1//===--- SemaCXXScopeSpec.cpp - Semantic Analysis for C++ scope specifiers-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements C++ semantic analysis for scope specifiers.
10//
11//===----------------------------------------------------------------------===//
12
13#include "TypeLocBuilder.h"
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/DeclTemplate.h"
16#include "clang/AST/ExprCXX.h"
17#include "clang/AST/NestedNameSpecifier.h"
18#include "clang/Basic/PartialDiagnostic.h"
19#include "clang/Sema/DeclSpec.h"
20#include "clang/Sema/Lookup.h"
21#include "clang/Sema/SemaInternal.h"
22#include "clang/Sema/Template.h"
23#include "llvm/ADT/STLExtras.h"
24using namespace clang;
25
26/// Find the current instantiation that associated with the given type.
27static CXXRecordDecl *getCurrentInstantiationOf(QualType T,
28                                                DeclContext *CurContext) {
29  if (T.isNull())
30    return nullptr;
31
32  const Type *Ty = T->getCanonicalTypeInternal().getTypePtr();
33  if (const RecordType *RecordTy = dyn_cast<RecordType>(Ty)) {
34    CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordTy->getDecl());
35    if (!Record->isDependentContext() ||
36        Record->isCurrentInstantiation(CurContext))
37      return Record;
38
39    return nullptr;
40  } else if (isa<InjectedClassNameType>(Ty))
41    return cast<InjectedClassNameType>(Ty)->getDecl();
42  else
43    return nullptr;
44}
45
46/// Compute the DeclContext that is associated with the given type.
47///
48/// \param T the type for which we are attempting to find a DeclContext.
49///
50/// \returns the declaration context represented by the type T,
51/// or NULL if the declaration context cannot be computed (e.g., because it is
52/// dependent and not the current instantiation).
53DeclContext *Sema::computeDeclContext(QualType T) {
54  if (!T->isDependentType())
55    if (const TagType *Tag = T->getAs<TagType>())
56      return Tag->getDecl();
57
58  return ::getCurrentInstantiationOf(T, CurContext);
59}
60
61/// Compute the DeclContext that is associated with the given
62/// scope specifier.
63///
64/// \param SS the C++ scope specifier as it appears in the source
65///
66/// \param EnteringContext when true, we will be entering the context of
67/// this scope specifier, so we can retrieve the declaration context of a
68/// class template or class template partial specialization even if it is
69/// not the current instantiation.
70///
71/// \returns the declaration context represented by the scope specifier @p SS,
72/// or NULL if the declaration context cannot be computed (e.g., because it is
73/// dependent and not the current instantiation).
74DeclContext *Sema::computeDeclContext(const CXXScopeSpec &SS,
75                                      bool EnteringContext) {
76  if (!SS.isSet() || SS.isInvalid())
77    return nullptr;
78
79  NestedNameSpecifier *NNS = SS.getScopeRep();
80  if (NNS->isDependent()) {
81    // If this nested-name-specifier refers to the current
82    // instantiation, return its DeclContext.
83    if (CXXRecordDecl *Record = getCurrentInstantiationOf(NNS))
84      return Record;
85
86    if (EnteringContext) {
87      const Type *NNSType = NNS->getAsType();
88      if (!NNSType) {
89        return nullptr;
90      }
91
92      // Look through type alias templates, per C++0x [temp.dep.type]p1.
93      NNSType = Context.getCanonicalType(NNSType);
94      if (const TemplateSpecializationType *SpecType
95            = NNSType->getAs<TemplateSpecializationType>()) {
96        // We are entering the context of the nested name specifier, so try to
97        // match the nested name specifier to either a primary class template
98        // or a class template partial specialization.
99        if (ClassTemplateDecl *ClassTemplate
100              = dyn_cast_or_null<ClassTemplateDecl>(
101                            SpecType->getTemplateName().getAsTemplateDecl())) {
102          QualType ContextType
103            = Context.getCanonicalType(QualType(SpecType, 0));
104
105          // If the type of the nested name specifier is the same as the
106          // injected class name of the named class template, we're entering
107          // into that class template definition.
108          QualType Injected
109            = ClassTemplate->getInjectedClassNameSpecialization();
110          if (Context.hasSameType(Injected, ContextType))
111            return ClassTemplate->getTemplatedDecl();
112
113          // If the type of the nested name specifier is the same as the
114          // type of one of the class template's class template partial
115          // specializations, we're entering into the definition of that
116          // class template partial specialization.
117          if (ClassTemplatePartialSpecializationDecl *PartialSpec
118                = ClassTemplate->findPartialSpecialization(ContextType)) {
119            // A declaration of the partial specialization must be visible.
120            // We can always recover here, because this only happens when we're
121            // entering the context, and that can't happen in a SFINAE context.
122            assert(!isSFINAEContext() &&
123                   "partial specialization scope specifier in SFINAE context?");
124            if (!hasReachableDefinition(PartialSpec))
125              diagnoseMissingImport(SS.getLastQualifierNameLoc(), PartialSpec,
126                                    MissingImportKind::PartialSpecialization,
127                                    /*Recover*/true);
128            return PartialSpec;
129          }
130        }
131      } else if (const RecordType *RecordT = NNSType->getAs<RecordType>()) {
132        // The nested name specifier refers to a member of a class template.
