1//===--- SemaExprMember.cpp - Semantic Analysis for Expressions -----------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9//  This file implements semantic analysis member access expressions.
10//
11//===----------------------------------------------------------------------===//
12#include "clang/Sema/Overload.h"
13#include "clang/AST/ASTLambda.h"
14#include "clang/AST/DeclCXX.h"
15#include "clang/AST/DeclObjC.h"
16#include "clang/AST/DeclTemplate.h"
17#include "clang/AST/ExprCXX.h"
18#include "clang/AST/ExprObjC.h"
19#include "clang/Lex/Preprocessor.h"
20#include "clang/Sema/Lookup.h"
21#include "clang/Sema/Scope.h"
22#include "clang/Sema/ScopeInfo.h"
23#include "clang/Sema/SemaInternal.h"
24
25using namespace clang;
26using namespace sema;
27
28typedef llvm::SmallPtrSet<const CXXRecordDecl*, 4> BaseSet;
29
30/// Determines if the given class is provably not derived from all of
31/// the prospective base classes.
32static bool isProvablyNotDerivedFrom(Sema &SemaRef, CXXRecordDecl *Record,
33                                     const BaseSet &Bases) {
34  auto BaseIsNotInSet = [&Bases](const CXXRecordDecl *Base) {
35    return !Bases.count(Base->getCanonicalDecl());
36  };
37  return BaseIsNotInSet(Record) && Record->forallBases(BaseIsNotInSet);
38}
39
40enum IMAKind {
41  /// The reference is definitely not an instance member access.
42  IMA_Static,
43
44  /// The reference may be an implicit instance member access.
45  IMA_Mixed,
46
47  /// The reference may be to an instance member, but it might be invalid if
48  /// so, because the context is not an instance method.
49  IMA_Mixed_StaticContext,
50
51  /// The reference may be to an instance member, but it is invalid if
52  /// so, because the context is from an unrelated class.
53  IMA_Mixed_Unrelated,
54
55  /// The reference is definitely an implicit instance member access.
56  IMA_Instance,
57
58  /// The reference may be to an unresolved using declaration.
59  IMA_Unresolved,
60
61  /// The reference is a contextually-permitted abstract member reference.
62  IMA_Abstract,
63
64  /// The reference may be to an unresolved using declaration and the
65  /// context is not an instance method.
66  IMA_Unresolved_StaticContext,
67
68  // The reference refers to a field which is not a member of the containing
69  // class, which is allowed because we're in C++11 mode and the context is
70  // unevaluated.
71  IMA_Field_Uneval_Context,
72
73  /// All possible referrents are instance members and the current
74  /// context is not an instance method.
75  IMA_Error_StaticContext,
76
77  /// All possible referrents are instance members of an unrelated
78  /// class.
79  IMA_Error_Unrelated
80};
81
82/// The given lookup names class member(s) and is not being used for
83/// an address-of-member expression.  Classify the type of access
84/// according to whether it's possible that this reference names an
85/// instance member.  This is best-effort in dependent contexts; it is okay to
86/// conservatively answer "yes", in which case some errors will simply
87/// not be caught until template-instantiation.
88static IMAKind ClassifyImplicitMemberAccess(Sema &SemaRef,
89                                            const LookupResult &R) {
90  assert(!R.empty() && (*R.begin())->isCXXClassMember());
91
92  DeclContext *DC = SemaRef.getFunctionLevelDeclContext();
93
94  bool isStaticContext = SemaRef.CXXThisTypeOverride.isNull() &&
95    (!isa<CXXMethodDecl>(DC) || cast<CXXMethodDecl>(DC)->isStatic());
96
97  if (R.isUnresolvableResult())
98    return isStaticContext ? IMA_Unresolved_StaticContext : IMA_Unresolved;
99
100  // Collect all the declaring classes of instance members we find.
101  bool hasNonInstance = false;
102  bool isField = false;
103  BaseSet Classes;
104  for (NamedDecl *D : R) {
105    // Look through any using decls.
106    D = D->getUnderlyingDecl();
107
108    if (D->isCXXInstanceMember()) {
109      isField |= isa<FieldDecl>(D) || isa<MSPropertyDecl>(D) ||
110                 isa<IndirectFieldDecl>(D);
111
112      CXXRecordDecl *R = cast<CXXRecordDecl>(D->getDeclContext());
113      Classes.insert(R->getCanonicalDecl());
114    } else
115      hasNonInstance = true;
116  }
117
118  // If we didn't find any instance members, it can't be an implicit
119  // member reference.
120  if (Classes.empty())
121    return IMA_Static;
122
123  // C++11 [expr.prim.general]p12:
124  //   An id-expression that denotes a non-static data member or non-static
125  //   member function of a class can only be used:
126  //   (...)
127  //   - if that id-expression denotes a non-static data member and it
128  //     appears in an unevaluated operand.
129  //
130  // This rule is specific to C++11.  However, we also permit this form
131  // in unevaluated inline assembly operands, like the operand to a SIZE.
132  IMAKind AbstractInstanceResult = IMA_Static; // happens to be 'false'
133  assert(!AbstractInstanceResult);
134  switch (SemaRef.ExprEvalContexts.back().Context) {
135  case Sema::ExpressionEvaluationContext::Unevaluated:
136  case Sema::ExpressionEvaluationContext::UnevaluatedList:
137    if (isField && SemaRef.getLangOpts().CPlusPlus11)
138      AbstractInstanceResult = IMA_Field_Uneval_Context;
139    break;
140
141  case Sema::ExpressionEvaluationContext::UnevaluatedAbstract:
142    AbstractInstanceResult = IMA_Abstract;
143    break;
144
145  case Sema::ExpressionEvaluationContext::DiscardedStatement:
146  case Sema::ExpressionEvaluationContext::ConstantEvaluated:
147  case Sema::ExpressionEvaluationContext::ImmediateFunctionContext:
148  case Sema::ExpressionEvaluationContext::PotentiallyEvaluated:
149  case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
150    break;
151  }
152
153  // If the current context is not an instance method, it can't be
154  // an implicit member reference.
155  if (isStaticContext) {
156    if (hasNonInstance)
157      return IMA_Mixed_StaticContext;
158
159    return AbstractInstanceResult ? AbstractInstanceResult
160                                  : IMA_Error_StaticContext;
161  }
162
163  CXXRecordDecl *contextClass;
164  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC))
165    contextClass = MD->getParent()->getCanonicalDecl();
166  else
167    contextClass = cast<CXXRecordDecl>(DC);
168
169  // [class.mfct.non-static]p3:
170  // ...is used in the body of a non-static member function of class X,
171  // if name lookup (3.4.1) resolves the name in the id-expression to a
172  // non-static non-type member of some class C [...]
173  // ...if C is not X or a base class of X, the class member access expression
174  // is ill-formed.
175  if (R.getNamingClass() &&
176      contextClass->getCanonicalDecl() !=
177        R.getNamingClass()->getCanonicalDecl()) {
178    // If the naming class is not the current context, this was a qualified
179    // member name lookup, and it's sufficient to check that we have the naming
180    // class as a base class.
181    Classes.clear();
182    Classes.insert(R.getNamingClass()->getCanonicalDecl());
183  }
184
185  // If we can prove that the current context is unrelated to all the
186  // declaring classes, it can't be an implicit member reference (in
187  // which case it's an error if any of those members are selected).
188  if (isProvablyNotDerivedFrom(SemaRef, contextClass, Classes))
189    return hasNonInstance ? IMA_Mixed_Unrelated :
190           AbstractInstanceResult ? AbstractInstanceResult :
191                                    IMA_Error_Unrelated;
192
193  return (hasNonInstance ? IMA_Mixed : IMA_Instance);
194}
195
196/// Diagnose a reference to a field with no object available.
197static void diagnoseInstanceReference(Sema &SemaRef,
198                                      const CXXScopeSpec &SS,
199                                      NamedDecl *Rep,
200                                      const DeclarationNameInfo &nameInfo) {
201  SourceLocation Loc = nameInfo.getLoc();
202  SourceRange Range(Loc);
203  if (SS.isSet()) Range.setBegin(SS.getRange().getBegin());
204
205  // Look through using shadow decls and aliases.
206  Rep = Rep->getUnderlyingDecl();
207
208  DeclContext *FunctionLevelDC = SemaRef.getFunctionLevelDeclContext();
209  CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FunctionLevelDC);
210  CXXRecordDecl *ContextClass = Method ? Method->getParent() : nullptr;
211  CXXRecordDecl *RepClass = dyn_cast<CXXRecordDecl>(Rep->getDeclContext());
212
213  bool InStaticMethod = Method && Method->isStatic();
214  bool IsField = isa<FieldDecl>(Rep) || isa<IndirectFieldDecl>(Rep);
215
216  if (IsField && InStaticMethod)
217    // "invalid use of member 'x' in static member function"
218    SemaRef.Diag(Loc, diag::err_invalid_member_use_in_static_method)
219        << Range << nameInfo.getName();
220  else if (ContextClass && RepClass && SS.isEmpty() && !InStaticMethod &&
221           !RepClass->Equals(ContextClass) && RepClass->Encloses(ContextClass))
222    // Unqualified lookup in a non-static member function found a member of an
223    // enclosing class.
224    SemaRef.Diag(Loc, diag::err_nested_non_static_member_use)
225      << IsField << RepClass << nameInfo.getName() << ContextClass << Range;
226  else if (IsField)
227    SemaRef.Diag(Loc, diag::err_invalid_non_static_member_use)
228      << nameInfo.getName() << Range;
229  else
230    SemaRef.Diag(Loc, diag::err_member_call_without_object)
231      << Range;
232}
233
234/// Builds an expression which might be an implicit member expression.
235ExprResult Sema::BuildPossibleImplicitMemberExpr(
236    const CXXScopeSpec &SS, SourceLocation TemplateKWLoc, LookupResult &R,
237    const TemplateArgumentListInfo *TemplateArgs, const Scope *S,
238    UnresolvedLookupExpr *AsULE) {
239  switch (ClassifyImplicitMemberAccess(*this, R)) {
240  case IMA_Instance:
241    return BuildImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs, true, S);
242
243  case IMA_Mixed:
244  case IMA_Mixed_Unrelated:
245  case IMA_Unresolved:
246    return BuildImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs, false,
247                                   S);
248
249  case IMA_Field_Uneval_Context:
250    Diag(R.getNameLoc(), diag::warn_cxx98_compat_non_static_member_use)
251      << R.getLookupNameInfo().getName();
252    [[fallthrough]];
253  case IMA_Static:
254  case IMA_Abstract:
255  case IMA_Mixed_StaticContext:
256  case IMA_Unresolved_StaticContext:
257    if (TemplateArgs || TemplateKWLoc.isValid())
258      return BuildTemplateIdExpr(SS, TemplateKWLoc, R, false, TemplateArgs);
259    return AsULE ? AsULE : BuildDeclarationNameExpr(SS, R, false);
260
261  case IMA_Error_StaticContext:
262  case IMA_Error_Unrelated:
263    diagnoseInstanceReference(*this, SS, R.getRepresentativeDecl(),
264                              R.getLookupNameInfo());
265    return ExprError();
266  }
267
268  llvm_unreachable("unexpected instance member access kind");
269}
270
271/// Determine whether input char is from rgba component set.
