1122394Sharti//===--------------------- SemaLookup.cpp - Name Lookup  ------------------===//
2122394Sharti//
3122394Sharti// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4122394Sharti// See https://llvm.org/LICENSE.txt for license information.
5122394Sharti// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6133211Sharti//
7133211Sharti//===----------------------------------------------------------------------===//
8133211Sharti//
9133211Sharti//  This file implements name lookup for C, C++, Objective-C, and
10122394Sharti//  Objective-C++.
11133211Sharti//
12133211Sharti//===----------------------------------------------------------------------===//
13133211Sharti
14133211Sharti#include "clang/AST/ASTContext.h"
15133211Sharti#include "clang/AST/CXXInheritance.h"
16133211Sharti#include "clang/AST/Decl.h"
17122394Sharti#include "clang/AST/DeclCXX.h"
18122394Sharti#include "clang/AST/DeclLookups.h"
19122394Sharti#include "clang/AST/DeclObjC.h"
20133211Sharti#include "clang/AST/DeclTemplate.h"
21133211Sharti#include "clang/AST/Expr.h"
22133211Sharti#include "clang/AST/ExprCXX.h"
23133211Sharti#include "clang/Basic/Builtins.h"
24133211Sharti#include "clang/Basic/FileManager.h"
25133211Sharti#include "clang/Basic/LangOptions.h"
26133211Sharti#include "clang/Lex/HeaderSearch.h"
27133211Sharti#include "clang/Lex/ModuleLoader.h"
28133211Sharti#include "clang/Lex/Preprocessor.h"
29133211Sharti#include "clang/Sema/DeclSpec.h"
30133211Sharti#include "clang/Sema/Lookup.h"
31133211Sharti#include "clang/Sema/Overload.h"
32122394Sharti#include "clang/Sema/RISCVIntrinsicManager.h"
33150920Sharti#include "clang/Sema/Scope.h"
34122394Sharti#include "clang/Sema/ScopeInfo.h"
35122394Sharti#include "clang/Sema/Sema.h"
36122394Sharti#include "clang/Sema/SemaInternal.h"
37122394Sharti#include "clang/Sema/TemplateDeduction.h"
38122394Sharti#include "clang/Sema/TypoCorrection.h"
39133211Sharti#include "llvm/ADT/STLExtras.h"
40133211Sharti#include "llvm/ADT/SmallPtrSet.h"
41122394Sharti#include "llvm/ADT/TinyPtrVector.h"
42122394Sharti#include "llvm/ADT/edit_distance.h"
43122394Sharti#include "llvm/Support/Casting.h"
44122394Sharti#include "llvm/Support/ErrorHandling.h"
45122394Sharti#include <algorithm>
46122394Sharti#include <iterator>
47122394Sharti#include <list>
48122394Sharti#include <optional>
49122394Sharti#include <set>
50122394Sharti#include <utility>
51122394Sharti#include <vector>
52122394Sharti
53142810Sharti#include "OpenCLBuiltins.inc"
54122394Sharti
55122394Shartiusing namespace clang;
56122394Shartiusing namespace sema;
57122394Sharti
58122394Shartinamespace {
59122394Sharti  class UnqualUsingEntry {
60122394Sharti    const DeclContext *Nominated;
61122394Sharti    const DeclContext *CommonAncestor;
62122394Sharti
63122394Sharti  public:
64122394Sharti    UnqualUsingEntry(const DeclContext *Nominated,
65122394Sharti                     const DeclContext *CommonAncestor)
66133429Sharti      : Nominated(Nominated), CommonAncestor(CommonAncestor) {
67133211Sharti    }
68133211Sharti
69122394Sharti    const DeclContext *getCommonAncestor() const {
70133211Sharti      return CommonAncestor;
71122394Sharti    }
72133211Sharti
73122394Sharti    const DeclContext *getNominatedNamespace() const {
74122394Sharti      return Nominated;
75122394Sharti    }
76122394Sharti
77122394Sharti    // Sort by the pointer value of the common ancestor.
78122394Sharti    struct Comparator {
79122394Sharti      bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) {
80122394Sharti        return L.getCommonAncestor() < R.getCommonAncestor();
81122394Sharti      }
82122394Sharti
83122394Sharti      bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) {
84122394Sharti        return E.getCommonAncestor() < DC;
85122394Sharti      }
86122394Sharti
87122394Sharti      bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) {
88122394Sharti        return DC < E.getCommonAncestor();
89122394Sharti      }
90122394Sharti    };
91122394Sharti  };
92122394Sharti
93122394Sharti  /// A collection of using directives, as used by C++ unqualified
94122394Sharti  /// lookup.
95122394Sharti  class UnqualUsingDirectiveSet {
96122394Sharti    Sema &SemaRef;
97122394Sharti
98122394Sharti    typedef SmallVector<UnqualUsingEntry, 8> ListTy;
99122394Sharti
100122394Sharti    ListTy list;
101122394Sharti    llvm::SmallPtrSet<DeclContext*, 8> visited;
102122394Sharti
103122394Sharti  public:
104122394Sharti    UnqualUsingDirectiveSet(Sema &SemaRef) : SemaRef(SemaRef) {}
105122394Sharti
106122394Sharti    void visitScopeChain(Scope *S, Scope *InnermostFileScope) {
107122394Sharti      // C++ [namespace.udir]p1:
108122394Sharti      //   During unqualified name lookup, the names appear as if they
109122394Sharti      //   were declared in the nearest enclosing namespace which contains
110122394Sharti      //   both the using-directive and the nominated namespace.
111122394Sharti      DeclContext *InnermostFileDC = InnermostFileScope->getEntity();
112122394Sharti      assert(InnermostFileDC && InnermostFileDC->isFileContext());
113122394Sharti
114122394Sharti      for (; S; S = S->getParent()) {
115122394Sharti        // C++ [namespace.udir]p1:
116122394Sharti        //   A using-directive shall not appear in class scope, but may
117122394Sharti        //   appear in namespace scope or in block scope.
118122394Sharti        DeclContext *Ctx = S->getEntity();
119122394Sharti        if (Ctx && Ctx->isFileContext()) {
120122394Sharti          visit(Ctx, Ctx);
121122394Sharti        } else if (!Ctx || Ctx->isFunctionOrMethod()) {
122122394Sharti          for (auto *I : S->using_directives())
123122394Sharti            if (SemaRef.isVisible(I))
124122394Sharti              visit(I, InnermostFileDC);
125122394Sharti        }
126122394Sharti      }
127122394Sharti    }
128122394Sharti
129122394Sharti    // Visits a context and collect all of its using directives
130122394Sharti    // recursively.  Treats all using directives as if they were
131122394Sharti    // declared in the context.
132122394Sharti    //
133133211Sharti    // A given context is only every visited once, so it is important
134122394Sharti    // that contexts be visited from the inside out in order to get
135122394Sharti    // the effective DCs right.
136122394Sharti    void visit(DeclContext *DC, DeclContext *EffectiveDC) {
137122394Sharti      if (!visited.insert(DC).second)
138122394Sharti        return;
139122394Sharti
140122394Sharti      addUsingDirectives(DC, EffectiveDC);
141122394Sharti    }
142122394Sharti
143122394Sharti    // Visits a using directive and collects all of its using
144122394Sharti    // directives recursively.  Treats all using directives as if they
145122394Sharti    // were declared in the effective DC.
146122394Sharti    void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
147122394Sharti      DeclContext *NS = UD->getNominatedNamespace();
148122394Sharti      if (!visited.insert(NS).second)
149122394Sharti        return;
150122394Sharti
151122394Sharti      addUsingDirective(UD, EffectiveDC);
152122394Sharti      addUsingDirectives(NS, EffectiveDC);
153122394Sharti    }
154122394Sharti
155122394Sharti    // Adds all the using directives in a context (and those nominated
156122394Sharti    // by its using directives, transitively) as if they appeared in
157122394Sharti    // the given effective context.
158122394Sharti    void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) {
159122394Sharti      SmallVector<DeclContext*, 4> queue;
160122394Sharti      while (true) {
161122394Sharti        for (auto *UD : DC->using_directives()) {
162122394Sharti          DeclContext *NS = UD->getNominatedNamespace();
163122394Sharti          if (SemaRef.isVisible(UD) && visited.insert(NS).second) {
164122394Sharti            addUsingDirective(UD, EffectiveDC);
165122394Sharti            queue.push_back(NS);
166145557Sharti          }
167122394Sharti        }
168122394Sharti
169122394Sharti        if (queue.empty())
170122394Sharti          return;
171122394Sharti
172122394Sharti        DC = queue.pop_back_val();
173122394Sharti      }
174122394Sharti    }
175122394Sharti
176122394Sharti    // Add a using directive as if it had been declared in the given
177122394Sharti    // context.  This helps implement C++ [namespace.udir]p3:
178122394Sharti    //   The using-directive is transitive: if a scope contains a
179122394Sharti    //   using-directive that nominates a second namespace that itself
180122394Sharti    //   contains using-directives, the effect is as if the
181122394Sharti    //   using-directives from the second namespace also appeared in
182122394Sharti    //   the first.
183122394Sharti    void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
184122394Sharti      // Find the common ancestor between the effective context and
185122394Sharti      // the nominated namespace.
186122394Sharti      DeclContext *Common = UD->getNominatedNamespace();
187122394Sharti      while (!Common->Encloses(EffectiveDC))
188122394Sharti        Common = Common->getParent();
189122394Sharti      Common = Common->getPrimaryContext();
190122394Sharti
191122394Sharti      list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common));
192122394Sharti    }
193122394Sharti
194122394Sharti    void done() { llvm::sort(list, UnqualUsingEntry::Comparator()); }
195122394Sharti
196122394Sharti    typedef ListTy::const_iterator const_iterator;
197122394Sharti
198122394Sharti    const_iterator begin() const { return list.begin(); }
199122394Sharti    const_iterator end() const { return list.end(); }
200122394Sharti
201122394Sharti    llvm::iterator_range<const_iterator>
202122394Sharti    getNamespacesFor(DeclContext *DC) const {
203122394Sharti      return llvm::make_range(std::equal_range(begin(), end(),
204122394Sharti                                               DC->getPrimaryContext(),
205122394Sharti                                               UnqualUsingEntry::Comparator()));
206122394Sharti    }
207122394Sharti  };
208122394Sharti} // end anonymous namespace
209133211Sharti
210122394Sharti// Retrieve the set of identifier namespaces that correspond to a
211122394Sharti// specific kind of name lookup.
212122394Shartistatic inline unsigned getIDNS(Sema::LookupNameKind NameKind,
213122394Sharti                               bool CPlusPlus,
214122394Sharti                               bool Redeclaration) {
215122394Sharti  unsigned IDNS = 0;
216122394Sharti  switch (NameKind) {
217122394Sharti  case Sema::LookupObjCImplicitSelfParam:
218122394Sharti  case Sema::LookupOrdinaryName:
219122394Sharti  case Sema::LookupRedeclarationWithLinkage:
220122394Sharti  case Sema::LookupLocalFriendName:
221122394Sharti  case Sema::LookupDestructorName:
222122394Sharti    IDNS = Decl::IDNS_Ordinary;
223122394Sharti    if (CPlusPlus) {
224122394Sharti      IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Namespace;
225122394Sharti      if (Redeclaration)
226122394Sharti        IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend;
227122394Sharti    }
228122394Sharti    if (Redeclaration)
229122394Sharti      IDNS |= Decl::IDNS_LocalExtern;
230122394Sharti    break;
231122394Sharti
232122394Sharti  case Sema::LookupOperatorName:
233122394Sharti    // Operator lookup is its own crazy thing;  it is not the same
234122394Sharti    // as (e.g.) looking up an operator name for redeclaration.
235122394Sharti    assert(!Redeclaration && "cannot do redeclaration operator lookup");
236122394Sharti    IDNS = Decl::IDNS_NonMemberOperator;
237122394Sharti    break;
238122394Sharti
239122394Sharti  case Sema::LookupTagName:
240122394Sharti    if (CPlusPlus) {
241122394Sharti      IDNS = Decl::IDNS_Type;
242122394Sharti
243122394Sharti      // When looking for a redeclaration of a tag name, we add:
244122394Sharti      // 1) TagFriend to find undeclared friend decls
245122394Sharti      // 2) Namespace because they can't "overload" with tag decls.
246122394Sharti      // 3) Tag because it includes class templates, which can't
247122394Sharti      //    "overload" with tag decls.
248122394Sharti      if (Redeclaration)
249122394Sharti        IDNS |= Decl::IDNS_Tag | Decl::IDNS_TagFriend | Decl::IDNS_Namespace;
250122394Sharti    } else {
251122394Sharti      IDNS = Decl::IDNS_Tag;
252122394Sharti    }
253122394Sharti    break;
254122394Sharti
255122394Sharti  case Sema::LookupLabel:
256122394Sharti    IDNS = Decl::IDNS_Label;
257122394Sharti    break;
258122394Sharti
259122394Sharti  case Sema::LookupMemberName:
260122394Sharti    IDNS = Decl::IDNS_Member;
261122394Sharti    if (CPlusPlus)
262122394Sharti      IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary;
263122394Sharti    break;
264122394Sharti
265122394Sharti  case Sema::LookupNestedNameSpecifierName:
266122394Sharti    IDNS = Decl::IDNS_Type | Decl::IDNS_Namespace;
267122394Sharti    break;
268122394Sharti
269122394Sharti  case Sema::LookupNamespaceName:
270122394Sharti    IDNS = Decl::IDNS_Namespace;
271122394Sharti    break;
272122394Sharti
273122394Sharti  case Sema::LookupUsingDeclName:
274122394Sharti    assert(Redeclaration && "should only be used for redecl lookup");
275122394Sharti    IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member |
276122394Sharti           Decl::IDNS_Using | Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend |
277122394Sharti           Decl::IDNS_LocalExtern;
278122394Sharti    break;
279122394Sharti
280122394Sharti  case Sema::LookupObjCProtocolName:
281122394Sharti    IDNS = Decl::IDNS_ObjCProtocol;
282122394Sharti    break;
283122394Sharti
284122394Sharti  case Sema::LookupOMPReductionName:
285122394Sharti    IDNS = Decl::IDNS_OMPReduction;
286122394Sharti    break;
287122394Sharti
288122394Sharti  case Sema::LookupOMPMapperName:
289122394Sharti    IDNS = Decl::IDNS_OMPMapper;
290122394Sharti    break;
291122394Sharti
292122394Sharti  case Sema::LookupAnyName:
293122394Sharti    IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member
294122394Sharti      | Decl::IDNS_Using | Decl::IDNS_Namespace | Decl::IDNS_ObjCProtocol
295122394Sharti      | Decl::IDNS_Type;
296122394Sharti    break;
297122394Sharti  }
298122394Sharti  return IDNS;
299122394Sharti}
300122394Sharti
301122394Shartivoid LookupResult::configure() {
302122394Sharti  IDNS = getIDNS(LookupKind, getSema().getLangOpts().CPlusPlus,
303122394Sharti                 isForRedeclaration());
304122394Sharti
305122394Sharti  // If we're looking for one of the allocation or deallocation
306122394Sharti  // operators, make sure that the implicitly-declared new and delete
307122394Sharti  // operators can be found.
308122394Sharti  switch (NameInfo.getName().getCXXOverloadedOperator()) {
309122394Sharti  case OO_New:
310122394Sharti  case OO_Delete:
311122394Sharti  case OO_Array_New:
312122394Sharti  case OO_Array_Delete:
313122394Sharti    getSema().DeclareGlobalNewDelete();
314122394Sharti    break;
315122394Sharti
316122394Sharti  default:
317122394Sharti    break;
318122394Sharti  }
319122394Sharti
320122394Sharti  // Compiler builtins are always visible, regardless of where they end
321122394Sharti  // up being declared.
322122394Sharti  if (IdentifierInfo *Id = NameInfo.getName().getAsIdentifierInfo()) {
323122394Sharti    if (unsigned BuiltinID = Id->getBuiltinID()) {
324122394Sharti      if (!getSema().Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
325122394Sharti        AllowHidden = true;
326122394Sharti    }
327122394Sharti  }
328122394Sharti}
329122394Sharti
330122394Shartibool LookupResult::checkDebugAssumptions() const {
331122394Sharti  // This function is never called by NDEBUG builds.
332122394Sharti  assert(ResultKind != NotFound || Decls.size() == 0);
333122394Sharti  assert(ResultKind != Found || Decls.size() == 1);
334122394Sharti  assert(ResultKind != FoundOverloaded || Decls.size() > 1 ||
335122394Sharti         (Decls.size() == 1 &&
336122394Sharti          isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl())));
337122394Sharti  assert(ResultKind != FoundUnresolvedValue || checkUnresolved());
338122394Sharti  assert(ResultKind != Ambiguous || Decls.size() > 1 ||
339122394Sharti         (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects ||
340122394Sharti                                Ambiguity == AmbiguousBaseSubobjectTypes)));
341122394Sharti  assert((Paths != nullptr) == (ResultKind == Ambiguous &&
342122394Sharti                                (Ambiguity == AmbiguousBaseSubobjectTypes ||
343122394Sharti                                 Ambiguity == AmbiguousBaseSubobjects)));
344122394Sharti  return true;
345122394Sharti}
346122394Sharti
347122394Sharti// Necessary because CXXBasePaths is not complete in Sema.h
348122394Shartivoid LookupResult::deletePaths(CXXBasePaths *Paths) {
349122394Sharti  delete Paths;
350122394Sharti}
351122394Sharti
352122394Sharti/// Get a representative context for a declaration such that two declarations
353122394Sharti/// will have the same context if they were found within the same scope.
354122394Shartistatic DeclContext *getContextForScopeMatching(Decl *D) {
355122394Sharti  // For function-local declarations, use that function as the context. This
356122394Sharti  // doesn't account for scopes within the function; the caller must deal with
357122394Sharti  // those.
358122394Sharti  DeclContext *DC = D->getLexicalDeclContext();
359122394Sharti  if (DC->isFunctionOrMethod())
360122394Sharti    return DC;
361122394Sharti
362122394Sharti  // Otherwise, look at the semantic context of the declaration. The
363122394Sharti  // declaration must have been found there.
364122394Sharti  return D->getDeclContext()->getRedeclContext();
365122394Sharti}
366122394Sharti
367122394Sharti/// Determine whether \p D is a better lookup result than \p Existing,
368122394Sharti/// given that they declare the same entity.
369122394Shartistatic bool isPreferredLookupResult(Sema &S, Sema::LookupNameKind Kind,
370122394Sharti                                    NamedDecl *D, NamedDecl *Existing) {
371122394Sharti  // When looking up redeclarations of a using declaration, prefer a using
372122394Sharti  // shadow declaration over any other declaration of the same entity.
373122394Sharti  if (Kind == Sema::LookupUsingDeclName && isa<UsingShadowDecl>(D) &&
374122394Sharti      !isa<UsingShadowDecl>(Existing))
375122394Sharti    return true;
376122394Sharti
377122394Sharti  auto *DUnderlying = D->getUnderlyingDecl();
378122394Sharti  auto *EUnderlying = Existing->getUnderlyingDecl();
379122394Sharti
380122394Sharti  // If they have different underlying declarations, prefer a typedef over the
381122394Sharti  // original type (this happens when two type declarations denote the same
382122394Sharti  // type), per a generous reading of C++ [dcl.typedef]p3 and p4. The typedef
383122394Sharti  // might carry additional semantic information, such as an alignment override.
384122394Sharti  // However, per C++ [dcl.typedef]p5, when looking up a tag name, prefer a tag
385122394Sharti  // declaration over a typedef. Also prefer a tag over a typedef for
386122394Sharti  // destructor name lookup because in some contexts we only accept a
387122394Sharti  // class-name in a destructor declaration.
388122394Sharti  if (DUnderlying->getCanonicalDecl() != EUnderlying->getCanonicalDecl()) {
389122394Sharti    assert(isa<TypeDecl>(DUnderlying) && isa<TypeDecl>(EUnderlying));
390122394Sharti    bool HaveTag = isa<TagDecl>(EUnderlying);
391122394Sharti    bool WantTag =
392122394Sharti        Kind == Sema::LookupTagName || Kind == Sema::LookupDestructorName;
393122394Sharti    return HaveTag != WantTag;
394122394Sharti  }
395122394Sharti
396122394Sharti  // Pick the function with more default arguments.
397122394Sharti  // FIXME: In the presence of ambiguous default arguments, we should keep both,
398122394Sharti  //        so we can diagnose the ambiguity if the default argument is needed.
399122394Sharti  //        See C++ [over.match.best]p3.
400122394Sharti  if (auto *DFD = dyn_cast<FunctionDecl>(DUnderlying)) {
401122394Sharti    auto *EFD = cast<FunctionDecl>(EUnderlying);
402122394Sharti    unsigned DMin = DFD->getMinRequiredArguments();
403122394Sharti    unsigned EMin = EFD->getMinRequiredArguments();
404122394Sharti    // If D has more default arguments, it is preferred.
405122394Sharti    if (DMin != EMin)
406122394Sharti      return DMin < EMin;
407122394Sharti    // FIXME: When we track visibility for default function arguments, check
408122394Sharti    // that we pick the declaration with more visible default arguments.
409122394Sharti  }
410122394Sharti
411122394Sharti  // Pick the template with more default template arguments.
412122394Sharti  if (auto *DTD = dyn_cast<TemplateDecl>(DUnderlying)) {
413122394Sharti    auto *ETD = cast<TemplateDecl>(EUnderlying);
414122394Sharti    unsigned DMin = DTD->getTemplateParameters()->getMinRequiredArguments();
415122394Sharti    unsigned EMin = ETD->getTemplateParameters()->getMinRequiredArguments();
416122394Sharti    // If D has more default arguments, it is preferred. Note that default
417122394Sharti    // arguments (and their visibility) is monotonically increasing across the
418122394Sharti    // redeclaration chain, so this is a quick proxy for "is more recent".
419122394Sharti    if (DMin != EMin)
420122394Sharti      return DMin < EMin;
421122394Sharti    // If D has more *visible* default arguments, it is preferred. Note, an
422122394Sharti    // earlier default argument being visible does not imply that a later
423122394Sharti    // default argument is visible, so we can't just check the first one.
424122394Sharti    for (unsigned I = DMin, N = DTD->getTemplateParameters()->size();
425122394Sharti        I != N; ++I) {
426122394Sharti      if (!S.hasVisibleDefaultArgument(
427122394Sharti              ETD->getTemplateParameters()->getParam(I)) &&
428122394Sharti          S.hasVisibleDefaultArgument(
429122394Sharti              DTD->getTemplateParameters()->getParam(I)))
430122394Sharti        return true;
431122394Sharti    }
432122394Sharti  }
433122394Sharti
434122394Sharti  // VarDecl can have incomplete array types, prefer the one with more complete
435122394Sharti  // array type.
436122394Sharti  if (VarDecl *DVD = dyn_cast<VarDecl>(DUnderlying)) {
437122394Sharti    VarDecl *EVD = cast<VarDecl>(EUnderlying);
438122394Sharti    if (EVD->getType()->isIncompleteType() &&
439122394Sharti        !DVD->getType()->isIncompleteType()) {
440122394Sharti      // Prefer the decl with a more complete type if visible.
441122394Sharti      return S.isVisible(DVD);
442122394Sharti    }
443122394Sharti    return false; // Avoid picking up a newer decl, just because it was newer.
444122394Sharti  }
445122394Sharti
446122394Sharti  // For most kinds of declaration, it doesn't really matter which one we pick.
447122394Sharti  if (!isa<FunctionDecl>(DUnderlying) && !isa<VarDecl>(DUnderlying)) {
448122394Sharti    // If the existing declaration is hidden, prefer the new one. Otherwise,
449122394Sharti    // keep what we've got.
450122394Sharti    return !S.isVisible(Existing);
451122394Sharti  }
452122394Sharti
453122394Sharti  // Pick the newer declaration; it might have a more precise type.
454122394Sharti  for (Decl *Prev = DUnderlying->getPreviousDecl(); Prev;
455122394Sharti       Prev = Prev->getPreviousDecl())
456122394Sharti    if (Prev == EUnderlying)
457122394Sharti      return true;
458122394Sharti  return false;
459122394Sharti}
460122394Sharti
461122394Sharti/// Determine whether \p D can hide a tag declaration.
462122394Shartistatic bool canHideTag(NamedDecl *D) {
463122394Sharti  // C++ [basic.scope.declarative]p4:
464122394Sharti  //   Given a set of declarations in a single declarative region [...]
465122394Sharti  //   exactly one declaration shall declare a class name or enumeration name
466122394Sharti  //   that is not a typedef name and the other declarations shall all refer to
467122394Sharti  //   the same variable, non-static data member, or enumerator, or all refer
468122394Sharti  //   to functions and function templates; in this case the class name or
469122394Sharti  //   enumeration name is hidden.
470122394Sharti  // C++ [basic.scope.hiding]p2:
471122394Sharti  //   A class name or enumeration name can be hidden by the name of a
472122394Sharti  //   variable, data member, function, or enumerator declared in the same
473122394Sharti  //   scope.
474122394Sharti  // An UnresolvedUsingValueDecl always instantiates to one of these.
475122394Sharti  D = D->getUnderlyingDecl();
476122394Sharti  return isa<VarDecl>(D) || isa<EnumConstantDecl>(D) || isa<FunctionDecl>(D) ||
477122394Sharti         isa<FunctionTemplateDecl>(D) || isa<FieldDecl>(D) ||
478122394Sharti         isa<UnresolvedUsingValueDecl>(D);
479122394Sharti}
480122394Sharti
481122394Sharti/// Resolves the result kind of this lookup.
482122394Shartivoid LookupResult::resolveKind() {
483122394Sharti  unsigned N = Decls.size();
484122394Sharti
485122394Sharti  // Fast case: no possible ambiguity.
486122394Sharti  if (N == 0) {
487122394Sharti    assert(ResultKind == NotFound ||
488122394Sharti           ResultKind == NotFoundInCurrentInstantiation);
489122394Sharti    return;
490122394Sharti  }
491122394Sharti
492122394Sharti  // If there's a single decl, we need to examine it to decide what
493122394Sharti  // kind of lookup this is.
494122394Sharti  if (N == 1) {
495122394Sharti    NamedDecl *D = (*Decls.begin())->getUnderlyingDecl();
496122394Sharti    if (isa<FunctionTemplateDecl>(D))
497122394Sharti      ResultKind = FoundOverloaded;
498122394Sharti    else if (isa<UnresolvedUsingValueDecl>(D))
499122394Sharti      ResultKind = FoundUnresolvedValue;
500122394Sharti    return;
501122394Sharti  }
502122394Sharti
503122394Sharti  // Don't do any extra resolution if we've already resolved as ambiguous.
504122394Sharti  if (ResultKind == Ambiguous) return;
505122394Sharti
506122394Sharti  llvm::SmallDenseMap<NamedDecl*, unsigned, 16> Unique;
507122394Sharti  llvm::SmallDenseMap<QualType, unsigned, 16> UniqueTypes;
508122394Sharti
509122394Sharti  bool Ambiguous = false;
510122394Sharti  bool HasTag = false, HasFunction = false;
511122394Sharti  bool HasFunctionTemplate = false, HasUnresolved = false;
512122394Sharti  NamedDecl *HasNonFunction = nullptr;
513122394Sharti
514122394Sharti  llvm::SmallVector<NamedDecl*, 4> EquivalentNonFunctions;
515122394Sharti
516122394Sharti  unsigned UniqueTagIndex = 0;
517122394Sharti
518122394Sharti  unsigned I = 0;
519122394Sharti  while (I < N) {
520122394Sharti    NamedDecl *D = Decls[I]->getUnderlyingDecl();
521122394Sharti    D = cast<NamedDecl>(D->getCanonicalDecl());
522122394Sharti
523122394Sharti    // Ignore an invalid declaration unless it's the only one left.
524122394Sharti    // Also ignore HLSLBufferDecl which not have name conflict with other Decls.
525122394Sharti    if ((D->isInvalidDecl() || isa<HLSLBufferDecl>(D)) && !(I == 0 && N == 1)) {
526122394Sharti      Decls[I] = Decls[--N];
527122394Sharti      continue;
528122394Sharti    }
529122394Sharti
530122394Sharti    std::optional<unsigned> ExistingI;
531122394Sharti
532122394Sharti    // Redeclarations of types via typedef can occur both within a scope
533128237Sharti    // and, through using declarations and directives, across scopes. There is
534122394Sharti    // no ambiguity if they all refer to the same type, so unique based on the
535122394Sharti    // canonical type.
536122394Sharti    if (TypeDecl *TD = dyn_cast<TypeDecl>(D)) {
537122394Sharti      QualType T = getSema().Context.getTypeDeclType(TD);
538122394Sharti      auto UniqueResult = UniqueTypes.insert(
539122394Sharti          std::make_pair(getSema().Context.getCanonicalType(T), I));
540122394Sharti      if (!UniqueResult.second) {
541122394Sharti        // The type is not unique.
542122394Sharti        ExistingI = UniqueResult.first->second;
543122394Sharti      }
544122394Sharti    }
545122394Sharti
546122394Sharti    // For non-type declarations, check for a prior lookup result naming this
547122394Sharti    // canonical declaration.
548122394Sharti    if (!ExistingI) {
549122394Sharti      auto UniqueResult = Unique.insert(std::make_pair(D, I));
550122394Sharti      if (!UniqueResult.second) {
551122394Sharti        // We've seen this entity before.
552122394Sharti        ExistingI = UniqueResult.first->second;
553122394Sharti      }
554122394Sharti    }
555122394Sharti
556122394Sharti    if (ExistingI) {
557122394Sharti      // This is not a unique lookup result. Pick one of the results and
558122394Sharti      // discard the other.
559122394Sharti      if (isPreferredLookupResult(getSema(), getLookupKind(), Decls[I],
560122394Sharti                                  Decls[*ExistingI]))
561122394Sharti        Decls[*ExistingI] = Decls[I];
562122394Sharti      Decls[I] = Decls[--N];
563142810Sharti      continue;
564142810Sharti    }
565142810Sharti
566142810Sharti    // Otherwise, do some decl type analysis and then continue.
567122394Sharti
568142810Sharti    if (isa<UnresolvedUsingValueDecl>(D)) {
569122394Sharti      HasUnresolved = true;
570122394Sharti    } else if (isa<TagDecl>(D)) {
571122394Sharti      if (HasTag)
572122394Sharti        Ambiguous = true;
573122394Sharti      UniqueTagIndex = I;
574122394Sharti      HasTag = true;
575122394Sharti    } else if (isa<FunctionTemplateDecl>(D)) {
576122394Sharti      HasFunction = true;
577122394Sharti      HasFunctionTemplate = true;
578122394Sharti    } else if (isa<FunctionDecl>(D)) {
579122394Sharti      HasFunction = true;
580122394Sharti    } else {
581122394Sharti      if (HasNonFunction) {
582122394Sharti        // If we're about to create an ambiguity between two declarations that
583122394Sharti        // are equivalent, but one is an internal linkage declaration from one
584122394Sharti        // module and the other is an internal linkage declaration from another
585122394Sharti        // module, just skip it.
586122394Sharti        if (getSema().isEquivalentInternalLinkageDeclaration(HasNonFunction,
587122394Sharti                                                             D)) {
588122394Sharti          EquivalentNonFunctions.push_back(D);
589122394Sharti          Decls[I] = Decls[--N];
590122394Sharti          continue;
591122394Sharti        }
592122394Sharti
593122394Sharti        Ambiguous = true;
594122394Sharti      }
595122394Sharti      HasNonFunction = D;
596122394Sharti    }
597122394Sharti    I++;
598150920Sharti  }
599133211Sharti
600150920Sharti  // C++ [basic.scope.hiding]p2:
601122394Sharti  //   A class name or enumeration name can be hidden by the name of
602122394Sharti  //   an object, function, or enumerator declared in the same
603122394Sharti  //   scope. If a class or enumeration name and an object, function,
604122394Sharti  //   or enumerator are declared in the same scope (in any order)
605122394Sharti  //   with the same name, the class or enumeration name is hidden
606122394Sharti  //   wherever the object, function, or enumerator name is visible.