133        return RecordT->getDecl();
134      }
135    }
136
137    return nullptr;
138  }
139
140  switch (NNS->getKind()) {
141  case NestedNameSpecifier::Identifier:
142    llvm_unreachable("Dependent nested-name-specifier has no DeclContext");
143
144  case NestedNameSpecifier::Namespace:
145    return NNS->getAsNamespace();
146
147  case NestedNameSpecifier::NamespaceAlias:
148    return NNS->getAsNamespaceAlias()->getNamespace();
149
150  case NestedNameSpecifier::TypeSpec:
151  case NestedNameSpecifier::TypeSpecWithTemplate: {
152    const TagType *Tag = NNS->getAsType()->getAs<TagType>();
153    assert(Tag && "Non-tag type in nested-name-specifier");
154    return Tag->getDecl();
155  }
156
157  case NestedNameSpecifier::Global:
158    return Context.getTranslationUnitDecl();
159
160  case NestedNameSpecifier::Super:
161    return NNS->getAsRecordDecl();
162  }
163
164  llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
165}
166
167bool Sema::isDependentScopeSpecifier(const CXXScopeSpec &SS) {
168  if (!SS.isSet() || SS.isInvalid())
169    return false;
170
171  return SS.getScopeRep()->isDependent();
172}
173
174/// If the given nested name specifier refers to the current
175/// instantiation, return the declaration that corresponds to that
176/// current instantiation (C++0x [temp.dep.type]p1).
177///
178/// \param NNS a dependent nested name specifier.
179CXXRecordDecl *Sema::getCurrentInstantiationOf(NestedNameSpecifier *NNS) {
180  assert(getLangOpts().CPlusPlus && "Only callable in C++");
181  assert(NNS->isDependent() && "Only dependent nested-name-specifier allowed");
182
183  if (!NNS->getAsType())
184    return nullptr;
185
186  QualType T = QualType(NNS->getAsType(), 0);
187  return ::getCurrentInstantiationOf(T, CurContext);
188}
189
190/// Require that the context specified by SS be complete.
191///
192/// If SS refers to a type, this routine checks whether the type is
193/// complete enough (or can be made complete enough) for name lookup
194/// into the DeclContext. A type that is not yet completed can be
195/// considered "complete enough" if it is a class/struct/union/enum
196/// that is currently being defined. Or, if we have a type that names
197/// a class template specialization that is not a complete type, we
198/// will attempt to instantiate that class template.
199bool Sema::RequireCompleteDeclContext(CXXScopeSpec &SS,
200                                      DeclContext *DC) {
201  assert(DC && "given null context");
202
203  TagDecl *tag = dyn_cast<TagDecl>(DC);
204
205  // If this is a dependent type, then we consider it complete.
206  // FIXME: This is wrong; we should require a (visible) definition to
207  // exist in this case too.
208  if (!tag || tag->isDependentContext())
209    return false;
210
211  // Grab the tag definition, if there is one.
212  QualType type = Context.getTypeDeclType(tag);
213  tag = type->getAsTagDecl();
214
215  // If we're currently defining this type, then lookup into the
216  // type is okay: don't complain that it isn't complete yet.
217  if (tag->isBeingDefined())
218    return false;
219
220  SourceLocation loc = SS.getLastQualifierNameLoc();
221  if (loc.isInvalid()) loc = SS.getRange().getBegin();
222
223  // The type must be complete.
224  if (RequireCompleteType(loc, type, diag::err_incomplete_nested_name_spec,
225                          SS.getRange())) {
226    SS.SetInvalid(SS.getRange());
227    return true;
228  }
229
230  if (auto *EnumD = dyn_cast<EnumDecl>(tag))
231    // Fixed enum types and scoped enum instantiations are complete, but they
232    // aren't valid as scopes until we see or instantiate their definition.
233    return RequireCompleteEnumDecl(EnumD, loc, &SS);
234
235  return false;
236}
237
238/// Require that the EnumDecl is completed with its enumerators defined or
239/// instantiated. SS, if provided, is the ScopeRef parsed.
240///
241bool Sema::RequireCompleteEnumDecl(EnumDecl *EnumD, SourceLocation L,
242                                   CXXScopeSpec *SS) {
243  if (EnumD->isCompleteDefinition()) {
244    // If we know about the definition but it is not visible, complain.
245    NamedDecl *SuggestedDef = nullptr;
246    if (!hasReachableDefinition(EnumD, &SuggestedDef,
247                                /*OnlyNeedComplete*/ false)) {
248      // If the user is going to see an error here, recover by making the
249      // definition visible.
250      bool TreatAsComplete = !isSFINAEContext();
251      diagnoseMissingImport(L, SuggestedDef, MissingImportKind::Definition,
252                            /*Recover*/ TreatAsComplete);
253      return !TreatAsComplete;
254    }
255    return false;
256  }
257
258  // Try to instantiate the definition, if this is a specialization of an
259  // enumeration temploid.
260  if (EnumDecl *Pattern = EnumD->getInstantiatedFromMemberEnum()) {
261    MemberSpecializationInfo *MSI = EnumD->getMemberSpecializationInfo();
262    if (MSI->getTemplateSpecializationKind() != TSK_ExplicitSpecialization) {
263      if (InstantiateEnum(L, EnumD, Pattern,
264                          getTemplateInstantiationArgs(EnumD),
265                          TSK_ImplicitInstantiation)) {
266        if (SS)
267          SS->SetInvalid(SS->getRange());
268        return true;
269      }
270      return false;
271    }
272  }
273
274  if (SS) {
275    Diag(L, diag::err_incomplete_nested_name_spec)
276        << QualType(EnumD->getTypeForDecl(), 0) << SS->getRange();
277    SS->SetInvalid(SS->getRange());
278  } else {
279    Diag(L, diag::err_incomplete_enum) << QualType(EnumD->getTypeForDecl(), 0);
280    Diag(EnumD->getLocation(), diag::note_declared_at);
281  }
282
283  return true;
284}
285
286bool Sema::ActOnCXXGlobalScopeSpecifier(SourceLocation CCLoc,
287                                        CXXScopeSpec &SS) {
288  SS.MakeGlobal(Context, CCLoc);
289  return false;
290}
291
292bool Sema::ActOnSuperScopeSpecifier(SourceLocation SuperLoc,
293                                    SourceLocation ColonColonLoc,
294                                    CXXScopeSpec &SS) {
295  CXXRecordDecl *RD = nullptr;
296  for (Scope *S = getCurScope(); S; S = S->getParent()) {
297    if (S->isFunctionScope()) {
298      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(S->getEntity()))
299        RD = MD->getParent();
300      break;
301    }
302    if (S->isClassScope()) {
303      RD = cast<CXXRecordDecl>(S->getEntity());
304      break;
305    }
306  }
307
308  if (!RD) {
309    Diag(SuperLoc, diag::err_invalid_super_scope);
310    return true;
311  } else if (RD->isLambda()) {
312    Diag(SuperLoc, diag::err_super_in_lambda_unsupported);
313    return true;
314  } else if (RD->getNumBases() == 0) {
315    Diag(SuperLoc, diag::err_no_base_classes) << RD->getName();
316    return true;
317  }
318
319  SS.MakeSuper(Context, RD, SuperLoc, ColonColonLoc);
320  return false;
321}
322
323/// Determines whether the given declaration is an valid acceptable
324/// result for name lookup of a nested-name-specifier.