272static bool
273IsRGBA(char c) {
274  switch (c) {
275  case 'r':
276  case 'g':
277  case 'b':
278  case 'a':
279    return true;
280  default:
281    return false;
282  }
283}
284
285// OpenCL v1.1, s6.1.7
286// The component swizzle length must be in accordance with the acceptable
287// vector sizes.
288static bool IsValidOpenCLComponentSwizzleLength(unsigned len)
289{
290  return (len >= 1 && len <= 4) || len == 8 || len == 16;
291}
292
293/// Check an ext-vector component access expression.
294///
295/// VK should be set in advance to the value kind of the base
296/// expression.
297static QualType
298CheckExtVectorComponent(Sema &S, QualType baseType, ExprValueKind &VK,
299                        SourceLocation OpLoc, const IdentifierInfo *CompName,
300                        SourceLocation CompLoc) {
301  // FIXME: Share logic with ExtVectorElementExpr::containsDuplicateElements,
302  // see FIXME there.
303  //
304  // FIXME: This logic can be greatly simplified by splitting it along
305  // halving/not halving and reworking the component checking.
306  const ExtVectorType *vecType = baseType->getAs<ExtVectorType>();
307
308  // The vector accessor can't exceed the number of elements.
309  const char *compStr = CompName->getNameStart();
310
311  // This flag determines whether or not the component is one of the four
312  // special names that indicate a subset of exactly half the elements are
313  // to be selected.
314  bool HalvingSwizzle = false;
315
316  // This flag determines whether or not CompName has an 's' char prefix,
317  // indicating that it is a string of hex values to be used as vector indices.
318  bool HexSwizzle = (*compStr == 's' || *compStr == 'S') && compStr[1];
319
320  bool HasRepeated = false;
321  bool HasIndex[16] = {};
322
323  int Idx;
324
325  // Check that we've found one of the special components, or that the component
326  // names must come from the same set.
327  if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
328      !strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
329    HalvingSwizzle = true;
330  } else if (!HexSwizzle &&
331             (Idx = vecType->getPointAccessorIdx(*compStr)) != -1) {
332    bool HasRGBA = IsRGBA(*compStr);
333    do {
334      // Ensure that xyzw and rgba components don't intermingle.
335      if (HasRGBA != IsRGBA(*compStr))
336        break;
337      if (HasIndex[Idx]) HasRepeated = true;
338      HasIndex[Idx] = true;
339      compStr++;
340    } while (*compStr && (Idx = vecType->getPointAccessorIdx(*compStr)) != -1);
341
342    // Emit a warning if an rgba selector is used earlier than OpenCL C 3.0.
343    if (HasRGBA || (*compStr && IsRGBA(*compStr))) {
344      if (S.getLangOpts().OpenCL &&
345          S.getLangOpts().getOpenCLCompatibleVersion() < 300) {
346        const char *DiagBegin = HasRGBA ? CompName->getNameStart() : compStr;
347        S.Diag(OpLoc, diag::ext_opencl_ext_vector_type_rgba_selector)
348            << StringRef(DiagBegin, 1) << SourceRange(CompLoc);
349      }
350    }
351  } else {
352    if (HexSwizzle) compStr++;
353    while ((Idx = vecType->getNumericAccessorIdx(*compStr)) != -1) {
354      if (HasIndex[Idx]) HasRepeated = true;
355      HasIndex[Idx] = true;
356      compStr++;
357    }
358  }
359
360  if (!HalvingSwizzle && *compStr) {
361    // We didn't get to the end of the string. This means the component names
362    // didn't come from the same set *or* we encountered an illegal name.
363    S.Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
364      << StringRef(compStr, 1) << SourceRange(CompLoc);
365    return QualType();
366  }
367
368  // Ensure no component accessor exceeds the width of the vector type it
369  // operates on.
370  if (!HalvingSwizzle) {
371    compStr = CompName->getNameStart();
372
373    if (HexSwizzle)
374      compStr++;
375
376    while (*compStr) {
377      if (!vecType->isAccessorWithinNumElements(*compStr++, HexSwizzle)) {
378        S.Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
379          << baseType << SourceRange(CompLoc);
380        return QualType();
381      }
382    }
383  }
384
385  // OpenCL mode requires swizzle length to be in accordance with accepted
386  // sizes. Clang however supports arbitrary lengths for other languages.
387  if (S.getLangOpts().OpenCL && !HalvingSwizzle) {
388    unsigned SwizzleLength = CompName->getLength();
389
390    if (HexSwizzle)
391      SwizzleLength--;
392
393    if (IsValidOpenCLComponentSwizzleLength(SwizzleLength) == false) {
394      S.Diag(OpLoc, diag::err_opencl_ext_vector_component_invalid_length)
395        << SwizzleLength << SourceRange(CompLoc);
396      return QualType();
397    }
398  }
399
400  // The component accessor looks fine - now we need to compute the actual type.
401  // The vector type is implied by the component accessor. For example,
402  // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
403  // vec4.s0 is a float, vec4.s23 is a vec3, etc.
404  // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
405  unsigned CompSize = HalvingSwizzle ? (vecType->getNumElements() + 1) / 2
406                                     : CompName->getLength();
407  if (HexSwizzle)
408    CompSize--;
409
410  if (CompSize == 1)
411    return vecType->getElementType();
412
413  if (HasRepeated)
414    VK = VK_PRValue;
415
416  QualType VT = S.Context.getExtVectorType(vecType->getElementType(), CompSize);
417  // Now look up the TypeDefDecl from the vector type. Without this,
418  // diagostics look bad. We want extended vector types to appear built-in.
419  for (Sema::ExtVectorDeclsType::iterator
420         I = S.ExtVectorDecls.begin(S.getExternalSource()),
421         E = S.ExtVectorDecls.end();
422       I != E; ++I) {
423    if ((*I)->getUnderlyingType() == VT)
424      return S.Context.getTypedefType(*I);
425  }
426
427  return VT; // should never get here (a typedef type should always be found).
428}
429
430static Decl *FindGetterSetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
431                                                IdentifierInfo *Member,
432                                                const Selector &Sel,
433                                                ASTContext &Context) {
434  if (Member)
435    if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(
436            Member, ObjCPropertyQueryKind::OBJC_PR_query_instance))
437      return PD;
438  if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel))
439    return OMD;
440
441  for (const auto *I : PDecl->protocols()) {
442    if (Decl *D = FindGetterSetterNameDeclFromProtocolList(I, Member, Sel,
443                                                           Context))
444      return D;
445  }
446  return nullptr;
447}
448
449static Decl *FindGetterSetterNameDecl(const ObjCObjectPointerType *QIdTy,
450                                      IdentifierInfo *Member,
451                                      const Selector &Sel,
452                                      ASTContext &Context) {
453  // Check protocols on qualified interfaces.
454  Decl *GDecl = nullptr;
455  for (const auto *I : QIdTy->quals()) {
456    if (Member)
457      if (ObjCPropertyDecl *PD = I->FindPropertyDeclaration(
458              Member, ObjCPropertyQueryKind::OBJC_PR_query_instance)) {
459        GDecl = PD;
460        break;
461      }
462    // Also must look for a getter or setter name which uses property syntax.
463    if (ObjCMethodDecl *OMD = I->getInstanceMethod(Sel)) {
464      GDecl = OMD;
465      break;
466    }
467  }
468  if (!GDecl) {
469    for (const auto *I : QIdTy->quals()) {
470      // Search in the protocol-qualifier list of current protocol.
471      GDecl = FindGetterSetterNameDeclFromProtocolList(I, Member, Sel, Context);
472      if (GDecl)
473        return GDecl;
474    }
475  }
476  return GDecl;
477}
478
479ExprResult
480Sema::ActOnDependentMemberExpr(Expr *BaseExpr, QualType BaseType,
481                               bool IsArrow, SourceLocation OpLoc,
482                               const CXXScopeSpec &SS,
483                               SourceLocation TemplateKWLoc,
484                               NamedDecl *FirstQualifierInScope,
485                               const DeclarationNameInfo &NameInfo,
486                               const TemplateArgumentListInfo *TemplateArgs) {
487  // Even in dependent contexts, try to diagnose base expressions with
488  // obviously wrong types, e.g.:
489  //
490  // T* t;
491  // t.f;
492  //
493  // In Obj-C++, however, the above expression is valid, since it could be
494  // accessing the 'f' property if T is an Obj-C interface. The extra check
495  // allows this, while still reporting an error if T is a struct pointer.
496  if (!IsArrow) {
497    const PointerType *PT = BaseType->getAs<PointerType>();
498    if (PT && (!getLangOpts().ObjC ||
499               PT->getPointeeType()->isRecordType())) {
500      assert(BaseExpr && "cannot happen with implicit member accesses");
501      Diag(OpLoc, diag::err_typecheck_member_reference_struct_union)
502        << BaseType << BaseExpr->getSourceRange() << NameInfo.getSourceRange();
503      return ExprError();
504    }
505  }
506
507  assert(BaseType->isDependentType() || NameInfo.getName().isDependentName() ||
508         isDependentScopeSpecifier(SS) ||
509         (TemplateArgs && llvm::any_of(TemplateArgs->arguments(),
510                                       [](const TemplateArgumentLoc &Arg) {
511                                         return Arg.getArgument().isDependent();
512                                       })));
513
514  // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
515  // must have pointer type, and the accessed type is the pointee.
516  return CXXDependentScopeMemberExpr::Create(
517      Context, BaseExpr, BaseType, IsArrow, OpLoc,
518      SS.getWithLocInContext(Context), TemplateKWLoc, FirstQualifierInScope,
519      NameInfo, TemplateArgs);
520}
521
522/// We know that the given qualified member reference points only to
523/// declarations which do not belong to the static type of the base
524/// expression.  Diagnose the problem.