607122394Sharti  // But it's still an error if there are distinct tag types found,
608122394Sharti  // even if they're not visible. (ref?)
609122394Sharti  if (N > 1 && HideTags && HasTag && !Ambiguous &&
610122394Sharti      (HasFunction || HasNonFunction || HasUnresolved)) {
611122394Sharti    NamedDecl *OtherDecl = Decls[UniqueTagIndex ? 0 : N - 1];
612122394Sharti    if (isa<TagDecl>(Decls[UniqueTagIndex]->getUnderlyingDecl()) &&
613122394Sharti        getContextForScopeMatching(Decls[UniqueTagIndex])->Equals(
614122394Sharti            getContextForScopeMatching(OtherDecl)) &&
615122394Sharti        canHideTag(OtherDecl))
616122394Sharti      Decls[UniqueTagIndex] = Decls[--N];
617122394Sharti    else
618122394Sharti      Ambiguous = true;
619122394Sharti  }
620122394Sharti
621122394Sharti  // FIXME: This diagnostic should really be delayed until we're done with
622133211Sharti  // the lookup result, in case the ambiguity is resolved by the caller.
623133211Sharti  if (!EquivalentNonFunctions.empty() && !Ambiguous)
624133211Sharti    getSema().diagnoseEquivalentInternalLinkageDeclarations(
625133211Sharti        getNameLoc(), HasNonFunction, EquivalentNonFunctions);
626133211Sharti
627133211Sharti  Decls.truncate(N);
628133211Sharti
629133211Sharti  if (HasNonFunction && (HasFunction || HasUnresolved))
630133211Sharti    Ambiguous = true;
631133211Sharti
632133211Sharti  if (Ambiguous)
633133211Sharti    setAmbiguous(LookupResult::AmbiguousReference);
634133211Sharti  else if (HasUnresolved)
635133211Sharti    ResultKind = LookupResult::FoundUnresolvedValue;
636133211Sharti  else if (N > 1 || HasFunctionTemplate)
637133211Sharti    ResultKind = LookupResult::FoundOverloaded;
638133211Sharti  else
639133211Sharti    ResultKind = LookupResult::Found;
640133211Sharti}
641133211Sharti
642133211Shartivoid LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) {
643133211Sharti  CXXBasePaths::const_paths_iterator I, E;
644133211Sharti  for (I = P.begin(), E = P.end(); I != E; ++I)
645133211Sharti    for (DeclContext::lookup_iterator DI = I->Decls, DE = DI.end(); DI != DE;
646133211Sharti         ++DI)
647133211Sharti      addDecl(*DI);
648133211Sharti}
649133211Sharti
650133211Shartivoid LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) {
651133211Sharti  Paths = new CXXBasePaths;
652133211Sharti  Paths->swap(P);
653133211Sharti  addDeclsFromBasePaths(*Paths);
654133211Sharti  resolveKind();
655133211Sharti  setAmbiguous(AmbiguousBaseSubobjects);
656133211Sharti}
657133211Sharti
658133211Shartivoid LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) {
659133211Sharti  Paths = new CXXBasePaths;
660133211Sharti  Paths->swap(P);
661133211Sharti  addDeclsFromBasePaths(*Paths);
662133211Sharti  resolveKind();
663133211Sharti  setAmbiguous(AmbiguousBaseSubobjectTypes);
664133211Sharti}
665133211Sharti
666133211Shartivoid LookupResult::print(raw_ostream &Out) {
667133211Sharti  Out << Decls.size() << " result(s)";
668133211Sharti  if (isAmbiguous()) Out << ", ambiguous";
669133211Sharti  if (Paths) Out << ", base paths present";
670133211Sharti
671133211Sharti  for (iterator I = begin(), E = end(); I != E; ++I) {
672133211Sharti    Out << "\n";
673133211Sharti    (*I)->print(Out, 2);
674133211Sharti  }
675133211Sharti}
676133211Sharti
677133211ShartiLLVM_DUMP_METHOD void LookupResult::dump() {
678133211Sharti  llvm::errs() << "lookup results for " << getLookupName().getAsString()
679133211Sharti               << ":\n";
680133211Sharti  for (NamedDecl *D : *this)
681133211Sharti    D->dump();
682133211Sharti}
683133211Sharti
684133211Sharti/// Diagnose a missing builtin type.
685133211Shartistatic QualType diagOpenCLBuiltinTypeError(Sema &S, llvm::StringRef TypeClass,
686133211Sharti                                           llvm::StringRef Name) {
687122394Sharti  S.Diag(SourceLocation(), diag::err_opencl_type_not_found)
688133211Sharti      << TypeClass << Name;
689133211Sharti  return S.Context.VoidTy;
690122394Sharti}
691122394Sharti
692122394Sharti/// Lookup an OpenCL enum type.
693122394Shartistatic QualType getOpenCLEnumType(Sema &S, llvm::StringRef Name) {
694122394Sharti  LookupResult Result(S, &S.Context.Idents.get(Name), SourceLocation(),
695122394Sharti                      Sema::LookupTagName);
696122394Sharti  S.LookupName(Result, S.TUScope);
697122394Sharti  if (Result.empty())
698122394Sharti    return diagOpenCLBuiltinTypeError(S, "enum", Name);
699133211Sharti  EnumDecl *Decl = Result.getAsSingle<EnumDecl>();
700133211Sharti  if (!Decl)
701133211Sharti    return diagOpenCLBuiltinTypeError(S, "enum", Name);
702133211Sharti  return S.Context.getEnumType(Decl);
703133211Sharti}
704133211Sharti
705133211Sharti/// Lookup an OpenCL typedef type.
706133211Shartistatic QualType getOpenCLTypedefType(Sema &S, llvm::StringRef Name) {
707122394Sharti  LookupResult Result(S, &S.Context.Idents.get(Name), SourceLocation(),
708122394Sharti                      Sema::LookupOrdinaryName);
709133211Sharti  S.LookupName(Result, S.TUScope);
710133211Sharti  if (Result.empty())
711122394Sharti    return diagOpenCLBuiltinTypeError(S, "typedef", Name);
712122394Sharti  TypedefNameDecl *Decl = Result.getAsSingle<TypedefNameDecl>();
713122394Sharti  if (!Decl)
714122394Sharti    return diagOpenCLBuiltinTypeError(S, "typedef", Name);
715122394Sharti  return S.Context.getTypedefType(Decl);
716122394Sharti}
717133211Sharti
718122394Sharti/// Get the QualType instances of the return type and arguments for an OpenCL
719122394Sharti/// builtin function signature.
720122394Sharti/// \param S (in) The Sema instance.
721133211Sharti/// \param OpenCLBuiltin (in) The signature currently handled.
722122394Sharti/// \param GenTypeMaxCnt (out) Maximum number of types contained in a generic
723122394Sharti///        type used as return type or as argument.
724122394Sharti///        Only meaningful for generic types, otherwise equals 1.
725122394Sharti/// \param RetTypes (out) List of the possible return types.
726122394Sharti/// \param ArgTypes (out) List of the possible argument types.  For each
727122394Sharti///        argument, ArgTypes contains QualTypes for the Cartesian product
728122394Sharti///        of (vector sizes) x (types) .
729133211Shartistatic void GetQualTypesForOpenCLBuiltin(
730122394Sharti    Sema &S, const OpenCLBuiltinStruct &OpenCLBuiltin, unsigned &GenTypeMaxCnt,
731122394Sharti    SmallVector<QualType, 1> &RetTypes,
732133211Sharti    SmallVector<SmallVector<QualType, 1>, 5> &ArgTypes) {
733133211Sharti  // Get the QualType instances of the return types.
734133211Sharti  unsigned Sig = SignatureTable[OpenCLBuiltin.SigTableIndex];
735133211Sharti  OCL2Qual(S, TypeTable[Sig], RetTypes);
736122394Sharti  GenTypeMaxCnt = RetTypes.size();
737133211Sharti
738133211Sharti  // Get the QualType instances of the arguments.
739133211Sharti  // First type is the return type, skip it.
740133211Sharti  for (unsigned Index = 1; Index < OpenCLBuiltin.NumTypes; Index++) {
741133211Sharti    SmallVector<QualType, 1> Ty;
742133211Sharti    OCL2Qual(S, TypeTable[SignatureTable[OpenCLBuiltin.SigTableIndex + Index]],
743133211Sharti             Ty);
744133211Sharti    GenTypeMaxCnt = (Ty.size() > GenTypeMaxCnt) ? Ty.size() : GenTypeMaxCnt;
745133211Sharti    ArgTypes.push_back(std::move(Ty));
746133211Sharti  }
747133211Sharti}
748133211Sharti
749133211Sharti/// Create a list of the candidate function overloads for an OpenCL builtin
750133211Sharti/// function.
751133211Sharti/// \param Context (in) The ASTContext instance.
752133211Sharti/// \param GenTypeMaxCnt (in) Maximum number of types contained in a generic
753133211Sharti///        type used as return type or as argument.
754133211Sharti///        Only meaningful for generic types, otherwise equals 1.
755133211Sharti/// \param FunctionList (out) List of FunctionTypes.
756133211Sharti/// \param RetTypes (in) List of the possible return types.
757133211Sharti/// \param ArgTypes (in) List of the possible types for the arguments.
758133211Shartistatic void GetOpenCLBuiltinFctOverloads(
759133211Sharti    ASTContext &Context, unsigned GenTypeMaxCnt,
760133211Sharti    std::vector<QualType> &FunctionList, SmallVector<QualType, 1> &RetTypes,
761133211Sharti    SmallVector<SmallVector<QualType, 1>, 5> &ArgTypes) {
762133211Sharti  FunctionProtoType::ExtProtoInfo PI(
763133211Sharti      Context.getDefaultCallingConvention(false, false, true));
764133211Sharti  PI.Variadic = false;
765133211Sharti
766133211Sharti  // Do not attempt to create any FunctionTypes if there are no return types,
767133211Sharti  // which happens when a type belongs to a disabled extension.
768133211Sharti  if (RetTypes.size() == 0)
769133211Sharti    return;
770133211Sharti
771133211Sharti  // Create FunctionTypes for each (gen)type.
772133211Sharti  for (unsigned IGenType = 0; IGenType < GenTypeMaxCnt; IGenType++) {
773122394Sharti    SmallVector<QualType, 5> ArgList;
774122394Sharti
775133211Sharti    for (unsigned A = 0; A < ArgTypes.size(); A++) {
776133211Sharti      // Bail out if there is an argument that has no available types.
777133211Sharti      if (ArgTypes[A].size() == 0)
778133211Sharti        return;
779133211Sharti
780122394Sharti      // Builtins such as "max" have an "sgentype" argument that represents
781122394Sharti      // the corresponding scalar type of a gentype.  The number of gentypes
782122394Sharti      // must be a multiple of the number of sgentypes.
783122394Sharti      assert(GenTypeMaxCnt % ArgTypes[A].size() == 0 &&
784122394Sharti             "argument type count not compatible with gentype type count");
785122394Sharti      unsigned Idx = IGenType % ArgTypes[A].size();
786122394Sharti      ArgList.push_back(ArgTypes[A][Idx]);
787122394Sharti    }
788122394Sharti
789122394Sharti    FunctionList.push_back(Context.getFunctionType(
790122394Sharti        RetTypes[(RetTypes.size() != 1) ? IGenType : 0], ArgList, PI));
791122394Sharti  }
792122394Sharti}
793122394Sharti
794122394Sharti/// When trying to resolve a function name, if isOpenCLBuiltin() returns a
795122394Sharti/// non-null <Index, Len> pair, then the name is referencing an OpenCL
796122394Sharti/// builtin function.  Add all candidate signatures to the LookUpResult.
797122394Sharti///
798122394Sharti/// \param S (in) The Sema instance.
799122394Sharti/// \param LR (inout) The LookupResult instance.
800122394Sharti/// \param II (in) The identifier being resolved.
801122394Sharti/// \param FctIndex (in) Starting index in the BuiltinTable.
802122394Sharti/// \param Len (in) The signature list has Len elements.
803122394Shartistatic void InsertOCLBuiltinDeclarationsFromTable(Sema &S, LookupResult &LR,
804122394Sharti                                                  IdentifierInfo *II,
805122394Sharti                                                  const unsigned FctIndex,
806122394Sharti                                                  const unsigned Len) {
807122394Sharti  // The builtin function declaration uses generic types (gentype).
808122394Sharti  bool HasGenType = false;
809122394Sharti
810122394Sharti  // Maximum number of types contained in a generic type used as return type or
811122394Sharti  // as argument.  Only meaningful for generic types, otherwise equals 1.
812122394Sharti  unsigned GenTypeMaxCnt;
813122394Sharti
814122394Sharti  ASTContext &Context = S.Context;
815122394Sharti
816122394Sharti  for (unsigned SignatureIndex = 0; SignatureIndex < Len; SignatureIndex++) {
817122394Sharti    const OpenCLBuiltinStruct &OpenCLBuiltin =
818122394Sharti        BuiltinTable[FctIndex + SignatureIndex];
819122394Sharti
820122394Sharti    // Ignore this builtin function if it is not available in the currently
821122394Sharti    // selected language version.
822122394Sharti    if (!isOpenCLVersionContainedInMask(Context.getLangOpts(),
823122394Sharti                                        OpenCLBuiltin.Versions))
824122394Sharti      continue;
825122394Sharti
826122394Sharti    // Ignore this builtin function if it carries an extension macro that is
827122394Sharti    // not defined. This indicates that the extension is not supported by the
828122394Sharti    // target, so the builtin function should not be available.
829122394Sharti    StringRef Extensions = FunctionExtensionTable[OpenCLBuiltin.Extension];
830122394Sharti    if (!Extensions.empty()) {
831122394Sharti      SmallVector<StringRef, 2> ExtVec;
832133211Sharti      Extensions.split(ExtVec, " ");
833133211Sharti      bool AllExtensionsDefined = true;
834133211Sharti      for (StringRef Ext : ExtVec) {
835133211Sharti        if (!S.getPreprocessor().isMacroDefined(Ext)) {
836133211Sharti          AllExtensionsDefined = false;
837133211Sharti          break;
838133211Sharti        }
839133211Sharti      }
840133211Sharti      if (!AllExtensionsDefined)
841133211Sharti        continue;
842133211Sharti    }
843133211Sharti
844133211Sharti    SmallVector<QualType, 1> RetTypes;
845133211Sharti    SmallVector<SmallVector<QualType, 1>, 5> ArgTypes;
846133211Sharti
847133211Sharti    // Obtain QualType lists for the function signature.
848133211Sharti    GetQualTypesForOpenCLBuiltin(S, OpenCLBuiltin, GenTypeMaxCnt, RetTypes,
849133211Sharti                                 ArgTypes);
850133211Sharti    if (GenTypeMaxCnt > 1) {
851133211Sharti      HasGenType = true;
852133211Sharti    }
853133211Sharti
854133211Sharti    // Create function overload for each type combination.
855133211Sharti    std::vector<QualType> FunctionList;
856133211Sharti    GetOpenCLBuiltinFctOverloads(Context, GenTypeMaxCnt, FunctionList, RetTypes,
857133211Sharti                                 ArgTypes);
858133211Sharti
859133211Sharti    SourceLocation Loc = LR.getNameLoc();
860133211Sharti    DeclContext *Parent = Context.getTranslationUnitDecl();
861133211Sharti    FunctionDecl *NewOpenCLBuiltin;
862133211Sharti
863133211Sharti    for (const auto &FTy : FunctionList) {
864133211Sharti      NewOpenCLBuiltin = FunctionDecl::Create(
865133211Sharti          Context, Parent, Loc, Loc, II, FTy, /*TInfo=*/nullptr, SC_Extern,
866133211Sharti          S.getCurFPFeatures().isFPConstrained(), false,
867133211Sharti          FTy->isFunctionProtoType());
868133211Sharti      NewOpenCLBuiltin->setImplicit();
869133211Sharti
870133211Sharti      // Create Decl objects for each parameter, adding them to the
871133211Sharti      // FunctionDecl.
872133211Sharti      const auto *FP = cast<FunctionProtoType>(FTy);
873133211Sharti      SmallVector<ParmVarDecl *, 4> ParmList;
874133211Sharti      for (unsigned IParm = 0, e = FP->getNumParams(); IParm != e; ++IParm) {
875133211Sharti        ParmVarDecl *Parm = ParmVarDecl::Create(
876133211Sharti            Context, NewOpenCLBuiltin, SourceLocation(), SourceLocation(),
877133211Sharti            nullptr, FP->getParamType(IParm), nullptr, SC_None, nullptr);
878133211Sharti        Parm->setScopeInfo(0, IParm);
879133211Sharti        ParmList.push_back(Parm);
880133211Sharti      }
881133211Sharti      NewOpenCLBuiltin->setParams(ParmList);
882133211Sharti
883133211Sharti      // Add function attributes.
884133211Sharti      if (OpenCLBuiltin.IsPure)
885133211Sharti        NewOpenCLBuiltin->addAttr(PureAttr::CreateImplicit(Context));
886133211Sharti      if (OpenCLBuiltin.IsConst)
887133211Sharti        NewOpenCLBuiltin->addAttr(ConstAttr::CreateImplicit(Context));
888133211Sharti      if (OpenCLBuiltin.IsConv)
889133211Sharti        NewOpenCLBuiltin->addAttr(ConvergentAttr::CreateImplicit(Context));
890133211Sharti
891133211Sharti      if (!S.getLangOpts().OpenCLCPlusPlus)
892133211Sharti        NewOpenCLBuiltin->addAttr(OverloadableAttr::CreateImplicit(Context));
893133211Sharti
894133211Sharti      LR.addDecl(NewOpenCLBuiltin);
895122394Sharti    }
896122394Sharti  }
897122394Sharti
898122394Sharti  // If we added overloads, need to resolve the lookup result.
899133211Sharti  if (Len > 1 || HasGenType)
900122394Sharti    LR.resolveKind();
901122394Sharti}
902122394Sharti
903133211Sharti/// Lookup a builtin function, when name lookup would otherwise
904122394Sharti/// fail.
905133211Shartibool Sema::LookupBuiltin(LookupResult &R) {
906122394Sharti  Sema::LookupNameKind NameKind = R.getLookupKind();
907122394Sharti
908122394Sharti  // If we didn't find a use of this identifier, and if the identifier
909122394Sharti  // corresponds to a compiler builtin, create the decl object for the builtin
910122394Sharti  // now, injecting it into translation unit scope, and return it.
911122394Sharti  if (NameKind == Sema::LookupOrdinaryName ||
912122394Sharti      NameKind == Sema::LookupRedeclarationWithLinkage) {
913122394Sharti    IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo();
914122394Sharti    if (II) {
915122394Sharti      if (getLangOpts().CPlusPlus && NameKind == Sema::LookupOrdinaryName) {
916122394Sharti        if (II == getASTContext().getMakeIntegerSeqName()) {
917122394Sharti          R.addDecl(getASTContext().getMakeIntegerSeqDecl());
918122394Sharti          return true;
919122394Sharti        } else if (II == getASTContext().getTypePackElementName()) {
920122394Sharti          R.addDecl(getASTContext().getTypePackElementDecl());
921122394Sharti          return true;
922122394Sharti        }
923122394Sharti      }
924122394Sharti
925122394Sharti      // Check if this is an OpenCL Builtin, and if so, insert its overloads.
926133211Sharti      if (getLangOpts().OpenCL && getLangOpts().DeclareOpenCLBuiltins) {
927133211Sharti        auto Index = isOpenCLBuiltin(II->getName());
928133211Sharti        if (Index.first) {
929133211Sharti          InsertOCLBuiltinDeclarationsFromTable(*this, R, II, Index.first - 1,
930122394Sharti                                                Index.second);
931122394Sharti          return true;
932133211Sharti        }
933133211Sharti      }
934122394Sharti
935122394Sharti      if (DeclareRISCVVBuiltins) {
936122394Sharti        if (!RVIntrinsicManager)
937122394Sharti          RVIntrinsicManager = CreateRISCVIntrinsicManager(*this);
938122394Sharti
939122394Sharti        if (RVIntrinsicManager->CreateIntrinsicIfFound(R, II, PP))
940133211Sharti          return true;
941133211Sharti      }
942122394Sharti
943122394Sharti      // If this is a builtin on this (or all) targets, create the decl.
944122394Sharti      if (unsigned BuiltinID = II->getBuiltinID()) {
945122394Sharti        // In C++ and OpenCL (spec v1.2 s6.9.f), we don't have any predefined
946122394Sharti        // library functions like 'malloc'. Instead, we'll just error.
947122394Sharti        if ((getLangOpts().CPlusPlus || getLangOpts().OpenCL) &&
948122394Sharti            Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
949122394Sharti          return false;
950122394Sharti
951122394Sharti        if (NamedDecl *D =
952122394Sharti                LazilyCreateBuiltin(II, BuiltinID, TUScope,
953122394Sharti                                    R.isForRedeclaration(), R.getNameLoc())) {
954122394Sharti          R.addDecl(D);
955133211Sharti          return true;
956133211Sharti        }
957133211Sharti      }
958133211Sharti    }
959122394Sharti  }
960122394Sharti
961122394Sharti  return false;
962122394Sharti}
963122394Sharti
964122394Sharti/// Looks up the declaration of "struct objc_super" and
965122394Sharti/// saves it for later use in building builtin declaration of
966122394Sharti/// objc_msgSendSuper and objc_msgSendSuper_stret.
967122394Shartistatic void LookupPredefedObjCSuperType(Sema &Sema, Scope *S) {
968122394Sharti  ASTContext &Context = Sema.Context;
969122394Sharti  LookupResult Result(Sema, &Context.Idents.get("objc_super"), SourceLocation(),
970122394Sharti                      Sema::LookupTagName);
971122394Sharti  Sema.LookupName(Result, S);
972122394Sharti  if (Result.getResultKind() == LookupResult::Found)
973122394Sharti    if (const TagDecl *TD = Result.getAsSingle<TagDecl>())
974122394Sharti      Context.setObjCSuperType(Context.getTagDeclType(TD));
975122394Sharti}
976122394Sharti
977void Sema::LookupNecessaryTypesForBuiltin(Scope *S, unsigned ID) {
978  if (ID == Builtin::BIobjc_msgSendSuper)
979    LookupPredefedObjCSuperType(*this, S);
980}
981
982/// Determine whether we can declare a special member function within
983/// the class at this point.
984static bool CanDeclareSpecialMemberFunction(const CXXRecordDecl *Class) {
985  // We need to have a definition for the class.
986  if (!Class->getDefinition() || Class->isDependentContext())
987    return false;
988
989  // We can't be in the middle of defining the class.
990  return !Class->isBeingDefined();
991}
992
993void Sema::ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class) {
994  if (!CanDeclareSpecialMemberFunction(Class))
995    return;
996
997  // If the default constructor has not yet been declared, do so now.
998  if (Class->needsImplicitDefaultConstructor())
999    DeclareImplicitDefaultConstructor(Class);
1000
1001  // If the copy constructor has not yet been declared, do so now.
1002  if (Class->needsImplicitCopyConstructor())
1003    DeclareImplicitCopyConstructor(Class);
1004
1005  // If the copy assignment operator has not yet been declared, do so now.
1006  if (Class->needsImplicitCopyAssignment())
1007    DeclareImplicitCopyAssignment(Class);
1008
1009  if (getLangOpts().CPlusPlus11) {
1010    // If the move constructor has not yet been declared, do so now.
1011    if (Class->needsImplicitMoveConstructor())
1012      DeclareImplicitMoveConstructor(Class);
1013
1014    // If the move assignment operator has not yet been declared, do so now.
1015    if (Class->needsImplicitMoveAssignment())
1016      DeclareImplicitMoveAssignment(Class);
1017  }
1018
1019  // If the destructor has not yet been declared, do so now.
1020  if (Class->needsImplicitDestructor())
1021    DeclareImplicitDestructor(Class);
1022}
1023
1024/// Determine whether this is the name of an implicitly-declared
1025/// special member function.
1026static bool isImplicitlyDeclaredMemberFunctionName(DeclarationName Name) {
1027  switch (Name.getNameKind()) {
1028  case DeclarationName::CXXConstructorName:
1029  case DeclarationName::CXXDestructorName:
1030    return true;
1031
1032  case DeclarationName::CXXOperatorName:
1033    return Name.getCXXOverloadedOperator() == OO_Equal;
1034
1035  default:
1036    break;
1037  }
1038
1039  return false;
1040}
1041
1042/// If there are any implicit member functions with the given name
1043/// that need to be declared in the given declaration context, do so.
1044static void DeclareImplicitMemberFunctionsWithName(Sema &S,
1045                                                   DeclarationName Name,
1046                                                   SourceLocation Loc,
1047                                                   const DeclContext *DC) {
1048  if (!DC)
1049    return;
1050
1051  switch (Name.getNameKind()) {
1052  case DeclarationName::CXXConstructorName:
1053    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
1054      if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
1055        CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
1056        if (Record->needsImplicitDefaultConstructor())
1057          S.DeclareImplicitDefaultConstructor(Class);
1058        if (Record->needsImplicitCopyConstructor())
1059          S.DeclareImplicitCopyConstructor(Class);
1060        if (S.getLangOpts().CPlusPlus11 &&
1061            Record->needsImplicitMoveConstructor())
1062          S.DeclareImplicitMoveConstructor(Class);
1063      }
1064    break;
1065
1066  case DeclarationName::CXXDestructorName:
1067    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
1068      if (Record->getDefinition() && Record->needsImplicitDestructor() &&
1069          CanDeclareSpecialMemberFunction(Record))
1070        S.DeclareImplicitDestructor(const_cast<CXXRecordDecl *>(Record));
1071    break;
1072
1073  case DeclarationName::CXXOperatorName:
1074    if (Name.getCXXOverloadedOperator() != OO_Equal)
1075      break;
1076
1077    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) {
1078      if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
1079        CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
1080        if (Record->needsImplicitCopyAssignment())
1081          S.DeclareImplicitCopyAssignment(Class);
1082        if (S.getLangOpts().CPlusPlus11 &&
1083            Record->needsImplicitMoveAssignment())
1084          S.DeclareImplicitMoveAssignment(Class);
1085      }
1086    }
1087    break;
1088
1089  case DeclarationName::CXXDeductionGuideName:
1090    S.DeclareImplicitDeductionGuides(Name.getCXXDeductionGuideTemplate(), Loc);
1091    break;
1092
1093  default:
1094    break;
1095  }
1096}
1097
1098// Adds all qualifying matches for a name within a decl context to the
1099// given lookup result.  Returns true if any matches were found.
1100static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) {
1101  bool Found = false;
1102
1103  // Lazily declare C++ special member functions.
1104  if (S.getLangOpts().CPlusPlus)
1105    DeclareImplicitMemberFunctionsWithName(S, R.getLookupName(), R.getNameLoc(),
1106                                           DC);
1107
1108  // Perform lookup into this declaration context.
1109  DeclContext::lookup_result DR = DC->lookup(R.getLookupName());
1110  for (NamedDecl *D : DR) {
1111    if ((D = R.getAcceptableDecl(D))) {
1112      R.addDecl(D);
1113      Found = true;
1114    }
1115  }
1116
1117  if (!Found && DC->isTranslationUnit() && S.LookupBuiltin(R))
1118    return true;
1119
1120  if (R.getLookupName().getNameKind()
1121        != DeclarationName::CXXConversionFunctionName ||
1122      R.getLookupName().getCXXNameType()->isDependentType() ||
1123      !isa<CXXRecordDecl>(DC))
1124    return Found;
1125
1126  // C++ [temp.mem]p6:
1127  //   A specialization of a conversion function template is not found by
1128  //   name lookup. Instead, any conversion function templates visible in the
1129  //   context of the use are considered. [...]
1130  const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
1131  if (!Record->isCompleteDefinition())
1132    return Found;
1133
1134  // For conversion operators, 'operator auto' should only match
1135  // 'operator auto'.  Since 'auto' is not a type, it shouldn't be considered
1136  // as a candidate for template substitution.
1137  auto *ContainedDeducedType =
1138      R.getLookupName().getCXXNameType()->getContainedDeducedType();
1139  if (R.getLookupName().getNameKind() ==
1140          DeclarationName::CXXConversionFunctionName &&
1141      ContainedDeducedType && ContainedDeducedType->isUndeducedType())
1142    return Found;
1143
1144  for (CXXRecordDecl::conversion_iterator U = Record->conversion_begin(),
1145         UEnd = Record->conversion_end(); U != UEnd; ++U) {
1146    FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U);
1147    if (!ConvTemplate)
1148      continue;
1149
1150    // When we're performing lookup for the purposes of redeclaration, just
1151    // add the conversion function template. When we deduce template
1152    // arguments for specializations, we'll end up unifying the return
1153    // type of the new declaration with the type of the function template.
1154    if (R.isForRedeclaration()) {
1155      R.addDecl(ConvTemplate);
1156      Found = true;
1157      continue;
1158    }
1159
1160    // C++ [temp.mem]p6:
1161    //   [...] For each such operator, if argument deduction succeeds
1162    //   (14.9.2.3), the resulting specialization is used as if found by
1163    //   name lookup.
1164    //
1165    // When referencing a conversion function for any purpose other than
1166    // a redeclaration (such that we'll be building an expression with the
1167    // result), perform template argument deduction and place the
1168    // specialization into the result set. We do this to avoid forcing all
1169    // callers to perform special deduction for conversion functions.
1170    TemplateDeductionInfo Info(R.getNameLoc());
1171    FunctionDecl *Specialization = nullptr;
1172
1173    const FunctionProtoType *ConvProto
1174      = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>();
1175    assert(ConvProto && "Nonsensical conversion function template type");
1176
1177    // Compute the type of the function that we would expect the conversion
1178    // function to have, if it were to match the name given.
1179    // FIXME: Calling convention!
1180    FunctionProtoType::ExtProtoInfo EPI = ConvProto->getExtProtoInfo();
1181    EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC_C);
1182    EPI.ExceptionSpec = EST_None;
1183    QualType ExpectedType = R.getSema().Context.getFunctionType(
1184        R.getLookupName().getCXXNameType(), std::nullopt, EPI);
1185
1186    // Perform template argument deduction against the type that we would
1187    // expect the function to have.
1188    if (R.getSema().DeduceTemplateArguments(ConvTemplate, nullptr, ExpectedType,
1189                                            Specialization, Info)
1190          == Sema::TDK_Success) {
1191      R.addDecl(Specialization);
1192      Found = true;
1193    }
1194  }
1195
1196  return Found;
1197}
1198
1199// Performs C++ unqualified lookup into the given file context.
1200static bool
1201CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context,
1202                   DeclContext *NS, UnqualUsingDirectiveSet &UDirs) {
1203
1204  assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!");
1205
1206  // Perform direct name lookup into the LookupCtx.
1207  bool Found = LookupDirect(S, R, NS);
1208
1209  // Perform direct name lookup into the namespaces nominated by the
1210  // using directives whose common ancestor is this namespace.
