolMap>();
733  auto RegionMap = State->get<IteratorRegionMap>();
734  // Use a counter to add newlines before every line except the first one.
735  unsigned Count = 0;
736
737  if (!SymbolMap.isEmpty() || !RegionMap.isEmpty()) {
738    Out << Sep << "Iterator Positions :" << NL;
739    for (const auto &Sym : SymbolMap) {
740      if (Count++)
741        Out << NL;
742
743      Sym.first->dumpToStream(Out);
744      Out << " : ";
745      const auto Pos = Sym.second;
746      Out << (Pos.isValid() ? "Valid" : "Invalid") << " ; Container == ";
747      Pos.getContainer()->dumpToStream(Out);
748      Out<<" ; Offset == ";
749      Pos.getOffset()->dumpToStream(Out);
750    }
751
752    for (const auto &Reg : RegionMap) {
753      if (Count++)
754        Out << NL;
755
756      Reg.first->dumpToStream(Out);
757      Out << " : ";
758      const auto Pos = Reg.second;
759      Out << (Pos.isValid() ? "Valid" : "Invalid") << " ; Container == ";
760      Pos.getContainer()->dumpToStream(Out);
761      Out<<" ; Offset == ";
762      Pos.getOffset()->dumpToStream(Out);
763    }
764  }
765}
766
767namespace {
768
769bool isSimpleComparisonOperator(OverloadedOperatorKind OK) {
770  return OK == OO_EqualEqual || OK == OO_ExclaimEqual;
771}
772
773bool isSimpleComparisonOperator(BinaryOperatorKind OK) {
774  return OK == BO_EQ || OK == BO_NE;
775}
776
777ProgramStateRef removeIteratorPosition(ProgramStateRef State, const SVal &Val) {
778  if (auto Reg = Val.getAsRegion()) {
779    Reg = Reg->getMostDerivedObjectRegion();
780    return State->remove<IteratorRegionMap>(Reg);
781  } else if (const auto Sym = Val.getAsSymbol()) {
782    return State->remove<IteratorSymbolMap>(Sym);
783  } else if (const auto LCVal = Val.getAs<nonloc::LazyCompoundVal>()) {
784    return State->remove<IteratorRegionMap>(LCVal->getRegion());
785  }
786  return nullptr;
787}
788
789ProgramStateRef relateSymbols(ProgramStateRef State, SymbolRef Sym1,
790                              SymbolRef Sym2, bool Equal) {
791  auto &SVB = State->getStateManager().getSValBuilder();
792
793  // FIXME: This code should be reworked as follows:
794  // 1. Subtract the operands using evalBinOp().
795  // 2. Assume that the result doesn't overflow.
796  // 3. Compare the result to 0.
797  // 4. Assume the result of the comparison.
798  const auto comparison =
799    SVB.evalBinOp(State, BO_EQ, nonloc::SymbolVal(Sym1),
800                  nonloc::SymbolVal(Sym2), SVB.getConditionType());
801
802  assert(isa<DefinedSVal>(comparison) &&
803         "Symbol comparison must be a `DefinedSVal`");
804
805  auto NewState = State->assume(comparison.castAs<DefinedSVal>(), Equal);
806  if (!NewState)
807    return nullptr;
808
809  if (const auto CompSym = comparison.getAsSymbol()) {
810    assert(isa<SymIntExpr>(CompSym) &&
811           "Symbol comparison must be a `SymIntExpr`");
812    assert(BinaryOperator::isComparisonOp(
813               cast<SymIntExpr>(CompSym)->getOpcode()) &&
814           "Symbol comparison must be a comparison");
815    return assumeNoOverflow(NewState, cast<SymIntExpr>(CompSym)->getLHS(), 2);
816  }
817
818  return NewState;
819}
820
821bool isBoundThroughLazyCompoundVal(const Environment &Env,
822                                   const MemRegion *Reg) {
823  for (const auto &Binding : Env) {
824    if (const auto LCVal = Binding.second.getAs<nonloc::LazyCompoundVal>()) {
825      if (LCVal->getRegion() == Reg)
826        return true;
827    }
828  }
829
830  return false;
831}
832
833const ExplodedNode *findCallEnter(const ExplodedNode *Node, const Expr *Call) {
834  while (Node) {
835    ProgramPoint PP = Node->getLocation();
836    if (auto Enter = PP.getAs<CallEnter>()) {
837      if (Enter->getCallExpr() == Call)
838        break;
839    }
840
841    Node = Node->getFirstPred();
842  }
843
844  return Node;
845}
846
847} // namespace
848
849void ento::registerIteratorModeling(CheckerManager &mgr) {
850  mgr.registerChecker<IteratorModeling>();
851}
852
853bool ento::shouldRegisterIteratorModeling(const CheckerManager &mgr) {
854  return true;
855}
856