1/*===------------- avx512vlvnniintrin.h - VNNI intrinsics ------------------===
2 *
3 *
4 * Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
5 * See https://llvm.org/LICENSE.txt for license information.
6 * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 *
8 *===-----------------------------------------------------------------------===
9 */
10#ifndef __IMMINTRIN_H
11#error "Never use <avx512vlvnniintrin.h> directly; include <immintrin.h> instead."
12#endif
13
14#ifndef __AVX512VLVNNIINTRIN_H
15#define __AVX512VLVNNIINTRIN_H
16
17/* Define the default attributes for the functions in this file. */
18#define __DEFAULT_FN_ATTRS128 __attribute__((__always_inline__, __nodebug__, __target__("avx512vl,avx512vnni"), __min_vector_width__(128)))
19#define __DEFAULT_FN_ATTRS256 __attribute__((__always_inline__, __nodebug__, __target__("avx512vl,avx512vnni"), __min_vector_width__(256)))
20
21/// Multiply groups of 4 adjacent pairs of unsigned 8-bit integers in \a A with
22/// corresponding signed 8-bit integers in \a B, producing 4 intermediate signed
23/// 16-bit results. Sum these 4 results with the corresponding 32-bit integer
24/// in \a S, and store the packed 32-bit results in DST.
25///
26/// This intrinsic corresponds to the <c> VPDPBUSD </c> instructions.
27///
28/// \code{.operation}
29///    FOR j := 0 to 7
30///      tmp1.word := Signed(ZeroExtend16(A.byte[4*j]) * SignExtend16(B.byte[4*j]))
31///      tmp2.word := Signed(ZeroExtend16(A.byte[4*j+1]) * SignExtend16(B.byte[4*j+1]))
32///      tmp3.word := Signed(ZeroExtend16(A.byte[4*j+2]) * SignExtend16(B.byte[4*j+2]))
33///      tmp4.word := Signed(ZeroExtend16(A.byte[4*j+3]) * SignExtend16(B.byte[4*j+3]))
34///      DST.dword[j] := S.dword[j] + tmp1 + tmp2 + tmp3 + tmp4
35///    ENDFOR
36///    DST[MAX:256] := 0
37/// \endcode
38#define _mm256_dpbusd_epi32(S, A, B) \
39  ((__m256i)__builtin_ia32_vpdpbusd256((__v8si)(S), (__v8si)(A), (__v8si)(B)))
40
41/// Multiply groups of 4 adjacent pairs of unsigned 8-bit integers in \a A with
42/// corresponding signed 8-bit integers in \a B, producing 4 intermediate signed
43/// 16-bit results. Sum these 4 results with the corresponding 32-bit integer
44/// in \a S using signed saturation, and store the packed 32-bit results in DST.
45///
46/// This intrinsic corresponds to the <c> VPDPBUSDS </c> instructions.
47///
48/// \code{.operation}
49///    FOR j := 0 to 7
50///      tmp1.word := Signed(ZeroExtend16(A.byte[4*j]) * SignExtend16(B.byte[4*j]))
51///      tmp2.word := Signed(ZeroExtend16(A.byte[4*j+1]) * SignExtend16(B.byte[4*j+1]))
52///      tmp3.word := Signed(ZeroExtend16(A.byte[4*j+2]) * SignExtend16(B.byte[4*j+2]))
53///      tmp4.word := Signed(ZeroExtend16(A.byte[4*j+3]) * SignExtend16(B.byte[4*j+3]))
54///      DST.dword[j] := Saturate32(S.dword[j] + tmp1 + tmp2 + tmp3 + tmp4)
55///    ENDFOR
56///    DST[MAX:256] := 0
57/// \endcode
58#define _mm256_dpbusds_epi32(S, A, B) \
59  ((__m256i)__builtin_ia32_vpdpbusds256((__v8si)(S), (__v8si)(A), (__v8si)(B)))
60
61/// Multiply groups of 2 adjacent pairs of signed 16-bit integers in \a A with
62/// corresponding 16-bit integers in \a B, producing 2 intermediate signed 32-bit
63/// results. Sum these 2 results with the corresponding 32-bit integer in \a S,
64///  and store the packed 32-bit results in DST.
65///
66/// This intrinsic corresponds to the <c> VPDPWSSD </c> instructions.
67///
68/// \code{.operation}
69///    FOR j := 0 to 7
70///      tmp1.dword := SignExtend32(A.word[2*j]) * SignExtend32(B.word[2*j])
71///      tmp2.dword := SignExtend32(A.word[2*j+1]) * SignExtend32(B.word[2*j+1])
72///      DST.dword[j] := S.dword[j] + tmp1 + tmp2
73///    ENDFOR
74///    DST[MAX:256] := 0
75/// \endcode
76#define _mm256_dpwssd_epi32(S, A, B) \
77  ((__m256i)__builtin_ia32_vpdpwssd256((__v8si)(S), (__v8si)(A), (__v8si)(B)))
78
79/// Multiply groups of 2 adjacent pairs of signed 16-bit integers in \a A with
80/// corresponding 16-bit integers in \a B, producing 2 intermediate signed 32-bit
81/// results. Sum these 2 results with the corresponding 32-bit integer in \a S
82/// using signed saturation, and store the packed 32-bit results in DST.