325/// \param SD Declaration checked for nested-name-specifier.
326/// \param IsExtension If not null and the declaration is accepted as an
327/// extension, the pointed variable is assigned true.
328bool Sema::isAcceptableNestedNameSpecifier(const NamedDecl *SD,
329                                           bool *IsExtension) {
330  if (!SD)
331    return false;
332
333  SD = SD->getUnderlyingDecl();
334
335  // Namespace and namespace aliases are fine.
336  if (isa<NamespaceDecl>(SD))
337    return true;
338
339  if (!isa<TypeDecl>(SD))
340    return false;
341
342  // Determine whether we have a class (or, in C++11, an enum) or
343  // a typedef thereof. If so, build the nested-name-specifier.
344  QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD));
345  if (T->isDependentType())
346    return true;
347  if (const TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(SD)) {
348    if (TD->getUnderlyingType()->isRecordType())
349      return true;
350    if (TD->getUnderlyingType()->isEnumeralType()) {
351      if (Context.getLangOpts().CPlusPlus11)
352        return true;
353      if (IsExtension)
354        *IsExtension = true;
355    }
356  } else if (isa<RecordDecl>(SD)) {
357    return true;
358  } else if (isa<EnumDecl>(SD)) {
359    if (Context.getLangOpts().CPlusPlus11)
360      return true;
361    if (IsExtension)
362      *IsExtension = true;
363  }
364
365  return false;
366}
367
368/// If the given nested-name-specifier begins with a bare identifier
369/// (e.g., Base::), perform name lookup for that identifier as a
370/// nested-name-specifier within the given scope, and return the result of that
371/// name lookup.
372NamedDecl *Sema::FindFirstQualifierInScope(Scope *S, NestedNameSpecifier *NNS) {
373  if (!S || !NNS)
374    return nullptr;
375
376  while (NNS->getPrefix())
377    NNS = NNS->getPrefix();
378
379  if (NNS->getKind() != NestedNameSpecifier::Identifier)
380    return nullptr;
381
382  LookupResult Found(*this, NNS->getAsIdentifier(), SourceLocation(),
383                     LookupNestedNameSpecifierName);
384  LookupName(Found, S);
385  assert(!Found.isAmbiguous() && "Cannot handle ambiguities here yet");
386
387  if (!Found.isSingleResult())
388    return nullptr;
389
390  NamedDecl *Result = Found.getFoundDecl();
391  if (isAcceptableNestedNameSpecifier(Result))
392    return Result;
393
394  return nullptr;
395}
396
397bool Sema::isNonTypeNestedNameSpecifier(Scope *S, CXXScopeSpec &SS,
398                                        NestedNameSpecInfo &IdInfo) {
399  QualType ObjectType = GetTypeFromParser(IdInfo.ObjectType);
400  LookupResult Found(*this, IdInfo.Identifier, IdInfo.IdentifierLoc,
401                     LookupNestedNameSpecifierName);
402
403  // Determine where to perform name lookup
404  DeclContext *LookupCtx = nullptr;
405  bool isDependent = false;
406  if (!ObjectType.isNull()) {
407    // This nested-name-specifier occurs in a member access expression, e.g.,
408    // x->B::f, and we are looking into the type of the object.
409    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
410    LookupCtx = computeDeclContext(ObjectType);
411    isDependent = ObjectType->isDependentType();
412  } else if (SS.isSet()) {
413    // This nested-name-specifier occurs after another nested-name-specifier,
414    // so long into the context associated with the prior nested-name-specifier.
415    LookupCtx = computeDeclContext(SS, false);
416    isDependent = isDependentScopeSpecifier(SS);
417    Found.setContextRange(SS.getRange());
418  }
419
420  if (LookupCtx) {
421    // Perform "qualified" name lookup into the declaration context we
422    // computed, which is either the type of the base of a member access
423    // expression or the declaration context associated with a prior
424    // nested-name-specifier.
425
426    // The declaration context must be complete.
427    if (!LookupCtx->isDependentContext() &&
428        RequireCompleteDeclContext(SS, LookupCtx))
429      return false;
430
431    LookupQualifiedName(Found, LookupCtx);
432  } else if (isDependent) {
433    return false;
434  } else {
435    LookupName(Found, S);
436  }
437  Found.suppressDiagnostics();
438
439  return Found.getAsSingle<NamespaceDecl>();
440}
441
442namespace {
443
444// Callback to only accept typo corrections that can be a valid C++ member
445// initializer: either a non-static field member or a base class.
446class NestedNameSpecifierValidatorCCC final
447    : public CorrectionCandidateCallback {
448public:
449  explicit NestedNameSpecifierValidatorCCC(Sema &SRef)
450      : SRef(SRef) {}
451
452  bool ValidateCandidate(const TypoCorrection &candidate) override {
453    return SRef.isAcceptableNestedNameSpecifier(candidate.getCorrectionDecl());
454  }
455
456  std::unique_ptr<CorrectionCandidateCallback> clone() override {
457    return std::make_unique<NestedNameSpecifierValidatorCCC>(*this);
458  }
459
460 private:
461  Sema &SRef;
462};
463
464}
465
466/// Build a new nested-name-specifier for "identifier::", as described
467/// by ActOnCXXNestedNameSpecifier.
468///
469/// \param S Scope in which the nested-name-specifier occurs.