1211  for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(NS))
1212    if (LookupDirect(S, R, UUE.getNominatedNamespace()))
1213      Found = true;
1214
1215  R.resolveKind();
1216
1217  return Found;
1218}
1219
1220static bool isNamespaceOrTranslationUnitScope(Scope *S) {
1221  if (DeclContext *Ctx = S->getEntity())
1222    return Ctx->isFileContext();
1223  return false;
1224}
1225
1226/// Find the outer declaration context from this scope. This indicates the
1227/// context that we should search up to (exclusive) before considering the
1228/// parent of the specified scope.
1229static DeclContext *findOuterContext(Scope *S) {
1230  for (Scope *OuterS = S->getParent(); OuterS; OuterS = OuterS->getParent())
1231    if (DeclContext *DC = OuterS->getLookupEntity())
1232      return DC;
1233  return nullptr;
1234}
1235
1236namespace {
1237/// An RAII object to specify that we want to find block scope extern
1238/// declarations.
1239struct FindLocalExternScope {
1240  FindLocalExternScope(LookupResult &R)
1241      : R(R), OldFindLocalExtern(R.getIdentifierNamespace() &
1242                                 Decl::IDNS_LocalExtern) {
1243    R.setFindLocalExtern(R.getIdentifierNamespace() &
1244                         (Decl::IDNS_Ordinary | Decl::IDNS_NonMemberOperator));
1245  }
1246  void restore() {
1247    R.setFindLocalExtern(OldFindLocalExtern);
1248  }
1249  ~FindLocalExternScope() {
1250    restore();
1251  }
1252  LookupResult &R;
1253  bool OldFindLocalExtern;
1254};
1255} // end anonymous namespace
1256
1257bool Sema::CppLookupName(LookupResult &R, Scope *S) {
1258  assert(getLangOpts().CPlusPlus && "Can perform only C++ lookup");
1259
1260  DeclarationName Name = R.getLookupName();
1261  Sema::LookupNameKind NameKind = R.getLookupKind();
1262
1263  // If this is the name of an implicitly-declared special member function,
1264  // go through the scope stack to implicitly declare
1265  if (isImplicitlyDeclaredMemberFunctionName(Name)) {
1266    for (Scope *PreS = S; PreS; PreS = PreS->getParent())
1267      if (DeclContext *DC = PreS->getEntity())
1268        DeclareImplicitMemberFunctionsWithName(*this, Name, R.getNameLoc(), DC);
1269  }
1270
1271  // Implicitly declare member functions with the name we're looking for, if in
1272  // fact we are in a scope where it matters.
1273
1274  Scope *Initial = S;
1275  IdentifierResolver::iterator
1276    I = IdResolver.begin(Name),
1277    IEnd = IdResolver.end();
1278
1279  // First we lookup local scope.
1280  // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
1281  // ...During unqualified name lookup (3.4.1), the names appear as if
1282  // they were declared in the nearest enclosing namespace which contains
1283  // both the using-directive and the nominated namespace.
1284  // [Note: in this context, "contains" means "contains directly or
1285  // indirectly".
1286  //
1287  // For example:
1288  // namespace A { int i; }
1289  // void foo() {
1290  //   int i;
1291  //   {
1292  //     using namespace A;
1293  //     ++i; // finds local 'i', A::i appears at global scope
1294  //   }
1295  // }
1296  //
1297  UnqualUsingDirectiveSet UDirs(*this);
1298  bool VisitedUsingDirectives = false;
1299  bool LeftStartingScope = false;
1300
1301  // When performing a scope lookup, we want to find local extern decls.
1302  FindLocalExternScope FindLocals(R);
1303
1304  for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
1305    bool SearchNamespaceScope = true;
1306    // Check whether the IdResolver has anything in this scope.
1307    for (; I != IEnd && S->isDeclScope(*I); ++I) {
1308      if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
1309        if (NameKind == LookupRedeclarationWithLinkage &&
1310            !(*I)->isTemplateParameter()) {
1311          // If it's a template parameter, we still find it, so we can diagnose
1312          // the invalid redeclaration.
1313
1314          // Determine whether this (or a previous) declaration is
1315          // out-of-scope.
1316          if (!LeftStartingScope && !Initial->isDeclScope(*I))
1317            LeftStartingScope = true;
1318
1319          // If we found something outside of our starting scope that
1320          // does not have linkage, skip it.
1321          if (LeftStartingScope && !((*I)->hasLinkage())) {
1322            R.setShadowed();
1323            continue;
1324          }
1325        } else {
1326          // We found something in this scope, we should not look at the
1327          // namespace scope
1328          SearchNamespaceScope = false;
1329        }
1330        R.addDecl(ND);
1331      }
1332    }
1333    if (!SearchNamespaceScope) {
1334      R.resolveKind();
1335      if (S->isClassScope())
1336        if (CXXRecordDecl *Record =
1337                dyn_cast_or_null<CXXRecordDecl>(S->getEntity()))
1338          R.setNamingClass(Record);
1339      return true;
1340    }
1341
1342    if (NameKind == LookupLocalFriendName && !S->isClassScope()) {
1343      // C++11 [class.friend]p11:
1344      //   If a friend declaration appears in a local class and the name
1345      //   specified is an unqualified name, a prior declaration is
1346      //   looked up without considering scopes that are outside the
1347      //   innermost enclosing non-class scope.
1348      return false;
1349    }
1350
1351    if (DeclContext *Ctx = S->getLookupEntity()) {
1352      DeclContext *OuterCtx = findOuterContext(S);
1353      for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
1354        // We do not directly look into transparent contexts, since
1355        // those entities will be found in the nearest enclosing
1356        // non-transparent context.
1357        if (Ctx->isTransparentContext())
1358          continue;
1359
1360        // We do not look directly into function or method contexts,
1361        // since all of the local variables and parameters of the
1362        // function/method are present within the Scope.
1363        if (Ctx->isFunctionOrMethod()) {
1364          // If we have an Objective-C instance method, look for ivars
1365          // in the corresponding interface.
1366          if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
1367            if (Method->isInstanceMethod() && Name.getAsIdentifierInfo())
1368              if (ObjCInterfaceDecl *Class = Method->getClassInterface()) {
1369                ObjCInterfaceDecl *ClassDeclared;
1370                if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(
1371                                                 Name.getAsIdentifierInfo(),
1372                                                             ClassDeclared)) {
1373                  if (NamedDecl *ND = R.getAcceptableDecl(Ivar)) {
1374                    R.addDecl(ND);
1375                    R.resolveKind();
1376                    return true;
1377                  }
1378                }
1379              }
1380          }
1381
1382          continue;
1383        }
1384
1385        // If this is a file context, we need to perform unqualified name
1386        // lookup considering using directives.
1387        if (Ctx->isFileContext()) {
1388          // If we haven't handled using directives yet, do so now.
1389          if (!VisitedUsingDirectives) {
1390            // Add using directives from this context up to the top level.
1391            for (DeclContext *UCtx = Ctx; UCtx; UCtx = UCtx->getParent()) {
1392              if (UCtx->isTransparentContext())
1393                continue;
1394
1395              UDirs.visit(UCtx, UCtx);
1396            }
1397
1398            // Find the innermost file scope, so we can add using directives
1399            // from local scopes.
1400            Scope *InnermostFileScope = S;
1401            while (InnermostFileScope &&
1402                   !isNamespaceOrTranslationUnitScope(InnermostFileScope))
1403              InnermostFileScope = InnermostFileScope->getParent();
1404            UDirs.visitScopeChain(Initial, InnermostFileScope);
1405
1406            UDirs.done();
1407
1408            VisitedUsingDirectives = true;
1409          }
1410
1411          if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs)) {
1412            R.resolveKind();
1413            return true;
1414          }
1415
1416          continue;
1417        }
1418
1419        // Perform qualified name lookup into this context.
1420        // FIXME: In some cases, we know that every name that could be found by
1421        // this qualified name lookup will also be on the identifier chain. For
1422        // example, inside a class without any base classes, we never need to
1423        // perform qualified lookup because all of the members are on top of the
1424        // identifier chain.
1425        if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true))
1426          return true;
1427      }
1428    }
1429  }
1430
1431  // Stop if we ran out of scopes.
1432  // FIXME:  This really, really shouldn't be happening.
1433  if (!S) return false;
1434
1435  // If we are looking for members, no need to look into global/namespace scope.
1436  if (NameKind == LookupMemberName)
1437    return false;
1438
1439  // Collect UsingDirectiveDecls in all scopes, and recursively all
1440  // nominated namespaces by those using-directives.
1441  //
1442  // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
1443  // don't build it for each lookup!
1444  if (!VisitedUsingDirectives) {
1445    UDirs.visitScopeChain(Initial, S);
1446    UDirs.done();
1447  }
1448
1449  // If we're not performing redeclaration lookup, do not look for local
1450  // extern declarations outside of a function scope.
1451  if (!R.isForRedeclaration())
1452    FindLocals.restore();
1453
1454  // Lookup namespace scope, and global scope.
1455  // Unqualified name lookup in C++ requires looking into scopes
1456  // that aren't strictly lexical, and therefore we walk through the
1457  // context as well as walking through the scopes.
1458  for (; S; S = S->getParent()) {
1459    // Check whether the IdResolver has anything in this scope.
1460    bool Found = false;
1461    for (; I != IEnd && S->isDeclScope(*I); ++I) {
1462      if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
1463        // We found something.  Look for anything else in our scope
1464        // with this same name and in an acceptable identifier
1465        // namespace, so that we can construct an overload set if we
1466        // need to.
1467        Found = true;
1468        R.addDecl(ND);
1469      }
1470    }
1471
1472    if (Found && S->isTemplateParamScope()) {
1473      R.resolveKind();
1474      return true;
1475    }
1476
1477    DeclContext *Ctx = S->getLookupEntity();
1478    if (Ctx) {
1479      DeclContext *OuterCtx = findOuterContext(S);
1480      for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
1481        // We do not directly look into transparent contexts, since
1482        // those entities will be found in the nearest enclosing
1483        // non-transparent context.
1484        if (Ctx->isTransparentContext())
1485          continue;
1486
1487        // If we have a context, and it's not a context stashed in the
1488        // template parameter scope for an out-of-line definition, also
1489        // look into that context.
1490        if (!(Found && S->isTemplateParamScope())) {
1491          assert(Ctx->isFileContext() &&
1492              "We should have been looking only at file context here already.");
1493
1494          // Look into context considering using-directives.
1495          if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs))
1496            Found = true;
1497        }
1498
1499        if (Found) {
1500          R.resolveKind();
1501          return true;
1502        }
1503
1504        if (R.isForRedeclaration() && !Ctx->isTransparentContext())
1505          return false;
1506      }
1507    }
1508
1509    if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext())
1510      return false;
1511  }
1512
1513  return !R.empty();
1514}
1515
1516void Sema::makeMergedDefinitionVisible(NamedDecl *ND) {
1517  if (auto *M = getCurrentModule())
1518    Context.mergeDefinitionIntoModule(ND, M);
1519  else
1520    // We're not building a module; just make the definition visible.
1521    ND->setVisibleDespiteOwningModule();
1522
1523  // If ND is a template declaration, make the template parameters
1524  // visible too. They're not (necessarily) within a mergeable DeclContext.
1525  if (auto *TD = dyn_cast<TemplateDecl>(ND))
1526    for (auto *Param : *TD->getTemplateParameters())
1527      makeMergedDefinitionVisible(Param);
1528}
1529
1530/// Find the module in which the given declaration was defined.
1531static Module *getDefiningModule(Sema &S, Decl *Entity) {
1532  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Entity)) {
1533    // If this function was instantiated from a template, the defining module is
1534    // the module containing the pattern.
1535    if (FunctionDecl *Pattern = FD->getTemplateInstantiationPattern())
1536      Entity = Pattern;
1537  } else if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Entity)) {
1538    if (CXXRecordDecl *Pattern = RD->getTemplateInstantiationPattern())
1539      Entity = Pattern;
1540  } else if (EnumDecl *ED = dyn_cast<EnumDecl>(Entity)) {
1541    if (auto *Pattern = ED->getTemplateInstantiationPattern())
1542      Entity = Pattern;
1543  } else if (VarDecl *VD = dyn_cast<VarDecl>(Entity)) {
1544    if (VarDecl *Pattern = VD->getTemplateInstantiationPattern())
1545      Entity = Pattern;
1546  }
1547
1548  // Walk up to the containing context. That might also have been instantiated
1549  // from a template.
1550  DeclContext *Context = Entity->getLexicalDeclContext();
1551  if (Context->isFileContext())
1552    return S.getOwningModule(Entity);
1553  return getDefiningModule(S, cast<Decl>(Context));
1554}
1555
1556llvm::DenseSet<Module*> &Sema::getLookupModules() {
1557  unsigned N = CodeSynthesisContexts.size();
1558  for (unsigned I = CodeSynthesisContextLookupModules.size();
1559       I != N; ++I) {
1560    Module *M = CodeSynthesisContexts[I].Entity ?
1561                getDefiningModule(*this, CodeSynthesisContexts[I].Entity) :
1562                nullptr;
1563    if (M && !LookupModulesCache.insert(M).second)
1564      M = nullptr;
1565    CodeSynthesisContextLookupModules.push_back(M);
1566  }
1567  return LookupModulesCache;
1568}
1569
1570/// Determine if we could use all the declarations in the module.
1571bool Sema::isUsableModule(const Module *M) {
1572  assert(M && "We shouldn't check nullness for module here");
1573  // Return quickly if we cached the result.
1574  if (UsableModuleUnitsCache.count(M))
1575    return true;
1576
1577  // If M is the global module fragment of the current translation unit. So it
1578  // should be usable.
1579  // [module.global.frag]p1:
1580  //   The global module fragment can be used to provide declarations that are
1581  //   attached to the global module and usable within the module unit.
1582  if (M == GlobalModuleFragment ||
1583      // If M is the module we're parsing, it should be usable. This covers the
1584      // private module fragment. The private module fragment is usable only if
1585      // it is within the current module unit. And it must be the current
1586      // parsing module unit if it is within the current module unit according
1587      // to the grammar of the private module fragment. NOTE: This is covered by
1588      // the following condition. The intention of the check is to avoid string
1589      // comparison as much as possible.
1590      M == getCurrentModule() ||
1591      // The module unit which is in the same module with the current module
1592      // unit is usable.
1593      //
1594      // FIXME: Here we judge if they are in the same module by comparing the
1595      // string. Is there any better solution?
1596      M->getPrimaryModuleInterfaceName() ==
1597          llvm::StringRef(getLangOpts().CurrentModule).split(':').first) {
1598    UsableModuleUnitsCache.insert(M);
1599    return true;
1600  }
1601
1602  return false;
1603}
1604
1605bool Sema::hasVisibleMergedDefinition(NamedDecl *Def) {
1606  for (const Module *Merged : Context.getModulesWithMergedDefinition(Def))
1607    if (isModuleVisible(Merged))
1608      return true;
1609  return false;
1610}
1611
1612bool Sema::hasMergedDefinitionInCurrentModule(NamedDecl *Def) {
1613  for (const Module *Merged : Context.getModulesWithMergedDefinition(Def))
1614    if (isUsableModule(Merged))
1615      return true;
1616  return false;
1617}
1618
1619template <typename ParmDecl>
1620static bool
1621hasAcceptableDefaultArgument(Sema &S, const ParmDecl *D,
1622                             llvm::SmallVectorImpl<Module *> *Modules,
1623                             Sema::AcceptableKind Kind) {
1624  if (!D->hasDefaultArgument())
1625    return false;
1626
1627  llvm::SmallPtrSet<const ParmDecl *, 4> Visited;
1628  while (D && Visited.insert(D).second) {
1629    auto &DefaultArg = D->getDefaultArgStorage();
1630    if (!DefaultArg.isInherited() && S.isAcceptable(D, Kind))
1631      return true;
1632
1633    if (!DefaultArg.isInherited() && Modules) {
1634      auto *NonConstD = const_cast<ParmDecl*>(D);
1635      Modules->push_back(S.getOwningModule(NonConstD));
1636    }
1637
1638    // If there was a previous default argument, maybe its parameter is
1639    // acceptable.
1640    D = DefaultArg.getInheritedFrom();
1641  }
1642  return false;
1643}
1644
1645bool Sema::hasAcceptableDefaultArgument(
1646    const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules,
1647    Sema::AcceptableKind Kind) {
1648  if (auto *P = dyn_cast<TemplateTypeParmDecl>(D))
1649    return ::hasAcceptableDefaultArgument(*this, P, Modules, Kind);
1650
1651  if (auto *P = dyn_cast<NonTypeTemplateParmDecl>(D))
1652    return ::hasAcceptableDefaultArgument(*this, P, Modules, Kind);
1653
1654  return ::hasAcceptableDefaultArgument(
1655      *this, cast<TemplateTemplateParmDecl>(D), Modules, Kind);
1656}
1657
1658bool Sema::hasVisibleDefaultArgument(const NamedDecl *D,
1659                                     llvm::SmallVectorImpl<Module *> *Modules) {
1660  return hasAcceptableDefaultArgument(D, Modules,
1661                                      Sema::AcceptableKind::Visible);
1662}
1663
1664bool Sema::hasReachableDefaultArgument(
1665    const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1666  return hasAcceptableDefaultArgument(D, Modules,
1667                                      Sema::AcceptableKind::Reachable);
1668}
1669
1670template <typename Filter>
1671static bool
1672hasAcceptableDeclarationImpl(Sema &S, const NamedDecl *D,
1673                             llvm::SmallVectorImpl<Module *> *Modules, Filter F,
1674                             Sema::AcceptableKind Kind) {
1675  bool HasFilteredRedecls = false;
1676
1677  for (auto *Redecl : D->redecls()) {
1678    auto *R = cast<NamedDecl>(Redecl);
1679    if (!F(R))
1680      continue;
1681
1682    if (S.isAcceptable(R, Kind))
1683      return true;
1684
1685    HasFilteredRedecls = true;
1686
1687    if (Modules)
1688      Modules->push_back(R->getOwningModule());
1689  }
1690
1691  // Only return false if there is at least one redecl that is not filtered out.
1692  if (HasFilteredRedecls)
1693    return false;
1694
1695  return true;
1696}
1697
1698static bool
1699hasAcceptableExplicitSpecialization(Sema &S, const NamedDecl *D,
1700                                    llvm::SmallVectorImpl<Module *> *Modules,
1701                                    Sema::AcceptableKind Kind) {
1702  return hasAcceptableDeclarationImpl(
1703      S, D, Modules,
1704      [](const NamedDecl *D) {
1705        if (auto *RD = dyn_cast<CXXRecordDecl>(D))
1706          return RD->getTemplateSpecializationKind() ==
1707                 TSK_ExplicitSpecialization;
1708        if (auto *FD = dyn_cast<FunctionDecl>(D))
1709          return FD->getTemplateSpecializationKind() ==
1710                 TSK_ExplicitSpecialization;
1711        if (auto *VD = dyn_cast<VarDecl>(D))
1712          return VD->getTemplateSpecializationKind() ==
1713                 TSK_ExplicitSpecialization;
1714        llvm_unreachable("unknown explicit specialization kind");
1715      },
1716      Kind);
1717}
1718
1719bool Sema::hasVisibleExplicitSpecialization(
1720    const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1721  return ::hasAcceptableExplicitSpecialization(*this, D, Modules,
1722                                               Sema::AcceptableKind::Visible);
1723}
1724
1725bool Sema::hasReachableExplicitSpecialization(
1726    const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1727  return ::hasAcceptableExplicitSpecialization(*this, D, Modules,
1728                                               Sema::AcceptableKind::Reachable);
1729}
1730
1731static bool
1732hasAcceptableMemberSpecialization(Sema &S, const NamedDecl *D,
1733                                  llvm::SmallVectorImpl<Module *> *Modules,
1734                                  Sema::AcceptableKind Kind) {
1735  assert(isa<CXXRecordDecl>(D->getDeclContext()) &&
1736         "not a member specialization");
1737  return hasAcceptableDeclarationImpl(
1738      S, D, Modules,
1739      [](const NamedDecl *D) {
1740        // If the specialization is declared at namespace scope, then it's a
1741        // member specialization declaration. If it's lexically inside the class
1742        // definition then it was instantiated.
1743        //
1744        // FIXME: This is a hack. There should be a better way to determine
1745        // this.
1746        // FIXME: What about MS-style explicit specializations declared within a
1747        //        class definition?
1748        return D->getLexicalDeclContext()->isFileContext();
1749      },
1750      Kind);
1751}
1752
1753bool Sema::hasVisibleMemberSpecialization(
1754    const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1755  return hasAcceptableMemberSpecialization(*this, D, Modules,
1756                                           Sema::AcceptableKind::Visible);
1757}
1758
1759bool Sema::hasReachableMemberSpecialization(
1760    const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1761  return hasAcceptableMemberSpecialization(*this, D, Modules,
1762                                           Sema::AcceptableKind::Reachable);
1763}
1764
1765/// Determine whether a declaration is acceptable to name lookup.
1766///
1767/// This routine determines whether the declaration D is acceptable in the
1768/// current lookup context, taking into account the current template
1769/// instantiation stack. During template instantiation, a declaration is
1770/// acceptable if it is acceptable from a module containing any entity on the
1771/// template instantiation path (by instantiating a template, you allow it to
1772/// see the declarations that your module can see, including those later on in
1773/// your module).
1774bool LookupResult::isAcceptableSlow(Sema &SemaRef, NamedDecl *D,
1775                                    Sema::AcceptableKind Kind) {
1776  assert(!D->isUnconditionallyVisible() &&
1777         "should not call this: not in slow case");
1778
1779  Module *DeclModule = SemaRef.getOwningModule(D);
1780  assert(DeclModule && "hidden decl has no owning module");
1781
1782  // If the owning module is visible, the decl is acceptable.
1783  if (SemaRef.isModuleVisible(DeclModule,
1784                              D->isInvisibleOutsideTheOwningModule()))
1785    return true;
1786
1787  // Determine whether a decl context is a file context for the purpose of
1788  // visibility/reachability. This looks through some (export and linkage spec)
1789  // transparent contexts, but not others (enums).
1790  auto IsEffectivelyFileContext = [](const DeclContext *DC) {
1791    return DC->isFileContext() || isa<LinkageSpecDecl>(DC) ||
1792           isa<ExportDecl>(DC);
1793  };
1794
1795  // If this declaration is not at namespace scope
1796  // then it is acceptable if its lexical parent has a acceptable definition.
1797  DeclContext *DC = D->getLexicalDeclContext();
1798  if (DC && !IsEffectivelyFileContext(DC)) {
1799    // For a parameter, check whether our current template declaration's
1800    // lexical context is acceptable, not whether there's some other acceptable
1801    // definition of it, because parameters aren't "within" the definition.
1802    //
1803    // In C++ we need to check for a acceptable definition due to ODR merging,
1804    // and in C we must not because each declaration of a function gets its own
1805    // set of declarations for tags in prototype scope.
1806    bool AcceptableWithinParent;
1807    if (D->isTemplateParameter()) {
1808      bool SearchDefinitions = true;
1809      if (const auto *DCD = dyn_cast<Decl>(DC)) {
1810        if (const auto *TD = DCD->getDescribedTemplate()) {
1811          TemplateParameterList *TPL = TD->getTemplateParameters();
1812          auto Index = getDepthAndIndex(D).second;
1813          SearchDefinitions = Index >= TPL->size() || TPL->getParam(Index) != D;
1814        }
1815      }
1816      if (SearchDefinitions)
1817        AcceptableWithinParent =
1818            SemaRef.hasAcceptableDefinition(cast<NamedDecl>(DC), Kind);
1819      else
1820        AcceptableWithinParent =
1821            isAcceptable(SemaRef, cast<NamedDecl>(DC), Kind);
1822    } else if (isa<ParmVarDecl>(D) ||
1823               (isa<FunctionDecl>(DC) && !SemaRef.getLangOpts().CPlusPlus))
1824      AcceptableWithinParent = isAcceptable(SemaRef, cast<NamedDecl>(DC), Kind);
1825    else if (D->isModulePrivate()) {
1826      // A module-private declaration is only acceptable if an enclosing lexical
1827      // parent was merged with another definition in the current module.
1828      AcceptableWithinParent = false;
1829      do {
1830        if (SemaRef.hasMergedDefinitionInCurrentModule(cast<NamedDecl>(DC))) {
1831          AcceptableWithinParent = true;
1832          break;
1833        }
1834        DC = DC->getLexicalParent();
1835      } while (!IsEffectivelyFileContext(DC));
1836    } else {
1837      AcceptableWithinParent =
1838          SemaRef.hasAcceptableDefinition(cast<NamedDecl>(DC), Kind);
1839    }
1840
1841    if (AcceptableWithinParent && SemaRef.CodeSynthesisContexts.empty() &&
1842        Kind == Sema::AcceptableKind::Visible &&
1843        // FIXME: Do something better in this case.
1844        !SemaRef.getLangOpts().ModulesLocalVisibility) {
1845      // Cache the fact that this declaration is implicitly visible because
1846      // its parent has a visible definition.
1847      D->setVisibleDespiteOwningModule();
1848    }
1849    return AcceptableWithinParent;
1850  }
1851
1852  if (Kind == Sema::AcceptableKind::Visible)
1853    return false;
1854
1855  assert(Kind == Sema::AcceptableKind::Reachable &&
1856         "Additional Sema::AcceptableKind?");
1857  return isReachableSlow(SemaRef, D);
1858}
1859
1860bool Sema::isModuleVisible(const Module *M, bool ModulePrivate) {
1861  // [module.global.frag]p2:
1862  // A global-module-fragment specifies the contents of the global module
1863  // fragment for a module unit. The global module fragment can be used to
1864  // provide declarations that are attached to the global module and usable
1865  // within the module unit.
1866  //
1867  // Global module fragment is special. Global Module fragment is only usable
1868  // within the module unit it got defined [module.global.frag]p2. So here we
1869  // check if the Module is the global module fragment in current translation
1870  // unit.
1871  if (M->isGlobalModule() && M != this->GlobalModuleFragment)
1872    return false;
1873
1874  // The module might be ordinarily visible. For a module-private query, that
1875  // means it is part of the current module.
1876  if (ModulePrivate && isUsableModule(M))
1877    return true;
1878
1879  // For a query which is not module-private, that means it is in our visible
1880  // module set.
1881  if (!ModulePrivate && VisibleModules.isVisible(M))
1882    return true;
1883
1884  // Otherwise, it might be visible by virtue of the query being within a
1885  // template instantiation or similar that is permitted to look inside M.
1886
1887  // Find the extra places where we need to look.
1888  const auto &LookupModules = getLookupModules();
1889  if (LookupModules.empty())
1890    return false;
1891
1892  // If our lookup set contains the module, it's visible.
1893  if (LookupModules.count(M))
1894    return true;
1895
1896  // For a module-private query, that's everywhere we get to look.
1897  if (ModulePrivate)
1898    return false;
1899
1900  // Check whether M is transitively exported to an import of the lookup set.
1901  return llvm::any_of(LookupModules, [&](const Module *LookupM) {
1902    return LookupM->isModuleVisible(M);
1903  });
1904}
1905
1906// FIXME: Return false directly if we don't have an interface dependency on the
1907// translation unit containing D.
1908bool LookupResult::isReachableSlow(Sema &SemaRef, NamedDecl *D) {
1909  assert(!isVisible(SemaRef, D) && "Shouldn't call the slow case.\n");
1910
1911  Module *DeclModule = SemaRef.getOwningModule(D);
1912  assert(DeclModule && "hidden decl has no owning module");
1913
1914  // Entities in module map modules are reachable only if they're visible.
1915  if (DeclModule->isModuleMapModule())
1916    return false;
1917
1918  // If D comes from a module and SemaRef doesn't own a module, it implies D
1919  // comes from another TU. In case SemaRef owns a module, we could judge if D
1920  // comes from another TU by comparing the module unit.
1921  if (SemaRef.isModuleUnitOfCurrentTU(DeclModule))
1922    return true;
1923
1924  // [module.reach]/p3:
1925  // A declaration D is reachable from a point P if:
1926  // ...
1927  // - D is not discarded ([module.global.frag]), appears in a translation unit
1928  //   that is reachable from P, and does not appear within a private module
1929  //   fragment.
1930  //
1931  // A declaration that's discarded in the GMF should be module-private.
1932  if (D->isModulePrivate())
1933    return false;
1934
1935  // [module.reach]/p1
1936  //   A translation unit U is necessarily reachable from a point P if U is a
1937  //   module interface unit on which the translation unit containing P has an
1938  //   interface dependency, or the translation unit containing P imports U, in
1939  //   either case prior to P ([module.import]).
1940  //
1941  // [module.import]/p10
1942  //   A translation unit has an interface dependency on a translation unit U if
1943  //   it contains a declaration (possibly a module-declaration) that imports U
1944  //   or if it has an interface dependency on a translation unit that has an
1945  //   interface dependency on U.
1946  //
1947  // So we could conclude the module unit U is necessarily reachable if:
1948  // (1) The module unit U is module interface unit.
1949  // (2) The current unit has an interface dependency on the module unit U.
1950  //
1951  // Here we only check for the first condition. Since we couldn't see
1952  // DeclModule if it isn't (transitively) imported.
1953  if (DeclModule->getTopLevelModule()->isModuleInterfaceUnit())
1954    return true;
1955
1956  // [module.reach]/p2
1957  //   Additional translation units on
1958  //   which the point within the program has an interface dependency may be
1959  //   considered reachable, but it is unspecified which are and under what
1960  //   circumstances.
1961  //
1962  // The decision here is to treat all additional tranditional units as
1963  // unreachable.
1964  return false;
1965}
1966
1967bool Sema::isAcceptableSlow(const NamedDecl *D, Sema::AcceptableKind Kind) {
1968  return LookupResult::isAcceptable(*this, const_cast<NamedDecl *>(D), Kind);
1969}
1970
1971bool Sema::shouldLinkPossiblyHiddenDecl(LookupResult &R, const NamedDecl *New) {
1972  // FIXME: If there are both visible and hidden declarations, we need to take
1973  // into account whether redeclaration is possible. Example:
1974  //
1975  // Non-imported module:
1976  //   int f(T);        // #1
1977  // Some TU:
1978  //   static int f(U); // #2, not a redeclaration of #1
1979  //   int f(T);        // #3, finds both, should link with #1 if T != U, but
1980  //                    // with #2 if T == U; neither should be ambiguous.
1981  for (auto *D : R) {
1982    if (isVisible(D))
1983      return true;
1984    assert(D->isExternallyDeclarable() &&
1985           "should not have hidden, non-externally-declarable result here");
1986  }
1987
1988  // This function is called once "New" is essentially complete, but before a
1989  // previous declaration is attached. We can't query the linkage of "New" in
1990  // general, because attaching the previous declaration can change the
1991  // linkage of New to match the previous declaration.
1992  //
1993  // However, because we've just determined that there is no *visible* prior
1994  // declaration, we can compute the linkage here. There are two possibilities:
1995  //
1996  //  * This is not a redeclaration; it's safe to compute the linkage now.
1997  //
1998  //  * This is a redeclaration of a prior declaration that is externally
1999  //    redeclarable. In that case, the linkage of the declaration is not
2000  //    changed by attaching the prior declaration, because both are externally
2001  //    declarable (and thus ExternalLinkage or VisibleNoLinkage).
2002  //
2003  // FIXME: This is subtle and fragile.
2004  return New->isExternallyDeclarable();
2005}
2006
2007/// Retrieve the visible declaration corresponding to D, if any.
2008///
2009/// This routine determines whether the declaration D is visible in the current
2010/// module, with the current imports. If not, it checks whether any
2011/// redeclaration of D is visible, and if so, returns that declaration.
2012///
2013/// \returns D, or a visible previous declaration of D, whichever is more recent
2014/// and visible. If no declaration of D is visible, returns null.