525static void DiagnoseQualifiedMemberReference(Sema &SemaRef,
526                                             Expr *BaseExpr,
527                                             QualType BaseType,
528                                             const CXXScopeSpec &SS,
529                                             NamedDecl *rep,
530                                       const DeclarationNameInfo &nameInfo) {
531  // If this is an implicit member access, use a different set of
532  // diagnostics.
533  if (!BaseExpr)
534    return diagnoseInstanceReference(SemaRef, SS, rep, nameInfo);
535
536  SemaRef.Diag(nameInfo.getLoc(), diag::err_qualified_member_of_unrelated)
537    << SS.getRange() << rep << BaseType;
538}
539
540// Check whether the declarations we found through a nested-name
541// specifier in a member expression are actually members of the base
542// type.  The restriction here is:
543//
544//   C++ [expr.ref]p2:
545//     ... In these cases, the id-expression shall name a
546//     member of the class or of one of its base classes.
547//
548// So it's perfectly legitimate for the nested-name specifier to name
549// an unrelated class, and for us to find an overload set including
550// decls from classes which are not superclasses, as long as the decl
551// we actually pick through overload resolution is from a superclass.
552bool Sema::CheckQualifiedMemberReference(Expr *BaseExpr,
553                                         QualType BaseType,
554                                         const CXXScopeSpec &SS,
555                                         const LookupResult &R) {
556  CXXRecordDecl *BaseRecord =
557    cast_or_null<CXXRecordDecl>(computeDeclContext(BaseType));
558  if (!BaseRecord) {
559    // We can't check this yet because the base type is still
560    // dependent.
561    assert(BaseType->isDependentType());
562    return false;
563  }
564
565  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
566    // If this is an implicit member reference and we find a
567    // non-instance member, it's not an error.
568    if (!BaseExpr && !(*I)->isCXXInstanceMember())
569      return false;
570
571    // Note that we use the DC of the decl, not the underlying decl.
572    DeclContext *DC = (*I)->getDeclContext()->getNonTransparentContext();
573    if (!DC->isRecord())
574      continue;
575
576    CXXRecordDecl *MemberRecord = cast<CXXRecordDecl>(DC)->getCanonicalDecl();
577    if (BaseRecord->getCanonicalDecl() == MemberRecord ||
578        !BaseRecord->isProvablyNotDerivedFrom(MemberRecord))
579      return false;
580  }
581
582  DiagnoseQualifiedMemberReference(*this, BaseExpr, BaseType, SS,
583                                   R.getRepresentativeDecl(),
584                                   R.getLookupNameInfo());
585  return true;
586}
587
588namespace {
589
590// Callback to only accept typo corrections that are either a ValueDecl or a
591// FunctionTemplateDecl and are declared in the current record or, for a C++
592// classes, one of its base classes.
593class RecordMemberExprValidatorCCC final : public CorrectionCandidateCallback {
594public:
595  explicit RecordMemberExprValidatorCCC(const RecordType *RTy)
596      : Record(RTy->getDecl()) {
597    // Don't add bare keywords to the consumer since they will always fail
598    // validation by virtue of not being associated with any decls.
599    WantTypeSpecifiers = false;
600    WantExpressionKeywords = false;
601    WantCXXNamedCasts = false;
602    WantFunctionLikeCasts = false;
603    WantRemainingKeywords = false;
604  }
605
606  bool ValidateCandidate(const TypoCorrection &candidate) override {
607    NamedDecl *ND = candidate.getCorrectionDecl();
608    // Don't accept candidates that cannot be member functions, constants,
609    // variables, or templates.
610    if (!ND || !(isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND)))
611      return false;
612
613    // Accept candidates that occur in the current record.
614    if (Record->containsDecl(ND))
615      return true;
616
617    if (const auto *RD = dyn_cast<CXXRecordDecl>(Record)) {
618      // Accept candidates that occur in any of the current class' base classes.
619      for (const auto &BS : RD->bases()) {
620        if (const auto *BSTy = BS.getType()->getAs<RecordType>()) {
621          if (BSTy->getDecl()->containsDecl(ND))
622            return true;
623        }
624      }
625    }
626
627    return false;
628  }
629
630  std::unique_ptr<CorrectionCandidateCallback> clone() override {
631    return std::make_unique<RecordMemberExprValidatorCCC>(*this);
632  }
633
634private:
635  const RecordDecl *const Record;
636};
637
638}
639
640static bool LookupMemberExprInRecord(Sema &SemaRef, LookupResult &R,
641                                     Expr *BaseExpr,
642                                     const RecordType *RTy,
643                                     SourceLocation OpLoc, bool IsArrow,
644                                     CXXScopeSpec &SS, bool HasTemplateArgs,
645                                     SourceLocation TemplateKWLoc,
646                                     TypoExpr *&TE) {
647  SourceRange BaseRange = BaseExpr ? BaseExpr->getSourceRange() : SourceRange();
648  RecordDecl *RDecl = RTy->getDecl();
649  if (!SemaRef.isThisOutsideMemberFunctionBody(QualType(RTy, 0)) &&
650      SemaRef.RequireCompleteType(OpLoc, QualType(RTy, 0),
651                                  diag::err_typecheck_incomplete_tag,
652                                  BaseRange))
653    return true;
654
655  if (HasTemplateArgs || TemplateKWLoc.isValid()) {
656    // LookupTemplateName doesn't expect these both to exist simultaneously.
657    QualType ObjectType = SS.isSet() ? QualType() : QualType(RTy, 0);
658
659    bool MOUS;
660    return SemaRef.LookupTemplateName(R, nullptr, SS, ObjectType, false, MOUS,
661                                      TemplateKWLoc);
662  }
663
664  DeclContext *DC = RDecl;
665  if (SS.isSet()) {
666    // If the member name was a qualified-id, look into the
667    // nested-name-specifier.
668    DC = SemaRef.computeDeclContext(SS, false);
669
670    if (SemaRef.RequireCompleteDeclContext(SS, DC)) {
671      SemaRef.Diag(SS.getRange().getEnd(), diag::err_typecheck_incomplete_tag)
672          << SS.getRange() << DC;
673      return true;
674    }
675
676    assert(DC && "Cannot handle non-computable dependent contexts in lookup");
677
678    if (!isa<TypeDecl>(DC)) {
679      SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_nonclass)
680          << DC << SS.getRange();
681      return true;
682    }
683  }
684
685  // The record definition is complete, now look up the member.
686  SemaRef.LookupQualifiedName(R, DC, SS);
687
688  if (!R.empty())
689    return false;
690
691  DeclarationName Typo = R.getLookupName();
692  SourceLocation TypoLoc = R.getNameLoc();
693
694  struct QueryState {
695    Sema &SemaRef;
696    DeclarationNameInfo NameInfo;
697    Sema::LookupNameKind LookupKind;
698    Sema::RedeclarationKind Redecl;
699  };
700  QueryState Q = {R.getSema(), R.getLookupNameInfo(), R.getLookupKind(),
701                  R.redeclarationKind()};
702  RecordMemberExprValidatorCCC CCC(RTy);
703  TE = SemaRef.CorrectTypoDelayed(
704      R.getLookupNameInfo(), R.getLookupKind(), nullptr, &SS, CCC,
705      [=, &SemaRef](const TypoCorrection &TC) {
706        if (TC) {
707          assert(!TC.isKeyword() &&
708                 "Got a keyword as a correction for a member!");
709          bool DroppedSpecifier =
710              TC.WillReplaceSpecifier() &&
711              Typo.getAsString() == TC.getAsString(SemaRef.getLangOpts());
712          SemaRef.diagnoseTypo(TC, SemaRef.PDiag(diag::err_no_member_suggest)
713                                       << Typo << DC << DroppedSpecifier
714                                       << SS.getRange());
715        } else {
716          SemaRef.Diag(TypoLoc, diag::err_no_member) << Typo << DC << BaseRange;
717        }
718      },
719      [=](Sema &SemaRef, TypoExpr *TE, TypoCorrection TC) mutable {
720        LookupResult R(Q.SemaRef, Q.NameInfo, Q.LookupKind, Q.Redecl);
721        R.clear(); // Ensure there's no decls lingering in the shared state.
722        R.suppressDiagnostics();
723        R.setLookupName(TC.getCorrection());
724        for (NamedDecl *ND : TC)
725          R.addDecl(ND);
726        R.resolveKind();
727        return SemaRef.BuildMemberReferenceExpr(
728            BaseExpr, BaseExpr->getType(), OpLoc, IsArrow, SS, SourceLocation(),
729            nullptr, R, nullptr, nullptr);
730      },
731      Sema::CTK_ErrorRecovery, DC);
732
733  return false;
734}
735
736static ExprResult LookupMemberExpr(Sema &S, LookupResult &R,
737                                   ExprResult &BaseExpr, bool &IsArrow,
738                                   SourceLocation OpLoc, CXXScopeSpec &SS,
739                                   Decl *ObjCImpDecl, bool HasTemplateArgs,
740                                   SourceLocation TemplateKWLoc);
741
742ExprResult
743Sema::BuildMemberReferenceExpr(Expr *Base, QualType BaseType,
744                               SourceLocation OpLoc, bool IsArrow,
745                               CXXScopeSpec &SS,
746                               SourceLocation TemplateKWLoc,
747                               NamedDecl *FirstQualifierInScope,
748                               const DeclarationNameInfo &NameInfo,
749                               const TemplateArgumentListInfo *TemplateArgs,
750                               const Scope *S,
751                               ActOnMemberAccessExtraArgs *ExtraArgs) {
752  if (BaseType->isDependentType() ||
753      (SS.isSet() && isDependentScopeSpecifier(SS)))
754    return ActOnDependentMemberExpr(Base, BaseType,
755                                    IsArrow, OpLoc,
756                                    SS, TemplateKWLoc, FirstQualifierInScope,
757                                    NameInfo, TemplateArgs);
758
759  LookupResult R(*this, NameInfo, LookupMemberName);
760
761  // Implicit member accesses.
762  if (!Base) {
763    TypoExpr *TE = nullptr;
764    QualType RecordTy = BaseType;
765    if (IsArrow) RecordTy = RecordTy->castAs<PointerType>()->getPointeeType();
766    if (LookupMemberExprInRecord(
767            *this, R, nullptr, RecordTy->getAs<RecordType>(), OpLoc, IsArrow,
768            SS, TemplateArgs != nullptr, TemplateKWLoc, TE))
769      return ExprError();
770    if (TE)
771      return TE;
772
773  // Explicit member accesses.