470/// \param IdInfo Parser information about an identifier in the
471///        nested-name-spec.
472/// \param EnteringContext If true, enter the context specified by the
473///        nested-name-specifier.
474/// \param SS Optional nested name specifier preceding the identifier.
475/// \param ScopeLookupResult Provides the result of name lookup within the
476///        scope of the nested-name-specifier that was computed at template
477///        definition time.
478/// \param ErrorRecoveryLookup Specifies if the method is called to improve
479///        error recovery and what kind of recovery is performed.
480/// \param IsCorrectedToColon If not null, suggestion of replace '::' -> ':'
481///        are allowed.  The bool value pointed by this parameter is set to
482///       'true' if the identifier is treated as if it was followed by ':',
483///        not '::'.
484/// \param OnlyNamespace If true, only considers namespaces in lookup.
485///
486/// This routine differs only slightly from ActOnCXXNestedNameSpecifier, in
487/// that it contains an extra parameter \p ScopeLookupResult, which provides
488/// the result of name lookup within the scope of the nested-name-specifier
489/// that was computed at template definition time.
490///
491/// If ErrorRecoveryLookup is true, then this call is used to improve error
492/// recovery.  This means that it should not emit diagnostics, it should
493/// just return true on failure.  It also means it should only return a valid
494/// scope if it *knows* that the result is correct.  It should not return in a
495/// dependent context, for example. Nor will it extend \p SS with the scope
496/// specifier.
497bool Sema::BuildCXXNestedNameSpecifier(Scope *S, NestedNameSpecInfo &IdInfo,
498                                       bool EnteringContext, CXXScopeSpec &SS,
499                                       NamedDecl *ScopeLookupResult,
500                                       bool ErrorRecoveryLookup,
501                                       bool *IsCorrectedToColon,
502                                       bool OnlyNamespace) {
503  if (IdInfo.Identifier->isEditorPlaceholder())
504    return true;
505  LookupResult Found(*this, IdInfo.Identifier, IdInfo.IdentifierLoc,
506                     OnlyNamespace ? LookupNamespaceName
507                                   : LookupNestedNameSpecifierName);
508  QualType ObjectType = GetTypeFromParser(IdInfo.ObjectType);
509
510  // Determine where to perform name lookup
511  DeclContext *LookupCtx = nullptr;
512  bool isDependent = false;
513  if (IsCorrectedToColon)
514    *IsCorrectedToColon = false;
515  if (!ObjectType.isNull()) {
516    // This nested-name-specifier occurs in a member access expression, e.g.,
517    // x->B::f, and we are looking into the type of the object.
518    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
519    LookupCtx = computeDeclContext(ObjectType);
520    isDependent = ObjectType->isDependentType();
521  } else if (SS.isSet()) {
522    // This nested-name-specifier occurs after another nested-name-specifier,
523    // so look into the context associated with the prior nested-name-specifier.
524    LookupCtx = computeDeclContext(SS, EnteringContext);
525    isDependent = isDependentScopeSpecifier(SS);
526    Found.setContextRange(SS.getRange());
527  }
528
529  bool ObjectTypeSearchedInScope = false;
530  if (LookupCtx) {
531    // Perform "qualified" name lookup into the declaration context we
532    // computed, which is either the type of the base of a member access
533    // expression or the declaration context associated with a prior
534    // nested-name-specifier.
535
536    // The declaration context must be complete.
537    if (!LookupCtx->isDependentContext() &&
538        RequireCompleteDeclContext(SS, LookupCtx))
539      return true;
540
541    LookupQualifiedName(Found, LookupCtx);
542
543    if (!ObjectType.isNull() && Found.empty()) {
544      // C++ [basic.lookup.classref]p4:
545      //   If the id-expression in a class member access is a qualified-id of
546      //   the form
547      //
548      //        class-name-or-namespace-name::...
549      //
550      //   the class-name-or-namespace-name following the . or -> operator is
551      //   looked up both in the context of the entire postfix-expression and in
552      //   the scope of the class of the object expression. If the name is found
553      //   only in the scope of the class of the object expression, the name
554      //   shall refer to a class-name. If the name is found only in the
555      //   context of the entire postfix-expression, the name shall refer to a
556      //   class-name or namespace-name. [...]
557      //
558      // Qualified name lookup into a class will not find a namespace-name,
559      // so we do not need to diagnose that case specifically. However,
560      // this qualified name lookup may find nothing. In that case, perform
561      // unqualified name lookup in the given scope (if available) or
562      // reconstruct the result from when name lookup was performed at template
563      // definition time.
564      if (S)
565        LookupName(Found, S);
566      else if (ScopeLookupResult)
567        Found.addDecl(ScopeLookupResult);
568
569      ObjectTypeSearchedInScope = true;
570    }
571  } else if (!isDependent) {
572    // Perform unqualified name lookup in the current scope.
573    LookupName(Found, S);
574  }
575
576  if (Found.isAmbiguous())
577    return true;
578
579  // If we performed lookup into a dependent context and did not find anything,
580  // that's fine: just build a dependent nested-name-specifier.
581  if (Found.empty() && isDependent &&
582      !(LookupCtx && LookupCtx->isRecord() &&
583        (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
584         !cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()))) {
585    // Don't speculate if we're just trying to improve error recovery.
586    if (ErrorRecoveryLookup)
587      return true;
588
589    // We were not able to compute the declaration context for a dependent
590    // base object type or prior nested-name-specifier, so this
591    // nested-name-specifier refers to an unknown specialization. Just build
592    // a dependent nested-name-specifier.
593    SS.Extend(Context, IdInfo.Identifier, IdInfo.IdentifierLoc, IdInfo.CCLoc);
594    return false;
595  }
596
597  if (Found.empty() && !ErrorRecoveryLookup) {
598    // If identifier is not found as class-name-or-namespace-name, but is found
599    // as other entity, don't look for typos.