2015static NamedDecl *findAcceptableDecl(Sema &SemaRef, NamedDecl *D,
2016                                     unsigned IDNS) {
2017  assert(!LookupResult::isAvailableForLookup(SemaRef, D) && "not in slow case");
2018
2019  for (auto *RD : D->redecls()) {
2020    // Don't bother with extra checks if we already know this one isn't visible.
2021    if (RD == D)
2022      continue;
2023
2024    auto ND = cast<NamedDecl>(RD);
2025    // FIXME: This is wrong in the case where the previous declaration is not
2026    // visible in the same scope as D. This needs to be done much more
2027    // carefully.
2028    if (ND->isInIdentifierNamespace(IDNS) &&
2029        LookupResult::isAvailableForLookup(SemaRef, ND))
2030      return ND;
2031  }
2032
2033  return nullptr;
2034}
2035
2036bool Sema::hasVisibleDeclarationSlow(const NamedDecl *D,
2037                                     llvm::SmallVectorImpl<Module *> *Modules) {
2038  assert(!isVisible(D) && "not in slow case");
2039  return hasAcceptableDeclarationImpl(
2040      *this, D, Modules, [](const NamedDecl *) { return true; },
2041      Sema::AcceptableKind::Visible);
2042}
2043
2044bool Sema::hasReachableDeclarationSlow(
2045    const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
2046  assert(!isReachable(D) && "not in slow case");
2047  return hasAcceptableDeclarationImpl(
2048      *this, D, Modules, [](const NamedDecl *) { return true; },
2049      Sema::AcceptableKind::Reachable);
2050}
2051
2052NamedDecl *LookupResult::getAcceptableDeclSlow(NamedDecl *D) const {
2053  if (auto *ND = dyn_cast<NamespaceDecl>(D)) {
2054    // Namespaces are a bit of a special case: we expect there to be a lot of
2055    // redeclarations of some namespaces, all declarations of a namespace are
2056    // essentially interchangeable, all declarations are found by name lookup
2057    // if any is, and namespaces are never looked up during template
2058    // instantiation. So we benefit from caching the check in this case, and
2059    // it is correct to do so.
2060    auto *Key = ND->getCanonicalDecl();
2061    if (auto *Acceptable = getSema().VisibleNamespaceCache.lookup(Key))
2062      return Acceptable;
2063    auto *Acceptable = isVisible(getSema(), Key)
2064                           ? Key
2065                           : findAcceptableDecl(getSema(), Key, IDNS);
2066    if (Acceptable)
2067      getSema().VisibleNamespaceCache.insert(std::make_pair(Key, Acceptable));
2068    return Acceptable;
2069  }
2070
2071  return findAcceptableDecl(getSema(), D, IDNS);
2072}
2073
2074bool LookupResult::isVisible(Sema &SemaRef, NamedDecl *D) {
2075  // If this declaration is already visible, return it directly.
2076  if (D->isUnconditionallyVisible())
2077    return true;
2078
2079  // During template instantiation, we can refer to hidden declarations, if
2080  // they were visible in any module along the path of instantiation.
2081  return isAcceptableSlow(SemaRef, D, Sema::AcceptableKind::Visible);
2082}
2083
2084bool LookupResult::isReachable(Sema &SemaRef, NamedDecl *D) {
2085  if (D->isUnconditionallyVisible())
2086    return true;
2087
2088  return isAcceptableSlow(SemaRef, D, Sema::AcceptableKind::Reachable);
2089}
2090
2091bool LookupResult::isAvailableForLookup(Sema &SemaRef, NamedDecl *ND) {
2092  // We should check the visibility at the callsite already.
2093  if (isVisible(SemaRef, ND))
2094    return true;
2095
2096  // Deduction guide lives in namespace scope generally, but it is just a
2097  // hint to the compilers. What we actually lookup for is the generated member
2098  // of the corresponding template. So it is sufficient to check the
2099  // reachability of the template decl.
2100  if (auto *DeductionGuide = ND->getDeclName().getCXXDeductionGuideTemplate())
2101    return SemaRef.hasReachableDefinition(DeductionGuide);
2102
2103  // FIXME: The lookup for allocation function is a standalone process.
2104  // (We can find the logics in Sema::FindAllocationFunctions)
2105  //
2106  // Such structure makes it a problem when we instantiate a template
2107  // declaration using placement allocation function if the placement
2108  // allocation function is invisible.
2109  // (See https://github.com/llvm/llvm-project/issues/59601)
2110  //
2111  // Here we workaround it by making the placement allocation functions
2112  // always acceptable. The downside is that we can't diagnose the direct
2113  // use of the invisible placement allocation functions. (Although such uses
2114  // should be rare).
2115  if (auto *FD = dyn_cast<FunctionDecl>(ND);
2116      FD && FD->isReservedGlobalPlacementOperator())
2117    return true;
2118
2119  auto *DC = ND->getDeclContext();
2120  // If ND is not visible and it is at namespace scope, it shouldn't be found
2121  // by name lookup.
2122  if (DC->isFileContext())
2123    return false;
2124
2125  // [module.interface]p7
2126  // Class and enumeration member names can be found by name lookup in any
2127  // context in which a definition of the type is reachable.
2128  //
2129  // FIXME: The current implementation didn't consider about scope. For example,
2130  // ```
2131  // // m.cppm
2132  // export module m;
2133  // enum E1 { e1 };
2134  // // Use.cpp
2135  // import m;
2136  // void test() {
2137  //   auto a = E1::e1; // Error as expected.
2138  //   auto b = e1; // Should be error. namespace-scope name e1 is not visible
2139  // }
2140  // ```
2141  // For the above example, the current implementation would emit error for `a`
2142  // correctly. However, the implementation wouldn't diagnose about `b` now.
2143  // Since we only check the reachability for the parent only.
2144  // See clang/test/CXX/module/module.interface/p7.cpp for example.
2145  if (auto *TD = dyn_cast<TagDecl>(DC))
2146    return SemaRef.hasReachableDefinition(TD);
2147
2148  return false;
2149}
2150
2151/// Perform unqualified name lookup starting from a given
2152/// scope.
2153///
2154/// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
2155/// used to find names within the current scope. For example, 'x' in
2156/// @code
2157/// int x;
2158/// int f() {
2159///   return x; // unqualified name look finds 'x' in the global scope
2160/// }
2161/// @endcode
2162///
2163/// Different lookup criteria can find different names. For example, a
2164/// particular scope can have both a struct and a function of the same
2165/// name, and each can be found by certain lookup criteria. For more
2166/// information about lookup criteria, see the documentation for the
2167/// class LookupCriteria.
2168///
2169/// @param S        The scope from which unqualified name lookup will
2170/// begin. If the lookup criteria permits, name lookup may also search
2171/// in the parent scopes.
2172///
2173/// @param [in,out] R Specifies the lookup to perform (e.g., the name to
2174/// look up and the lookup kind), and is updated with the results of lookup
2175/// including zero or more declarations and possibly additional information
2176/// used to diagnose ambiguities.
2177///
2178/// @returns \c true if lookup succeeded and false otherwise.
2179bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation,
2180                      bool ForceNoCPlusPlus) {
2181  DeclarationName Name = R.getLookupName();
2182  if (!Name) return false;
2183
2184  LookupNameKind NameKind = R.getLookupKind();
2185
2186  if (!getLangOpts().CPlusPlus || ForceNoCPlusPlus) {
2187    // Unqualified name lookup in C/Objective-C is purely lexical, so
2188    // search in the declarations attached to the name.
2189    if (NameKind == Sema::LookupRedeclarationWithLinkage) {
2190      // Find the nearest non-transparent declaration scope.
2191      while (!(S->getFlags() & Scope::DeclScope) ||
2192             (S->getEntity() && S->getEntity()->isTransparentContext()))
2193        S = S->getParent();
2194    }
2195
2196    // When performing a scope lookup, we want to find local extern decls.
2197    FindLocalExternScope FindLocals(R);
2198
2199    // Scan up the scope chain looking for a decl that matches this
2200    // identifier that is in the appropriate namespace.  This search
2201    // should not take long, as shadowing of names is uncommon, and
2202    // deep shadowing is extremely uncommon.
2203    bool LeftStartingScope = false;
2204
2205    for (IdentifierResolver::iterator I = IdResolver.begin(Name),
2206                                   IEnd = IdResolver.end();
2207         I != IEnd; ++I)
2208      if (NamedDecl *D = R.getAcceptableDecl(*I)) {
2209        if (NameKind == LookupRedeclarationWithLinkage) {
2210          // Determine whether this (or a previous) declaration is
2211          // out-of-scope.
2212          if (!LeftStartingScope && !S->isDeclScope(*I))
2213            LeftStartingScope = true;
2214
2215          // If we found something outside of our starting scope that
2216          // does not have linkage, skip it.
2217          if (LeftStartingScope && !((*I)->hasLinkage())) {
2218            R.setShadowed();
2219            continue;
2220          }
2221        }
2222        else if (NameKind == LookupObjCImplicitSelfParam &&
2223                 !isa<ImplicitParamDecl>(*I))
2224          continue;
2225
2226        R.addDecl(D);
2227
2228        // Check whether there are any other declarations with the same name
2229        // and in the same scope.
2230        if (I != IEnd) {
2231          // Find the scope in which this declaration was declared (if it
2232          // actually exists in a Scope).
2233          while (S && !S->isDeclScope(D))
2234            S = S->getParent();
2235
2236          // If the scope containing the declaration is the translation unit,
2237          // then we'll need to perform our checks based on the matching
2238          // DeclContexts rather than matching scopes.
2239          if (S && isNamespaceOrTranslationUnitScope(S))
2240            S = nullptr;
2241
2242          // Compute the DeclContext, if we need it.
2243          DeclContext *DC = nullptr;
2244          if (!S)
2245            DC = (*I)->getDeclContext()->getRedeclContext();
2246
2247          IdentifierResolver::iterator LastI = I;
2248          for (++LastI; LastI != IEnd; ++LastI) {
2249            if (S) {
2250              // Match based on scope.
2251              if (!S->isDeclScope(*LastI))
2252                break;
2253            } else {
2254              // Match based on DeclContext.
2255              DeclContext *LastDC
2256                = (*LastI)->getDeclContext()->getRedeclContext();
2257              if (!LastDC->Equals(DC))
2258                break;
2259            }
2260
2261            // If the declaration is in the right namespace and visible, add it.
2262            if (NamedDecl *LastD = R.getAcceptableDecl(*LastI))
2263              R.addDecl(LastD);
2264          }
2265
2266          R.resolveKind();
2267        }
2268
2269        return true;
2270      }
2271  } else {
2272    // Perform C++ unqualified name lookup.
2273    if (CppLookupName(R, S))
2274      return true;
2275  }
2276
2277  // If we didn't find a use of this identifier, and if the identifier
2278  // corresponds to a compiler builtin, create the decl object for the builtin
2279  // now, injecting it into translation unit scope, and return it.
2280  if (AllowBuiltinCreation && LookupBuiltin(R))
2281    return true;
2282
2283  // If we didn't find a use of this identifier, the ExternalSource
2284  // may be able to handle the situation.
2285  // Note: some lookup failures are expected!
2286  // See e.g. R.isForRedeclaration().
2287  return (ExternalSource && ExternalSource->LookupUnqualified(R, S));
2288}
2289
2290/// Perform qualified name lookup in the namespaces nominated by
2291/// using directives by the given context.
2292///
2293/// C++98 [namespace.qual]p2:
2294///   Given X::m (where X is a user-declared namespace), or given \::m
2295///   (where X is the global namespace), let S be the set of all
2296///   declarations of m in X and in the transitive closure of all
2297///   namespaces nominated by using-directives in X and its used
2298///   namespaces, except that using-directives are ignored in any
2299///   namespace, including X, directly containing one or more
2300///   declarations of m. No namespace is searched more than once in
2301///   the lookup of a name. If S is the empty set, the program is
2302///   ill-formed. Otherwise, if S has exactly one member, or if the
2303///   context of the reference is a using-declaration
2304///   (namespace.udecl), S is the required set of declarations of
2305///   m. Otherwise if the use of m is not one that allows a unique
2306///   declaration to be chosen from S, the program is ill-formed.
2307///
2308/// C++98 [namespace.qual]p5:
2309///   During the lookup of a qualified namespace member name, if the
2310///   lookup finds more than one declaration of the member, and if one
2311///   declaration introduces a class name or enumeration name and the
2312///   other declarations either introduce the same object, the same
2313///   enumerator or a set of functions, the non-type name hides the
2314///   class or enumeration name if and only if the declarations are
2315///   from the same namespace; otherwise (the declarations are from
2316///   different namespaces), the program is ill-formed.
2317static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R,
2318                                                 DeclContext *StartDC) {
2319  assert(StartDC->isFileContext() && "start context is not a file context");
2320
2321  // We have not yet looked into these namespaces, much less added
2322  // their "using-children" to the queue.
2323  SmallVector<NamespaceDecl*, 8> Queue;
2324
2325  // We have at least added all these contexts to the queue.
2326  llvm::SmallPtrSet<DeclContext*, 8> Visited;
2327  Visited.insert(StartDC);
2328
2329  // We have already looked into the initial namespace; seed the queue
2330  // with its using-children.
2331  for (auto *I : StartDC->using_directives()) {
2332    NamespaceDecl *ND = I->getNominatedNamespace()->getOriginalNamespace();
2333    if (S.isVisible(I) && Visited.insert(ND).second)
2334      Queue.push_back(ND);
2335  }
2336
2337  // The easiest way to implement the restriction in [namespace.qual]p5
2338  // is to check whether any of the individual results found a tag
2339  // and, if so, to declare an ambiguity if the final result is not
2340  // a tag.
2341  bool FoundTag = false;
2342  bool FoundNonTag = false;
2343
2344  LookupResult LocalR(LookupResult::Temporary, R);
2345
2346  bool Found = false;
2347  while (!Queue.empty()) {
2348    NamespaceDecl *ND = Queue.pop_back_val();
2349
2350    // We go through some convolutions here to avoid copying results
2351    // between LookupResults.
2352    bool UseLocal = !R.empty();
2353    LookupResult &DirectR = UseLocal ? LocalR : R;
2354    bool FoundDirect = LookupDirect(S, DirectR, ND);
2355
2356    if (FoundDirect) {
2357      // First do any local hiding.
2358      DirectR.resolveKind();
2359
2360      // If the local result is a tag, remember that.
2361      if (DirectR.isSingleTagDecl())
2362        FoundTag = true;
2363      else
2364        FoundNonTag = true;
2365
2366      // Append the local results to the total results if necessary.
2367      if (UseLocal) {
2368        R.addAllDecls(LocalR);
2369        LocalR.clear();
2370      }
2371    }
2372
2373    // If we find names in this namespace, ignore its using directives.
2374    if (FoundDirect) {
2375      Found = true;
2376      continue;
2377    }
2378
2379    for (auto *I : ND->using_directives()) {
2380      NamespaceDecl *Nom = I->getNominatedNamespace();
2381      if (S.isVisible(I) && Visited.insert(Nom).second)
2382        Queue.push_back(Nom);
2383    }
2384  }
2385
2386  if (Found) {
2387    if (FoundTag && FoundNonTag)
2388      R.setAmbiguousQualifiedTagHiding();
2389    else
2390      R.resolveKind();
2391  }
2392
2393  return Found;
2394}
2395
2396/// Perform qualified name lookup into a given context.
2397///
2398/// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
2399/// names when the context of those names is explicit specified, e.g.,
2400/// "std::vector" or "x->member", or as part of unqualified name lookup.
2401///
2402/// Different lookup criteria can find different names. For example, a
2403/// particular scope can have both a struct and a function of the same
2404/// name, and each can be found by certain lookup criteria. For more
2405/// information about lookup criteria, see the documentation for the
2406/// class LookupCriteria.
2407///
2408/// \param R captures both the lookup criteria and any lookup results found.
2409///
2410/// \param LookupCtx The context in which qualified name lookup will
2411/// search. If the lookup criteria permits, name lookup may also search
2412/// in the parent contexts or (for C++ classes) base classes.
2413///
2414/// \param InUnqualifiedLookup true if this is qualified name lookup that
2415/// occurs as part of unqualified name lookup.
2416///
2417/// \returns true if lookup succeeded, false if it failed.
2418bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
2419                               bool InUnqualifiedLookup) {
2420  assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context");
2421
2422  if (!R.getLookupName())
2423    return false;
2424
2425  // Make sure that the declaration context is complete.
2426  assert((!isa<TagDecl>(LookupCtx) ||
2427          LookupCtx->isDependentContext() ||
2428          cast<TagDecl>(LookupCtx)->isCompleteDefinition() ||
2429          cast<TagDecl>(LookupCtx)->isBeingDefined()) &&
2430         "Declaration context must already be complete!");
2431
2432  struct QualifiedLookupInScope {
2433    bool oldVal;
2434    DeclContext *Context;
2435    // Set flag in DeclContext informing debugger that we're looking for qualified name
2436    QualifiedLookupInScope(DeclContext *ctx) : Context(ctx) {
2437      oldVal = ctx->setUseQualifiedLookup();
2438    }
2439    ~QualifiedLookupInScope() {
2440      Context->setUseQualifiedLookup(oldVal);
2441    }
2442  } QL(LookupCtx);
2443
2444  if (LookupDirect(*this, R, LookupCtx)) {
2445    R.resolveKind();
2446    if (isa<CXXRecordDecl>(LookupCtx))
2447      R.setNamingClass(cast<CXXRecordDecl>(LookupCtx));
2448    return true;
2449  }
2450
2451  // Don't descend into implied contexts for redeclarations.
2452  // C++98 [namespace.qual]p6:
2453  //   In a declaration for a namespace member in which the
2454  //   declarator-id is a qualified-id, given that the qualified-id
2455  //   for the namespace member has the form
2456  //     nested-name-specifier unqualified-id
2457  //   the unqualified-id shall name a member of the namespace
2458  //   designated by the nested-name-specifier.
2459  // See also [class.mfct]p5 and [class.static.data]p2.
2460  if (R.isForRedeclaration())
2461    return false;
2462
2463  // If this is a namespace, look it up in the implied namespaces.
2464  if (LookupCtx->isFileContext())
2465    return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx);
2466
2467  // If this isn't a C++ class, we aren't allowed to look into base
2468  // classes, we're done.
2469  CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx);
2470  if (!LookupRec || !LookupRec->getDefinition())
2471    return false;
2472
2473  // We're done for lookups that can never succeed for C++ classes.
2474  if (R.getLookupKind() == LookupOperatorName ||
2475      R.getLookupKind() == LookupNamespaceName ||
2476      R.getLookupKind() == LookupObjCProtocolName ||
2477      R.getLookupKind() == LookupLabel)
2478    return false;
2479
2480  // If we're performing qualified name lookup into a dependent class,
2481  // then we are actually looking into a current instantiation. If we have any
2482  // dependent base classes, then we either have to delay lookup until
2483  // template instantiation time (at which point all bases will be available)
2484  // or we have to fail.
2485  if (!InUnqualifiedLookup && LookupRec->isDependentContext() &&
2486      LookupRec->hasAnyDependentBases()) {
2487    R.setNotFoundInCurrentInstantiation();
2488    return false;
2489  }
2490
2491  // Perform lookup into our base classes.
2492
2493  DeclarationName Name = R.getLookupName();
2494  unsigned IDNS = R.getIdentifierNamespace();
2495
2496  // Look for this member in our base classes.
2497  auto BaseCallback = [Name, IDNS](const CXXBaseSpecifier *Specifier,
2498                                   CXXBasePath &Path) -> bool {
2499    CXXRecordDecl *BaseRecord = Specifier->getType()->getAsCXXRecordDecl();
2500    // Drop leading non-matching lookup results from the declaration list so
2501    // we don't need to consider them again below.
2502    for (Path.Decls = BaseRecord->lookup(Name).begin();
2503         Path.Decls != Path.Decls.end(); ++Path.Decls) {
2504      if ((*Path.Decls)->isInIdentifierNamespace(IDNS))
2505        return true;
2506    }
2507    return false;
2508  };
2509
2510  CXXBasePaths Paths;
2511  Paths.setOrigin(LookupRec);
2512  if (!LookupRec->lookupInBases(BaseCallback, Paths))
2513    return false;
2514
2515  R.setNamingClass(LookupRec);
2516
2517  // C++ [class.member.lookup]p2:
2518  //   [...] If the resulting set of declarations are not all from
2519  //   sub-objects of the same type, or the set has a nonstatic member
2520  //   and includes members from distinct sub-objects, there is an
2521  //   ambiguity and the program is ill-formed. Otherwise that set is
2522  //   the result of the lookup.
2523  QualType SubobjectType;
2524  int SubobjectNumber = 0;
2525  AccessSpecifier SubobjectAccess = AS_none;
2526
2527  // Check whether the given lookup result contains only static members.
2528  auto HasOnlyStaticMembers = [&](DeclContext::lookup_iterator Result) {
2529    for (DeclContext::lookup_iterator I = Result, E = I.end(); I != E; ++I)
2530      if ((*I)->isInIdentifierNamespace(IDNS) && (*I)->isCXXInstanceMember())
2531        return false;
2532    return true;
2533  };
2534
2535  bool TemplateNameLookup = R.isTemplateNameLookup();
2536
2537  // Determine whether two sets of members contain the same members, as
2538  // required by C++ [class.member.lookup]p6.
2539  auto HasSameDeclarations = [&](DeclContext::lookup_iterator A,
2540                                 DeclContext::lookup_iterator B) {
2541    using Iterator = DeclContextLookupResult::iterator;
2542    using Result = const void *;
2543
2544    auto Next = [&](Iterator &It, Iterator End) -> Result {
2545      while (It != End) {
2546        NamedDecl *ND = *It++;
2547        if (!ND->isInIdentifierNamespace(IDNS))
2548          continue;
2549
2550        // C++ [temp.local]p3:
2551        //   A lookup that finds an injected-class-name (10.2) can result in
2552        //   an ambiguity in certain cases (for example, if it is found in
2553        //   more than one base class). If all of the injected-class-names
2554        //   that are found refer to specializations of the same class
2555        //   template, and if the name is used as a template-name, the
2556        //   reference refers to the class template itself and not a
2557        //   specialization thereof, and is not ambiguous.
2558        if (TemplateNameLookup)
2559          if (auto *TD = getAsTemplateNameDecl(ND))
2560            ND = TD;
2561
2562        // C++ [class.member.lookup]p3:
2563        //   type declarations (including injected-class-names) are replaced by
2564        //   the types they designate
2565        if (const TypeDecl *TD = dyn_cast<TypeDecl>(ND->getUnderlyingDecl())) {
2566          QualType T = Context.getTypeDeclType(TD);
2567          return T.getCanonicalType().getAsOpaquePtr();
2568        }
2569
2570        return ND->getUnderlyingDecl()->getCanonicalDecl();
2571      }
2572      return nullptr;
2573    };
2574
2575    // We'll often find the declarations are in the same order. Handle this
2576    // case (and the special case of only one declaration) efficiently.
2577    Iterator AIt = A, BIt = B, AEnd, BEnd;
2578    while (true) {
2579      Result AResult = Next(AIt, AEnd);
2580      Result BResult = Next(BIt, BEnd);
2581      if (!AResult && !BResult)
2582        return true;
2583      if (!AResult || !BResult)
2584        return false;
2585      if (AResult != BResult) {
2586        // Found a mismatch; carefully check both lists, accounting for the
2587        // possibility of declarations appearing more than once.
2588        llvm::SmallDenseMap<Result, bool, 32> AResults;
2589        for (; AResult; AResult = Next(AIt, AEnd))
2590          AResults.insert({AResult, /*FoundInB*/false});
2591        unsigned Found = 0;
2592        for (; BResult; BResult = Next(BIt, BEnd)) {
2593          auto It = AResults.find(BResult);
2594          if (It == AResults.end())
2595            return false;
2596          if (!It->second) {
2597            It->second = true;
2598            ++Found;
2599          }
2600        }
2601        return AResults.size() == Found;
2602      }
2603    }
2604  };
2605
2606  for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
2607       Path != PathEnd; ++Path) {
2608    const CXXBasePathElement &PathElement = Path->back();
2609
2610    // Pick the best (i.e. most permissive i.e. numerically lowest) access
2611    // across all paths.
2612    SubobjectAccess = std::min(SubobjectAccess, Path->Access);
2613
2614    // Determine whether we're looking at a distinct sub-object or not.
2615    if (SubobjectType.isNull()) {
2616      // This is the first subobject we've looked at. Record its type.
2617      SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
2618      SubobjectNumber = PathElement.SubobjectNumber;
2619      continue;
2620    }
2621
2622    if (SubobjectType !=
2623        Context.getCanonicalType(PathElement.Base->getType())) {
2624      // We found members of the given name in two subobjects of
2625      // different types. If the declaration sets aren't the same, this
2626      // lookup is ambiguous.
2627      //
2628      // FIXME: The language rule says that this applies irrespective of
2629      // whether the sets contain only static members.
2630      if (HasOnlyStaticMembers(Path->Decls) &&
2631          HasSameDeclarations(Paths.begin()->Decls, Path->Decls))
2632        continue;
2633
2634      R.setAmbiguousBaseSubobjectTypes(Paths);
2635      return true;
2636    }
2637
2638    // FIXME: This language rule no longer exists. Checking for ambiguous base
2639    // subobjects should be done as part of formation of a class member access
2640    // expression (when converting the object parameter to the member's type).
2641    if (SubobjectNumber != PathElement.SubobjectNumber) {
2642      // We have a different subobject of the same type.
2643
2644      // C++ [class.member.lookup]p5:
2645      //   A static member, a nested type or an enumerator defined in
2646      //   a base class T can unambiguously be found even if an object
2647      //   has more than one base class subobject of type T.
2648      if (HasOnlyStaticMembers(Path->Decls))
2649        continue;
2650
2651      // We have found a nonstatic member name in multiple, distinct
2652      // subobjects. Name lookup is ambiguous.
2653      R.setAmbiguousBaseSubobjects(Paths);
2654      return true;
2655    }
2656  }
2657
2658  // Lookup in a base class succeeded; return these results.
2659
2660  for (DeclContext::lookup_iterator I = Paths.front().Decls, E = I.end();
2661       I != E; ++I) {
2662    AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess,
2663                                                    (*I)->getAccess());
2664    if (NamedDecl *ND = R.getAcceptableDecl(*I))
2665      R.addDecl(ND, AS);
2666  }
2667  R.resolveKind();
2668  return true;
2669}
2670
2671/// Performs qualified name lookup or special type of lookup for
2672/// "__super::" scope specifier.
2673///
2674/// This routine is a convenience overload meant to be called from contexts
2675/// that need to perform a qualified name lookup with an optional C++ scope
2676/// specifier that might require special kind of lookup.
2677///
2678/// \param R captures both the lookup criteria and any lookup results found.
2679///
2680/// \param LookupCtx The context in which qualified name lookup will
2681/// search.
2682///
2683/// \param SS An optional C++ scope-specifier.
2684///
2685/// \returns true if lookup succeeded, false if it failed.
2686bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
2687                               CXXScopeSpec &SS) {
2688  auto *NNS = SS.getScopeRep();
2689  if (NNS && NNS->getKind() == NestedNameSpecifier::Super)
2690    return LookupInSuper(R, NNS->getAsRecordDecl());
2691  else
2692
2693    return LookupQualifiedName(R, LookupCtx);
2694}
2695
2696/// Performs name lookup for a name that was parsed in the
2697/// source code, and may contain a C++ scope specifier.
2698///
2699/// This routine is a convenience routine meant to be called from
2700/// contexts that receive a name and an optional C++ scope specifier
2701/// (e.g., "N::M::x"). It will then perform either qualified or
2702/// unqualified name lookup (with LookupQualifiedName or LookupName,
2703/// respectively) on the given name and return those results. It will
2704/// perform a special type of lookup for "__super::" scope specifier.
2705///
2706/// @param S        The scope from which unqualified name lookup will
2707/// begin.
2708///
2709/// @param SS       An optional C++ scope-specifier, e.g., "::N::M".
2710///
2711/// @param EnteringContext Indicates whether we are going to enter the
2712/// context of the scope-specifier SS (if present).
2713///
2714/// @returns True if any decls were found (but possibly ambiguous)
2715bool Sema::LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS,
2716                            bool AllowBuiltinCreation, bool EnteringContext) {
2717  if (SS && SS->isInvalid()) {
2718    // When the scope specifier is invalid, don't even look for
2719    // anything.
2720    return false;
2721  }
2722
2723  if (SS && SS->isSet()) {
2724    NestedNameSpecifier *NNS = SS->getScopeRep();
2725    if (NNS->getKind() == NestedNameSpecifier::Super)
2726      return LookupInSuper(R, NNS->getAsRecordDecl());
2727
2728    if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) {
2729      // We have resolved the scope specifier to a particular declaration
2730      // contex, and will perform name lookup in that context.
2731      if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC))
2732        return false;
2733
2734      R.setContextRange(SS->getRange());
2735      return LookupQualifiedName(R, DC);
2736    }
2737
2738    // We could not resolve the scope specified to a specific declaration
2739    // context, which means that SS refers to an unknown specialization.
2740    // Name lookup can't find anything in this case.
2741    R.setNotFoundInCurrentInstantiation();
2742    R.setContextRange(SS->getRange());
2743    return false;
2744  }
2745
2746  // Perform unqualified name lookup starting in the given scope.
2747  return LookupName(R, S, AllowBuiltinCreation);
2748}
2749
2750/// Perform qualified name lookup into all base classes of the given
2751/// class.
2752///
2753/// \param R captures both the lookup criteria and any lookup results found.
2754///
2755/// \param Class The context in which qualified name lookup will
2756/// search. Name lookup will search in all base classes merging the results.
2757///
2758/// @returns True if any decls were found (but possibly ambiguous)
2759bool Sema::LookupInSuper(LookupResult &R, CXXRecordDecl *Class) {
2760  // The access-control rules we use here are essentially the rules for
2761  // doing a lookup in Class that just magically skipped the direct
2762  // members of Class itself.  That is, the naming class is Class, and the
2763  // access includes the access of the base.
2764  for (const auto &BaseSpec : Class->bases()) {
2765    CXXRecordDecl *RD = cast<CXXRecordDecl>(
2766        BaseSpec.getType()->castAs<RecordType>()->getDecl());
2767    LookupResult Result(*this, R.getLookupNameInfo(), R.getLookupKind());
2768    Result.setBaseObjectType(Context.getRecordType(Class));
2769    LookupQualifiedName(Result, RD);
2770
2771    // Copy the lookup results into the target, merging the base's access into
2772    // the path access.
2773    for (auto I = Result.begin(), E = Result.end(); I != E; ++I) {
2774      R.addDecl(I.getDecl(),
2775                CXXRecordDecl::MergeAccess(BaseSpec.getAccessSpecifier(),
2776                                           I.getAccess()));
2777    }
2778
2779    Result.suppressDiagnostics();
2780  }
2781
2782  R.resolveKind();
2783  R.setNamingClass(Class);
2784
2785  return !R.empty();
2786}
2787
2788/// Produce a diagnostic describing the ambiguity that resulted
2789/// from name lookup.
2790///
2791/// \param Result The result of the ambiguous lookup to be diagnosed.