774  } else {
775    ExprResult BaseResult = Base;
776    ExprResult Result =
777        LookupMemberExpr(*this, R, BaseResult, IsArrow, OpLoc, SS,
778                         ExtraArgs ? ExtraArgs->ObjCImpDecl : nullptr,
779                         TemplateArgs != nullptr, TemplateKWLoc);
780
781    if (BaseResult.isInvalid())
782      return ExprError();
783    Base = BaseResult.get();
784
785    if (Result.isInvalid())
786      return ExprError();
787
788    if (Result.get())
789      return Result;
790
791    // LookupMemberExpr can modify Base, and thus change BaseType
792    BaseType = Base->getType();
793  }
794
795  return BuildMemberReferenceExpr(Base, BaseType,
796                                  OpLoc, IsArrow, SS, TemplateKWLoc,
797                                  FirstQualifierInScope, R, TemplateArgs, S,
798                                  false, ExtraArgs);
799}
800
801ExprResult
802Sema::BuildAnonymousStructUnionMemberReference(const CXXScopeSpec &SS,
803                                               SourceLocation loc,
804                                               IndirectFieldDecl *indirectField,
805                                               DeclAccessPair foundDecl,
806                                               Expr *baseObjectExpr,
807                                               SourceLocation opLoc) {
808  // First, build the expression that refers to the base object.
809
810  // Case 1:  the base of the indirect field is not a field.
811  VarDecl *baseVariable = indirectField->getVarDecl();
812  CXXScopeSpec EmptySS;
813  if (baseVariable) {
814    assert(baseVariable->getType()->isRecordType());
815
816    // In principle we could have a member access expression that
817    // accesses an anonymous struct/union that's a static member of
818    // the base object's class.  However, under the current standard,
819    // static data members cannot be anonymous structs or unions.
820    // Supporting this is as easy as building a MemberExpr here.
821    assert(!baseObjectExpr && "anonymous struct/union is static data member?");
822
823    DeclarationNameInfo baseNameInfo(DeclarationName(), loc);
824
825    ExprResult result
826      = BuildDeclarationNameExpr(EmptySS, baseNameInfo, baseVariable);
827    if (result.isInvalid()) return ExprError();
828
829    baseObjectExpr = result.get();
830  }
831
832  assert((baseVariable || baseObjectExpr) &&
833         "referencing anonymous struct/union without a base variable or "
834         "expression");
835
836  // Build the implicit member references to the field of the
837  // anonymous struct/union.
838  Expr *result = baseObjectExpr;
839  IndirectFieldDecl::chain_iterator
840  FI = indirectField->chain_begin(), FEnd = indirectField->chain_end();
841
842  // Case 2: the base of the indirect field is a field and the user
843  // wrote a member expression.
844  if (!baseVariable) {
845    FieldDecl *field = cast<FieldDecl>(*FI);
846
847    bool baseObjectIsPointer = baseObjectExpr->getType()->isPointerType();
848
849    // Make a nameInfo that properly uses the anonymous name.
850    DeclarationNameInfo memberNameInfo(field->getDeclName(), loc);
851
852    // Build the first member access in the chain with full information.
853    result =
854        BuildFieldReferenceExpr(result, baseObjectIsPointer, SourceLocation(),
855                                SS, field, foundDecl, memberNameInfo)
856            .get();
857    if (!result)
858      return ExprError();
859  }
860
861  // In all cases, we should now skip the first declaration in the chain.
862  ++FI;
863
864  while (FI != FEnd) {
865    FieldDecl *field = cast<FieldDecl>(*FI++);
866
867    // FIXME: these are somewhat meaningless
868    DeclarationNameInfo memberNameInfo(field->getDeclName(), loc);
869    DeclAccessPair fakeFoundDecl =
870        DeclAccessPair::make(field, field->getAccess());
871
872    result =
873        BuildFieldReferenceExpr(result, /*isarrow*/ false, SourceLocation(),
874                                (FI == FEnd ? SS : EmptySS), field,
875                                fakeFoundDecl, memberNameInfo)
876            .get();
877  }
878
879  return result;
880}
881
882static ExprResult
883BuildMSPropertyRefExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
884                       const CXXScopeSpec &SS,
885                       MSPropertyDecl *PD,
886                       const DeclarationNameInfo &NameInfo) {
887  // Property names are always simple identifiers and therefore never
888  // require any interesting additional storage.
889  return new (S.Context) MSPropertyRefExpr(BaseExpr, PD, IsArrow,
890                                           S.Context.PseudoObjectTy, VK_LValue,
891                                           SS.getWithLocInContext(S.Context),
892                                           NameInfo.getLoc());
893}
894
895MemberExpr *Sema::BuildMemberExpr(
896    Expr *Base, bool IsArrow, SourceLocation OpLoc, const CXXScopeSpec *SS,
897    SourceLocation TemplateKWLoc, ValueDecl *Member, DeclAccessPair FoundDecl,
898    bool HadMultipleCandidates, const DeclarationNameInfo &MemberNameInfo,
899    QualType Ty, ExprValueKind VK, ExprObjectKind OK,
900    const TemplateArgumentListInfo *TemplateArgs) {
901  NestedNameSpecifierLoc NNS =
902      SS ? SS->getWithLocInContext(Context) : NestedNameSpecifierLoc();
903  return BuildMemberExpr(Base, IsArrow, OpLoc, NNS, TemplateKWLoc, Member,
904                         FoundDecl, HadMultipleCandidates, MemberNameInfo, Ty,
905                         VK, OK, TemplateArgs);
906}
907
908MemberExpr *Sema::BuildMemberExpr(
909    Expr *Base, bool IsArrow, SourceLocation OpLoc, NestedNameSpecifierLoc NNS,
910    SourceLocation TemplateKWLoc, ValueDecl *Member, DeclAccessPair FoundDecl,
911    bool HadMultipleCandidates, const DeclarationNameInfo &MemberNameInfo,
912    QualType Ty, ExprValueKind VK, ExprObjectKind OK,
913    const TemplateArgumentListInfo *TemplateArgs) {
914  assert((!IsArrow || Base->isPRValue()) &&
915         "-> base must be a pointer prvalue");
916  MemberExpr *E =
917      MemberExpr::Create(Context, Base, IsArrow, OpLoc, NNS, TemplateKWLoc,
918                         Member, FoundDecl, MemberNameInfo, TemplateArgs, Ty,
919                         VK, OK, getNonOdrUseReasonInCurrentContext(Member));
920  E->setHadMultipleCandidates(HadMultipleCandidates);
921  MarkMemberReferenced(E);
922
923  // C++ [except.spec]p17:
924  //   An exception-specification is considered to be needed when:
925  //   - in an expression the function is the unique lookup result or the
926  //     selected member of a set of overloaded functions
927  if (auto *FPT = Ty->getAs<FunctionProtoType>()) {
928    if (isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) {
929      if (auto *NewFPT = ResolveExceptionSpec(MemberNameInfo.getLoc(), FPT))
930        E->setType(Context.getQualifiedType(NewFPT, Ty.getQualifiers()));
931    }
932  }
933
934  return E;
935}
936
937/// Determine if the given scope is within a function-try-block handler.
938static bool IsInFnTryBlockHandler(const Scope *S) {
939  // Walk the scope stack until finding a FnTryCatchScope, or leave the
940  // function scope. If a FnTryCatchScope is found, check whether the TryScope
941  // flag is set. If it is not, it's a function-try-block handler.
942  for (; S != S->getFnParent(); S = S->getParent()) {
943    if (S->isFnTryCatchScope())
944      return (S->getFlags() & Scope::TryScope) != Scope::TryScope;
945  }
946  return false;
947}
948
949ExprResult
950Sema::BuildMemberReferenceExpr(Expr *BaseExpr, QualType BaseExprType,
951                               SourceLocation OpLoc, bool IsArrow,
952                               const CXXScopeSpec &SS,
953                               SourceLocation TemplateKWLoc,
954                               NamedDecl *FirstQualifierInScope,
955                               LookupResult &R,
956                               const TemplateArgumentListInfo *TemplateArgs,
957                               const Scope *S,
958                               bool SuppressQualifierCheck,
959                               ActOnMemberAccessExtraArgs *ExtraArgs) {
960  QualType BaseType = BaseExprType;
961  if (IsArrow) {
962    assert(BaseType->isPointerType());
963    BaseType = BaseType->castAs<PointerType>()->getPointeeType();
964  }
965  R.setBaseObjectType(BaseType);
966
967  // C++1z [expr.ref]p2:
968  //   For the first option (dot) the first expression shall be a glvalue [...]
969  if (!IsArrow && BaseExpr && BaseExpr->isPRValue()) {
970    ExprResult Converted = TemporaryMaterializationConversion(BaseExpr);
971    if (Converted.isInvalid())
972      return ExprError();
973    BaseExpr = Converted.get();
974  }
975
976  const DeclarationNameInfo &MemberNameInfo = R.getLookupNameInfo();
977  DeclarationName MemberName = MemberNameInfo.getName();
978  SourceLocation MemberLoc = MemberNameInfo.getLoc();
979
980  if (R.isAmbiguous())
981    return ExprError();
982
983  // [except.handle]p10: Referring to any non-static member or base class of an
984  // object in the handler for a function-try-block of a constructor or
985  // destructor for that object results in undefined behavior.
986  const auto *FD = getCurFunctionDecl();
987  if (S && BaseExpr && FD &&
988      (isa<CXXDestructorDecl>(FD) || isa<CXXConstructorDecl>(FD)) &&
989      isa<CXXThisExpr>(BaseExpr->IgnoreImpCasts()) &&
990      IsInFnTryBlockHandler(S))
991    Diag(MemberLoc, diag::warn_cdtor_function_try_handler_mem_expr)
992        << isa<CXXDestructorDecl>(FD);
993
994  if (R.empty()) {
995    // Rederive where we looked up.