600    LookupResult R(*this, Found.getLookupNameInfo(), LookupOrdinaryName);
601    if (LookupCtx)
602      LookupQualifiedName(R, LookupCtx);
603    else if (S && !isDependent)
604      LookupName(R, S);
605    if (!R.empty()) {
606      // Don't diagnose problems with this speculative lookup.
607      R.suppressDiagnostics();
608      // The identifier is found in ordinary lookup. If correction to colon is
609      // allowed, suggest replacement to ':'.
610      if (IsCorrectedToColon) {
611        *IsCorrectedToColon = true;
612        Diag(IdInfo.CCLoc, diag::err_nested_name_spec_is_not_class)
613            << IdInfo.Identifier << getLangOpts().CPlusPlus
614            << FixItHint::CreateReplacement(IdInfo.CCLoc, ":");
615        if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
616          Diag(ND->getLocation(), diag::note_declared_at);
617        return true;
618      }
619      // Replacement '::' -> ':' is not allowed, just issue respective error.
620      Diag(R.getNameLoc(), OnlyNamespace
621                               ? unsigned(diag::err_expected_namespace_name)
622                               : unsigned(diag::err_expected_class_or_namespace))
623          << IdInfo.Identifier << getLangOpts().CPlusPlus;
624      if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
625        Diag(ND->getLocation(), diag::note_entity_declared_at)
626            << IdInfo.Identifier;
627      return true;
628    }
629  }
630
631  if (Found.empty() && !ErrorRecoveryLookup && !getLangOpts().MSVCCompat) {
632    // We haven't found anything, and we're not recovering from a
633    // different kind of error, so look for typos.
634    DeclarationName Name = Found.getLookupName();
635    Found.clear();
636    NestedNameSpecifierValidatorCCC CCC(*this);
637    if (TypoCorrection Corrected = CorrectTypo(
638            Found.getLookupNameInfo(), Found.getLookupKind(), S, &SS, CCC,
639            CTK_ErrorRecovery, LookupCtx, EnteringContext)) {
640      if (LookupCtx) {
641        bool DroppedSpecifier =
642            Corrected.WillReplaceSpecifier() &&
643            Name.getAsString() == Corrected.getAsString(getLangOpts());
644        if (DroppedSpecifier)
645          SS.clear();
646        diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
647                                  << Name << LookupCtx << DroppedSpecifier
648                                  << SS.getRange());
649      } else
650        diagnoseTypo(Corrected, PDiag(diag::err_undeclared_var_use_suggest)
651                                  << Name);
652
653      if (Corrected.getCorrectionSpecifier())
654        SS.MakeTrivial(Context, Corrected.getCorrectionSpecifier(),
655                       SourceRange(Found.getNameLoc()));
656
657      if (NamedDecl *ND = Corrected.getFoundDecl())
658        Found.addDecl(ND);
659      Found.setLookupName(Corrected.getCorrection());
660    } else {
661      Found.setLookupName(IdInfo.Identifier);
662    }
663  }
664
665  NamedDecl *SD =
666      Found.isSingleResult() ? Found.getRepresentativeDecl() : nullptr;
667  bool IsExtension = false;
668  bool AcceptSpec = isAcceptableNestedNameSpecifier(SD, &IsExtension);
669  if (!AcceptSpec && IsExtension) {
670    AcceptSpec = true;
671    Diag(IdInfo.IdentifierLoc, diag::ext_nested_name_spec_is_enum);
672  }
673  if (AcceptSpec) {
674    if (!ObjectType.isNull() && !ObjectTypeSearchedInScope &&
675        !getLangOpts().CPlusPlus11) {
676      // C++03 [basic.lookup.classref]p4:
677      //   [...] If the name is found in both contexts, the
678      //   class-name-or-namespace-name shall refer to the same entity.
679      //
680      // We already found the name in the scope of the object. Now, look
681      // into the current scope (the scope of the postfix-expression) to
682      // see if we can find the same name there. As above, if there is no
683      // scope, reconstruct the result from the template instantiation itself.
684      //
685      // Note that C++11 does *not* perform this redundant lookup.
686      NamedDecl *OuterDecl;
687      if (S) {
688        LookupResult FoundOuter(*this, IdInfo.Identifier, IdInfo.IdentifierLoc,
689                                LookupNestedNameSpecifierName);
690        LookupName(FoundOuter, S);
691        OuterDecl = FoundOuter.getAsSingle<NamedDecl>();
692      } else
693        OuterDecl = ScopeLookupResult;
694
695      if (isAcceptableNestedNameSpecifier(OuterDecl) &&
696          OuterDecl->getCanonicalDecl() != SD->getCanonicalDecl() &&
697          (!isa<TypeDecl>(OuterDecl) || !isa<TypeDecl>(SD) ||
698           !Context.hasSameType(
699                            Context.getTypeDeclType(cast<TypeDecl>(OuterDecl)),
700                               Context.getTypeDeclType(cast<TypeDecl>(SD))))) {
701        if (ErrorRecoveryLookup)
702          return true;
703
704         Diag(IdInfo.IdentifierLoc,
705              diag::err_nested_name_member_ref_lookup_ambiguous)
706           << IdInfo.Identifier;
707         Diag(SD->getLocation(), diag::note_ambig_member_ref_object_type)
708           << ObjectType;
709         Diag(OuterDecl->getLocation(), diag::note_ambig_member_ref_scope);
710
711         // Fall through so that we'll pick the name we found in the object
712         // type, since that's probably what the user wanted anyway.
713       }
714    }
715
716    if (auto *TD = dyn_cast_or_null<TypedefNameDecl>(SD))
717      MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false);
718
719    // If we're just performing this lookup for error-recovery purposes,
720    // don't extend the nested-name-specifier. Just return now.
721    if (ErrorRecoveryLookup)
722      return false;
723
724    // The use of a nested name specifier may trigger deprecation warnings.