2792void Sema::DiagnoseAmbiguousLookup(LookupResult &Result) {
2793  assert(Result.isAmbiguous() && "Lookup result must be ambiguous");
2794
2795  DeclarationName Name = Result.getLookupName();
2796  SourceLocation NameLoc = Result.getNameLoc();
2797  SourceRange LookupRange = Result.getContextRange();
2798
2799  switch (Result.getAmbiguityKind()) {
2800  case LookupResult::AmbiguousBaseSubobjects: {
2801    CXXBasePaths *Paths = Result.getBasePaths();
2802    QualType SubobjectType = Paths->front().back().Base->getType();
2803    Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
2804      << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
2805      << LookupRange;
2806
2807    DeclContext::lookup_iterator Found = Paths->front().Decls;
2808    while (isa<CXXMethodDecl>(*Found) &&
2809           cast<CXXMethodDecl>(*Found)->isStatic())
2810      ++Found;
2811
2812    Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
2813    break;
2814  }
2815
2816  case LookupResult::AmbiguousBaseSubobjectTypes: {
2817    Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
2818      << Name << LookupRange;
2819
2820    CXXBasePaths *Paths = Result.getBasePaths();
2821    std::set<const NamedDecl *> DeclsPrinted;
2822    for (CXXBasePaths::paths_iterator Path = Paths->begin(),
2823                                      PathEnd = Paths->end();
2824         Path != PathEnd; ++Path) {
2825      const NamedDecl *D = *Path->Decls;
2826      if (!D->isInIdentifierNamespace(Result.getIdentifierNamespace()))
2827        continue;
2828      if (DeclsPrinted.insert(D).second) {
2829        if (const auto *TD = dyn_cast<TypedefNameDecl>(D->getUnderlyingDecl()))
2830          Diag(D->getLocation(), diag::note_ambiguous_member_type_found)
2831              << TD->getUnderlyingType();
2832        else if (const auto *TD = dyn_cast<TypeDecl>(D->getUnderlyingDecl()))
2833          Diag(D->getLocation(), diag::note_ambiguous_member_type_found)
2834              << Context.getTypeDeclType(TD);
2835        else
2836          Diag(D->getLocation(), diag::note_ambiguous_member_found);
2837      }
2838    }
2839    break;
2840  }
2841
2842  case LookupResult::AmbiguousTagHiding: {
2843    Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange;
2844
2845    llvm::SmallPtrSet<NamedDecl*, 8> TagDecls;
2846
2847    for (auto *D : Result)
2848      if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
2849        TagDecls.insert(TD);
2850        Diag(TD->getLocation(), diag::note_hidden_tag);
2851      }
2852
2853    for (auto *D : Result)
2854      if (!isa<TagDecl>(D))
2855        Diag(D->getLocation(), diag::note_hiding_object);
2856
2857    // For recovery purposes, go ahead and implement the hiding.
2858    LookupResult::Filter F = Result.makeFilter();
2859    while (F.hasNext()) {
2860      if (TagDecls.count(F.next()))
2861        F.erase();
2862    }
2863    F.done();
2864    break;
2865  }
2866
2867  case LookupResult::AmbiguousReference: {
2868    Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;
2869
2870    for (auto *D : Result)
2871      Diag(D->getLocation(), diag::note_ambiguous_candidate) << D;
2872    break;
2873  }
2874  }
2875}
2876
2877namespace {
2878  struct AssociatedLookup {
2879    AssociatedLookup(Sema &S, SourceLocation InstantiationLoc,
2880                     Sema::AssociatedNamespaceSet &Namespaces,
2881                     Sema::AssociatedClassSet &Classes)
2882      : S(S), Namespaces(Namespaces), Classes(Classes),
2883        InstantiationLoc(InstantiationLoc) {
2884    }
2885
2886    bool addClassTransitive(CXXRecordDecl *RD) {
2887      Classes.insert(RD);
2888      return ClassesTransitive.insert(RD);
2889    }
2890
2891    Sema &S;
2892    Sema::AssociatedNamespaceSet &Namespaces;
2893    Sema::AssociatedClassSet &Classes;
2894    SourceLocation InstantiationLoc;
2895
2896  private:
2897    Sema::AssociatedClassSet ClassesTransitive;
2898  };
2899} // end anonymous namespace
2900
2901static void
2902addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T);
2903
2904// Given the declaration context \param Ctx of a class, class template or
2905// enumeration, add the associated namespaces to \param Namespaces as described
2906// in [basic.lookup.argdep]p2.
2907static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces,
2908                                      DeclContext *Ctx) {
2909  // The exact wording has been changed in C++14 as a result of
2910  // CWG 1691 (see also CWG 1690 and CWG 1692). We apply it unconditionally
2911  // to all language versions since it is possible to return a local type
2912  // from a lambda in C++11.
2913  //
2914  // C++14 [basic.lookup.argdep]p2:
2915  //   If T is a class type [...]. Its associated namespaces are the innermost
2916  //   enclosing namespaces of its associated classes. [...]
2917  //
2918  //   If T is an enumeration type, its associated namespace is the innermost
2919  //   enclosing namespace of its declaration. [...]
2920
2921  // We additionally skip inline namespaces. The innermost non-inline namespace
2922  // contains all names of all its nested inline namespaces anyway, so we can
2923  // replace the entire inline namespace tree with its root.
2924  while (!Ctx->isFileContext() || Ctx->isInlineNamespace())
2925    Ctx = Ctx->getParent();
2926
2927  Namespaces.insert(Ctx->getPrimaryContext());
2928}
2929
2930// Add the associated classes and namespaces for argument-dependent
2931// lookup that involves a template argument (C++ [basic.lookup.argdep]p2).
2932static void
2933addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
2934                                  const TemplateArgument &Arg) {
2935  // C++ [basic.lookup.argdep]p2, last bullet:
2936  //   -- [...] ;
2937  switch (Arg.getKind()) {
2938    case TemplateArgument::Null:
2939      break;
2940
2941    case TemplateArgument::Type:
2942      // [...] the namespaces and classes associated with the types of the
2943      // template arguments provided for template type parameters (excluding
2944      // template template parameters)
2945      addAssociatedClassesAndNamespaces(Result, Arg.getAsType());
2946      break;
2947
2948    case TemplateArgument::Template:
2949    case TemplateArgument::TemplateExpansion: {
2950      // [...] the namespaces in which any template template arguments are
2951      // defined; and the classes in which any member templates used as
2952      // template template arguments are defined.
2953      TemplateName Template = Arg.getAsTemplateOrTemplatePattern();
2954      if (ClassTemplateDecl *ClassTemplate
2955                 = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) {
2956        DeclContext *Ctx = ClassTemplate->getDeclContext();
2957        if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2958          Result.Classes.insert(EnclosingClass);
2959        // Add the associated namespace for this class.
2960        CollectEnclosingNamespace(Result.Namespaces, Ctx);
2961      }
2962      break;
2963    }
2964
2965    case TemplateArgument::Declaration:
2966    case TemplateArgument::Integral:
2967    case TemplateArgument::Expression:
2968    case TemplateArgument::NullPtr:
2969      // [Note: non-type template arguments do not contribute to the set of
2970      //  associated namespaces. ]
2971      break;
2972
2973    case TemplateArgument::Pack:
2974      for (const auto &P : Arg.pack_elements())
2975        addAssociatedClassesAndNamespaces(Result, P);
2976      break;
2977  }
2978}
2979
2980// Add the associated classes and namespaces for argument-dependent lookup
2981// with an argument of class type (C++ [basic.lookup.argdep]p2).
2982static void
2983addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
2984                                  CXXRecordDecl *Class) {
2985
2986  // Just silently ignore anything whose name is __va_list_tag.
2987  if (Class->getDeclName() == Result.S.VAListTagName)
2988    return;
2989
2990  // C++ [basic.lookup.argdep]p2:
2991  //   [...]
2992  //     -- If T is a class type (including unions), its associated
2993  //        classes are: the class itself; the class of which it is a
2994  //        member, if any; and its direct and indirect base classes.
2995  //        Its associated namespaces are the innermost enclosing
2996  //        namespaces of its associated classes.
2997
2998  // Add the class of which it is a member, if any.
2999  DeclContext *Ctx = Class->getDeclContext();
3000  if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
3001    Result.Classes.insert(EnclosingClass);
3002
3003  // Add the associated namespace for this class.
3004  CollectEnclosingNamespace(Result.Namespaces, Ctx);
3005
3006  // -- If T is a template-id, its associated namespaces and classes are
3007  //    the namespace in which the template is defined; for member
3008  //    templates, the member template's class; the namespaces and classes
3009  //    associated with the types of the template arguments provided for
3010  //    template type parameters (excluding template template parameters); the
3011  //    namespaces in which any template template arguments are defined; and
3012  //    the classes in which any member templates used as template template
3013  //    arguments are defined. [Note: non-type template arguments do not
3014  //    contribute to the set of associated namespaces. ]
3015  if (ClassTemplateSpecializationDecl *Spec
3016        = dyn_cast<ClassTemplateSpecializationDecl>(Class)) {
3017    DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext();
3018    if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
3019      Result.Classes.insert(EnclosingClass);
3020    // Add the associated namespace for this class.
3021    CollectEnclosingNamespace(Result.Namespaces, Ctx);
3022
3023    const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
3024    for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
3025      addAssociatedClassesAndNamespaces(Result, TemplateArgs[I]);
3026  }
3027
3028  // Add the class itself. If we've already transitively visited this class,
3029  // we don't need to visit base classes.
3030  if (!Result.addClassTransitive(Class))
3031    return;
3032
3033  // Only recurse into base classes for complete types.
3034  if (!Result.S.isCompleteType(Result.InstantiationLoc,
3035                               Result.S.Context.getRecordType(Class)))
3036    return;
3037
3038  // Add direct and indirect base classes along with their associated
3039  // namespaces.
3040  SmallVector<CXXRecordDecl *, 32> Bases;
3041  Bases.push_back(Class);
3042  while (!Bases.empty()) {
3043    // Pop this class off the stack.
3044    Class = Bases.pop_back_val();
3045
3046    // Visit the base classes.
3047    for (const auto &Base : Class->bases()) {
3048      const RecordType *BaseType = Base.getType()->getAs<RecordType>();
3049      // In dependent contexts, we do ADL twice, and the first time around,
3050      // the base type might be a dependent TemplateSpecializationType, or a
3051      // TemplateTypeParmType. If that happens, simply ignore it.
3052      // FIXME: If we want to support export, we probably need to add the
3053      // namespace of the template in a TemplateSpecializationType, or even
3054      // the classes and namespaces of known non-dependent arguments.
3055      if (!BaseType)
3056        continue;
3057      CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
3058      if (Result.addClassTransitive(BaseDecl)) {
3059        // Find the associated namespace for this base class.
3060        DeclContext *BaseCtx = BaseDecl->getDeclContext();
3061        CollectEnclosingNamespace(Result.Namespaces, BaseCtx);
3062
3063        // Make sure we visit the bases of this base class.
3064        if (BaseDecl->bases_begin() != BaseDecl->bases_end())
3065          Bases.push_back(BaseDecl);
3066      }
3067    }
3068  }
3069}
3070
3071// Add the associated classes and namespaces for
3072// argument-dependent lookup with an argument of type T
3073// (C++ [basic.lookup.koenig]p2).
3074static void
3075addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) {
3076  // C++ [basic.lookup.koenig]p2:
3077  //
3078  //   For each argument type T in the function call, there is a set
3079  //   of zero or more associated namespaces and a set of zero or more
3080  //   associated classes to be considered. The sets of namespaces and
3081  //   classes is determined entirely by the types of the function
3082  //   arguments (and the namespace of any template template
3083  //   argument). Typedef names and using-declarations used to specify
3084  //   the types do not contribute to this set. The sets of namespaces
3085  //   and classes are determined in the following way:
3086
3087  SmallVector<const Type *, 16> Queue;
3088  const Type *T = Ty->getCanonicalTypeInternal().getTypePtr();
3089
3090  while (true) {
3091    switch (T->getTypeClass()) {
3092
3093#define TYPE(Class, Base)
3094#define DEPENDENT_TYPE(Class, Base) case Type::Class:
3095#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
3096#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
3097#define ABSTRACT_TYPE(Class, Base)
3098#include "clang/AST/TypeNodes.inc"
3099      // T is canonical.  We can also ignore dependent types because
3100      // we don't need to do ADL at the definition point, but if we
3101      // wanted to implement template export (or if we find some other
3102      // use for associated classes and namespaces...) this would be
3103      // wrong.
3104      break;
3105
3106    //    -- If T is a pointer to U or an array of U, its associated
3107    //       namespaces and classes are those associated with U.
3108    case Type::Pointer:
3109      T = cast<PointerType>(T)->getPointeeType().getTypePtr();
3110      continue;
3111    case Type::ConstantArray:
3112    case Type::IncompleteArray:
3113    case Type::VariableArray:
3114      T = cast<ArrayType>(T)->getElementType().getTypePtr();
3115      continue;
3116
3117    //     -- If T is a fundamental type, its associated sets of
3118    //        namespaces and classes are both empty.
3119    case Type::Builtin:
3120      break;
3121
3122    //     -- If T is a class type (including unions), its associated
3123    //        classes are: the class itself; the class of which it is
3124    //        a member, if any; and its direct and indirect base classes.
3125    //        Its associated namespaces are the innermost enclosing
3126    //        namespaces of its associated classes.
3127    case Type::Record: {
3128      CXXRecordDecl *Class =
3129          cast<CXXRecordDecl>(cast<RecordType>(T)->getDecl());
3130      addAssociatedClassesAndNamespaces(Result, Class);
3131      break;
3132    }
3133
3134    //     -- If T is an enumeration type, its associated namespace
3135    //        is the innermost enclosing namespace of its declaration.
3136    //        If it is a class member, its associated class is the
3137    //        member���s class; else it has no associated class.
3138    case Type::Enum: {
3139      EnumDecl *Enum = cast<EnumType>(T)->getDecl();
3140
3141      DeclContext *Ctx = Enum->getDeclContext();
3142      if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
3143        Result.Classes.insert(EnclosingClass);
3144
3145      // Add the associated namespace for this enumeration.
3146      CollectEnclosingNamespace(Result.Namespaces, Ctx);
3147
3148      break;
3149    }
3150
3151    //     -- If T is a function type, its associated namespaces and
3152    //        classes are those associated with the function parameter
3153    //        types and those associated with the return type.
3154    case Type::FunctionProto: {
3155      const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
3156      for (const auto &Arg : Proto->param_types())
3157        Queue.push_back(Arg.getTypePtr());
3158      // fallthrough
3159      [[fallthrough]];
3160    }
3161    case Type::FunctionNoProto: {
3162      const FunctionType *FnType = cast<FunctionType>(T);
3163      T = FnType->getReturnType().getTypePtr();
3164      continue;
3165    }
3166
3167    //     -- If T is a pointer to a member function of a class X, its
3168    //        associated namespaces and classes are those associated
3169    //        with the function parameter types and return type,
3170    //        together with those associated with X.
3171    //
3172    //     -- If T is a pointer to a data member of class X, its
3173    //        associated namespaces and classes are those associated
3174    //        with the member type together with those associated with
3175    //        X.
3176    case Type::MemberPointer: {
3177      const MemberPointerType *MemberPtr = cast<MemberPointerType>(T);
3178
3179      // Queue up the class type into which this points.
3180      Queue.push_back(MemberPtr->getClass());
3181
3182      // And directly continue with the pointee type.
3183      T = MemberPtr->getPointeeType().getTypePtr();
3184      continue;
3185    }
3186
3187    // As an extension, treat this like a normal pointer.
3188    case Type::BlockPointer:
3189      T = cast<BlockPointerType>(T)->getPointeeType().getTypePtr();
3190      continue;
3191
3192    // References aren't covered by the standard, but that's such an
3193    // obvious defect that we cover them anyway.
3194    case Type::LValueReference:
3195    case Type::RValueReference:
3196      T = cast<ReferenceType>(T)->getPointeeType().getTypePtr();
3197      continue;
3198
3199    // These are fundamental types.
3200    case Type::Vector:
3201    case Type::ExtVector:
3202    case Type::ConstantMatrix:
3203    case Type::Complex:
3204    case Type::BitInt:
3205      break;
3206
3207    // Non-deduced auto types only get here for error cases.
3208    case Type::Auto:
3209    case Type::DeducedTemplateSpecialization:
3210      break;
3211
3212    // If T is an Objective-C object or interface type, or a pointer to an
3213    // object or interface type, the associated namespace is the global
3214    // namespace.
3215    case Type::ObjCObject:
3216    case Type::ObjCInterface:
3217    case Type::ObjCObjectPointer:
3218      Result.Namespaces.insert(Result.S.Context.getTranslationUnitDecl());
3219      break;
3220
3221    // Atomic types are just wrappers; use the associations of the
3222    // contained type.
3223    case Type::Atomic:
3224      T = cast<AtomicType>(T)->getValueType().getTypePtr();
3225      continue;
3226    case Type::Pipe:
3227      T = cast<PipeType>(T)->getElementType().getTypePtr();
3228      continue;
3229    }
3230
3231    if (Queue.empty())
3232      break;
3233    T = Queue.pop_back_val();
3234  }
3235}
3236
3237/// Find the associated classes and namespaces for
3238/// argument-dependent lookup for a call with the given set of
3239/// arguments.
3240///
3241/// This routine computes the sets of associated classes and associated
3242/// namespaces searched by argument-dependent lookup
3243/// (C++ [basic.lookup.argdep]) for a given set of arguments.
3244void Sema::FindAssociatedClassesAndNamespaces(
3245    SourceLocation InstantiationLoc, ArrayRef<Expr *> Args,
3246    AssociatedNamespaceSet &AssociatedNamespaces,
3247    AssociatedClassSet &AssociatedClasses) {
3248  AssociatedNamespaces.clear();
3249  AssociatedClasses.clear();
3250
3251  AssociatedLookup Result(*this, InstantiationLoc,
3252                          AssociatedNamespaces, AssociatedClasses);
3253
3254  // C++ [basic.lookup.koenig]p2:
3255  //   For each argument type T in the function call, there is a set
3256  //   of zero or more associated namespaces and a set of zero or more
3257  //   associated classes to be considered. The sets of namespaces and
3258  //   classes is determined entirely by the types of the function
3259  //   arguments (and the namespace of any template template
3260  //   argument).
3261  for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
3262    Expr *Arg = Args[ArgIdx];
3263
3264    if (Arg->getType() != Context.OverloadTy) {
3265      addAssociatedClassesAndNamespaces(Result, Arg->getType());
3266      continue;
3267    }
3268
3269    // [...] In addition, if the argument is the name or address of a
3270    // set of overloaded functions and/or function templates, its
3271    // associated classes and namespaces are the union of those
3272    // associated with each of the members of the set: the namespace
3273    // in which the function or function template is defined and the
3274    // classes and namespaces associated with its (non-dependent)
3275    // parameter types and return type.
3276    OverloadExpr *OE = OverloadExpr::find(Arg).Expression;
3277
3278    for (const NamedDecl *D : OE->decls()) {
3279      // Look through any using declarations to find the underlying function.
3280      const FunctionDecl *FDecl = D->getUnderlyingDecl()->getAsFunction();
3281
3282      // Add the classes and namespaces associated with the parameter
3283      // types and return type of this function.
3284      addAssociatedClassesAndNamespaces(Result, FDecl->getType());
3285    }
3286  }
3287}
3288
3289NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name,
3290                                  SourceLocation Loc,
3291                                  LookupNameKind NameKind,
3292                                  RedeclarationKind Redecl) {
3293  LookupResult R(*this, Name, Loc, NameKind, Redecl);
3294  LookupName(R, S);
3295  return R.getAsSingle<NamedDecl>();
3296}
3297
3298/// Find the protocol with the given name, if any.
3299ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II,
3300                                       SourceLocation IdLoc,
3301                                       RedeclarationKind Redecl) {
3302  Decl *D = LookupSingleName(TUScope, II, IdLoc,
3303                             LookupObjCProtocolName, Redecl);
3304  return cast_or_null<ObjCProtocolDecl>(D);
3305}
3306
3307void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
3308                                        UnresolvedSetImpl &Functions) {
3309  // C++ [over.match.oper]p3:
3310  //     -- The set of non-member candidates is the result of the
3311  //        unqualified lookup of operator@ in the context of the
3312  //        expression according to the usual rules for name lookup in
3313  //        unqualified function calls (3.4.2) except that all member
3314  //        functions are ignored.
3315  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
3316  LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName);
3317  LookupName(Operators, S);
3318
3319  assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous");
3320  Functions.append(Operators.begin(), Operators.end());
3321}
3322
3323Sema::SpecialMemberOverloadResult Sema::LookupSpecialMember(CXXRecordDecl *RD,
3324                                                           CXXSpecialMember SM,
3325                                                           bool ConstArg,
3326                                                           bool VolatileArg,
3327                                                           bool RValueThis,
3328                                                           bool ConstThis,
3329                                                           bool VolatileThis) {
3330  assert(CanDeclareSpecialMemberFunction(RD) &&
3331         "doing special member lookup into record that isn't fully complete");
3332  RD = RD->getDefinition();
3333  if (RValueThis || ConstThis || VolatileThis)
3334    assert((SM == CXXCopyAssignment || SM == CXXMoveAssignment) &&
3335           "constructors and destructors always have unqualified lvalue this");
3336  if (ConstArg || VolatileArg)
3337    assert((SM != CXXDefaultConstructor && SM != CXXDestructor) &&
3338           "parameter-less special members can't have qualified arguments");
3339
3340  // FIXME: Get the caller to pass in a location for the lookup.
3341  SourceLocation LookupLoc = RD->getLocation();
3342
3343  llvm::FoldingSetNodeID ID;
3344  ID.AddPointer(RD);
3345  ID.AddInteger(SM);
3346  ID.AddInteger(ConstArg);
3347  ID.AddInteger(VolatileArg);
3348  ID.AddInteger(RValueThis);
3349  ID.AddInteger(ConstThis);
3350  ID.AddInteger(VolatileThis);
3351
3352  void *InsertPoint;
3353  SpecialMemberOverloadResultEntry *Result =
3354    SpecialMemberCache.FindNodeOrInsertPos(ID, InsertPoint);
3355
3356  // This was already cached
3357  if (Result)
3358    return *Result;
3359
3360  Result = BumpAlloc.Allocate<SpecialMemberOverloadResultEntry>();
3361  Result = new (Result) SpecialMemberOverloadResultEntry(ID);
3362  SpecialMemberCache.InsertNode(Result, InsertPoint);
3363
3364  if (SM == CXXDestructor) {
3365    if (RD->needsImplicitDestructor()) {
3366      runWithSufficientStackSpace(RD->getLocation(), [&] {
3367        DeclareImplicitDestructor(RD);
3368      });
3369    }
3370    CXXDestructorDecl *DD = RD->getDestructor();
3371    Result->setMethod(DD);
3372    Result->setKind(DD && !DD->isDeleted()
3373                        ? SpecialMemberOverloadResult::Success
3374                        : SpecialMemberOverloadResult::NoMemberOrDeleted);
3375    return *Result;
3376  }
3377
3378  // Prepare for overload resolution. Here we construct a synthetic argument
3379  // if necessary and make sure that implicit functions are declared.
3380  CanQualType CanTy = Context.getCanonicalType(Context.getTagDeclType(RD));
3381  DeclarationName Name;
3382  Expr *Arg = nullptr;
3383  unsigned NumArgs;
3384
3385  QualType ArgType = CanTy;
3386  ExprValueKind VK = VK_LValue;
3387
3388  if (SM == CXXDefaultConstructor) {
3389    Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
3390    NumArgs = 0;
3391    if (RD->needsImplicitDefaultConstructor()) {
3392      runWithSufficientStackSpace(RD->getLocation(), [&] {
3393        DeclareImplicitDefaultConstructor(RD);
3394      });
3395    }
3396  } else {
3397    if (SM == CXXCopyConstructor || SM == CXXMoveConstructor) {
3398      Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
3399      if (RD->needsImplicitCopyConstructor()) {
3400        runWithSufficientStackSpace(RD->getLocation(), [&] {
3401          DeclareImplicitCopyConstructor(RD);
3402        });
3403      }
3404      if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveConstructor()) {
3405        runWithSufficientStackSpace(RD->getLocation(), [&] {
3406          DeclareImplicitMoveConstructor(RD);
3407        });
3408      }
3409    } else {
3410      Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
3411      if (RD->needsImplicitCopyAssignment()) {
3412        runWithSufficientStackSpace(RD->getLocation(), [&] {
3413          DeclareImplicitCopyAssignment(RD);
3414        });
3415      }
3416      if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveAssignment()) {
3417        runWithSufficientStackSpace(RD->getLocation(), [&] {
3418          DeclareImplicitMoveAssignment(RD);
3419        });
3420      }
3421    }
3422
3423    if (ConstArg)
3424      ArgType.addConst();
3425    if (VolatileArg)
3426      ArgType.addVolatile();
3427
3428    // This isn't /really/ specified by the standard, but it's implied
3429    // we should be working from a PRValue in the case of move to ensure
3430    // that we prefer to bind to rvalue references, and an LValue in the
3431    // case of copy to ensure we don't bind to rvalue references.
3432    // Possibly an XValue is actually correct in the case of move, but
3433    // there is no semantic difference for class types in this restricted
3434    // case.
3435    if (SM == CXXCopyConstructor || SM == CXXCopyAssignment)
3436      VK = VK_LValue;
3437    else
3438      VK = VK_PRValue;
3439  }
3440
3441  OpaqueValueExpr FakeArg(LookupLoc, ArgType, VK);
3442
3443  if (SM != CXXDefaultConstructor) {
3444    NumArgs = 1;
3445    Arg = &FakeArg;
3446  }
3447
3448  // Create the object argument
3449  QualType ThisTy = CanTy;
3450  if (ConstThis)
3451    ThisTy.addConst();
3452  if (VolatileThis)
3453    ThisTy.addVolatile();
3454  Expr::Classification Classification =
3455      OpaqueValueExpr(LookupLoc, ThisTy, RValueThis ? VK_PRValue : VK_LValue)
3456          .Classify(Context);
3457
3458  // Now we perform lookup on the name we computed earlier and do overload
3459  // resolution. Lookup is only performed directly into the class since there
3460  // will always be a (possibly implicit) declaration to shadow any others.
3461  OverloadCandidateSet OCS(LookupLoc, OverloadCandidateSet::CSK_Normal);
3462  DeclContext::lookup_result R = RD->lookup(Name);
3463
3464  if (R.empty()) {
3465    // We might have no default constructor because we have a lambda's closure
3466    // type, rather than because there's some other declared constructor.
3467    // Every class has a copy/move constructor, copy/move assignment, and
3468    // destructor.
3469    assert(SM == CXXDefaultConstructor &&
3470           "lookup for a constructor or assignment operator was empty");
3471    Result->setMethod(nullptr);
3472    Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
3473    return *Result;
3474  }
3475
3476  // Copy the candidates as our processing of them may load new declarations
3477  // from an external source and invalidate lookup_result.
3478  SmallVector<NamedDecl *, 8> Candidates(R.begin(), R.end());
3479
3480  for (NamedDecl *CandDecl : Candidates) {
3481    if (CandDecl->isInvalidDecl())
3482      continue;
3483
3484    DeclAccessPair Cand = DeclAccessPair::make(CandDecl, AS_public);
3485    auto CtorInfo = getConstructorInfo(Cand);
3486    if (CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(Cand->getUnderlyingDecl())) {
3487      if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
3488        AddMethodCandidate(M, Cand, RD, ThisTy, Classification,
3489                           llvm::ArrayRef(&Arg, NumArgs), OCS, true);
3490      else if (CtorInfo)
3491        AddOverloadCandidate(CtorInfo.Constructor, CtorInfo.FoundDecl,
3492                             llvm::ArrayRef(&Arg, NumArgs), OCS,
3493                             /*SuppressUserConversions*/ true);
3494      else
3495        AddOverloadCandidate(M, Cand, llvm::ArrayRef(&Arg, NumArgs), OCS,
3496                             /*SuppressUserConversions*/ true);
3497    } else if (FunctionTemplateDecl *Tmpl =
3498                 dyn_cast<FunctionTemplateDecl>(Cand->getUnderlyingDecl())) {
3499      if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
3500        AddMethodTemplateCandidate(Tmpl, Cand, RD, nullptr, ThisTy,
3501                                   Classification,
3502                                   llvm::ArrayRef(&Arg, NumArgs), OCS, true);
3503      else if (CtorInfo)
3504        AddTemplateOverloadCandidate(CtorInfo.ConstructorTmpl,
3505                                     CtorInfo.FoundDecl, nullptr,
3506                                     llvm::ArrayRef(&Arg, NumArgs), OCS, true);
3507      else
3508        AddTemplateOverloadCandidate(Tmpl, Cand, nullptr,
3509                                     llvm::ArrayRef(&Arg, NumArgs), OCS, true);
3510    } else {
3511      assert(isa<UsingDecl>(Cand.getDecl()) &&
3512             "illegal Kind of operator = Decl");
3513    }
3514  }
3515
3516  OverloadCandidateSet::iterator Best;
3517  switch (OCS.BestViableFunction(*this, LookupLoc, Best)) {
3518    case OR_Success:
3519      Result->setMethod(cast<CXXMethodDecl>(Best->Function));
3520      Result->setKind(SpecialMemberOverloadResult::Success);
3521      break;
3522
3523    case OR_Deleted:
3524      Result->setMethod(cast<CXXMethodDecl>(Best->Function));
3525      Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
3526      break;
3527
3528    case OR_Ambiguous:
3529      Result->setMethod(nullptr);
3530      Result->setKind(SpecialMemberOverloadResult::Ambiguous);
3531      break;
3532
3533    case OR_No_Viable_Function:
3534      Result->setMethod(nullptr);
3535      Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
3536      break;
3537  }
3538
3539  return *Result;
3540}
3541
3542/// Look up the default constructor for the given class.
3543CXXConstructorDecl *Sema::LookupDefaultConstructor(CXXRecordDecl *Class) {
3544  SpecialMemberOverloadResult Result =
3545    LookupSpecialMember(Class, CXXDefaultConstructor, false, false, false,
3546                        false, false);
3547
3548  return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3549}
3550
3551/// Look up the copying constructor for the given class.
3552CXXConstructorDecl *Sema::LookupCopyingConstructor(CXXRecordDecl *Class,
3553                                                   unsigned Quals) {
3554  assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3555         "non-const, non-volatile qualifiers for copy ctor arg");
3556  SpecialMemberOverloadResult Result =
3557    LookupSpecialMember(Class, CXXCopyConstructor, Quals & Qualifiers::Const,
3558                        Quals & Qualifiers::Volatile, false, false, false);
3559
3560  return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3561}
3562
3563/// Look up the moving constructor for the given class.
3564CXXConstructorDecl *Sema::LookupMovingConstructor(CXXRecordDecl *Class,
3565                                                  unsigned Quals) {
3566  SpecialMemberOverloadResult Result =
3567    LookupSpecialMember(Class, CXXMoveConstructor, Quals & Qualifiers::Const,
3568                        Quals & Qualifiers::Volatile, false, false, false);
3569
3570  return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3571}
3572
3573/// Look up the constructors for the given class.
3574DeclContext::lookup_result Sema::LookupConstructors(CXXRecordDecl *Class) {
3575  // If the implicit constructors have not yet been declared, do so now.
3576  if (CanDeclareSpecialMemberFunction(Class)) {
3577    runWithSufficientStackSpace(Class->getLocation(), [&] {
3578      if (Class->needsImplicitDefaultConstructor())
3579        DeclareImplicitDefaultConstructor(Class);
3580      if (Class->needsImplicitCopyConstructor())
3581        DeclareImplicitCopyConstructor(Class);
3582      if (getLangOpts().CPlusPlus11 && Class->needsImplicitMoveConstructor())
3583        DeclareImplicitMoveConstructor(Class);
3584    });
3585  }
3586
3587  CanQualType T = Context.getCanonicalType(Context.getTypeDeclType(Class));
3588  DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(T);
3589  return Class->lookup(Name);
3590}
3591
3592/// Look up the copying assignment operator for the given class.