83///
84/// This intrinsic corresponds to the <c> VPDPWSSDS </c> instructions.
85///
86/// \code{.operation}
87///    FOR j := 0 to 7
88///      tmp1.dword := SignExtend32(A.word[2*j]) * SignExtend32(B.word[2*j])
89///      tmp2.dword := SignExtend32(A.word[2*j+1]) * SignExtend32(B.word[2*j+1])
90///      DST.dword[j] := Saturate32(S.dword[j] + tmp1 + tmp2)
91///    ENDFOR
92///    DST[MAX:256] := 0
93/// \endcode
94#define _mm256_dpwssds_epi32(S, A, B) \
95  ((__m256i)__builtin_ia32_vpdpwssds256((__v8si)(S), (__v8si)(A), (__v8si)(B)))
96
97/// Multiply groups of 4 adjacent pairs of unsigned 8-bit integers in \a A with
98/// corresponding signed 8-bit integers in \a B, producing 4 intermediate signed
99/// 16-bit results. Sum these 4 results with the corresponding 32-bit integer
100/// in \a S, and store the packed 32-bit results in DST.
101///
102/// This intrinsic corresponds to the <c> VPDPBUSD </c> instructions.
103///
104/// \code{.operation}
105///    FOR j := 0 to 3
106///      tmp1.word := Signed(ZeroExtend16(A.byte[4*j]) * SignExtend16(B.byte[4*j]))
107///      tmp2.word := Signed(ZeroExtend16(A.byte[4*j+1]) * SignExtend16(B.byte[4*j+1]))
108///      tmp3.word := Signed(ZeroExtend16(A.byte[4*j+2]) * SignExtend16(B.byte[4*j+2]))
109///      tmp4.word := Signed(ZeroExtend16(A.byte[4*j+3]) * SignExtend16(B.byte[4*j+3]))
110///      DST.dword[j] := S.dword[j] + tmp1 + tmp2 + tmp3 + tmp4
111///    ENDFOR
112///    DST[MAX:128] := 0
113/// \endcode
114#define _mm_dpbusd_epi32(S, A, B) \
115  ((__m128i)__builtin_ia32_vpdpbusd128((__v4si)(S), (__v4si)(A), (__v4si)(B)))
116
117/// Multiply groups of 4 adjacent pairs of unsigned 8-bit integers in \a A with
118/// corresponding signed 8-bit integers in \a B, producing 4 intermediate signed
119/// 16-bit results. Sum these 4 results with the corresponding 32-bit integer
120/// in \a S using signed saturation, and store the packed 32-bit results in DST.
121///
122/// This intrinsic corresponds to the <c> VPDPBUSDS </c> instructions.
123///
124/// \code{.operation}
125///    FOR j := 0 to 3
126///      tmp1.word := Signed(ZeroExtend16(A.byte[4*j]) * SignExtend16(B.byte[4*j]))
127///      tmp2.word := Signed(ZeroExtend16(A.byte[4*j+1]) * SignExtend16(B.byte[4*j+1]))
128///      tmp3.word := Signed(ZeroExtend16(A.byte[4*j+2]) * SignExtend16(B.byte[4*j+2]))
129///      tmp4.word := Signed(ZeroExtend16(A.byte[4*j+3]) * SignExtend16(B.byte[4*j+3]))
130///      DST.dword[j] := Saturate32(S.dword[j] + tmp1 + tmp2 + tmp3 + tmp4)
131///    ENDFOR
132///    DST[MAX:128] := 0
133/// \endcode
134#define _mm_dpbusds_epi32(S, A, B) \
135  ((__m128i)__builtin_ia32_vpdpbusds128((__v4si)(S), (__v4si)(A), (__v4si)(B)))
136
137/// Multiply groups of 2 adjacent pairs of signed 16-bit integers in \a A with
138/// corresponding 16-bit integers in \a B, producing 2 intermediate signed 32-bit
139/// results. Sum these 2 results with the corresponding 32-bit integer in \a S,
140/// and store the packed 32-bit results in DST.
141///
142/// This intrinsic corresponds to the <c> VPDPWSSD </c> instructions.