725    DiagnoseUseOfDecl(SD, IdInfo.CCLoc);
726
727    if (NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(SD)) {
728      SS.Extend(Context, Namespace, IdInfo.IdentifierLoc, IdInfo.CCLoc);
729      return false;
730    }
731
732    if (NamespaceAliasDecl *Alias = dyn_cast<NamespaceAliasDecl>(SD)) {
733      SS.Extend(Context, Alias, IdInfo.IdentifierLoc, IdInfo.CCLoc);
734      return false;
735    }
736
737    QualType T =
738        Context.getTypeDeclType(cast<TypeDecl>(SD->getUnderlyingDecl()));
739
740    if (T->isEnumeralType())
741      Diag(IdInfo.IdentifierLoc, diag::warn_cxx98_compat_enum_nested_name_spec);
742
743    TypeLocBuilder TLB;
744    if (const auto *USD = dyn_cast<UsingShadowDecl>(SD)) {
745      T = Context.getUsingType(USD, T);
746      TLB.pushTypeSpec(T).setNameLoc(IdInfo.IdentifierLoc);
747    } else if (isa<InjectedClassNameType>(T)) {
748      InjectedClassNameTypeLoc InjectedTL
749        = TLB.push<InjectedClassNameTypeLoc>(T);
750      InjectedTL.setNameLoc(IdInfo.IdentifierLoc);
751    } else if (isa<RecordType>(T)) {
752      RecordTypeLoc RecordTL = TLB.push<RecordTypeLoc>(T);
753      RecordTL.setNameLoc(IdInfo.IdentifierLoc);
754    } else if (isa<TypedefType>(T)) {
755      TypedefTypeLoc TypedefTL = TLB.push<TypedefTypeLoc>(T);
756      TypedefTL.setNameLoc(IdInfo.IdentifierLoc);
757    } else if (isa<EnumType>(T)) {
758      EnumTypeLoc EnumTL = TLB.push<EnumTypeLoc>(T);
759      EnumTL.setNameLoc(IdInfo.IdentifierLoc);
760    } else if (isa<TemplateTypeParmType>(T)) {
761      TemplateTypeParmTypeLoc TemplateTypeTL
762        = TLB.push<TemplateTypeParmTypeLoc>(T);
763      TemplateTypeTL.setNameLoc(IdInfo.IdentifierLoc);
764    } else if (isa<UnresolvedUsingType>(T)) {
765      UnresolvedUsingTypeLoc UnresolvedTL
766        = TLB.push<UnresolvedUsingTypeLoc>(T);
767      UnresolvedTL.setNameLoc(IdInfo.IdentifierLoc);
768    } else if (isa<SubstTemplateTypeParmType>(T)) {
769      SubstTemplateTypeParmTypeLoc TL
770        = TLB.push<SubstTemplateTypeParmTypeLoc>(T);
771      TL.setNameLoc(IdInfo.IdentifierLoc);
772    } else if (isa<SubstTemplateTypeParmPackType>(T)) {
773      SubstTemplateTypeParmPackTypeLoc TL
774        = TLB.push<SubstTemplateTypeParmPackTypeLoc>(T);
775      TL.setNameLoc(IdInfo.IdentifierLoc);
776    } else {
777      llvm_unreachable("Unhandled TypeDecl node in nested-name-specifier");
778    }
779
780    SS.Extend(Context, SourceLocation(), TLB.getTypeLocInContext(Context, T),
781              IdInfo.CCLoc);
782    return false;
783  }
784
785  // Otherwise, we have an error case.  If we don't want diagnostics, just
786  // return an error now.
787  if (ErrorRecoveryLookup)
788    return true;
789
790  // If we didn't find anything during our lookup, try again with
791  // ordinary name lookup, which can help us produce better error
792  // messages.
793  if (Found.empty()) {
794    Found.clear(LookupOrdinaryName);
795    LookupName(Found, S);
796  }
797
798  // In Microsoft mode, if we are within a templated function and we can't
799  // resolve Identifier, then extend the SS with Identifier. This will have
800  // the effect of resolving Identifier during template instantiation.
801  // The goal is to be able to resolve a function call whose
802  // nested-name-specifier is located inside a dependent base class.
803  // Example:
804  //
805  // class C {
806  // public:
807  //    static void foo2() {  }
808  // };
809  // template <class T> class A { public: typedef C D; };
810  //
811  // template <class T> class B : public A<T> {
812  // public:
813  //   void foo() { D::foo2(); }
814  // };
815  if (getLangOpts().MSVCCompat) {
816    DeclContext *DC = LookupCtx ? LookupCtx : CurContext;
817    if (DC->isDependentContext() && DC->isFunctionOrMethod()) {
818      CXXRecordDecl *ContainingClass = dyn_cast<CXXRecordDecl>(DC->getParent());
819      if (ContainingClass && ContainingClass->hasAnyDependentBases()) {
820        Diag(IdInfo.IdentifierLoc,
821             diag::ext_undeclared_unqual_id_with_dependent_base)
822            << IdInfo.Identifier << ContainingClass;
823        SS.Extend(Context, IdInfo.Identifier, IdInfo.IdentifierLoc,
824                  IdInfo.CCLoc);
825        return false;
826      }
827    }
828  }
829
830  if (!Found.empty()) {
831    if (TypeDecl *TD = Found.getAsSingle<TypeDecl>()) {
832      Diag(IdInfo.IdentifierLoc, diag::err_expected_class_or_namespace)
833          << Context.getTypeDeclType(TD) << getLangOpts().CPlusPlus;
834    } else if (Found.getAsSingle<TemplateDecl>()) {
835      ParsedType SuggestedType;
836      DiagnoseUnknownTypeName(IdInfo.Identifier, IdInfo.IdentifierLoc, S, &SS,
837                              SuggestedType);
838    } else {
839      Diag(IdInfo.IdentifierLoc, diag::err_expected_class_or_namespace)
840          << IdInfo.Identifier << getLangOpts().CPlusPlus;
841      if (NamedDecl *ND = Found.getAsSingle<NamedDecl>())
842        Diag(ND->getLocation(), diag::note_entity_declared_at)
843            << IdInfo.Identifier;
844    }
845  } else if (SS.isSet())
846    Diag(IdInfo.IdentifierLoc, diag::err_no_member) << IdInfo.Identifier
847        << LookupCtx << SS.getRange();
848  else
849    Diag(IdInfo.IdentifierLoc, diag::err_undeclared_var_use)
850        << IdInfo.Identifier;
851
852  return true;
853}
854
855bool Sema::ActOnCXXNestedNameSpecifier(Scope *S, NestedNameSpecInfo &IdInfo,
856                                       bool EnteringContext, CXXScopeSpec &SS,
857                                       bool *IsCorrectedToColon,
858                                       bool OnlyNamespace) {
859  if (SS.isInvalid())
860    return true;