996    DeclContext *DC = (SS.isSet()
997                       ? computeDeclContext(SS, false)
998                       : BaseType->castAs<RecordType>()->getDecl());
999
1000    if (ExtraArgs) {
1001      ExprResult RetryExpr;
1002      if (!IsArrow && BaseExpr) {
1003        SFINAETrap Trap(*this, true);
1004        ParsedType ObjectType;
1005        bool MayBePseudoDestructor = false;
1006        RetryExpr = ActOnStartCXXMemberReference(getCurScope(), BaseExpr,
1007                                                 OpLoc, tok::arrow, ObjectType,
1008                                                 MayBePseudoDestructor);
1009        if (RetryExpr.isUsable() && !Trap.hasErrorOccurred()) {
1010          CXXScopeSpec TempSS(SS);
1011          RetryExpr = ActOnMemberAccessExpr(
1012              ExtraArgs->S, RetryExpr.get(), OpLoc, tok::arrow, TempSS,
1013              TemplateKWLoc, ExtraArgs->Id, ExtraArgs->ObjCImpDecl);
1014        }
1015        if (Trap.hasErrorOccurred())
1016          RetryExpr = ExprError();
1017      }
1018      if (RetryExpr.isUsable()) {
1019        Diag(OpLoc, diag::err_no_member_overloaded_arrow)
1020          << MemberName << DC << FixItHint::CreateReplacement(OpLoc, "->");
1021        return RetryExpr;
1022      }
1023    }
1024
1025    Diag(R.getNameLoc(), diag::err_no_member)
1026      << MemberName << DC
1027      << (BaseExpr ? BaseExpr->getSourceRange() : SourceRange());
1028    return ExprError();
1029  }
1030
1031  // Diagnose lookups that find only declarations from a non-base
1032  // type.  This is possible for either qualified lookups (which may
1033  // have been qualified with an unrelated type) or implicit member
1034  // expressions (which were found with unqualified lookup and thus
1035  // may have come from an enclosing scope).  Note that it's okay for
1036  // lookup to find declarations from a non-base type as long as those
1037  // aren't the ones picked by overload resolution.
1038  if ((SS.isSet() || !BaseExpr ||
1039       (isa<CXXThisExpr>(BaseExpr) &&
1040        cast<CXXThisExpr>(BaseExpr)->isImplicit())) &&
1041      !SuppressQualifierCheck &&
1042      CheckQualifiedMemberReference(BaseExpr, BaseType, SS, R))
1043    return ExprError();
1044
1045  // Construct an unresolved result if we in fact got an unresolved
1046  // result.
1047  if (R.isOverloadedResult() || R.isUnresolvableResult()) {
1048    // Suppress any lookup-related diagnostics; we'll do these when we
1049    // pick a member.
1050    R.suppressDiagnostics();
1051
1052    UnresolvedMemberExpr *MemExpr
1053      = UnresolvedMemberExpr::Create(Context, R.isUnresolvableResult(),
1054                                     BaseExpr, BaseExprType,
1055                                     IsArrow, OpLoc,
1056                                     SS.getWithLocInContext(Context),
1057                                     TemplateKWLoc, MemberNameInfo,
1058                                     TemplateArgs, R.begin(), R.end());
1059
1060    return MemExpr;
1061  }
1062
1063  assert(R.isSingleResult());
1064  DeclAccessPair FoundDecl = R.begin().getPair();
1065  NamedDecl *MemberDecl = R.getFoundDecl();
1066
1067  // FIXME: diagnose the presence of template arguments now.
1068
1069  // If the decl being referenced had an error, return an error for this
1070  // sub-expr without emitting another error, in order to avoid cascading
1071  // error cases.
1072  if (MemberDecl->isInvalidDecl())
1073    return ExprError();
1074
1075  // Handle the implicit-member-access case.
1076  if (!BaseExpr) {
1077    // If this is not an instance member, convert to a non-member access.
1078    if (!MemberDecl->isCXXInstanceMember()) {
1079      // We might have a variable template specialization (or maybe one day a
1080      // member concept-id).
1081      if (TemplateArgs || TemplateKWLoc.isValid())
1082        return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/false, TemplateArgs);
1083
1084      return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), MemberDecl,
1085                                      FoundDecl, TemplateArgs);
1086    }
1087    SourceLocation Loc = R.getNameLoc();
1088    if (SS.getRange().isValid())
1089      Loc = SS.getRange().getBegin();
1090    BaseExpr = BuildCXXThisExpr(Loc, BaseExprType, /*IsImplicit=*/true);
1091  }
1092
1093  // Check the use of this member.
1094  if (DiagnoseUseOfDecl(MemberDecl, MemberLoc))
1095    return ExprError();
1096
1097  if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl))
1098    return BuildFieldReferenceExpr(BaseExpr, IsArrow, OpLoc, SS, FD, FoundDecl,
1099                                   MemberNameInfo);
1100
1101  if (MSPropertyDecl *PD = dyn_cast<MSPropertyDecl>(MemberDecl))
1102    return BuildMSPropertyRefExpr(*this, BaseExpr, IsArrow, SS, PD,
1103                                  MemberNameInfo);
1104
1105  if (IndirectFieldDecl *FD = dyn_cast<IndirectFieldDecl>(MemberDecl))
1106    // We may have found a field within an anonymous union or struct
1107    // (C++ [class.union]).
1108    return BuildAnonymousStructUnionMemberReference(SS, MemberLoc, FD,
1109                                                    FoundDecl, BaseExpr,
1110                                                    OpLoc);
1111
1112  if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) {
1113    return BuildMemberExpr(BaseExpr, IsArrow, OpLoc, &SS, TemplateKWLoc, Var,
1114                           FoundDecl, /*HadMultipleCandidates=*/false,
1115                           MemberNameInfo, Var->getType().getNonReferenceType(),
1116                           VK_LValue, OK_Ordinary);
1117  }
1118
1119  if (CXXMethodDecl *MemberFn = dyn_cast<CXXMethodDecl>(MemberDecl)) {
1120    ExprValueKind valueKind;
1121    QualType type;
1122    if (MemberFn->isInstance()) {
1123      valueKind = VK_PRValue;
1124      type = Context.BoundMemberTy;
1125    } else {
1126      valueKind = VK_LValue;
1127      type = MemberFn->getType();
1128    }
1129
1130    return BuildMemberExpr(BaseExpr, IsArrow, OpLoc, &SS, TemplateKWLoc,
1131                           MemberFn, FoundDecl, /*HadMultipleCandidates=*/false,
1132                           MemberNameInfo, type, valueKind, OK_Ordinary);
1133  }
1134  assert(!isa<FunctionDecl>(MemberDecl) && "member function not C++ method?");
1135
1136  if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) {
1137    return BuildMemberExpr(BaseExpr, IsArrow, OpLoc, &SS, TemplateKWLoc, Enum,
1138                           FoundDecl, /*HadMultipleCandidates=*/false,
1139                           MemberNameInfo, Enum->getType(), VK_PRValue,
1140                           OK_Ordinary);
1141  }
1142
1143  if (VarTemplateDecl *VarTempl = dyn_cast<VarTemplateDecl>(MemberDecl)) {
1144    if (!TemplateArgs) {
1145      diagnoseMissingTemplateArguments(TemplateName(VarTempl), MemberLoc);
1146      return ExprError();
1147    }
1148
1149    DeclResult VDecl = CheckVarTemplateId(VarTempl, TemplateKWLoc,
1150                                          MemberNameInfo.getLoc(), *TemplateArgs);
1151    if (VDecl.isInvalid())
1152      return ExprError();
1153
1154    // Non-dependent member, but dependent template arguments.
1155    if (!VDecl.get())
1156      return ActOnDependentMemberExpr(
1157          BaseExpr, BaseExpr->getType(), IsArrow, OpLoc, SS, TemplateKWLoc,
1158          FirstQualifierInScope, MemberNameInfo, TemplateArgs);
1159
1160    VarDecl *Var = cast<VarDecl>(VDecl.get());
1161    if (!Var->getTemplateSpecializationKind())
1162      Var->setTemplateSpecializationKind(TSK_ImplicitInstantiation, MemberLoc);
1163
1164    return BuildMemberExpr(BaseExpr, IsArrow, OpLoc, &SS, TemplateKWLoc, Var,
1165                           FoundDecl, /*HadMultipleCandidates=*/false,
1166                           MemberNameInfo, Var->getType().getNonReferenceType(),
1167                           VK_LValue, OK_Ordinary, TemplateArgs);
1168  }
1169
1170  // We found something that we didn't expect. Complain.
1171  if (isa<TypeDecl>(MemberDecl))
1172    Diag(MemberLoc, diag::err_typecheck_member_reference_type)
1173      << MemberName << BaseType << int(IsArrow);
1174  else
1175    Diag(MemberLoc, diag::err_typecheck_member_reference_unknown)
1176      << MemberName << BaseType << int(IsArrow);
1177
1178  Diag(MemberDecl->getLocation(), diag::note_member_declared_here)
1179    << MemberName;
1180  R.suppressDiagnostics();
1181  return ExprError();
1182}
1183
1184/// Given that normal member access failed on the given expression,
1185/// and given that the expression's type involves builtin-id or
1186/// builtin-Class, decide whether substituting in the redefinition
1187/// types would be profitable.  The redefinition type is whatever
1188/// this translation unit tried to typedef to id/Class;  we store
1189/// it to the side and then re-use it in places like this.
1190static bool ShouldTryAgainWithRedefinitionType(Sema &S, ExprResult &base) {
1191  const ObjCObjectPointerType *opty
1192    = base.get()->getType()->getAs<ObjCObjectPointerType>();
1193  if (!opty) return false;
1194
1195  const ObjCObjectType *ty = opty->getObjectType();
1196
1197  QualType redef;
1198  if (ty->isObjCId()) {
1199    redef = S.Context.getObjCIdRedefinitionType();
1200  } else if (ty->isObjCClass()) {
1201    redef = S.Context.getObjCClassRedefinitionType();
1202  } else {
1203    return false;
1204  }
1205
1206  // Do the substitution as long as the redefinition type isn't just a
1207  // possibly-qualified pointer to builtin-id or builtin-Class again.
1208  opty = redef->getAs<ObjCObjectPointerType>();
1209  if (opty && !opty->getObjectType()->getInterface())
1210    return false;
1211
1212  base = S.ImpCastExprToType(base.get(), redef, CK_BitCast);
1213  return true;
1214}
1215
1216static bool isRecordType(QualType T) {
1217  return T->isRecordType();
1218}
1219static bool isPointerToRecordType(QualType T) {
1220  if (const PointerType *PT = T->getAs<PointerType>())
1221    return PT->getPointeeType()->isRecordType();
1222  return false;
1223}
1224
1225/// Perform conversions on the LHS of a member access expression.