3593CXXMethodDecl *Sema::LookupCopyingAssignment(CXXRecordDecl *Class,
3594                                             unsigned Quals, bool RValueThis,
3595                                             unsigned ThisQuals) {
3596  assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3597         "non-const, non-volatile qualifiers for copy assignment arg");
3598  assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3599         "non-const, non-volatile qualifiers for copy assignment this");
3600  SpecialMemberOverloadResult Result =
3601    LookupSpecialMember(Class, CXXCopyAssignment, Quals & Qualifiers::Const,
3602                        Quals & Qualifiers::Volatile, RValueThis,
3603                        ThisQuals & Qualifiers::Const,
3604                        ThisQuals & Qualifiers::Volatile);
3605
3606  return Result.getMethod();
3607}
3608
3609/// Look up the moving assignment operator for the given class.
3610CXXMethodDecl *Sema::LookupMovingAssignment(CXXRecordDecl *Class,
3611                                            unsigned Quals,
3612                                            bool RValueThis,
3613                                            unsigned ThisQuals) {
3614  assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3615         "non-const, non-volatile qualifiers for copy assignment this");
3616  SpecialMemberOverloadResult Result =
3617    LookupSpecialMember(Class, CXXMoveAssignment, Quals & Qualifiers::Const,
3618                        Quals & Qualifiers::Volatile, RValueThis,
3619                        ThisQuals & Qualifiers::Const,
3620                        ThisQuals & Qualifiers::Volatile);
3621
3622  return Result.getMethod();
3623}
3624
3625/// Look for the destructor of the given class.
3626///
3627/// During semantic analysis, this routine should be used in lieu of
3628/// CXXRecordDecl::getDestructor().
3629///
3630/// \returns The destructor for this class.
3631CXXDestructorDecl *Sema::LookupDestructor(CXXRecordDecl *Class) {
3632  return cast_or_null<CXXDestructorDecl>(
3633      LookupSpecialMember(Class, CXXDestructor, false, false, false, false,
3634                          false)
3635          .getMethod());
3636}
3637
3638/// LookupLiteralOperator - Determine which literal operator should be used for
3639/// a user-defined literal, per C++11 [lex.ext].
3640///
3641/// Normal overload resolution is not used to select which literal operator to
3642/// call for a user-defined literal. Look up the provided literal operator name,
3643/// and filter the results to the appropriate set for the given argument types.
3644Sema::LiteralOperatorLookupResult
3645Sema::LookupLiteralOperator(Scope *S, LookupResult &R,
3646                            ArrayRef<QualType> ArgTys, bool AllowRaw,
3647                            bool AllowTemplate, bool AllowStringTemplatePack,
3648                            bool DiagnoseMissing, StringLiteral *StringLit) {
3649  LookupName(R, S);
3650  assert(R.getResultKind() != LookupResult::Ambiguous &&
3651         "literal operator lookup can't be ambiguous");
3652
3653  // Filter the lookup results appropriately.
3654  LookupResult::Filter F = R.makeFilter();
3655
3656  bool AllowCooked = true;
3657  bool FoundRaw = false;
3658  bool FoundTemplate = false;
3659  bool FoundStringTemplatePack = false;
3660  bool FoundCooked = false;
3661
3662  while (F.hasNext()) {
3663    Decl *D = F.next();
3664    if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D))
3665      D = USD->getTargetDecl();
3666
3667    // If the declaration we found is invalid, skip it.
3668    if (D->isInvalidDecl()) {
3669      F.erase();
3670      continue;
3671    }
3672
3673    bool IsRaw = false;
3674    bool IsTemplate = false;
3675    bool IsStringTemplatePack = false;
3676    bool IsCooked = false;
3677
3678    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
3679      if (FD->getNumParams() == 1 &&
3680          FD->getParamDecl(0)->getType()->getAs<PointerType>())
3681        IsRaw = true;
3682      else if (FD->getNumParams() == ArgTys.size()) {
3683        IsCooked = true;
3684        for (unsigned ArgIdx = 0; ArgIdx != ArgTys.size(); ++ArgIdx) {
3685          QualType ParamTy = FD->getParamDecl(ArgIdx)->getType();
3686          if (!Context.hasSameUnqualifiedType(ArgTys[ArgIdx], ParamTy)) {
3687            IsCooked = false;
3688            break;
3689          }
3690        }
3691      }
3692    }
3693    if (FunctionTemplateDecl *FD = dyn_cast<FunctionTemplateDecl>(D)) {
3694      TemplateParameterList *Params = FD->getTemplateParameters();
3695      if (Params->size() == 1) {
3696        IsTemplate = true;
3697        if (!Params->getParam(0)->isTemplateParameterPack() && !StringLit) {
3698          // Implied but not stated: user-defined integer and floating literals
3699          // only ever use numeric literal operator templates, not templates
3700          // taking a parameter of class type.
3701          F.erase();
3702          continue;
3703        }
3704
3705        // A string literal template is only considered if the string literal
3706        // is a well-formed template argument for the template parameter.
3707        if (StringLit) {
3708          SFINAETrap Trap(*this);
3709          SmallVector<TemplateArgument, 1> SugaredChecked, CanonicalChecked;
3710          TemplateArgumentLoc Arg(TemplateArgument(StringLit), StringLit);
3711          if (CheckTemplateArgument(
3712                  Params->getParam(0), Arg, FD, R.getNameLoc(), R.getNameLoc(),
3713                  0, SugaredChecked, CanonicalChecked, CTAK_Specified) ||
3714              Trap.hasErrorOccurred())
3715            IsTemplate = false;
3716        }
3717      } else {
3718        IsStringTemplatePack = true;
3719      }
3720    }
3721
3722    if (AllowTemplate && StringLit && IsTemplate) {
3723      FoundTemplate = true;
3724      AllowRaw = false;
3725      AllowCooked = false;
3726      AllowStringTemplatePack = false;
3727      if (FoundRaw || FoundCooked || FoundStringTemplatePack) {
3728        F.restart();
3729        FoundRaw = FoundCooked = FoundStringTemplatePack = false;
3730      }
3731    } else if (AllowCooked && IsCooked) {
3732      FoundCooked = true;
3733      AllowRaw = false;
3734      AllowTemplate = StringLit;
3735      AllowStringTemplatePack = false;
3736      if (FoundRaw || FoundTemplate || FoundStringTemplatePack) {
3737        // Go through again and remove the raw and template decls we've
3738        // already found.
3739        F.restart();
3740        FoundRaw = FoundTemplate = FoundStringTemplatePack = false;
3741      }
3742    } else if (AllowRaw && IsRaw) {
3743      FoundRaw = true;
3744    } else if (AllowTemplate && IsTemplate) {
3745      FoundTemplate = true;
3746    } else if (AllowStringTemplatePack && IsStringTemplatePack) {
3747      FoundStringTemplatePack = true;
3748    } else {
3749      F.erase();
3750    }
3751  }
3752
3753  F.done();
3754
3755  // Per C++20 [lex.ext]p5, we prefer the template form over the non-template
3756  // form for string literal operator templates.
3757  if (StringLit && FoundTemplate)
3758    return LOLR_Template;
3759
3760  // C++11 [lex.ext]p3, p4: If S contains a literal operator with a matching
3761  // parameter type, that is used in preference to a raw literal operator
3762  // or literal operator template.
3763  if (FoundCooked)
3764    return LOLR_Cooked;
3765
3766  // C++11 [lex.ext]p3, p4: S shall contain a raw literal operator or a literal
3767  // operator template, but not both.
3768  if (FoundRaw && FoundTemplate) {
3769    Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName();
3770    for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
3771      NoteOverloadCandidate(*I, (*I)->getUnderlyingDecl()->getAsFunction());
3772    return LOLR_Error;
3773  }
3774
3775  if (FoundRaw)
3776    return LOLR_Raw;
3777
3778  if (FoundTemplate)
3779    return LOLR_Template;
3780
3781  if (FoundStringTemplatePack)
3782    return LOLR_StringTemplatePack;
3783
3784  // Didn't find anything we could use.
3785  if (DiagnoseMissing) {
3786    Diag(R.getNameLoc(), diag::err_ovl_no_viable_literal_operator)
3787        << R.getLookupName() << (int)ArgTys.size() << ArgTys[0]
3788        << (ArgTys.size() == 2 ? ArgTys[1] : QualType()) << AllowRaw
3789        << (AllowTemplate || AllowStringTemplatePack);
3790    return LOLR_Error;
3791  }
3792
3793  return LOLR_ErrorNoDiagnostic;
3794}
3795
3796void ADLResult::insert(NamedDecl *New) {
3797  NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())];
3798
3799  // If we haven't yet seen a decl for this key, or the last decl
3800  // was exactly this one, we're done.
3801  if (Old == nullptr || Old == New) {
3802    Old = New;
3803    return;
3804  }
3805
3806  // Otherwise, decide which is a more recent redeclaration.
3807  FunctionDecl *OldFD = Old->getAsFunction();
3808  FunctionDecl *NewFD = New->getAsFunction();
3809
3810  FunctionDecl *Cursor = NewFD;
3811  while (true) {
3812    Cursor = Cursor->getPreviousDecl();
3813
3814    // If we got to the end without finding OldFD, OldFD is the newer
3815    // declaration;  leave things as they are.
3816    if (!Cursor) return;
3817
3818    // If we do find OldFD, then NewFD is newer.
3819    if (Cursor == OldFD) break;
3820
3821    // Otherwise, keep looking.
3822  }
3823
3824  Old = New;
3825}
3826
3827void Sema::ArgumentDependentLookup(DeclarationName Name, SourceLocation Loc,
3828                                   ArrayRef<Expr *> Args, ADLResult &Result) {
3829  // Find all of the associated namespaces and classes based on the
3830  // arguments we have.
3831  AssociatedNamespaceSet AssociatedNamespaces;
3832  AssociatedClassSet AssociatedClasses;
3833  FindAssociatedClassesAndNamespaces(Loc, Args,
3834                                     AssociatedNamespaces,
3835                                     AssociatedClasses);
3836
3837  // C++ [basic.lookup.argdep]p3:
3838  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
3839  //   and let Y be the lookup set produced by argument dependent
3840  //   lookup (defined as follows). If X contains [...] then Y is
3841  //   empty. Otherwise Y is the set of declarations found in the
3842  //   namespaces associated with the argument types as described
3843  //   below. The set of declarations found by the lookup of the name
3844  //   is the union of X and Y.
3845  //
3846  // Here, we compute Y and add its members to the overloaded
3847  // candidate set.
3848  for (auto *NS : AssociatedNamespaces) {
3849    //   When considering an associated namespace, the lookup is the
3850    //   same as the lookup performed when the associated namespace is
3851    //   used as a qualifier (3.4.3.2) except that:
3852    //
3853    //     -- Any using-directives in the associated namespace are
3854    //        ignored.
3855    //
3856    //     -- Any namespace-scope friend functions declared in
3857    //        associated classes are visible within their respective
3858    //        namespaces even if they are not visible during an ordinary
3859    //        lookup (11.4).
3860    //
3861    // C++20 [basic.lookup.argdep] p4.3
3862    //     -- are exported, are attached to a named module M, do not appear
3863    //        in the translation unit containing the point of the lookup, and
3864    //        have the same innermost enclosing non-inline namespace scope as
3865    //        a declaration of an associated entity attached to M.
3866    DeclContext::lookup_result R = NS->lookup(Name);
3867    for (auto *D : R) {
3868      auto *Underlying = D;
3869      if (auto *USD = dyn_cast<UsingShadowDecl>(D))
3870        Underlying = USD->getTargetDecl();
3871
3872      if (!isa<FunctionDecl>(Underlying) &&
3873          !isa<FunctionTemplateDecl>(Underlying))
3874        continue;
3875
3876      // The declaration is visible to argument-dependent lookup if either
3877      // it's ordinarily visible or declared as a friend in an associated
3878      // class.
3879      bool Visible = false;
3880      for (D = D->getMostRecentDecl(); D;
3881           D = cast_or_null<NamedDecl>(D->getPreviousDecl())) {
3882        if (D->getIdentifierNamespace() & Decl::IDNS_Ordinary) {
3883          if (isVisible(D)) {
3884            Visible = true;
3885            break;
3886          } else if (getLangOpts().CPlusPlusModules &&
3887                     D->isInExportDeclContext()) {
3888            // C++20 [basic.lookup.argdep] p4.3 .. are exported ...
3889            Module *FM = D->getOwningModule();
3890            // exports are only valid in module purview and outside of any
3891            // PMF (although a PMF should not even be present in a module
3892            // with an import).
3893            assert(FM && FM->isModulePurview() && !FM->isPrivateModule() &&
3894                   "bad export context");
3895            // .. are attached to a named module M, do not appear in the
3896            // translation unit containing the point of the lookup..
3897            if (!isModuleUnitOfCurrentTU(FM) &&
3898                llvm::any_of(AssociatedClasses, [&](auto *E) {
3899                  // ... and have the same innermost enclosing non-inline
3900                  // namespace scope as a declaration of an associated entity
3901                  // attached to M
3902                  if (!E->hasOwningModule() ||
3903                      E->getOwningModule()->getTopLevelModuleName() !=
3904                          FM->getTopLevelModuleName())
3905                    return false;
3906                  // TODO: maybe this could be cached when generating the
3907                  // associated namespaces / entities.
3908                  DeclContext *Ctx = E->getDeclContext();
3909                  while (!Ctx->isFileContext() || Ctx->isInlineNamespace())
3910                    Ctx = Ctx->getParent();
3911                  return Ctx == NS;
3912                })) {
3913              Visible = true;
3914              break;
3915            }
3916          }
3917        } else if (D->getFriendObjectKind()) {
3918          auto *RD = cast<CXXRecordDecl>(D->getLexicalDeclContext());
3919          // [basic.lookup.argdep]p4:
3920          //   Argument-dependent lookup finds all declarations of functions and
3921          //   function templates that
3922          //  - ...
3923          //  - are declared as a friend ([class.friend]) of any class with a
3924          //  reachable definition in the set of associated entities,
3925          //
3926          // FIXME: If there's a merged definition of D that is reachable, then
3927          // the friend declaration should be considered.
3928          if (AssociatedClasses.count(RD) && isReachable(D)) {
3929            Visible = true;
3930            break;
3931          }
3932        }
3933      }
3934
3935      // FIXME: Preserve D as the FoundDecl.
3936      if (Visible)
3937        Result.insert(Underlying);
3938    }
3939  }
3940}
3941
3942//----------------------------------------------------------------------------
3943// Search for all visible declarations.
3944//----------------------------------------------------------------------------
3945VisibleDeclConsumer::~VisibleDeclConsumer() { }
3946
3947bool VisibleDeclConsumer::includeHiddenDecls() const { return false; }
3948
3949namespace {
3950
3951class ShadowContextRAII;
3952
3953class VisibleDeclsRecord {
3954public:
3955  /// An entry in the shadow map, which is optimized to store a
3956  /// single declaration (the common case) but can also store a list
3957  /// of declarations.
3958  typedef llvm::TinyPtrVector<NamedDecl*> ShadowMapEntry;
3959
3960private:
3961  /// A mapping from declaration names to the declarations that have
3962  /// this name within a particular scope.
3963  typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap;
3964
3965  /// A list of shadow maps, which is used to model name hiding.
3966  std::list<ShadowMap> ShadowMaps;
3967
3968  /// The declaration contexts we have already visited.
3969  llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts;
3970
3971  friend class ShadowContextRAII;
3972
3973public:
3974  /// Determine whether we have already visited this context
3975  /// (and, if not, note that we are going to visit that context now).
3976  bool visitedContext(DeclContext *Ctx) {
3977    return !VisitedContexts.insert(Ctx).second;
3978  }
3979
3980  bool alreadyVisitedContext(DeclContext *Ctx) {
3981    return VisitedContexts.count(Ctx);
3982  }
3983
3984  /// Determine whether the given declaration is hidden in the
3985  /// current scope.
3986  ///
3987  /// \returns the declaration that hides the given declaration, or
3988  /// NULL if no such declaration exists.
3989  NamedDecl *checkHidden(NamedDecl *ND);
3990
3991  /// Add a declaration to the current shadow map.
3992  void add(NamedDecl *ND) {
3993    ShadowMaps.back()[ND->getDeclName()].push_back(ND);
3994  }
3995};
3996
3997/// RAII object that records when we've entered a shadow context.
3998class ShadowContextRAII {
3999  VisibleDeclsRecord &Visible;
4000
4001  typedef VisibleDeclsRecord::ShadowMap ShadowMap;
4002
4003public:
4004  ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) {
4005    Visible.ShadowMaps.emplace_back();
4006  }
4007
4008  ~ShadowContextRAII() {
4009    Visible.ShadowMaps.pop_back();
4010  }
4011};
4012
4013} // end anonymous namespace
4014
4015NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) {
4016  unsigned IDNS = ND->getIdentifierNamespace();
4017  std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin();
4018  for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend();
4019       SM != SMEnd; ++SM) {
4020    ShadowMap::iterator Pos = SM->find(ND->getDeclName());
4021    if (Pos == SM->end())
4022      continue;
4023
4024    for (auto *D : Pos->second) {
4025      // A tag declaration does not hide a non-tag declaration.
4026      if (D->hasTagIdentifierNamespace() &&
4027          (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary |
4028                   Decl::IDNS_ObjCProtocol)))
4029        continue;
4030
4031      // Protocols are in distinct namespaces from everything else.
4032      if (((D->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol)
4033           || (IDNS & Decl::IDNS_ObjCProtocol)) &&
4034          D->getIdentifierNamespace() != IDNS)
4035        continue;
4036
4037      // Functions and function templates in the same scope overload
4038      // rather than hide.  FIXME: Look for hiding based on function
4039      // signatures!
4040      if (D->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
4041          ND->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
4042          SM == ShadowMaps.rbegin())
4043        continue;
4044
4045      // A shadow declaration that's created by a resolved using declaration
4046      // is not hidden by the same using declaration.
4047      if (isa<UsingShadowDecl>(ND) && isa<UsingDecl>(D) &&
4048          cast<UsingShadowDecl>(ND)->getIntroducer() == D)
4049        continue;
4050
4051      // We've found a declaration that hides this one.
4052      return D;
4053    }
4054  }
4055
4056  return nullptr;
4057}
4058
4059namespace {
4060class LookupVisibleHelper {
4061public:
4062  LookupVisibleHelper(VisibleDeclConsumer &Consumer, bool IncludeDependentBases,
4063                      bool LoadExternal)
4064      : Consumer(Consumer), IncludeDependentBases(IncludeDependentBases),
4065        LoadExternal(LoadExternal) {}
4066
4067  void lookupVisibleDecls(Sema &SemaRef, Scope *S, Sema::LookupNameKind Kind,
4068                          bool IncludeGlobalScope) {
4069    // Determine the set of using directives available during
4070    // unqualified name lookup.
4071    Scope *Initial = S;
4072    UnqualUsingDirectiveSet UDirs(SemaRef);
4073    if (SemaRef.getLangOpts().CPlusPlus) {
4074      // Find the first namespace or translation-unit scope.
4075      while (S && !isNamespaceOrTranslationUnitScope(S))
4076        S = S->getParent();
4077
4078      UDirs.visitScopeChain(Initial, S);
4079    }
4080    UDirs.done();
4081
4082    // Look for visible declarations.
4083    LookupResult Result(SemaRef, DeclarationName(), SourceLocation(), Kind);
4084    Result.setAllowHidden(Consumer.includeHiddenDecls());
4085    if (!IncludeGlobalScope)
4086      Visited.visitedContext(SemaRef.getASTContext().getTranslationUnitDecl());
4087    ShadowContextRAII Shadow(Visited);
4088    lookupInScope(Initial, Result, UDirs);
4089  }
4090
4091  void lookupVisibleDecls(Sema &SemaRef, DeclContext *Ctx,
4092                          Sema::LookupNameKind Kind, bool IncludeGlobalScope) {
4093    LookupResult Result(SemaRef, DeclarationName(), SourceLocation(), Kind);
4094    Result.setAllowHidden(Consumer.includeHiddenDecls());
4095    if (!IncludeGlobalScope)
4096      Visited.visitedContext(SemaRef.getASTContext().getTranslationUnitDecl());
4097
4098    ShadowContextRAII Shadow(Visited);
4099    lookupInDeclContext(Ctx, Result, /*QualifiedNameLookup=*/true,
4100                        /*InBaseClass=*/false);
4101  }
4102
4103private:
4104  void lookupInDeclContext(DeclContext *Ctx, LookupResult &Result,
4105                           bool QualifiedNameLookup, bool InBaseClass) {
4106    if (!Ctx)
4107      return;
4108
4109    // Make sure we don't visit the same context twice.
4110    if (Visited.visitedContext(Ctx->getPrimaryContext()))
4111      return;
4112
4113    Consumer.EnteredContext(Ctx);
4114
4115    // Outside C++, lookup results for the TU live on identifiers.
4116    if (isa<TranslationUnitDecl>(Ctx) &&
4117        !Result.getSema().getLangOpts().CPlusPlus) {
4118      auto &S = Result.getSema();
4119      auto &Idents = S.Context.Idents;
4120
4121      // Ensure all external identifiers are in the identifier table.
4122      if (LoadExternal)
4123        if (IdentifierInfoLookup *External =
4124                Idents.getExternalIdentifierLookup()) {
4125          std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
4126          for (StringRef Name = Iter->Next(); !Name.empty();
4127               Name = Iter->Next())
4128            Idents.get(Name);
4129        }
4130
4131      // Walk all lookup results in the TU for each identifier.
4132      for (const auto &Ident : Idents) {
4133        for (auto I = S.IdResolver.begin(Ident.getValue()),
4134                  E = S.IdResolver.end();
4135             I != E; ++I) {
4136          if (S.IdResolver.isDeclInScope(*I, Ctx)) {
4137            if (NamedDecl *ND = Result.getAcceptableDecl(*I)) {
4138              Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
4139              Visited.add(ND);
4140            }
4141          }
4142        }
4143      }
4144
4145      return;
4146    }
4147
4148    if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx))
4149      Result.getSema().ForceDeclarationOfImplicitMembers(Class);
4150
4151    llvm::SmallVector<NamedDecl *, 4> DeclsToVisit;
4152    // We sometimes skip loading namespace-level results (they tend to be huge).
4153    bool Load = LoadExternal ||
4154                !(isa<TranslationUnitDecl>(Ctx) || isa<NamespaceDecl>(Ctx));
4155    // Enumerate all of the results in this context.
4156    for (DeclContextLookupResult R :
4157         Load ? Ctx->lookups()
4158              : Ctx->noload_lookups(/*PreserveInternalState=*/false)) {
4159      for (auto *D : R) {
4160        if (auto *ND = Result.getAcceptableDecl(D)) {
4161          // Rather than visit immediately, we put ND into a vector and visit
4162          // all decls, in order, outside of this loop. The reason is that
4163          // Consumer.FoundDecl() may invalidate the iterators used in the two
4164          // loops above.
4165          DeclsToVisit.push_back(ND);
4166        }
4167      }
4168    }
4169
4170    for (auto *ND : DeclsToVisit) {
4171      Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
4172      Visited.add(ND);
4173    }
4174    DeclsToVisit.clear();
4175
4176    // Traverse using directives for qualified name lookup.
4177    if (QualifiedNameLookup) {
4178      ShadowContextRAII Shadow(Visited);
4179      for (auto *I : Ctx->using_directives()) {
4180        if (!Result.getSema().isVisible(I))
4181          continue;
4182        lookupInDeclContext(I->getNominatedNamespace(), Result,
4183                            QualifiedNameLookup, InBaseClass);
4184      }
4185    }
4186
4187    // Traverse the contexts of inherited C++ classes.
4188    if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) {
4189      if (!Record->hasDefinition())
4190        return;
4191
4192      for (const auto &B : Record->bases()) {
4193        QualType BaseType = B.getType();
4194
4195        RecordDecl *RD;
4196        if (BaseType->isDependentType()) {
4197          if (!IncludeDependentBases) {
4198            // Don't look into dependent bases, because name lookup can't look
4199            // there anyway.
4200            continue;
4201          }
4202          const auto *TST = BaseType->getAs<TemplateSpecializationType>();
4203          if (!TST)
4204            continue;
4205          TemplateName TN = TST->getTemplateName();
4206          const auto *TD =
4207              dyn_cast_or_null<ClassTemplateDecl>(TN.getAsTemplateDecl());
4208          if (!TD)
4209            continue;
4210          RD = TD->getTemplatedDecl();
4211        } else {
4212          const auto *Record = BaseType->getAs<RecordType>();
4213          if (!Record)
4214            continue;
4215          RD = Record->getDecl();
4216        }
4217
4218        // FIXME: It would be nice to be able to determine whether referencing
4219        // a particular member would be ambiguous. For example, given
4220        //
4221        //   struct A { int member; };
4222        //   struct B { int member; };
4223        //   struct C : A, B { };
4224        //
4225        //   void f(C *c) { c->### }
4226        //
4227        // accessing 'member' would result in an ambiguity. However, we
4228        // could be smart enough to qualify the member with the base
4229        // class, e.g.,
4230        //
4231        //   c->B::member
4232        //
4233        // or
4234        //
4235        //   c->A::member
4236
4237        // Find results in this base class (and its bases).
4238        ShadowContextRAII Shadow(Visited);
4239        lookupInDeclContext(RD, Result, QualifiedNameLookup,
4240                            /*InBaseClass=*/true);
4241      }
4242    }
4243
4244    // Traverse the contexts of Objective-C classes.
4245    if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) {
4246      // Traverse categories.
4247      for (auto *Cat : IFace->visible_categories()) {
4248        ShadowContextRAII Shadow(Visited);
4249        lookupInDeclContext(Cat, Result, QualifiedNameLookup,
4250                            /*InBaseClass=*/false);
4251      }
4252
4253      // Traverse protocols.
4254      for (auto *I : IFace->all_referenced_protocols()) {
4255        ShadowContextRAII Shadow(Visited);
4256        lookupInDeclContext(I, Result, QualifiedNameLookup,
4257                            /*InBaseClass=*/false);
4258      }
4259
4260      // Traverse the superclass.
4261      if (IFace->getSuperClass()) {
4262        ShadowContextRAII Shadow(Visited);
4263        lookupInDeclContext(IFace->getSuperClass(), Result, QualifiedNameLookup,
4264                            /*InBaseClass=*/true);
4265      }
4266
4267      // If there is an implementation, traverse it. We do this to find
4268      // synthesized ivars.
4269      if (IFace->getImplementation()) {
4270        ShadowContextRAII Shadow(Visited);
4271        lookupInDeclContext(IFace->getImplementation(), Result,
4272                            QualifiedNameLookup, InBaseClass);
4273      }
4274    } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) {
4275      for (auto *I : Protocol->protocols()) {
4276        ShadowContextRAII Shadow(Visited);
4277        lookupInDeclContext(I, Result, QualifiedNameLookup,
4278                            /*InBaseClass=*/false);
4279      }
4280    } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) {
4281      for (auto *I : Category->protocols()) {
4282        ShadowContextRAII Shadow(Visited);
4283        lookupInDeclContext(I, Result, QualifiedNameLookup,
4284                            /*InBaseClass=*/false);
4285      }
4286
4287      // If there is an implementation, traverse it.
4288      if (Category->getImplementation()) {
4289        ShadowContextRAII Shadow(Visited);
4290        lookupInDeclContext(Category->getImplementation(), Result,
4291                            QualifiedNameLookup, /*InBaseClass=*/true);
4292      }
4293    }
4294  }
4295
4296  void lookupInScope(Scope *S, LookupResult &Result,
4297                     UnqualUsingDirectiveSet &UDirs) {
4298    // No clients run in this mode and it's not supported. Please add tests and
4299    // remove the assertion if you start relying on it.
4300    assert(!IncludeDependentBases && "Unsupported flag for lookupInScope");
4301
4302    if (!S)
4303      return;
4304
4305    if (!S->getEntity() ||
4306        (!S->getParent() && !Visited.alreadyVisitedContext(S->getEntity())) ||
4307        (S->getEntity())->isFunctionOrMethod()) {
4308      FindLocalExternScope FindLocals(Result);
4309      // Walk through the declarations in this Scope. The consumer might add new
4310      // decls to the scope as part of deserialization, so make a copy first.
4311      SmallVector<Decl *, 8> ScopeDecls(S->decls().begin(), S->decls().end());
4312      for (Decl *D : ScopeDecls) {
4313        if (NamedDecl *ND = dyn_cast<NamedDecl>(D))
4314          if ((ND = Result.getAcceptableDecl(ND))) {
4315            Consumer.FoundDecl(ND, Visited.checkHidden(ND), nullptr, false);
4316            Visited.add(ND);
4317          }
4318      }
4319    }
4320
4321    DeclContext *Entity = S->getLookupEntity();
4322    if (Entity) {
4323      // Look into this scope's declaration context, along with any of its
4324      // parent lookup contexts (e.g., enclosing classes), up to the point
4325      // where we hit the context stored in the next outer scope.
4326      DeclContext *OuterCtx = findOuterContext(S);
4327
4328      for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx);
4329           Ctx = Ctx->getLookupParent()) {
4330        if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
4331          if (Method->isInstanceMethod()) {
4332            // For instance methods, look for ivars in the method's interface.
4333            LookupResult IvarResult(Result.getSema(), Result.getLookupName(),
4334                                    Result.getNameLoc(),
4335                                    Sema::LookupMemberName);
4336            if (ObjCInterfaceDecl *IFace = Method->getClassInterface()) {
4337              lookupInDeclContext(IFace, IvarResult,
4338                                  /*QualifiedNameLookup=*/false,
4339                                  /*InBaseClass=*/false);
4340            }
4341          }
4342
4343          // We've already performed all of the name lookup that we need
4344          // to for Objective-C methods; the next context will be the
4345          // outer scope.
4346          break;
4347        }
4348
4349        if (Ctx->isFunctionOrMethod())
4350          continue;
4351
4352        lookupInDeclContext(Ctx, Result, /*QualifiedNameLookup=*/false,
4353                            /*InBaseClass=*/false);
4354      }
4355    } else if (!S->getParent()) {
4356      // Look into the translation unit scope. We walk through the translation
4357      // unit's declaration context, because the Scope itself won't have all of
4358      // the declarations if we loaded a precompiled header.
4359      // FIXME: We would like the translation unit's Scope object to point to
4360      // the translation unit, so we don't need this special "if" branch.
4361      // However, doing so would force the normal C++ name-lookup code to look
4362      // into the translation unit decl when the IdentifierInfo chains would
4363      // suffice. Once we fix that problem (which is part of a more general
4364      // "don't look in DeclContexts unless we have to" optimization), we can
4365      // eliminate this.
4366      Entity = Result.getSema().Context.getTranslationUnitDecl();
4367      lookupInDeclContext(Entity, Result, /*QualifiedNameLookup=*/false,
4368                          /*InBaseClass=*/false);
4369    }
4370
4371    if (Entity) {
4372      // Lookup visible declarations in any namespaces found by using
4373      // directives.
4374      for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(Entity))
4375        lookupInDeclContext(
4376            const_cast<DeclContext *>(UUE.getNominatedNamespace()), Result,
4377            /*QualifiedNameLookup=*/false,
4378            /*InBaseClass=*/false);
4379    }
4380
4381    // Lookup names in the parent scope.