861
862  return BuildCXXNestedNameSpecifier(S, IdInfo, EnteringContext, SS,
863                                     /*ScopeLookupResult=*/nullptr, false,
864                                     IsCorrectedToColon, OnlyNamespace);
865}
866
867bool Sema::ActOnCXXNestedNameSpecifierDecltype(CXXScopeSpec &SS,
868                                               const DeclSpec &DS,
869                                               SourceLocation ColonColonLoc) {
870  if (SS.isInvalid() || DS.getTypeSpecType() == DeclSpec::TST_error)
871    return true;
872
873  assert(DS.getTypeSpecType() == DeclSpec::TST_decltype);
874
875  QualType T = BuildDecltypeType(DS.getRepAsExpr());
876  if (T.isNull())
877    return true;
878
879  if (!T->isDependentType() && !T->getAs<TagType>()) {
880    Diag(DS.getTypeSpecTypeLoc(), diag::err_expected_class_or_namespace)
881      << T << getLangOpts().CPlusPlus;
882    return true;
883  }
884
885  TypeLocBuilder TLB;
886  DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
887  DecltypeTL.setDecltypeLoc(DS.getTypeSpecTypeLoc());
888  DecltypeTL.setRParenLoc(DS.getTypeofParensRange().getEnd());
889  SS.Extend(Context, SourceLocation(), TLB.getTypeLocInContext(Context, T),
890            ColonColonLoc);
891  return false;
892}
893
894/// IsInvalidUnlessNestedName - This method is used for error recovery
895/// purposes to determine whether the specified identifier is only valid as
896/// a nested name specifier, for example a namespace name.  It is
897/// conservatively correct to always return false from this method.
898///
899/// The arguments are the same as those passed to ActOnCXXNestedNameSpecifier.
900bool Sema::IsInvalidUnlessNestedName(Scope *S, CXXScopeSpec &SS,
901                                     NestedNameSpecInfo &IdInfo,
902                                     bool EnteringContext) {
903  if (SS.isInvalid())
904    return false;
905
906  return !BuildCXXNestedNameSpecifier(S, IdInfo, EnteringContext, SS,
907                                      /*ScopeLookupResult=*/nullptr, true);
908}
909
910bool Sema::ActOnCXXNestedNameSpecifier(Scope *S,
911                                       CXXScopeSpec &SS,
912                                       SourceLocation TemplateKWLoc,
913                                       TemplateTy OpaqueTemplate,
914                                       SourceLocation TemplateNameLoc,
915                                       SourceLocation LAngleLoc,
916                                       ASTTemplateArgsPtr TemplateArgsIn,
917                                       SourceLocation RAngleLoc,
918                                       SourceLocation CCLoc,
919                                       bool EnteringContext) {
920  if (SS.isInvalid())
921    return true;
922
923  TemplateName Template = OpaqueTemplate.get();
924
925  // Translate the parser's template argument list in our AST format.
926  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
927  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
928
929  DependentTemplateName *DTN = Template.getAsDependentTemplateName();
930  if (DTN && DTN->isIdentifier()) {
931    // Handle a dependent template specialization for which we cannot resolve
932    // the template name.
933    assert(DTN->getQualifier() == SS.getScopeRep());
934    QualType T = Context.getDependentTemplateSpecializationType(
935        ETK_None, DTN->getQualifier(), DTN->getIdentifier(),
936        TemplateArgs.arguments());
937
938    // Create source-location information for this type.
939    TypeLocBuilder Builder;
940    DependentTemplateSpecializationTypeLoc SpecTL
941      = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
942    SpecTL.setElaboratedKeywordLoc(SourceLocation());
943    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
944    SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
945    SpecTL.setTemplateNameLoc(TemplateNameLoc);
946    SpecTL.setLAngleLoc(LAngleLoc);
947    SpecTL.setRAngleLoc(RAngleLoc);
948    for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
949      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
950
951    SS.Extend(Context, TemplateKWLoc, Builder.getTypeLocInContext(Context, T),
952              CCLoc);
953    return false;
954  }
955
956  // If we assumed an undeclared identifier was a template name, try to
957  // typo-correct it now.
958  if (Template.getAsAssumedTemplateName() &&
959      resolveAssumedTemplateNameAsType(S, Template, TemplateNameLoc))
960    return true;
961
962  TemplateDecl *TD = Template.getAsTemplateDecl();
963  if (Template.getAsOverloadedTemplate() || DTN ||
964      isa<FunctionTemplateDecl>(TD) || isa<VarTemplateDecl>(TD)) {
965    SourceRange R(TemplateNameLoc, RAngleLoc);
966    if (SS.getRange().isValid())
967      R.setBegin(SS.getRange().getBegin());
968
969    Diag(CCLoc, diag::err_non_type_template_in_nested_name_specifier)
970      << (TD && isa<VarTemplateDecl>(TD)) << Template << R;
971    NoteAllFoundTemplates(Template);
972    return true;
973  }
974
975  // We were able to resolve the template name to an actual template.
976  // Build an appropriate nested-name-specifier.
977  QualType T = CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs);
978  if (T.isNull())
979    return true;
980
981  // Alias template specializations can produce types which are not valid
982  // nested name specifiers.
983  if (!T->isDependentType() && !T->getAs<TagType>()) {
984    Diag(TemplateNameLoc, diag::err_nested_name_spec_non_tag) << T;
985    NoteAllFoundTemplates(Template);
986    return true;
987  }
988
989  // Provide source-location information for the template specialization type.