1226ExprResult
1227Sema::PerformMemberExprBaseConversion(Expr *Base, bool IsArrow) {
1228  if (IsArrow && !Base->getType()->isFunctionType())
1229    return DefaultFunctionArrayLvalueConversion(Base);
1230
1231  return CheckPlaceholderExpr(Base);
1232}
1233
1234/// Look up the given member of the given non-type-dependent
1235/// expression.  This can return in one of two ways:
1236///  * If it returns a sentinel null-but-valid result, the caller will
1237///    assume that lookup was performed and the results written into
1238///    the provided structure.  It will take over from there.
1239///  * Otherwise, the returned expression will be produced in place of
1240///    an ordinary member expression.
1241///
1242/// The ObjCImpDecl bit is a gross hack that will need to be properly
1243/// fixed for ObjC++.
1244static ExprResult LookupMemberExpr(Sema &S, LookupResult &R,
1245                                   ExprResult &BaseExpr, bool &IsArrow,
1246                                   SourceLocation OpLoc, CXXScopeSpec &SS,
1247                                   Decl *ObjCImpDecl, bool HasTemplateArgs,
1248                                   SourceLocation TemplateKWLoc) {
1249  assert(BaseExpr.get() && "no base expression");
1250
1251  // Perform default conversions.
1252  BaseExpr = S.PerformMemberExprBaseConversion(BaseExpr.get(), IsArrow);
1253  if (BaseExpr.isInvalid())
1254    return ExprError();
1255
1256  QualType BaseType = BaseExpr.get()->getType();
1257  assert(!BaseType->isDependentType());
1258
1259  DeclarationName MemberName = R.getLookupName();
1260  SourceLocation MemberLoc = R.getNameLoc();
1261
1262  // For later type-checking purposes, turn arrow accesses into dot
1263  // accesses.  The only access type we support that doesn't follow
1264  // the C equivalence "a->b === (*a).b" is ObjC property accesses,
1265  // and those never use arrows, so this is unaffected.
1266  if (IsArrow) {
1267    if (const PointerType *Ptr = BaseType->getAs<PointerType>())
1268      BaseType = Ptr->getPointeeType();
1269    else if (const ObjCObjectPointerType *Ptr
1270               = BaseType->getAs<ObjCObjectPointerType>())
1271      BaseType = Ptr->getPointeeType();
1272    else if (BaseType->isRecordType()) {
1273      // Recover from arrow accesses to records, e.g.:
1274      //   struct MyRecord foo;
1275      //   foo->bar
1276      // This is actually well-formed in C++ if MyRecord has an
1277      // overloaded operator->, but that should have been dealt with
1278      // by now--or a diagnostic message already issued if a problem
1279      // was encountered while looking for the overloaded operator->.
1280      if (!S.getLangOpts().CPlusPlus) {
1281        S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
1282          << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange()
1283          << FixItHint::CreateReplacement(OpLoc, ".");
1284      }
1285      IsArrow = false;
1286    } else if (BaseType->isFunctionType()) {
1287      goto fail;
1288    } else {
1289      S.Diag(MemberLoc, diag::err_typecheck_member_reference_arrow)
1290        << BaseType << BaseExpr.get()->getSourceRange();
1291      return ExprError();
1292    }
1293  }
1294
1295  // If the base type is an atomic type, this access is undefined behavior per
1296  // C11 6.5.2.3p5. Instead of giving a typecheck error, we'll warn the user
1297  // about the UB and recover by converting the atomic lvalue into a non-atomic
1298  // lvalue. Because this is inherently unsafe as an atomic operation, the
1299  // warning defaults to an error.
1300  if (const auto *ATy = BaseType->getAs<AtomicType>()) {
1301    S.DiagRuntimeBehavior(OpLoc, nullptr,
1302                          S.PDiag(diag::warn_atomic_member_access));
1303    BaseType = ATy->getValueType().getUnqualifiedType();
1304    BaseExpr = ImplicitCastExpr::Create(
1305        S.Context, IsArrow ? S.Context.getPointerType(BaseType) : BaseType,
1306        CK_AtomicToNonAtomic, BaseExpr.get(), nullptr,
1307        BaseExpr.get()->getValueKind(), FPOptionsOverride());
1308  }
1309
1310  // Handle field access to simple records.
1311  if (const RecordType *RTy = BaseType->getAs<RecordType>()) {
1312    TypoExpr *TE = nullptr;
1313    if (LookupMemberExprInRecord(S, R, BaseExpr.get(), RTy, OpLoc, IsArrow, SS,
1314                                 HasTemplateArgs, TemplateKWLoc, TE))
1315      return ExprError();
1316
1317    // Returning valid-but-null is how we indicate to the caller that
1318    // the lookup result was filled in. If typo correction was attempted and
1319    // failed, the lookup result will have been cleared--that combined with the
1320    // valid-but-null ExprResult will trigger the appropriate diagnostics.
1321    return ExprResult(TE);
1322  }
1323
1324  // Handle ivar access to Objective-C objects.
1325  if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>()) {
1326    if (!SS.isEmpty() && !SS.isInvalid()) {
1327      S.Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access)
1328        << 1 << SS.getScopeRep()
1329        << FixItHint::CreateRemoval(SS.getRange());
1330      SS.clear();
1331    }
1332
1333    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1334
1335    // There are three cases for the base type:
1336    //   - builtin id (qualified or unqualified)
1337    //   - builtin Class (qualified or unqualified)
1338    //   - an interface
1339    ObjCInterfaceDecl *IDecl = OTy->getInterface();
1340    if (!IDecl) {
1341      if (S.getLangOpts().ObjCAutoRefCount &&
1342          (OTy->isObjCId() || OTy->isObjCClass()))
1343        goto fail;
1344      // There's an implicit 'isa' ivar on all objects.
1345      // But we only actually find it this way on objects of type 'id',
1346      // apparently.
1347      if (OTy->isObjCId() && Member->isStr("isa"))
1348        return new (S.Context) ObjCIsaExpr(BaseExpr.get(), IsArrow, MemberLoc,
1349                                           OpLoc, S.Context.getObjCClassType());
1350      if (ShouldTryAgainWithRedefinitionType(S, BaseExpr))
1351        return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1352                                ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
1353      goto fail;
1354    }
1355
1356    if (S.RequireCompleteType(OpLoc, BaseType,
1357                              diag::err_typecheck_incomplete_tag,
1358                              BaseExpr.get()))
1359      return ExprError();
1360
1361    ObjCInterfaceDecl *ClassDeclared = nullptr;
1362    ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
1363
1364    if (!IV) {
1365      // Attempt to correct for typos in ivar names.
1366      DeclFilterCCC<ObjCIvarDecl> Validator{};
1367      Validator.IsObjCIvarLookup = IsArrow;
1368      if (TypoCorrection Corrected = S.CorrectTypo(
1369              R.getLookupNameInfo(), Sema::LookupMemberName, nullptr, nullptr,
1370              Validator, Sema::CTK_ErrorRecovery, IDecl)) {
1371        IV = Corrected.getCorrectionDeclAs<ObjCIvarDecl>();
1372        S.diagnoseTypo(
1373            Corrected,
1374            S.PDiag(diag::err_typecheck_member_reference_ivar_suggest)
1375                << IDecl->getDeclName() << MemberName);
1376
1377        // Figure out the class that declares the ivar.
1378        assert(!ClassDeclared);
1379
1380        Decl *D = cast<Decl>(IV->getDeclContext());
1381        if (auto *Category = dyn_cast<ObjCCategoryDecl>(D))
1382          D = Category->getClassInterface();
1383
1384        if (auto *Implementation = dyn_cast<ObjCImplementationDecl>(D))
1385          ClassDeclared = Implementation->getClassInterface();
1386        else if (auto *Interface = dyn_cast<ObjCInterfaceDecl>(D))
1387          ClassDeclared = Interface;
1388
1389        assert(ClassDeclared && "cannot query interface");
1390      } else {
1391        if (IsArrow &&
1392            IDecl->FindPropertyDeclaration(
1393                Member, ObjCPropertyQueryKind::OBJC_PR_query_instance)) {
1394          S.Diag(MemberLoc, diag::err_property_found_suggest)
1395              << Member << BaseExpr.get()->getType()
1396              << FixItHint::CreateReplacement(OpLoc, ".");
1397          return ExprError();
1398        }
1399
1400        S.Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
1401            << IDecl->getDeclName() << MemberName
1402            << BaseExpr.get()->getSourceRange();
1403        return ExprError();
1404      }
1405    }
1406
1407    assert(ClassDeclared);
1408
1409    // If the decl being referenced had an error, return an error for this
1410    // sub-expr without emitting another error, in order to avoid cascading
1411    // error cases.
1412    if (IV->isInvalidDecl())
1413      return ExprError();
1414
1415    // Check whether we can reference this field.
1416    if (S.DiagnoseUseOfDecl(IV, MemberLoc))
1417      return ExprError();
1418    if (IV->getAccessControl() != ObjCIvarDecl::Public &&
1419        IV->getAccessControl() != ObjCIvarDecl::Package) {
1420      ObjCInterfaceDecl *ClassOfMethodDecl = nullptr;
1421      if (ObjCMethodDecl *MD = S.getCurMethodDecl())
1422        ClassOfMethodDecl =  MD->getClassInterface();
1423      else if (ObjCImpDecl && S.getCurFunctionDecl()) {
1424        // Case of a c-function declared inside an objc implementation.
1425        // FIXME: For a c-style function nested inside an objc implementation
1426        // class, there is no implementation context available, so we pass
1427        // down the context as argument to this routine. Ideally, this context
1428        // need be passed down in the AST node and somehow calculated from the
1429        // AST for a function decl.