4382    ShadowContextRAII Shadow(Visited);
4383    lookupInScope(S->getParent(), Result, UDirs);
4384  }
4385
4386private:
4387  VisibleDeclsRecord Visited;
4388  VisibleDeclConsumer &Consumer;
4389  bool IncludeDependentBases;
4390  bool LoadExternal;
4391};
4392} // namespace
4393
4394void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind,
4395                              VisibleDeclConsumer &Consumer,
4396                              bool IncludeGlobalScope, bool LoadExternal) {
4397  LookupVisibleHelper H(Consumer, /*IncludeDependentBases=*/false,
4398                        LoadExternal);
4399  H.lookupVisibleDecls(*this, S, Kind, IncludeGlobalScope);
4400}
4401
4402void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind,
4403                              VisibleDeclConsumer &Consumer,
4404                              bool IncludeGlobalScope,
4405                              bool IncludeDependentBases, bool LoadExternal) {
4406  LookupVisibleHelper H(Consumer, IncludeDependentBases, LoadExternal);
4407  H.lookupVisibleDecls(*this, Ctx, Kind, IncludeGlobalScope);
4408}
4409
4410/// LookupOrCreateLabel - Do a name lookup of a label with the specified name.
4411/// If GnuLabelLoc is a valid source location, then this is a definition
4412/// of an __label__ label name, otherwise it is a normal label definition
4413/// or use.
4414LabelDecl *Sema::LookupOrCreateLabel(IdentifierInfo *II, SourceLocation Loc,
4415                                     SourceLocation GnuLabelLoc) {
4416  // Do a lookup to see if we have a label with this name already.
4417  NamedDecl *Res = nullptr;
4418
4419  if (GnuLabelLoc.isValid()) {
4420    // Local label definitions always shadow existing labels.
4421    Res = LabelDecl::Create(Context, CurContext, Loc, II, GnuLabelLoc);
4422    Scope *S = CurScope;
4423    PushOnScopeChains(Res, S, true);
4424    return cast<LabelDecl>(Res);
4425  }
4426
4427  // Not a GNU local label.
4428  Res = LookupSingleName(CurScope, II, Loc, LookupLabel, NotForRedeclaration);
4429  // If we found a label, check to see if it is in the same context as us.
4430  // When in a Block, we don't want to reuse a label in an enclosing function.
4431  if (Res && Res->getDeclContext() != CurContext)
4432    Res = nullptr;
4433  if (!Res) {
4434    // If not forward referenced or defined already, create the backing decl.
4435    Res = LabelDecl::Create(Context, CurContext, Loc, II);
4436    Scope *S = CurScope->getFnParent();
4437    assert(S && "Not in a function?");
4438    PushOnScopeChains(Res, S, true);
4439  }
4440  return cast<LabelDecl>(Res);
4441}
4442
4443//===----------------------------------------------------------------------===//
4444// Typo correction
4445//===----------------------------------------------------------------------===//
4446
4447static bool isCandidateViable(CorrectionCandidateCallback &CCC,
4448                              TypoCorrection &Candidate) {
4449  Candidate.setCallbackDistance(CCC.RankCandidate(Candidate));
4450  return Candidate.getEditDistance(false) != TypoCorrection::InvalidDistance;
4451}
4452
4453static void LookupPotentialTypoResult(Sema &SemaRef,
4454                                      LookupResult &Res,
4455                                      IdentifierInfo *Name,
4456                                      Scope *S, CXXScopeSpec *SS,
4457                                      DeclContext *MemberContext,
4458                                      bool EnteringContext,
4459                                      bool isObjCIvarLookup,
4460                                      bool FindHidden);
4461
4462/// Check whether the declarations found for a typo correction are
4463/// visible. Set the correction's RequiresImport flag to true if none of the
4464/// declarations are visible, false otherwise.
4465static void checkCorrectionVisibility(Sema &SemaRef, TypoCorrection &TC) {
4466  TypoCorrection::decl_iterator DI = TC.begin(), DE = TC.end();
4467
4468  for (/**/; DI != DE; ++DI)
4469    if (!LookupResult::isVisible(SemaRef, *DI))
4470      break;
4471  // No filtering needed if all decls are visible.
4472  if (DI == DE) {
4473    TC.setRequiresImport(false);
4474    return;
4475  }
4476
4477  llvm::SmallVector<NamedDecl*, 4> NewDecls(TC.begin(), DI);
4478  bool AnyVisibleDecls = !NewDecls.empty();
4479
4480  for (/**/; DI != DE; ++DI) {
4481    if (LookupResult::isVisible(SemaRef, *DI)) {
4482      if (!AnyVisibleDecls) {
4483        // Found a visible decl, discard all hidden ones.
4484        AnyVisibleDecls = true;
4485        NewDecls.clear();
4486      }
4487      NewDecls.push_back(*DI);
4488    } else if (!AnyVisibleDecls && !(*DI)->isModulePrivate())
4489      NewDecls.push_back(*DI);
4490  }
4491
4492  if (NewDecls.empty())
4493    TC = TypoCorrection();
4494  else {
4495    TC.setCorrectionDecls(NewDecls);
4496    TC.setRequiresImport(!AnyVisibleDecls);
4497  }
4498}
4499
4500// Fill the supplied vector with the IdentifierInfo pointers for each piece of
4501// the given NestedNameSpecifier (i.e. given a NestedNameSpecifier "foo::bar::",
4502// fill the vector with the IdentifierInfo pointers for "foo" and "bar").
4503static void getNestedNameSpecifierIdentifiers(
4504    NestedNameSpecifier *NNS,
4505    SmallVectorImpl<const IdentifierInfo*> &Identifiers) {
4506  if (NestedNameSpecifier *Prefix = NNS->getPrefix())
4507    getNestedNameSpecifierIdentifiers(Prefix, Identifiers);
4508  else
4509    Identifiers.clear();
4510
4511  const IdentifierInfo *II = nullptr;
4512
4513  switch (NNS->getKind()) {
4514  case NestedNameSpecifier::Identifier:
4515    II = NNS->getAsIdentifier();
4516    break;
4517
4518  case NestedNameSpecifier::Namespace:
4519    if (NNS->getAsNamespace()->isAnonymousNamespace())
4520      return;
4521    II = NNS->getAsNamespace()->getIdentifier();
4522    break;
4523
4524  case NestedNameSpecifier::NamespaceAlias:
4525    II = NNS->getAsNamespaceAlias()->getIdentifier();
4526    break;
4527
4528  case NestedNameSpecifier::TypeSpecWithTemplate:
4529  case NestedNameSpecifier::TypeSpec:
4530    II = QualType(NNS->getAsType(), 0).getBaseTypeIdentifier();
4531    break;
4532
4533  case NestedNameSpecifier::Global:
4534  case NestedNameSpecifier::Super:
4535    return;
4536  }
4537
4538  if (II)
4539    Identifiers.push_back(II);
4540}
4541
4542void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding,
4543                                       DeclContext *Ctx, bool InBaseClass) {
4544  // Don't consider hidden names for typo correction.
4545  if (Hiding)
4546    return;
4547
4548  // Only consider entities with identifiers for names, ignoring
4549  // special names (constructors, overloaded operators, selectors,
4550  // etc.).
4551  IdentifierInfo *Name = ND->getIdentifier();
4552  if (!Name)
4553    return;
4554
4555  // Only consider visible declarations and declarations from modules with
4556  // names that exactly match.
4557  if (!LookupResult::isVisible(SemaRef, ND) && Name != Typo)
4558    return;
4559
4560  FoundName(Name->getName());
4561}
4562
4563void TypoCorrectionConsumer::FoundName(StringRef Name) {
4564  // Compute the edit distance between the typo and the name of this
4565  // entity, and add the identifier to the list of results.
4566  addName(Name, nullptr);
4567}
4568
4569void TypoCorrectionConsumer::addKeywordResult(StringRef Keyword) {
4570  // Compute the edit distance between the typo and this keyword,
4571  // and add the keyword to the list of results.
4572  addName(Keyword, nullptr, nullptr, true);
4573}
4574
4575void TypoCorrectionConsumer::addName(StringRef Name, NamedDecl *ND,
4576                                     NestedNameSpecifier *NNS, bool isKeyword) {
4577  // Use a simple length-based heuristic to determine the minimum possible
4578  // edit distance. If the minimum isn't good enough, bail out early.
4579  StringRef TypoStr = Typo->getName();
4580  unsigned MinED = abs((int)Name.size() - (int)TypoStr.size());
4581  if (MinED && TypoStr.size() / MinED < 3)
4582    return;
4583
4584  // Compute an upper bound on the allowable edit distance, so that the
4585  // edit-distance algorithm can short-circuit.
4586  unsigned UpperBound = (TypoStr.size() + 2) / 3;
4587  unsigned ED = TypoStr.edit_distance(Name, true, UpperBound);
4588  if (ED > UpperBound) return;
4589
4590  TypoCorrection TC(&SemaRef.Context.Idents.get(Name), ND, NNS, ED);
4591  if (isKeyword) TC.makeKeyword();
4592  TC.setCorrectionRange(nullptr, Result.getLookupNameInfo());
4593  addCorrection(TC);
4594}
4595
4596static const unsigned MaxTypoDistanceResultSets = 5;
4597
4598void TypoCorrectionConsumer::addCorrection(TypoCorrection Correction) {
4599  StringRef TypoStr = Typo->getName();
4600  StringRef Name = Correction.getCorrectionAsIdentifierInfo()->getName();
4601
4602  // For very short typos, ignore potential corrections that have a different
4603  // base identifier from the typo or which have a normalized edit distance
4604  // longer than the typo itself.
4605  if (TypoStr.size() < 3 &&
4606      (Name != TypoStr || Correction.getEditDistance(true) > TypoStr.size()))
4607    return;
4608
4609  // If the correction is resolved but is not viable, ignore it.
4610  if (Correction.isResolved()) {
4611    checkCorrectionVisibility(SemaRef, Correction);
4612    if (!Correction || !isCandidateViable(*CorrectionValidator, Correction))
4613      return;
4614  }
4615
4616  TypoResultList &CList =
4617      CorrectionResults[Correction.getEditDistance(false)][Name];
4618
4619  if (!CList.empty() && !CList.back().isResolved())
4620    CList.pop_back();
4621  if (NamedDecl *NewND = Correction.getCorrectionDecl()) {
4622    auto RI = llvm::find_if(CList, [NewND](const TypoCorrection &TypoCorr) {
4623      return TypoCorr.getCorrectionDecl() == NewND;
4624    });
4625    if (RI != CList.end()) {
4626      // The Correction refers to a decl already in the list. No insertion is
4627      // necessary and all further cases will return.
4628
4629      auto IsDeprecated = [](Decl *D) {
4630        while (D) {
4631          if (D->isDeprecated())
4632            return true;
4633          D = llvm::dyn_cast_or_null<NamespaceDecl>(D->getDeclContext());
4634        }
4635        return false;
4636      };
4637
4638      // Prefer non deprecated Corrections over deprecated and only then
4639      // sort using an alphabetical order.
4640      std::pair<bool, std::string> NewKey = {
4641          IsDeprecated(Correction.getFoundDecl()),
4642          Correction.getAsString(SemaRef.getLangOpts())};
4643
4644      std::pair<bool, std::string> PrevKey = {
4645          IsDeprecated(RI->getFoundDecl()),
4646          RI->getAsString(SemaRef.getLangOpts())};
4647
4648      if (NewKey < PrevKey)
4649        *RI = Correction;
4650      return;
4651    }
4652  }
4653  if (CList.empty() || Correction.isResolved())
4654    CList.push_back(Correction);
4655
4656  while (CorrectionResults.size() > MaxTypoDistanceResultSets)
4657    CorrectionResults.erase(std::prev(CorrectionResults.end()));
4658}
4659
4660void TypoCorrectionConsumer::addNamespaces(
4661    const llvm::MapVector<NamespaceDecl *, bool> &KnownNamespaces) {
4662  SearchNamespaces = true;
4663
4664  for (auto KNPair : KnownNamespaces)
4665    Namespaces.addNameSpecifier(KNPair.first);
4666
4667  bool SSIsTemplate = false;
4668  if (NestedNameSpecifier *NNS =
4669          (SS && SS->isValid()) ? SS->getScopeRep() : nullptr) {
4670    if (const Type *T = NNS->getAsType())
4671      SSIsTemplate = T->getTypeClass() == Type::TemplateSpecialization;
4672  }
4673  // Do not transform this into an iterator-based loop. The loop body can
4674  // trigger the creation of further types (through lazy deserialization) and
4675  // invalid iterators into this list.
4676  auto &Types = SemaRef.getASTContext().getTypes();
4677  for (unsigned I = 0; I != Types.size(); ++I) {
4678    const auto *TI = Types[I];
4679    if (CXXRecordDecl *CD = TI->getAsCXXRecordDecl()) {
4680      CD = CD->getCanonicalDecl();
4681      if (!CD->isDependentType() && !CD->isAnonymousStructOrUnion() &&
4682          !CD->isUnion() && CD->getIdentifier() &&
4683          (SSIsTemplate || !isa<ClassTemplateSpecializationDecl>(CD)) &&
4684          (CD->isBeingDefined() || CD->isCompleteDefinition()))
4685        Namespaces.addNameSpecifier(CD);
4686    }
4687  }
4688}
4689
4690const TypoCorrection &TypoCorrectionConsumer::getNextCorrection() {
4691  if (++CurrentTCIndex < ValidatedCorrections.size())
4692    return ValidatedCorrections[CurrentTCIndex];
4693
4694  CurrentTCIndex = ValidatedCorrections.size();
4695  while (!CorrectionResults.empty()) {
4696    auto DI = CorrectionResults.begin();
4697    if (DI->second.empty()) {
4698      CorrectionResults.erase(DI);
4699      continue;
4700    }
4701
4702    auto RI = DI->second.begin();
4703    if (RI->second.empty()) {
4704      DI->second.erase(RI);
4705      performQualifiedLookups();
4706      continue;
4707    }
4708
4709    TypoCorrection TC = RI->second.pop_back_val();
4710    if (TC.isResolved() || TC.requiresImport() || resolveCorrection(TC)) {
4711      ValidatedCorrections.push_back(TC);
4712      return ValidatedCorrections[CurrentTCIndex];
4713    }
4714  }
4715  return ValidatedCorrections[0];  // The empty correction.
4716}
4717
4718bool TypoCorrectionConsumer::resolveCorrection(TypoCorrection &Candidate) {
4719  IdentifierInfo *Name = Candidate.getCorrectionAsIdentifierInfo();
4720  DeclContext *TempMemberContext = MemberContext;
4721  CXXScopeSpec *TempSS = SS.get();
4722retry_lookup:
4723  LookupPotentialTypoResult(SemaRef, Result, Name, S, TempSS, TempMemberContext,
4724                            EnteringContext,
4725                            CorrectionValidator->IsObjCIvarLookup,
4726                            Name == Typo && !Candidate.WillReplaceSpecifier());
4727  switch (Result.getResultKind()) {
4728  case LookupResult::NotFound:
4729  case LookupResult::NotFoundInCurrentInstantiation:
4730  case LookupResult::FoundUnresolvedValue:
4731    if (TempSS) {
4732      // Immediately retry the lookup without the given CXXScopeSpec
4733      TempSS = nullptr;
4734      Candidate.WillReplaceSpecifier(true);
4735      goto retry_lookup;
4736    }
4737    if (TempMemberContext) {
4738      if (SS && !TempSS)
4739        TempSS = SS.get();
4740      TempMemberContext = nullptr;
4741      goto retry_lookup;
4742    }
4743    if (SearchNamespaces)
4744      QualifiedResults.push_back(Candidate);
4745    break;
4746
4747  case LookupResult::Ambiguous:
4748    // We don't deal with ambiguities.
4749    break;
4750
4751  case LookupResult::Found:
4752  case LookupResult::FoundOverloaded:
4753    // Store all of the Decls for overloaded symbols
4754    for (auto *TRD : Result)
4755      Candidate.addCorrectionDecl(TRD);
4756    checkCorrectionVisibility(SemaRef, Candidate);
4757    if (!isCandidateViable(*CorrectionValidator, Candidate)) {
4758      if (SearchNamespaces)
4759        QualifiedResults.push_back(Candidate);
4760      break;
4761    }
4762    Candidate.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
4763    return true;
4764  }
4765  return false;
4766}
4767
4768void TypoCorrectionConsumer::performQualifiedLookups() {
4769  unsigned TypoLen = Typo->getName().size();
4770  for (const TypoCorrection &QR : QualifiedResults) {
4771    for (const auto &NSI : Namespaces) {
4772      DeclContext *Ctx = NSI.DeclCtx;
4773      const Type *NSType = NSI.NameSpecifier->getAsType();
4774
4775      // If the current NestedNameSpecifier refers to a class and the
4776      // current correction candidate is the name of that class, then skip
4777      // it as it is unlikely a qualified version of the class' constructor
4778      // is an appropriate correction.
4779      if (CXXRecordDecl *NSDecl = NSType ? NSType->getAsCXXRecordDecl() :
4780                                           nullptr) {
4781        if (NSDecl->getIdentifier() == QR.getCorrectionAsIdentifierInfo())
4782          continue;
4783      }
4784
4785      TypoCorrection TC(QR);
4786      TC.ClearCorrectionDecls();
4787      TC.setCorrectionSpecifier(NSI.NameSpecifier);
4788      TC.setQualifierDistance(NSI.EditDistance);
4789      TC.setCallbackDistance(0); // Reset the callback distance
4790
4791      // If the current correction candidate and namespace combination are
4792      // too far away from the original typo based on the normalized edit
4793      // distance, then skip performing a qualified name lookup.
4794      unsigned TmpED = TC.getEditDistance(true);
4795      if (QR.getCorrectionAsIdentifierInfo() != Typo && TmpED &&
4796          TypoLen / TmpED < 3)
4797        continue;
4798
4799      Result.clear();
4800      Result.setLookupName(QR.getCorrectionAsIdentifierInfo());
4801      if (!SemaRef.LookupQualifiedName(Result, Ctx))
4802        continue;
4803
4804      // Any corrections added below will be validated in subsequent
4805      // iterations of the main while() loop over the Consumer's contents.
4806      switch (Result.getResultKind()) {
4807      case LookupResult::Found:
4808      case LookupResult::FoundOverloaded: {
4809        if (SS && SS->isValid()) {
4810          std::string NewQualified = TC.getAsString(SemaRef.getLangOpts());
4811          std::string OldQualified;
4812          llvm::raw_string_ostream OldOStream(OldQualified);
4813          SS->getScopeRep()->print(OldOStream, SemaRef.getPrintingPolicy());
4814          OldOStream << Typo->getName();
4815          // If correction candidate would be an identical written qualified
4816          // identifier, then the existing CXXScopeSpec probably included a
4817          // typedef that didn't get accounted for properly.
4818          if (OldOStream.str() == NewQualified)
4819            break;
4820        }
4821        for (LookupResult::iterator TRD = Result.begin(), TRDEnd = Result.end();
4822             TRD != TRDEnd; ++TRD) {
4823          if (SemaRef.CheckMemberAccess(TC.getCorrectionRange().getBegin(),
4824                                        NSType ? NSType->getAsCXXRecordDecl()
4825                                               : nullptr,
4826                                        TRD.getPair()) == Sema::AR_accessible)
4827            TC.addCorrectionDecl(*TRD);
4828        }
4829        if (TC.isResolved()) {
4830          TC.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
4831          addCorrection(TC);
4832        }
4833        break;
4834      }
4835      case LookupResult::NotFound:
4836      case LookupResult::NotFoundInCurrentInstantiation:
4837      case LookupResult::Ambiguous:
4838      case LookupResult::FoundUnresolvedValue:
4839        break;
4840      }
4841    }
4842  }
4843  QualifiedResults.clear();
4844}
4845
4846TypoCorrectionConsumer::NamespaceSpecifierSet::NamespaceSpecifierSet(
4847    ASTContext &Context, DeclContext *CurContext, CXXScopeSpec *CurScopeSpec)
4848    : Context(Context), CurContextChain(buildContextChain(CurContext)) {
4849  if (NestedNameSpecifier *NNS =
4850          CurScopeSpec ? CurScopeSpec->getScopeRep() : nullptr) {
4851    llvm::raw_string_ostream SpecifierOStream(CurNameSpecifier);
4852    NNS->print(SpecifierOStream, Context.getPrintingPolicy());
4853
4854    getNestedNameSpecifierIdentifiers(NNS, CurNameSpecifierIdentifiers);
4855  }
4856  // Build the list of identifiers that would be used for an absolute
4857  // (from the global context) NestedNameSpecifier referring to the current
4858  // context.
4859  for (DeclContext *C : llvm::reverse(CurContextChain)) {
4860    if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C))
4861      CurContextIdentifiers.push_back(ND->getIdentifier());
4862  }
4863
4864  // Add the global context as a NestedNameSpecifier
4865  SpecifierInfo SI = {cast<DeclContext>(Context.getTranslationUnitDecl()),
4866                      NestedNameSpecifier::GlobalSpecifier(Context), 1};
4867  DistanceMap[1].push_back(SI);
4868}
4869
4870auto TypoCorrectionConsumer::NamespaceSpecifierSet::buildContextChain(
4871    DeclContext *Start) -> DeclContextList {
4872  assert(Start && "Building a context chain from a null context");
4873  DeclContextList Chain;
4874  for (DeclContext *DC = Start->getPrimaryContext(); DC != nullptr;
4875       DC = DC->getLookupParent()) {
4876    NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(DC);
4877    if (!DC->isInlineNamespace() && !DC->isTransparentContext() &&
4878        !(ND && ND->isAnonymousNamespace()))
4879      Chain.push_back(DC->getPrimaryContext());
4880  }
4881  return Chain;
4882}
4883
4884unsigned
4885TypoCorrectionConsumer::NamespaceSpecifierSet::buildNestedNameSpecifier(
4886    DeclContextList &DeclChain, NestedNameSpecifier *&NNS) {
4887  unsigned NumSpecifiers = 0;
4888  for (DeclContext *C : llvm::reverse(DeclChain)) {
4889    if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C)) {
4890      NNS = NestedNameSpecifier::Create(Context, NNS, ND);
4891      ++NumSpecifiers;
4892    } else if (auto *RD = dyn_cast_or_null<RecordDecl>(C)) {
4893      NNS = NestedNameSpecifier::Create(Context, NNS, RD->isTemplateDecl(),
4894                                        RD->getTypeForDecl());
4895      ++NumSpecifiers;
4896    }
4897  }
4898  return NumSpecifiers;
4899}
4900
4901void TypoCorrectionConsumer::NamespaceSpecifierSet::addNameSpecifier(
4902    DeclContext *Ctx) {
4903  NestedNameSpecifier *NNS = nullptr;
4904  unsigned NumSpecifiers = 0;
4905  DeclContextList NamespaceDeclChain(buildContextChain(Ctx));
4906  DeclContextList FullNamespaceDeclChain(NamespaceDeclChain);
4907
4908  // Eliminate common elements from the two DeclContext chains.
4909  for (DeclContext *C : llvm::reverse(CurContextChain)) {
4910    if (NamespaceDeclChain.empty() || NamespaceDeclChain.back() != C)
4911      break;
4912    NamespaceDeclChain.pop_back();
4913  }
4914
4915  // Build the NestedNameSpecifier from what is left of the NamespaceDeclChain
4916  NumSpecifiers = buildNestedNameSpecifier(NamespaceDeclChain, NNS);
4917
4918  // Add an explicit leading '::' specifier if needed.
4919  if (NamespaceDeclChain.empty()) {
4920    // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
4921    NNS = NestedNameSpecifier::GlobalSpecifier(Context);
4922    NumSpecifiers =
4923        buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
4924  } else if (NamedDecl *ND =
4925                 dyn_cast_or_null<NamedDecl>(NamespaceDeclChain.back())) {
4926    IdentifierInfo *Name = ND->getIdentifier();
4927    bool SameNameSpecifier = false;
4928    if (llvm::is_contained(CurNameSpecifierIdentifiers, Name)) {
4929      std::string NewNameSpecifier;
4930      llvm::raw_string_ostream SpecifierOStream(NewNameSpecifier);
4931      SmallVector<const IdentifierInfo *, 4> NewNameSpecifierIdentifiers;
4932      getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
4933      NNS->print(SpecifierOStream, Context.getPrintingPolicy());
4934      SpecifierOStream.flush();
4935      SameNameSpecifier = NewNameSpecifier == CurNameSpecifier;
4936    }
4937    if (SameNameSpecifier || llvm::is_contained(CurContextIdentifiers, Name)) {
4938      // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
4939      NNS = NestedNameSpecifier::GlobalSpecifier(Context);
4940      NumSpecifiers =
4941          buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
4942    }
4943  }
4944
4945  // If the built NestedNameSpecifier would be replacing an existing
4946  // NestedNameSpecifier, use the number of component identifiers that
4947  // would need to be changed as the edit distance instead of the number
4948  // of components in the built NestedNameSpecifier.
4949  if (NNS && !CurNameSpecifierIdentifiers.empty()) {
4950    SmallVector<const IdentifierInfo*, 4> NewNameSpecifierIdentifiers;
4951    getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
4952    NumSpecifiers =
4953        llvm::ComputeEditDistance(llvm::ArrayRef(CurNameSpecifierIdentifiers),
4954                                  llvm::ArrayRef(NewNameSpecifierIdentifiers));
4955  }
4956
4957  SpecifierInfo SI = {Ctx, NNS, NumSpecifiers};
4958  DistanceMap[NumSpecifiers].push_back(SI);
4959}
4960
4961/// Perform name lookup for a possible result for typo correction.
4962static void LookupPotentialTypoResult(Sema &SemaRef,
4963                                      LookupResult &Res,
4964                                      IdentifierInfo *Name,
4965                                      Scope *S, CXXScopeSpec *SS,
4966                                      DeclContext *MemberContext,
4967                                      bool EnteringContext,
4968                                      bool isObjCIvarLookup,
4969                                      bool FindHidden) {
4970  Res.suppressDiagnostics();
4971  Res.clear();
4972  Res.setLookupName(Name);
4973  Res.setAllowHidden(FindHidden);
4974  if (MemberContext) {
4975    if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(MemberContext)) {
4976      if (isObjCIvarLookup) {
4977        if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(Name)) {
4978          Res.addDecl(Ivar);
4979          Res.resolveKind();
4980          return;
4981        }
4982      }
4983
4984      if (ObjCPropertyDecl *Prop = Class->FindPropertyDeclaration(
4985              Name, ObjCPropertyQueryKind::OBJC_PR_query_instance)) {
4986        Res.addDecl(Prop);
4987        Res.resolveKind();
4988        return;
4989      }
4990    }
4991
4992    SemaRef.LookupQualifiedName(Res, MemberContext);
4993    return;
4994  }
4995
4996  SemaRef.LookupParsedName(Res, S, SS, /*AllowBuiltinCreation=*/false,
4997                           EnteringContext);
4998
4999  // Fake ivar lookup; this should really be part of
5000  // LookupParsedName.
5001  if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) {
5002    if (Method->isInstanceMethod() && Method->getClassInterface() &&
5003        (Res.empty() ||
5004         (Res.isSingleResult() &&
5005          Res.getFoundDecl()->isDefinedOutsideFunctionOrMethod()))) {
5006       if (ObjCIvarDecl *IV
5007             = Method->getClassInterface()->lookupInstanceVariable(Name)) {
5008         Res.addDecl(IV);
5009         Res.resolveKind();
5010       }
5011     }
5012  }
5013}
5014
5015/// Add keywords to the consumer as possible typo corrections.
5016static void AddKeywordsToConsumer(Sema &SemaRef,
5017                                  TypoCorrectionConsumer &Consumer,
5018                                  Scope *S, CorrectionCandidateCallback &CCC,
5019                                  bool AfterNestedNameSpecifier) {
5020  if (AfterNestedNameSpecifier) {
5021    // For 'X::', we know exactly which keywords can appear next.
5022    Consumer.addKeywordResult("template");
5023    if (CCC.WantExpressionKeywords)
5024      Consumer.addKeywordResult("operator");
5025    return;
5026  }
5027
5028  if (CCC.WantObjCSuper)
5029    Consumer.addKeywordResult("super");
5030
5031  if (CCC.WantTypeSpecifiers) {
5032    // Add type-specifier keywords to the set of results.
5033    static const char *const CTypeSpecs[] = {
5034      "char", "const", "double", "enum", "float", "int", "long", "short",
5035      "signed", "struct", "union", "unsigned", "void", "volatile",
5036      "_Complex", "_Imaginary",
5037      // storage-specifiers as well
5038      "extern", "inline", "static", "typedef"
5039    };
5040
5041    for (const auto *CTS : CTypeSpecs)
5042      Consumer.addKeywordResult(CTS);
5043
5044    if (SemaRef.getLangOpts().C99)
5045      Consumer.addKeywordResult("restrict");
5046    if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus)
5047      Consumer.addKeywordResult("bool");
5048    else if (SemaRef.getLangOpts().C99)
5049      Consumer.addKeywordResult("_Bool");
5050
5051    if (SemaRef.getLangOpts().CPlusPlus) {
5052      Consumer.addKeywordResult("class");
5053      Consumer.addKeywordResult("typename");
5054      Consumer.addKeywordResult("wchar_t");
5055
5056      if (SemaRef.getLangOpts().CPlusPlus11) {
5057        Consumer.addKeywordResult("char16_t");
5058        Consumer.addKeywordResult("char32_t");
5059        Consumer.addKeywordResult("constexpr");
5060        Consumer.addKeywordResult("decltype");
5061        Consumer.addKeywordResult("thread_local");
5062      }
5063    }
5064
5065    if (SemaRef.getLangOpts().GNUKeywords)
5066      Consumer.addKeywordResult("typeof");
5067  } else if (CCC.WantFunctionLikeCasts) {
5068    static const char *const CastableTypeSpecs[] = {
5069      "char", "double", "float", "int", "long", "short",
5070      "signed", "unsigned", "void"
5071    };
5072    for (auto *kw : CastableTypeSpecs)
5073      Consumer.addKeywordResult(kw);
5074  }
5075
5076  if (CCC.WantCXXNamedCasts && SemaRef.getLangOpts().CPlusPlus) {
5077    Consumer.addKeywordResult("const_cast");
5078    Consumer.addKeywordResult("dynamic_cast");
5079    Consumer.addKeywordResult("reinterpret_cast");
5080    Consumer.addKeywordResult("static_cast");
5081  }
5082
5083  if (CCC.WantExpressionKeywords) {
5084    Consumer.addKeywordResult("sizeof");
5085    if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) {
5086      Consumer.addKeywordResult("false");
5087      Consumer.addKeywordResult("true");
5088    }
5089
5090    if (SemaRef.getLangOpts().CPlusPlus) {
5091      static const char *const CXXExprs[] = {
5092        "delete", "new", "operator", "throw", "typeid"
5093      };
5094      for (const auto *CE : CXXExprs)
5095        Consumer.addKeywordResult(CE);
5096
5097      if (isa<CXXMethodDecl>(SemaRef.CurContext) &&
5098          cast<CXXMethodDecl>(SemaRef.CurContext)->isInstance())
5099        Consumer.addKeywordResult("this");
5100
5101      if (SemaRef.getLangOpts().CPlusPlus11) {
5102        Consumer.addKeywordResult("alignof");
5103        Consumer.addKeywordResult("nullptr");
5104      }
5105    }
5106
5107    if (SemaRef.getLangOpts().C11) {
5108      // FIXME: We should not suggest _Alignof if the alignof macro
5109      // is present.
5110      Consumer.addKeywordResult("_Alignof");
5111    }
5112  }
5113
5114  if (CCC.WantRemainingKeywords) {
5115    if (SemaRef.getCurFunctionOrMethodDecl() || SemaRef.getCurBlock()) {
5116      // Statements.