990  TypeLocBuilder Builder;
991  TemplateSpecializationTypeLoc SpecTL
992    = Builder.push<TemplateSpecializationTypeLoc>(T);
993  SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
994  SpecTL.setTemplateNameLoc(TemplateNameLoc);
995  SpecTL.setLAngleLoc(LAngleLoc);
996  SpecTL.setRAngleLoc(RAngleLoc);
997  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
998    SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
999
1000
1001  SS.Extend(Context, TemplateKWLoc, Builder.getTypeLocInContext(Context, T),
1002            CCLoc);
1003  return false;
1004}
1005
1006namespace {
1007  /// A structure that stores a nested-name-specifier annotation,
1008  /// including both the nested-name-specifier
1009  struct NestedNameSpecifierAnnotation {
1010    NestedNameSpecifier *NNS;
1011  };
1012}
1013
1014void *Sema::SaveNestedNameSpecifierAnnotation(CXXScopeSpec &SS) {
1015  if (SS.isEmpty() || SS.isInvalid())
1016    return nullptr;
1017
1018  void *Mem = Context.Allocate(
1019      (sizeof(NestedNameSpecifierAnnotation) + SS.location_size()),
1020      alignof(NestedNameSpecifierAnnotation));
1021  NestedNameSpecifierAnnotation *Annotation
1022    = new (Mem) NestedNameSpecifierAnnotation;
1023  Annotation->NNS = SS.getScopeRep();
1024  memcpy(Annotation + 1, SS.location_data(), SS.location_size());
1025  return Annotation;
1026}
1027
1028void Sema::RestoreNestedNameSpecifierAnnotation(void *AnnotationPtr,
1029                                                SourceRange AnnotationRange,
1030                                                CXXScopeSpec &SS) {
1031  if (!AnnotationPtr) {
1032    SS.SetInvalid(AnnotationRange);
1033    return;
1034  }
1035
1036  NestedNameSpecifierAnnotation *Annotation
1037    = static_cast<NestedNameSpecifierAnnotation *>(AnnotationPtr);
1038  SS.Adopt(NestedNameSpecifierLoc(Annotation->NNS, Annotation + 1));
1039}
1040
1041bool Sema::ShouldEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
1042  assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
1043
1044  // Don't enter a declarator context when the current context is an Objective-C
1045  // declaration.
1046  if (isa<ObjCContainerDecl>(CurContext) || isa<ObjCMethodDecl>(CurContext))
1047    return false;
1048
1049  NestedNameSpecifier *Qualifier = SS.getScopeRep();
1050
1051  // There are only two places a well-formed program may qualify a
1052  // declarator: first, when defining a namespace or class member
1053  // out-of-line, and second, when naming an explicitly-qualified
1054  // friend function.  The latter case is governed by
1055  // C++03 [basic.lookup.unqual]p10:
1056  //   In a friend declaration naming a member function, a name used
1057  //   in the function declarator and not part of a template-argument
1058  //   in a template-id is first looked up in the scope of the member
1059  //   function's class. If it is not found, or if the name is part of
1060  //   a template-argument in a template-id, the look up is as
1061  //   described for unqualified names in the definition of the class
1062  //   granting friendship.
1063  // i.e. we don't push a scope unless it's a class member.
1064
1065  switch (Qualifier->getKind()) {
1066  case NestedNameSpecifier::Global:
1067  case NestedNameSpecifier::Namespace:
1068  case NestedNameSpecifier::NamespaceAlias:
1069    // These are always namespace scopes.  We never want to enter a
1070    // namespace scope from anything but a file context.
1071    return CurContext->getRedeclContext()->isFileContext();
1072
1073  case NestedNameSpecifier::Identifier:
1074  case NestedNameSpecifier::TypeSpec:
1075  case NestedNameSpecifier::TypeSpecWithTemplate:
1076  case NestedNameSpecifier::Super:
1077    // These are never namespace scopes.
1078    return true;
1079  }
1080
1081  llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
1082}
1083
1084/// ActOnCXXEnterDeclaratorScope - Called when a C++ scope specifier (global
1085/// scope or nested-name-specifier) is parsed, part of a declarator-id.
1086/// After this method is called, according to [C++ 3.4.3p3], names should be
1087/// looked up in the declarator-id's scope, until the declarator is parsed and
1088/// ActOnCXXExitDeclaratorScope is called.
1089/// The 'SS' should be a non-empty valid CXXScopeSpec.
1090bool Sema::ActOnCXXEnterDeclaratorScope(Scope *S, CXXScopeSpec &SS) {
1091  assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
1092
1093  if (SS.isInvalid()) return true;
1094
1095  DeclContext *DC = computeDeclContext(SS, true);
1096  if (!DC) return true;
1097
1098  // Before we enter a declarator's context, we need to make sure that
1099  // it is a complete declaration context.
1100  if (!DC->isDependentContext() && RequireCompleteDeclContext(SS, DC))
1101    return true;
1102
1103  EnterDeclaratorContext(S, DC);
1104
1105  // Rebuild the nested name specifier for the new scope.
1106  if (DC->isDependentContext())
1107    RebuildNestedNameSpecifierInCurrentInstantiation(SS);
1108
1109  return false;
1110}
1111
1112/// ActOnCXXExitDeclaratorScope - Called when a declarator that previously
1113/// invoked ActOnCXXEnterDeclaratorScope(), is finished. 'SS' is the same
1114/// CXXScopeSpec that was passed to ActOnCXXEnterDeclaratorScope as well.
1115/// Used to indicate that names should revert to being looked up in the
1116/// defining scope.
1117void Sema::ActOnCXXExitDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
1118  assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
1119  if (SS.isInvalid())
1120    return;
1121  assert(!SS.isInvalid() && computeDeclContext(SS, true) &&
1122         "exiting declarator scope we never really entered");
1123  ExitDeclaratorContext(S);
1124}
1125