1430        if (ObjCImplementationDecl *IMPD =
1431              dyn_cast<ObjCImplementationDecl>(ObjCImpDecl))
1432          ClassOfMethodDecl = IMPD->getClassInterface();
1433        else if (ObjCCategoryImplDecl* CatImplClass =
1434                   dyn_cast<ObjCCategoryImplDecl>(ObjCImpDecl))
1435          ClassOfMethodDecl = CatImplClass->getClassInterface();
1436      }
1437      if (!S.getLangOpts().DebuggerSupport) {
1438        if (IV->getAccessControl() == ObjCIvarDecl::Private) {
1439          if (!declaresSameEntity(ClassDeclared, IDecl) ||
1440              !declaresSameEntity(ClassOfMethodDecl, ClassDeclared))
1441            S.Diag(MemberLoc, diag::err_private_ivar_access)
1442              << IV->getDeclName();
1443        } else if (!IDecl->isSuperClassOf(ClassOfMethodDecl))
1444          // @protected
1445          S.Diag(MemberLoc, diag::err_protected_ivar_access)
1446              << IV->getDeclName();
1447      }
1448    }
1449    bool warn = true;
1450    if (S.getLangOpts().ObjCWeak) {
1451      Expr *BaseExp = BaseExpr.get()->IgnoreParenImpCasts();
1452      if (UnaryOperator *UO = dyn_cast<UnaryOperator>(BaseExp))
1453        if (UO->getOpcode() == UO_Deref)
1454          BaseExp = UO->getSubExpr()->IgnoreParenCasts();
1455
1456      if (DeclRefExpr *DE = dyn_cast<DeclRefExpr>(BaseExp))
1457        if (DE->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
1458          S.Diag(DE->getLocation(), diag::err_arc_weak_ivar_access);
1459          warn = false;
1460        }
1461    }
1462    if (warn) {
1463      if (ObjCMethodDecl *MD = S.getCurMethodDecl()) {
1464        ObjCMethodFamily MF = MD->getMethodFamily();
1465        warn = (MF != OMF_init && MF != OMF_dealloc &&
1466                MF != OMF_finalize &&
1467                !S.IvarBacksCurrentMethodAccessor(IDecl, MD, IV));
1468      }
1469      if (warn)
1470        S.Diag(MemberLoc, diag::warn_direct_ivar_access) << IV->getDeclName();
1471    }
1472
1473    ObjCIvarRefExpr *Result = new (S.Context) ObjCIvarRefExpr(
1474        IV, IV->getUsageType(BaseType), MemberLoc, OpLoc, BaseExpr.get(),
1475        IsArrow);
1476
1477    if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
1478      if (!S.isUnevaluatedContext() &&
1479          !S.Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, MemberLoc))
1480        S.getCurFunction()->recordUseOfWeak(Result);
1481    }
1482
1483    return Result;
1484  }
1485
1486  // Objective-C property access.
1487  const ObjCObjectPointerType *OPT;
1488  if (!IsArrow && (OPT = BaseType->getAs<ObjCObjectPointerType>())) {
1489    if (!SS.isEmpty() && !SS.isInvalid()) {
1490      S.Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access)
1491          << 0 << SS.getScopeRep() << FixItHint::CreateRemoval(SS.getRange());
1492      SS.clear();
1493    }
1494
1495    // This actually uses the base as an r-value.
1496    BaseExpr = S.DefaultLvalueConversion(BaseExpr.get());
1497    if (BaseExpr.isInvalid())
1498      return ExprError();
1499
1500    assert(S.Context.hasSameUnqualifiedType(BaseType,
1501                                            BaseExpr.get()->getType()));
1502
1503    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1504
1505    const ObjCObjectType *OT = OPT->getObjectType();
1506
1507    // id, with and without qualifiers.
1508    if (OT->isObjCId()) {
1509      // Check protocols on qualified interfaces.
1510      Selector Sel = S.PP.getSelectorTable().getNullarySelector(Member);
1511      if (Decl *PMDecl =
1512              FindGetterSetterNameDecl(OPT, Member, Sel, S.Context)) {
1513        if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
1514          // Check the use of this declaration
1515          if (S.DiagnoseUseOfDecl(PD, MemberLoc))
1516            return ExprError();
1517
1518          return new (S.Context)
1519              ObjCPropertyRefExpr(PD, S.Context.PseudoObjectTy, VK_LValue,
1520                                  OK_ObjCProperty, MemberLoc, BaseExpr.get());
1521        }
1522
1523        if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
1524          Selector SetterSel =
1525            SelectorTable::constructSetterSelector(S.PP.getIdentifierTable(),
1526                                                   S.PP.getSelectorTable(),
1527                                                   Member);
1528          ObjCMethodDecl *SMD = nullptr;
1529          if (Decl *SDecl = FindGetterSetterNameDecl(OPT,
1530                                                     /*Property id*/ nullptr,
1531                                                     SetterSel, S.Context))
1532            SMD = dyn_cast<ObjCMethodDecl>(SDecl);
1533
1534          return new (S.Context)
1535              ObjCPropertyRefExpr(OMD, SMD, S.Context.PseudoObjectTy, VK_LValue,
1536                                  OK_ObjCProperty, MemberLoc, BaseExpr.get());
1537        }
1538      }
1539      // Use of id.member can only be for a property reference. Do not
1540      // use the 'id' redefinition in this case.
1541      if (IsArrow && ShouldTryAgainWithRedefinitionType(S, BaseExpr))
1542        return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1543                                ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
1544
1545      return ExprError(S.Diag(MemberLoc, diag::err_property_not_found)
1546                         << MemberName << BaseType);
1547    }
1548
1549    // 'Class', unqualified only.
1550    if (OT->isObjCClass()) {
1551      // Only works in a method declaration (??!).
1552      ObjCMethodDecl *MD = S.getCurMethodDecl();
1553      if (!MD) {
1554        if (ShouldTryAgainWithRedefinitionType(S, BaseExpr))
1555          return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1556                                  ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
1557
1558        goto fail;
1559      }
1560
1561      // Also must look for a getter name which uses property syntax.
1562      Selector Sel = S.PP.getSelectorTable().getNullarySelector(Member);
1563      ObjCInterfaceDecl *IFace = MD->getClassInterface();
1564      if (!IFace)
1565        goto fail;
1566
1567      ObjCMethodDecl *Getter;
1568      if ((Getter = IFace->lookupClassMethod(Sel))) {
1569        // Check the use of this method.
1570        if (S.DiagnoseUseOfDecl(Getter, MemberLoc))
1571          return ExprError();
1572      } else
1573        Getter = IFace->lookupPrivateMethod(Sel, false);
1574      // If we found a getter then this may be a valid dot-reference, we
1575      // will look for the matching setter, in case it is needed.
1576      Selector SetterSel =
1577        SelectorTable::constructSetterSelector(S.PP.getIdentifierTable(),
1578                                               S.PP.getSelectorTable(),
1579                                               Member);
1580      ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
1581      if (!Setter) {
1582        // If this reference is in an @implementation, also check for 'private'
1583        // methods.
1584        Setter = IFace->lookupPrivateMethod(SetterSel, false);
1585      }
1586
1587      if (Setter && S.DiagnoseUseOfDecl(Setter, MemberLoc))
1588        return ExprError();
1589
1590      if (Getter || Setter) {
1591        return new (S.Context) ObjCPropertyRefExpr(
1592            Getter, Setter, S.Context.PseudoObjectTy, VK_LValue,
1593            OK_ObjCProperty, MemberLoc, BaseExpr.get());
1594      }
1595
1596      if (ShouldTryAgainWithRedefinitionType(S, BaseExpr))
1597        return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1598                                ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
1599
1600      return ExprError(S.Diag(MemberLoc, diag::err_property_not_found)
1601                         << MemberName << BaseType);
1602    }
1603
1604    // Normal property access.
1605    return S.HandleExprPropertyRefExpr(OPT, BaseExpr.get(), OpLoc, MemberName,
1606                                       MemberLoc, SourceLocation(), QualType(),
1607                                       false);
1608  }
1609
1610  if (BaseType->isExtVectorBoolType()) {
1611    // We disallow element access for ext_vector_type bool.  There is no way to
1612    // materialize a reference to a vector element as a pointer (each element is
1613    // one bit in the vector).
1614    S.Diag(R.getNameLoc(), diag::err_ext_vector_component_name_illegal)
1615        << MemberName
1616        << (BaseExpr.get() ? BaseExpr.get()->getSourceRange() : SourceRange());
1617    return ExprError();
1618  }
1619
1620  // Handle 'field access' to vectors, such as 'V.xx'.
1621  if (BaseType->isExtVectorType()) {
1622    // FIXME: this expr should store IsArrow.
1623    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1624    ExprValueKind VK = (IsArrow ? VK_LValue : BaseExpr.get()->getValueKind());
1625    QualType ret = CheckExtVectorComponent(S, BaseType, VK, OpLoc,
1626                                           Member, MemberLoc);
1627    if (ret.isNull())
1628      return ExprError();
1629    Qualifiers BaseQ =
1630        S.Context.getCanonicalType(BaseExpr.get()->getType()).getQualifiers();
1631    ret = S.Context.getQualifiedType(ret, BaseQ);
1632
1633    return new (S.Context)
1634        ExtVectorElementExpr(ret, VK, BaseExpr.get(), *Member, MemberLoc);
1635  }
1636
1637  // Adjust builtin-sel to the appropriate redefinition type if that's
1638  // not just a pointer to builtin-sel again.
1639  if (IsArrow && BaseType->isSpecificBuiltinType(BuiltinType::ObjCSel) &&
1640      !S.Context.getObjCSelRedefinitionType()->isObjCSelType()) {
1641    BaseExpr = S.ImpCastExprToType(
1642        BaseExpr.get(), S.Context.getObjCSelRedefinitionType(), CK_BitCast);
1643    return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1644                            ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
1645  }
1646
1647  // Failure cases.
1648 fail:
1649
1650  // Recover from dot accesses to pointers, e.g.:
1651  //   type *foo;
1652  //   foo.bar
1653  // This is actually well-formed in two cases:
1654  //   - 'type' is an Objective C type
1655  //   - 'bar' is a pseudo-destructor name which happens to refer to
1656  //     the appropriate pointer type
1657  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
1658    if (!IsArrow && Ptr->getPointeeType()->isRecordType() &&
1659        MemberName.getNameKind() != DeclarationName::CXXDestructorName) {
1660      S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
1661          << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange()
1662          << FixItHint::CreateReplacement(OpLoc, "->");
1663
1664      if (S.isSFINAEContext())
1665        return ExprError();
1666
1667      // Recurse as an -> access.
1668      IsArrow = true;
1669      return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1670                              ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
1671    }
1672  }
1673
1674  // If the user is trying to apply -> or . to a function name, it's probably
1675  // because they forgot parentheses to call that function.
1676  if (S.tryToRecoverWithCall(
1677          BaseExpr, S.PDiag(diag::err_member_reference_needs_call),
1678          /*complain*/ false,
1679          IsArrow ? &isPointerToRecordType : &isRecordType)) {
1680    if (BaseExpr.isInvalid())
1681      return ExprError();
1682    BaseExpr = S.DefaultFunctionArrayConversion(BaseExpr.get());
1683    return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1684                            ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
1685  }
1686
1687  S.Diag(OpLoc, diag::err_typecheck_member_reference_struct_union)
1688    << BaseType << BaseExpr.get()->getSourceRange() << MemberLoc;
1689
1690  return ExprError();
1691}
1692
1693/// The main callback when the parser finds something like
1694///   expression . [nested-name-specifier] identifier
1695///   expression -> [nested-name-specifier] identifier
1696/// where 'identifier' encompasses a fairly broad spectrum of
1697/// possibilities, including destructor and operator references.