5117      static const char *const CStmts[] = {
5118        "do", "else", "for", "goto", "if", "return", "switch", "while" };
5119      for (const auto *CS : CStmts)
5120        Consumer.addKeywordResult(CS);
5121
5122      if (SemaRef.getLangOpts().CPlusPlus) {
5123        Consumer.addKeywordResult("catch");
5124        Consumer.addKeywordResult("try");
5125      }
5126
5127      if (S && S->getBreakParent())
5128        Consumer.addKeywordResult("break");
5129
5130      if (S && S->getContinueParent())
5131        Consumer.addKeywordResult("continue");
5132
5133      if (SemaRef.getCurFunction() &&
5134          !SemaRef.getCurFunction()->SwitchStack.empty()) {
5135        Consumer.addKeywordResult("case");
5136        Consumer.addKeywordResult("default");
5137      }
5138    } else {
5139      if (SemaRef.getLangOpts().CPlusPlus) {
5140        Consumer.addKeywordResult("namespace");
5141        Consumer.addKeywordResult("template");
5142      }
5143
5144      if (S && S->isClassScope()) {
5145        Consumer.addKeywordResult("explicit");
5146        Consumer.addKeywordResult("friend");
5147        Consumer.addKeywordResult("mutable");
5148        Consumer.addKeywordResult("private");
5149        Consumer.addKeywordResult("protected");
5150        Consumer.addKeywordResult("public");
5151        Consumer.addKeywordResult("virtual");
5152      }
5153    }
5154
5155    if (SemaRef.getLangOpts().CPlusPlus) {
5156      Consumer.addKeywordResult("using");
5157
5158      if (SemaRef.getLangOpts().CPlusPlus11)
5159        Consumer.addKeywordResult("static_assert");
5160    }
5161  }
5162}
5163
5164std::unique_ptr<TypoCorrectionConsumer> Sema::makeTypoCorrectionConsumer(
5165    const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
5166    Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC,
5167    DeclContext *MemberContext, bool EnteringContext,
5168    const ObjCObjectPointerType *OPT, bool ErrorRecovery) {
5169
5170  if (Diags.hasFatalErrorOccurred() || !getLangOpts().SpellChecking ||
5171      DisableTypoCorrection)
5172    return nullptr;
5173
5174  // In Microsoft mode, don't perform typo correction in a template member
5175  // function dependent context because it interferes with the "lookup into
5176  // dependent bases of class templates" feature.
5177  if (getLangOpts().MSVCCompat && CurContext->isDependentContext() &&
5178      isa<CXXMethodDecl>(CurContext))
5179    return nullptr;
5180
5181  // We only attempt to correct typos for identifiers.
5182  IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
5183  if (!Typo)
5184    return nullptr;
5185
5186  // If the scope specifier itself was invalid, don't try to correct
5187  // typos.
5188  if (SS && SS->isInvalid())
5189    return nullptr;
5190
5191  // Never try to correct typos during any kind of code synthesis.
5192  if (!CodeSynthesisContexts.empty())
5193    return nullptr;
5194
5195  // Don't try to correct 'super'.
5196  if (S && S->isInObjcMethodScope() && Typo == getSuperIdentifier())
5197    return nullptr;
5198
5199  // Abort if typo correction already failed for this specific typo.
5200  IdentifierSourceLocations::iterator locs = TypoCorrectionFailures.find(Typo);
5201  if (locs != TypoCorrectionFailures.end() &&
5202      locs->second.count(TypoName.getLoc()))
5203    return nullptr;
5204
5205  // Don't try to correct the identifier "vector" when in AltiVec mode.
5206  // TODO: Figure out why typo correction misbehaves in this case, fix it, and
5207  // remove this workaround.
5208  if ((getLangOpts().AltiVec || getLangOpts().ZVector) && Typo->isStr("vector"))
5209    return nullptr;
5210
5211  // Provide a stop gap for files that are just seriously broken.  Trying
5212  // to correct all typos can turn into a HUGE performance penalty, causing
5213  // some files to take minutes to get rejected by the parser.
5214  unsigned Limit = getDiagnostics().getDiagnosticOptions().SpellCheckingLimit;
5215  if (Limit && TyposCorrected >= Limit)
5216    return nullptr;
5217  ++TyposCorrected;
5218
5219  // If we're handling a missing symbol error, using modules, and the
5220  // special search all modules option is used, look for a missing import.
5221  if (ErrorRecovery && getLangOpts().Modules &&
5222      getLangOpts().ModulesSearchAll) {
5223    // The following has the side effect of loading the missing module.
5224    getModuleLoader().lookupMissingImports(Typo->getName(),
5225                                           TypoName.getBeginLoc());
5226  }
5227
5228  // Extend the lifetime of the callback. We delayed this until here
5229  // to avoid allocations in the hot path (which is where no typo correction
5230  // occurs). Note that CorrectionCandidateCallback is polymorphic and
5231  // initially stack-allocated.
5232  std::unique_ptr<CorrectionCandidateCallback> ClonedCCC = CCC.clone();
5233  auto Consumer = std::make_unique<TypoCorrectionConsumer>(
5234      *this, TypoName, LookupKind, S, SS, std::move(ClonedCCC), MemberContext,
5235      EnteringContext);
5236
5237  // Perform name lookup to find visible, similarly-named entities.
5238  bool IsUnqualifiedLookup = false;
5239  DeclContext *QualifiedDC = MemberContext;
5240  if (MemberContext) {
5241    LookupVisibleDecls(MemberContext, LookupKind, *Consumer);
5242
5243    // Look in qualified interfaces.
5244    if (OPT) {
5245      for (auto *I : OPT->quals())
5246        LookupVisibleDecls(I, LookupKind, *Consumer);
5247    }
5248  } else if (SS && SS->isSet()) {
5249    QualifiedDC = computeDeclContext(*SS, EnteringContext);
5250    if (!QualifiedDC)
5251      return nullptr;
5252
5253    LookupVisibleDecls(QualifiedDC, LookupKind, *Consumer);
5254  } else {
5255    IsUnqualifiedLookup = true;
5256  }
5257
5258  // Determine whether we are going to search in the various namespaces for
5259  // corrections.
5260  bool SearchNamespaces
5261    = getLangOpts().CPlusPlus &&
5262      (IsUnqualifiedLookup || (SS && SS->isSet()));
5263
5264  if (IsUnqualifiedLookup || SearchNamespaces) {
5265    // For unqualified lookup, look through all of the names that we have
5266    // seen in this translation unit.
5267    // FIXME: Re-add the ability to skip very unlikely potential corrections.
5268    for (const auto &I : Context.Idents)
5269      Consumer->FoundName(I.getKey());
5270
5271    // Walk through identifiers in external identifier sources.
5272    // FIXME: Re-add the ability to skip very unlikely potential corrections.
5273    if (IdentifierInfoLookup *External
5274                            = Context.Idents.getExternalIdentifierLookup()) {
5275      std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
5276      do {
5277        StringRef Name = Iter->Next();
5278        if (Name.empty())
5279          break;
5280
5281        Consumer->FoundName(Name);
5282      } while (true);
5283    }
5284  }
5285
5286  AddKeywordsToConsumer(*this, *Consumer, S,
5287                        *Consumer->getCorrectionValidator(),
5288                        SS && SS->isNotEmpty());
5289
5290  // Build the NestedNameSpecifiers for the KnownNamespaces, if we're going
5291  // to search those namespaces.
5292  if (SearchNamespaces) {
5293    // Load any externally-known namespaces.
5294    if (ExternalSource && !LoadedExternalKnownNamespaces) {
5295      SmallVector<NamespaceDecl *, 4> ExternalKnownNamespaces;
5296      LoadedExternalKnownNamespaces = true;
5297      ExternalSource->ReadKnownNamespaces(ExternalKnownNamespaces);
5298      for (auto *N : ExternalKnownNamespaces)
5299        KnownNamespaces[N] = true;
5300    }
5301
5302    Consumer->addNamespaces(KnownNamespaces);
5303  }
5304
5305  return Consumer;
5306}
5307
5308/// Try to "correct" a typo in the source code by finding
5309/// visible declarations whose names are similar to the name that was
5310/// present in the source code.
5311///
5312/// \param TypoName the \c DeclarationNameInfo structure that contains
5313/// the name that was present in the source code along with its location.
5314///
5315/// \param LookupKind the name-lookup criteria used to search for the name.
5316///
5317/// \param S the scope in which name lookup occurs.
5318///
5319/// \param SS the nested-name-specifier that precedes the name we're
5320/// looking for, if present.
5321///
5322/// \param CCC A CorrectionCandidateCallback object that provides further
5323/// validation of typo correction candidates. It also provides flags for
5324/// determining the set of keywords permitted.
5325///
5326/// \param MemberContext if non-NULL, the context in which to look for
5327/// a member access expression.
5328///
5329/// \param EnteringContext whether we're entering the context described by
5330/// the nested-name-specifier SS.
5331///
5332/// \param OPT when non-NULL, the search for visible declarations will
5333/// also walk the protocols in the qualified interfaces of \p OPT.
5334///
5335/// \returns a \c TypoCorrection containing the corrected name if the typo
5336/// along with information such as the \c NamedDecl where the corrected name
5337/// was declared, and any additional \c NestedNameSpecifier needed to access
5338/// it (C++ only). The \c TypoCorrection is empty if there is no correction.
5339TypoCorrection Sema::CorrectTypo(const DeclarationNameInfo &TypoName,
5340                                 Sema::LookupNameKind LookupKind,
5341                                 Scope *S, CXXScopeSpec *SS,
5342                                 CorrectionCandidateCallback &CCC,
5343                                 CorrectTypoKind Mode,
5344                                 DeclContext *MemberContext,
5345                                 bool EnteringContext,
5346                                 const ObjCObjectPointerType *OPT,
5347                                 bool RecordFailure) {
5348  // Always let the ExternalSource have the first chance at correction, even
5349  // if we would otherwise have given up.
5350  if (ExternalSource) {
5351    if (TypoCorrection Correction =
5352            ExternalSource->CorrectTypo(TypoName, LookupKind, S, SS, CCC,
5353                                        MemberContext, EnteringContext, OPT))
5354      return Correction;
5355  }
5356
5357  // Ugly hack equivalent to CTC == CTC_ObjCMessageReceiver;
5358  // WantObjCSuper is only true for CTC_ObjCMessageReceiver and for
5359  // some instances of CTC_Unknown, while WantRemainingKeywords is true
5360  // for CTC_Unknown but not for CTC_ObjCMessageReceiver.
5361  bool ObjCMessageReceiver = CCC.WantObjCSuper && !CCC.WantRemainingKeywords;
5362
5363  IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
5364  auto Consumer = makeTypoCorrectionConsumer(TypoName, LookupKind, S, SS, CCC,
5365                                             MemberContext, EnteringContext,
5366                                             OPT, Mode == CTK_ErrorRecovery);
5367
5368  if (!Consumer)
5369    return TypoCorrection();
5370
5371  // If we haven't found anything, we're done.
5372  if (Consumer->empty())
5373    return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5374
5375  // Make sure the best edit distance (prior to adding any namespace qualifiers)
5376  // is not more that about a third of the length of the typo's identifier.
5377  unsigned ED = Consumer->getBestEditDistance(true);
5378  unsigned TypoLen = Typo->getName().size();
5379  if (ED > 0 && TypoLen / ED < 3)
5380    return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5381
5382  TypoCorrection BestTC = Consumer->getNextCorrection();
5383  TypoCorrection SecondBestTC = Consumer->getNextCorrection();
5384  if (!BestTC)
5385    return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5386
5387  ED = BestTC.getEditDistance();
5388
5389  if (TypoLen >= 3 && ED > 0 && TypoLen / ED < 3) {
5390    // If this was an unqualified lookup and we believe the callback
5391    // object wouldn't have filtered out possible corrections, note
5392    // that no correction was found.
5393    return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5394  }
5395
5396  // If only a single name remains, return that result.
5397  if (!SecondBestTC ||
5398      SecondBestTC.getEditDistance(false) > BestTC.getEditDistance(false)) {
5399    const TypoCorrection &Result = BestTC;
5400
5401    // Don't correct to a keyword that's the same as the typo; the keyword
5402    // wasn't actually in scope.
5403    if (ED == 0 && Result.isKeyword())
5404      return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5405
5406    TypoCorrection TC = Result;
5407    TC.setCorrectionRange(SS, TypoName);
5408    checkCorrectionVisibility(*this, TC);
5409    return TC;
5410  } else if (SecondBestTC && ObjCMessageReceiver) {
5411    // Prefer 'super' when we're completing in a message-receiver
5412    // context.
5413
5414    if (BestTC.getCorrection().getAsString() != "super") {
5415      if (SecondBestTC.getCorrection().getAsString() == "super")
5416        BestTC = SecondBestTC;
5417      else if ((*Consumer)["super"].front().isKeyword())
5418        BestTC = (*Consumer)["super"].front();
5419    }
5420    // Don't correct to a keyword that's the same as the typo; the keyword
5421    // wasn't actually in scope.
5422    if (BestTC.getEditDistance() == 0 ||
5423        BestTC.getCorrection().getAsString() != "super")
5424      return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5425
5426    BestTC.setCorrectionRange(SS, TypoName);
5427    return BestTC;
5428  }
5429
5430  // Record the failure's location if needed and return an empty correction. If
5431  // this was an unqualified lookup and we believe the callback object did not
5432  // filter out possible corrections, also cache the failure for the typo.
5433  return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure && !SecondBestTC);
5434}
5435
5436/// Try to "correct" a typo in the source code by finding
5437/// visible declarations whose names are similar to the name that was
5438/// present in the source code.
5439///
5440/// \param TypoName the \c DeclarationNameInfo structure that contains
5441/// the name that was present in the source code along with its location.
5442///
5443/// \param LookupKind the name-lookup criteria used to search for the name.
5444///
5445/// \param S the scope in which name lookup occurs.
5446///
5447/// \param SS the nested-name-specifier that precedes the name we're
5448/// looking for, if present.
5449///
5450/// \param CCC A CorrectionCandidateCallback object that provides further
5451/// validation of typo correction candidates. It also provides flags for
5452/// determining the set of keywords permitted.
5453///
5454/// \param TDG A TypoDiagnosticGenerator functor that will be used to print
5455/// diagnostics when the actual typo correction is attempted.
5456///
5457/// \param TRC A TypoRecoveryCallback functor that will be used to build an
5458/// Expr from a typo correction candidate.
5459///
5460/// \param MemberContext if non-NULL, the context in which to look for
5461/// a member access expression.
5462///
5463/// \param EnteringContext whether we're entering the context described by
5464/// the nested-name-specifier SS.
5465///
5466/// \param OPT when non-NULL, the search for visible declarations will
5467/// also walk the protocols in the qualified interfaces of \p OPT.
5468///
5469/// \returns a new \c TypoExpr that will later be replaced in the AST with an
5470/// Expr representing the result of performing typo correction, or nullptr if
5471/// typo correction is not possible. If nullptr is returned, no diagnostics will
5472/// be emitted and it is the responsibility of the caller to emit any that are
5473/// needed.
5474TypoExpr *Sema::CorrectTypoDelayed(
5475    const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
5476    Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC,
5477    TypoDiagnosticGenerator TDG, TypoRecoveryCallback TRC, CorrectTypoKind Mode,
5478    DeclContext *MemberContext, bool EnteringContext,
5479    const ObjCObjectPointerType *OPT) {
5480  auto Consumer = makeTypoCorrectionConsumer(TypoName, LookupKind, S, SS, CCC,
5481                                             MemberContext, EnteringContext,
5482                                             OPT, Mode == CTK_ErrorRecovery);
5483
5484  // Give the external sema source a chance to correct the typo.
5485  TypoCorrection ExternalTypo;
5486  if (ExternalSource && Consumer) {
5487    ExternalTypo = ExternalSource->CorrectTypo(
5488        TypoName, LookupKind, S, SS, *Consumer->getCorrectionValidator(),
5489        MemberContext, EnteringContext, OPT);
5490    if (ExternalTypo)
5491      Consumer->addCorrection(ExternalTypo);
5492  }
5493
5494  if (!Consumer || Consumer->empty())
5495    return nullptr;
5496
5497  // Make sure the best edit distance (prior to adding any namespace qualifiers)
5498  // is not more that about a third of the length of the typo's identifier.
5499  unsigned ED = Consumer->getBestEditDistance(true);
5500  IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
5501  if (!ExternalTypo && ED > 0 && Typo->getName().size() / ED < 3)
5502    return nullptr;
5503  ExprEvalContexts.back().NumTypos++;
5504  return createDelayedTypo(std::move(Consumer), std::move(TDG), std::move(TRC),
5505                           TypoName.getLoc());
5506}
5507
5508void TypoCorrection::addCorrectionDecl(NamedDecl *CDecl) {
5509  if (!CDecl) return;
5510
5511  if (isKeyword())
5512    CorrectionDecls.clear();
5513
5514  CorrectionDecls.push_back(CDecl);
5515
5516  if (!CorrectionName)
5517    CorrectionName = CDecl->getDeclName();
5518}
5519
5520std::string TypoCorrection::getAsString(const LangOptions &LO) const {
5521  if (CorrectionNameSpec) {
5522    std::string tmpBuffer;
5523    llvm::raw_string_ostream PrefixOStream(tmpBuffer);
5524    CorrectionNameSpec->print(PrefixOStream, PrintingPolicy(LO));
5525    PrefixOStream << CorrectionName;
5526    return PrefixOStream.str();
5527  }
5528
5529  return CorrectionName.getAsString();
5530}
5531
5532bool CorrectionCandidateCallback::ValidateCandidate(
5533    const TypoCorrection &candidate) {
5534  if (!candidate.isResolved())
5535    return true;
5536
5537  if (candidate.isKeyword())
5538    return WantTypeSpecifiers || WantExpressionKeywords || WantCXXNamedCasts ||
5539           WantRemainingKeywords || WantObjCSuper;
5540
5541  bool HasNonType = false;
5542  bool HasStaticMethod = false;
5543  bool HasNonStaticMethod = false;
5544  for (Decl *D : candidate) {
5545    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D))
5546      D = FTD->getTemplatedDecl();
5547    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
5548      if (Method->isStatic())
5549        HasStaticMethod = true;
5550      else
5551        HasNonStaticMethod = true;
5552    }
5553    if (!isa<TypeDecl>(D))
5554      HasNonType = true;
5555  }
5556
5557  if (IsAddressOfOperand && HasNonStaticMethod && !HasStaticMethod &&
5558      !candidate.getCorrectionSpecifier())
5559    return false;
5560
5561  return WantTypeSpecifiers || HasNonType;
5562}
5563
5564FunctionCallFilterCCC::FunctionCallFilterCCC(Sema &SemaRef, unsigned NumArgs,
5565                                             bool HasExplicitTemplateArgs,
5566                                             MemberExpr *ME)
5567    : NumArgs(NumArgs), HasExplicitTemplateArgs(HasExplicitTemplateArgs),
5568      CurContext(SemaRef.CurContext), MemberFn(ME) {
5569  WantTypeSpecifiers = false;
5570  WantFunctionLikeCasts = SemaRef.getLangOpts().CPlusPlus &&
5571                          !HasExplicitTemplateArgs && NumArgs == 1;
5572  WantCXXNamedCasts = HasExplicitTemplateArgs && NumArgs == 1;
5573  WantRemainingKeywords = false;
5574}
5575
5576bool FunctionCallFilterCCC::ValidateCandidate(const TypoCorrection &candidate) {
5577  if (!candidate.getCorrectionDecl())
5578    return candidate.isKeyword();
5579
5580  for (auto *C : candidate) {
5581    FunctionDecl *FD = nullptr;
5582    NamedDecl *ND = C->getUnderlyingDecl();
5583    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
5584      FD = FTD->getTemplatedDecl();
5585    if (!HasExplicitTemplateArgs && !FD) {
5586      if (!(FD = dyn_cast<FunctionDecl>(ND)) && isa<ValueDecl>(ND)) {
5587        // If the Decl is neither a function nor a template function,
5588        // determine if it is a pointer or reference to a function. If so,
5589        // check against the number of arguments expected for the pointee.
5590        QualType ValType = cast<ValueDecl>(ND)->getType();
5591        if (ValType.isNull())
5592          continue;
5593        if (ValType->isAnyPointerType() || ValType->isReferenceType())
5594          ValType = ValType->getPointeeType();
5595        if (const FunctionProtoType *FPT = ValType->getAs<FunctionProtoType>())
5596          if (FPT->getNumParams() == NumArgs)
5597            return true;
5598      }
5599    }
5600
5601    // A typo for a function-style cast can look like a function call in C++.
5602    if ((HasExplicitTemplateArgs ? getAsTypeTemplateDecl(ND) != nullptr
5603                                 : isa<TypeDecl>(ND)) &&
5604        CurContext->getParentASTContext().getLangOpts().CPlusPlus)
5605      // Only a class or class template can take two or more arguments.
5606      return NumArgs <= 1 || HasExplicitTemplateArgs || isa<CXXRecordDecl>(ND);
5607
5608    // Skip the current candidate if it is not a FunctionDecl or does not accept
5609    // the current number of arguments.
5610    if (!FD || !(FD->getNumParams() >= NumArgs &&
5611                 FD->getMinRequiredArguments() <= NumArgs))
5612      continue;
5613
5614    // If the current candidate is a non-static C++ method, skip the candidate
5615    // unless the method being corrected--or the current DeclContext, if the
5616    // function being corrected is not a method--is a method in the same class
5617    // or a descendent class of the candidate's parent class.
5618    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
5619      if (MemberFn || !MD->isStatic()) {
5620        CXXMethodDecl *CurMD =
5621            MemberFn
5622                ? dyn_cast_or_null<CXXMethodDecl>(MemberFn->getMemberDecl())
5623                : dyn_cast_or_null<CXXMethodDecl>(CurContext);
5624        CXXRecordDecl *CurRD =
5625            CurMD ? CurMD->getParent()->getCanonicalDecl() : nullptr;
5626        CXXRecordDecl *RD = MD->getParent()->getCanonicalDecl();
5627        if (!CurRD || (CurRD != RD && !CurRD->isDerivedFrom(RD)))
5628          continue;
5629      }
5630    }
5631    return true;
5632  }
5633  return false;
5634}
5635
5636void Sema::diagnoseTypo(const TypoCorrection &Correction,
5637                        const PartialDiagnostic &TypoDiag,
5638                        bool ErrorRecovery) {
5639  diagnoseTypo(Correction, TypoDiag, PDiag(diag::note_previous_decl),
5640               ErrorRecovery);
5641}
5642
5643/// Find which declaration we should import to provide the definition of
5644/// the given declaration.
5645static NamedDecl *getDefinitionToImport(NamedDecl *D) {
5646  if (VarDecl *VD = dyn_cast<VarDecl>(D))
5647    return VD->getDefinition();
5648  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
5649    return FD->getDefinition();
5650  if (TagDecl *TD = dyn_cast<TagDecl>(D))
5651    return TD->getDefinition();
5652  if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(D))
5653    return ID->getDefinition();
5654  if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl>(D))
5655    return PD->getDefinition();
5656  if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
5657    if (NamedDecl *TTD = TD->getTemplatedDecl())
5658      return getDefinitionToImport(TTD);
5659  return nullptr;
5660}
5661
5662void Sema::diagnoseMissingImport(SourceLocation Loc, NamedDecl *Decl,
5663                                 MissingImportKind MIK, bool Recover) {
5664  // Suggest importing a module providing the definition of this entity, if
5665  // possible.
5666  NamedDecl *Def = getDefinitionToImport(Decl);
5667  if (!Def)
5668    Def = Decl;
5669
5670  Module *Owner = getOwningModule(Def);
5671  assert(Owner && "definition of hidden declaration is not in a module");
5672
5673  llvm::SmallVector<Module*, 8> OwningModules;
5674  OwningModules.push_back(Owner);
5675  auto Merged = Context.getModulesWithMergedDefinition(Def);
5676  OwningModules.insert(OwningModules.end(), Merged.begin(), Merged.end());
5677
5678  diagnoseMissingImport(Loc, Def, Def->getLocation(), OwningModules, MIK,
5679                        Recover);
5680}
5681
5682/// Get a "quoted.h" or <angled.h> include path to use in a diagnostic
5683/// suggesting the addition of a #include of the specified file.
5684static std::string getHeaderNameForHeader(Preprocessor &PP, const FileEntry *E,
5685                                          llvm::StringRef IncludingFile) {
5686  bool IsSystem = false;
5687  auto Path = PP.getHeaderSearchInfo().suggestPathToFileForDiagnostics(
5688      E, IncludingFile, &IsSystem);
5689  return (IsSystem ? '<' : '"') + Path + (IsSystem ? '>' : '"');
5690}
5691
5692void Sema::diagnoseMissingImport(SourceLocation UseLoc, NamedDecl *Decl,
5693                                 SourceLocation DeclLoc,
5694                                 ArrayRef<Module *> Modules,
5695                                 MissingImportKind MIK, bool Recover) {
5696  assert(!Modules.empty());
5697
5698  auto NotePrevious = [&] {
5699    // FIXME: Suppress the note backtrace even under
5700    // -fdiagnostics-show-note-include-stack. We don't care how this
5701    // declaration was previously reached.
5702    Diag(DeclLoc, diag::note_unreachable_entity) << (int)MIK;
5703  };
5704
5705  // Weed out duplicates from module list.
5706  llvm::SmallVector<Module*, 8> UniqueModules;
5707  llvm::SmallDenseSet<Module*, 8> UniqueModuleSet;
5708  for (auto *M : Modules) {
5709    if (M->isGlobalModule() || M->isPrivateModule())
5710      continue;
5711    if (UniqueModuleSet.insert(M).second)
5712      UniqueModules.push_back(M);
5713  }
5714
5715  // Try to find a suitable header-name to #include.
5716  std::string HeaderName;
5717  if (const FileEntry *Header =
5718          PP.getHeaderToIncludeForDiagnostics(UseLoc, DeclLoc)) {
5719    if (const FileEntry *FE =
5720            SourceMgr.getFileEntryForID(SourceMgr.getFileID(UseLoc)))
5721      HeaderName = getHeaderNameForHeader(PP, Header, FE->tryGetRealPathName());
5722  }
5723
5724  // If we have a #include we should suggest, or if all definition locations
5725  // were in global module fragments, don't suggest an import.
5726  if (!HeaderName.empty() || UniqueModules.empty()) {
5727    // FIXME: Find a smart place to suggest inserting a #include, and add
5728    // a FixItHint there.
5729    Diag(UseLoc, diag::err_module_unimported_use_header)
5730        << (int)MIK << Decl << !HeaderName.empty() << HeaderName;
5731    // Produce a note showing where the entity was declared.
5732    NotePrevious();
5733    if (Recover)
5734      createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]);
5735    return;
5736  }
5737
5738  Modules = UniqueModules;
5739
5740  if (Modules.size() > 1) {
5741    std::string ModuleList;
5742    unsigned N = 0;
5743    for (Module *M : Modules) {
5744      ModuleList += "\n        ";
5745      if (++N == 5 && N != Modules.size()) {
5746        ModuleList += "[...]";
5747        break;
5748      }
5749      ModuleList += M->getFullModuleName();
5750    }
5751
5752    Diag(UseLoc, diag::err_module_unimported_use_multiple)
5753      << (int)MIK << Decl << ModuleList;
5754  } else {
5755    // FIXME: Add a FixItHint that imports the corresponding module.
5756    Diag(UseLoc, diag::err_module_unimported_use)
5757      << (int)MIK << Decl << Modules[0]->getFullModuleName();
5758  }
5759
5760  NotePrevious();
5761
5762  // Try to recover by implicitly importing this module.
5763  if (Recover)
5764    createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]);
5765}
5766
5767/// Diagnose a successfully-corrected typo. Separated from the correction
5768/// itself to allow external validation of the result, etc.
5769///
5770/// \param Correction The result of performing typo correction.
5771/// \param TypoDiag The diagnostic to produce. This will have the corrected
5772///        string added to it (and usually also a fixit).
5773/// \param PrevNote A note to use when indicating the location of the entity to
5774///        which we are correcting. Will have the correction string added to it.
5775/// \param ErrorRecovery If \c true (the default), the caller is going to
5776///        recover from the typo as if the corrected string had been typed.
5777///        In this case, \c PDiag must be an error, and we will attach a fixit
5778///        to it.
5779void Sema::diagnoseTypo(const TypoCorrection &Correction,
5780                        const PartialDiagnostic &TypoDiag,
5781                        const PartialDiagnostic &PrevNote,
5782                        bool ErrorRecovery) {
5783  std::string CorrectedStr = Correction.getAsString(getLangOpts());
5784  std::string CorrectedQuotedStr = Correction.getQuoted(getLangOpts());
5785  FixItHint FixTypo = FixItHint::CreateReplacement(
5786      Correction.getCorrectionRange(), CorrectedStr);
5787
5788  // Maybe we're just missing a module import.
5789  if (Correction.requiresImport()) {
5790    NamedDecl *Decl = Correction.getFoundDecl();
5791    assert(Decl && "import required but no declaration to import");
5792
5793    diagnoseMissingImport(Correction.getCorrectionRange().getBegin(), Decl,
5794                          MissingImportKind::Declaration, ErrorRecovery);
5795    return;
5796  }
5797
5798  Diag(Correction.getCorrectionRange().getBegin(), TypoDiag)
5799    << CorrectedQuotedStr << (ErrorRecovery ? FixTypo : FixItHint());
5800
5801  NamedDecl *ChosenDecl =
5802      Correction.isKeyword() ? nullptr : Correction.getFoundDecl();
5803  if (PrevNote.getDiagID() && ChosenDecl)
5804    Diag(ChosenDecl->getLocation(), PrevNote)
5805      << CorrectedQuotedStr << (ErrorRecovery ? FixItHint() : FixTypo);
5806
5807  // Add any extra diagnostics.
5808  for (const PartialDiagnostic &PD : Correction.getExtraDiagnostics())
5809    Diag(Correction.getCorrectionRange().getBegin(), PD);
5810}
5811
5812TypoExpr *Sema::createDelayedTypo(std::unique_ptr<TypoCorrectionConsumer> TCC,
5813                                  TypoDiagnosticGenerator TDG,
5814                                  TypoRecoveryCallback TRC,
5815                                  SourceLocation TypoLoc) {
5816  assert(TCC && "createDelayedTypo requires a valid TypoCorrectionConsumer");
5817  auto TE = new (Context) TypoExpr(Context.DependentTy, TypoLoc);
5818  auto &State = DelayedTypos[TE];
5819  State.Consumer = std::move(TCC);
5820  State.DiagHandler = std::move(TDG);
5821  State.RecoveryHandler = std::move(TRC);
5822  if (TE)
5823    TypoExprs.push_back(TE);
5824  return TE;
5825}
5826
5827const Sema::TypoExprState &Sema::getTypoExprState(TypoExpr *TE) const {
5828  auto Entry = DelayedTypos.find(TE);
5829  assert(Entry != DelayedTypos.end() &&
5830         "Failed to get the state for a TypoExpr!");
5831  return Entry->second;
5832}
5833
5834void Sema::clearDelayedTypo(TypoExpr *TE) {
5835  DelayedTypos.erase(TE);
5836}
5837
5838void Sema::ActOnPragmaDump(Scope *S, SourceLocation IILoc, IdentifierInfo *II) {
5839  DeclarationNameInfo Name(II, IILoc);
5840  LookupResult R(*this, Name, LookupAnyName, Sema::NotForRedeclaration);
5841  R.suppressDiagnostics();
5842  R.setHideTags(false);
5843  LookupName(R, S);
5844  R.dump();
5845}
5846