1698///
1699/// \param OpKind either tok::arrow or tok::period
1700/// \param ObjCImpDecl the current Objective-C \@implementation
1701///   decl; this is an ugly hack around the fact that Objective-C
1702///   \@implementations aren't properly put in the context chain
1703ExprResult Sema::ActOnMemberAccessExpr(Scope *S, Expr *Base,
1704                                       SourceLocation OpLoc,
1705                                       tok::TokenKind OpKind,
1706                                       CXXScopeSpec &SS,
1707                                       SourceLocation TemplateKWLoc,
1708                                       UnqualifiedId &Id,
1709                                       Decl *ObjCImpDecl) {
1710  if (SS.isSet() && SS.isInvalid())
1711    return ExprError();
1712
1713  // Warn about the explicit constructor calls Microsoft extension.
1714  if (getLangOpts().MicrosoftExt &&
1715      Id.getKind() == UnqualifiedIdKind::IK_ConstructorName)
1716    Diag(Id.getSourceRange().getBegin(),
1717         diag::ext_ms_explicit_constructor_call);
1718
1719  TemplateArgumentListInfo TemplateArgsBuffer;
1720
1721  // Decompose the name into its component parts.
1722  DeclarationNameInfo NameInfo;
1723  const TemplateArgumentListInfo *TemplateArgs;
1724  DecomposeUnqualifiedId(Id, TemplateArgsBuffer,
1725                         NameInfo, TemplateArgs);
1726
1727  DeclarationName Name = NameInfo.getName();
1728  bool IsArrow = (OpKind == tok::arrow);
1729
1730  if (getLangOpts().HLSL && IsArrow)
1731    return ExprError(Diag(OpLoc, diag::err_hlsl_operator_unsupported) << 2);
1732
1733  NamedDecl *FirstQualifierInScope
1734    = (!SS.isSet() ? nullptr : FindFirstQualifierInScope(S, SS.getScopeRep()));
1735
1736  // This is a postfix expression, so get rid of ParenListExprs.
1737  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
1738  if (Result.isInvalid()) return ExprError();
1739  Base = Result.get();
1740
1741  if (Base->getType()->isDependentType() || Name.isDependentName() ||
1742      isDependentScopeSpecifier(SS)) {
1743    return ActOnDependentMemberExpr(Base, Base->getType(), IsArrow, OpLoc, SS,
1744                                    TemplateKWLoc, FirstQualifierInScope,
1745                                    NameInfo, TemplateArgs);
1746  }
1747
1748  ActOnMemberAccessExtraArgs ExtraArgs = {S, Id, ObjCImpDecl};
1749  ExprResult Res = BuildMemberReferenceExpr(
1750      Base, Base->getType(), OpLoc, IsArrow, SS, TemplateKWLoc,
1751      FirstQualifierInScope, NameInfo, TemplateArgs, S, &ExtraArgs);
1752
1753  if (!Res.isInvalid() && isa<MemberExpr>(Res.get()))
1754    CheckMemberAccessOfNoDeref(cast<MemberExpr>(Res.get()));
1755
1756  return Res;
1757}
1758
1759void Sema::CheckMemberAccessOfNoDeref(const MemberExpr *E) {
1760  if (isUnevaluatedContext())
1761    return;
1762
1763  QualType ResultTy = E->getType();
1764
1765  // Member accesses have four cases:
1766  // 1: non-array member via "->": dereferences
1767  // 2: non-array member via ".": nothing interesting happens
1768  // 3: array member access via "->": nothing interesting happens
1769  //    (this returns an array lvalue and does not actually dereference memory)
1770  // 4: array member access via ".": *adds* a layer of indirection
1771  if (ResultTy->isArrayType()) {
1772    if (!E->isArrow()) {
1773      // This might be something like:
1774      //     (*structPtr).arrayMember
1775      // which behaves roughly like:
1776      //     &(*structPtr).pointerMember
1777      // in that the apparent dereference in the base expression does not
1778      // actually happen.
1779      CheckAddressOfNoDeref(E->getBase());
1780    }
1781  } else if (E->isArrow()) {
1782    if (const auto *Ptr = dyn_cast<PointerType>(
1783            E->getBase()->getType().getDesugaredType(Context))) {
1784      if (Ptr->getPointeeType()->hasAttr(attr::NoDeref))
1785        ExprEvalContexts.back().PossibleDerefs.insert(E);
1786    }
1787  }
1788}
1789
1790ExprResult
1791Sema::BuildFieldReferenceExpr(Expr *BaseExpr, bool IsArrow,
1792                              SourceLocation OpLoc, const CXXScopeSpec &SS,
1793                              FieldDecl *Field, DeclAccessPair FoundDecl,
1794                              const DeclarationNameInfo &MemberNameInfo) {
1795  // x.a is an l-value if 'a' has a reference type. Otherwise:
1796  // x.a is an l-value/x-value/pr-value if the base is (and note
1797  //   that *x is always an l-value), except that if the base isn't
1798  //   an ordinary object then we must have an rvalue.
1799  ExprValueKind VK = VK_LValue;
1800  ExprObjectKind OK = OK_Ordinary;
1801  if (!IsArrow) {
1802    if (BaseExpr->getObjectKind() == OK_Ordinary)
1803      VK = BaseExpr->getValueKind();
1804    else
1805      VK = VK_PRValue;
1806  }
1807  if (VK != VK_PRValue && Field->isBitField())
1808    OK = OK_BitField;
1809
1810  // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
1811  QualType MemberType = Field->getType();
1812  if (const ReferenceType *Ref = MemberType->getAs<ReferenceType>()) {
1813    MemberType = Ref->getPointeeType();
1814    VK = VK_LValue;
1815  } else {
1816    QualType BaseType = BaseExpr->getType();
1817    if (IsArrow) BaseType = BaseType->castAs<PointerType>()->getPointeeType();
1818
1819    Qualifiers BaseQuals = BaseType.getQualifiers();
1820
1821    // GC attributes are never picked up by members.
1822    BaseQuals.removeObjCGCAttr();
1823
1824    // CVR attributes from the base are picked up by members,
1825    // except that 'mutable' members don't pick up 'const'.
1826    if (Field->isMutable()) BaseQuals.removeConst();
1827
1828    Qualifiers MemberQuals =
1829        Context.getCanonicalType(MemberType).getQualifiers();
1830
1831    assert(!MemberQuals.hasAddressSpace());
1832
1833    Qualifiers Combined = BaseQuals + MemberQuals;
1834    if (Combined != MemberQuals)
1835      MemberType = Context.getQualifiedType(MemberType, Combined);
1836
1837    // Pick up NoDeref from the base in case we end up using AddrOf on the
1838    // result. E.g. the expression
1839    //     &someNoDerefPtr->pointerMember
1840    // should be a noderef pointer again.
1841    if (BaseType->hasAttr(attr::NoDeref))
1842      MemberType =
1843          Context.getAttributedType(attr::NoDeref, MemberType, MemberType);
1844  }
1845
1846  auto *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
1847  if (!(CurMethod && CurMethod->isDefaulted()))
1848    UnusedPrivateFields.remove(Field);
1849
1850  ExprResult Base = PerformObjectMemberConversion(BaseExpr, SS.getScopeRep(),
1851                                                  FoundDecl, Field);
1852  if (Base.isInvalid())
1853    return ExprError();
1854
1855  // Build a reference to a private copy for non-static data members in
1856  // non-static member functions, privatized by OpenMP constructs.
1857  if (getLangOpts().OpenMP && IsArrow &&
1858      !CurContext->isDependentContext() &&
1859      isa<CXXThisExpr>(Base.get()->IgnoreParenImpCasts())) {
1860    if (auto *PrivateCopy = isOpenMPCapturedDecl(Field)) {
1861      return getOpenMPCapturedExpr(PrivateCopy, VK, OK,
1862                                   MemberNameInfo.getLoc());
1863    }
1864  }
1865
1866  return BuildMemberExpr(Base.get(), IsArrow, OpLoc, &SS,
1867                         /*TemplateKWLoc=*/SourceLocation(), Field, FoundDecl,
1868                         /*HadMultipleCandidates=*/false, MemberNameInfo,
1869                         MemberType, VK, OK);
1870}
1871
1872/// Builds an implicit member access expression.  The current context
1873/// is known to be an instance method, and the given unqualified lookup
1874/// set is known to contain only instance members, at least one of which
1875/// is from an appropriate type.
1876ExprResult
1877Sema::BuildImplicitMemberExpr(const CXXScopeSpec &SS,
1878                              SourceLocation TemplateKWLoc,
1879                              LookupResult &R,
1880                              const TemplateArgumentListInfo *TemplateArgs,
1881                              bool IsKnownInstance, const Scope *S) {
1882  assert(!R.empty() && !R.isAmbiguous());
1883
1884  SourceLocation loc = R.getNameLoc();
1885
1886  // If this is known to be an instance access, go ahead and build an
1887  // implicit 'this' expression now.
1888  QualType ThisTy = getCurrentThisType();
1889  assert(!ThisTy.isNull() && "didn't correctly pre-flight capture of 'this'");
1890
1891  Expr *baseExpr = nullptr; // null signifies implicit access
1892  if (IsKnownInstance) {
1893    SourceLocation Loc = R.getNameLoc();
1894    if (SS.getRange().isValid())
1895      Loc = SS.getRange().getBegin();
1896    baseExpr = BuildCXXThisExpr(loc, ThisTy, /*IsImplicit=*/true);
1897    if (getLangOpts().HLSL && ThisTy.getTypePtr()->isPointerType()) {
1898      ThisTy = ThisTy.getTypePtr()->getPointeeType();
1899      return BuildMemberReferenceExpr(baseExpr, ThisTy,
1900                                      /*OpLoc*/ SourceLocation(),
1901                                      /*IsArrow*/ false, SS, TemplateKWLoc,
1902                                      /*FirstQualifierInScope*/ nullptr, R,
1903                                      TemplateArgs, S);
1904    }
1905  }
1906
1907  return BuildMemberReferenceExpr(baseExpr, ThisTy,
1908                                  /*OpLoc*/ SourceLocation(),
1909                                  /*IsArrow*/ true,
1910                                  SS, TemplateKWLoc,
1911                                  /*FirstQualifierInScope*/ nullptr,
1912                                  R, TemplateArgs, S);
1913}
1914