143///
144/// \code{.operation}
145///    FOR j := 0 to 3
146///      tmp1.dword := SignExtend32(A.word[2*j]) * SignExtend32(B.word[2*j])
147///      tmp2.dword := SignExtend32(A.word[2*j+1]) * SignExtend32(B.word[2*j+1])
148///      DST.dword[j] := S.dword[j] + tmp1 + tmp2
149///    ENDFOR
150///    DST[MAX:128] := 0
151/// \endcode
152#define _mm_dpwssd_epi32(S, A, B) \
153  ((__m128i)__builtin_ia32_vpdpwssd128((__v4si)(S), (__v4si)(A), (__v4si)(B)))
154
155/// Multiply groups of 2 adjacent pairs of signed 16-bit integers in \a A with
156/// corresponding 16-bit integers in \a B, producing 2 intermediate signed 32-bit
157/// results. Sum these 2 results with the corresponding 32-bit integer in \a S
158/// using signed saturation, and store the packed 32-bit results in DST.
159///
160/// This intrinsic corresponds to the <c> VPDPWSSDS </c> instructions.
161///
162/// \code{.operation}
163///    FOR j := 0 to 3
164///      tmp1.dword := SignExtend32(A.word[2*j]) * SignExtend32(B.word[2*j])
165///      tmp2.dword := SignExtend32(A.word[2*j+1]) * SignExtend32(B.word[2*j+1])
166///      DST.dword[j] := Saturate32(S.dword[j] + tmp1 + tmp2)
167///    ENDFOR
168///    DST[MAX:128] := 0
169/// \endcode
170#define _mm_dpwssds_epi32(S, A, B) \
171  ((__m128i)__builtin_ia32_vpdpwssds128((__v4si)(S), (__v4si)(A), (__v4si)(B)))
172
173static __inline__ __m256i __DEFAULT_FN_ATTRS256
174_mm256_mask_dpbusd_epi32(__m256i __S, __mmask8 __U, __m256i __A, __m256i __B)
175{
176  return (__m256i)__builtin_ia32_selectd_256(__U,
177                                     (__v8si)_mm256_dpbusd_epi32(__S, __A, __B),
178                                     (__v8si)__S);
179}
180
181static __inline__ __m256i __DEFAULT_FN_ATTRS256
182_mm256_maskz_dpbusd_epi32(__mmask8 __U, __m256i __S, __m256i __A, __m256i __B)
183{
184  return (__m256i)__builtin_ia32_selectd_256(__U,
185                                     (__v8si)_mm256_dpbusd_epi32(__S, __A, __B),
186                                     (__v8si)_mm256_setzero_si256());
187}
188
189static __inline__ __m256i __DEFAULT_FN_ATTRS256
190_mm256_mask_dpbusds_epi32(__m256i __S, __mmask8 __U, __m256i __A, __m256i __B)
191{
192  return (__m256i)__builtin_ia32_selectd_256(__U,
193                                    (__v8si)_mm256_dpbusds_epi32(__S, __A, __B),
194                                    (__v8si)__S);
195}
196
197static __inline__ __m256i __DEFAULT_FN_ATTRS256
198_mm256_maskz_dpbusds_epi32(__mmask8 __U, __m256i __S, __m256i __A, __m256i __B)
199{
200  return (__m256i)__builtin_ia32_selectd_256(__U,
201                                     (__v8si)_mm256_dpbusds_epi32(__S, __A, __B),
202                                     (__v8si)_mm256_setzero_si256());
203}
204
205static __inline__ __m256i __DEFAULT_FN_ATTRS256
206_mm256_mask_dpwssd_epi32(__m256i __S, __mmask8 __U, __m256i __A, __m256i __B)
207{
208  return (__m256i)__builtin_ia32_selectd_256(__U,
209                                     (__v8si)_mm256_dpwssd_epi32(__S, __A, __B),
210                                     (__v8si)__S);
211}
212
213static __inline__ __m256i __DEFAULT_FN_ATTRS256
214_mm256_maskz_dpwssd_epi32(__mmask8 __U, __m256i __S, __m256i __A, __m256i __B)
215{
216  return (__m256i)__builtin_ia32_selectd_256(__U,
217                                     (__v8si)_mm256_dpwssd_epi32(__S, __A, __B),
218                                     (__v8si)_mm256_setzero_si256());
219}
220
221static __inline__ __m256i __DEFAULT_FN_ATTRS256
222_mm256_mask_dpwssds_epi32(__m256i __S, __mmask8 __U, __m256i __A, __m256i __B)
223{
224  return (__m256i)__builtin_ia32_selectd_256(__U,
225                                    (__v8si)_mm256_dpwssds_epi32(__S, __A, __B),
226                                    (__v8si)__S);
227}
228
229static __inline__ __m256i __DEFAULT_FN_ATTRS256
230_mm256_maskz_dpwssds_epi32(__mmask8 __U, __m256i __S, __m256i __A, __m256i __B)
231{
232  return (__m256i)__builtin_ia32_selectd_256(__U,
233                                    (__v8si)_mm256_dpwssds_epi32(__S, __A, __B),
234                                    (__v8si)_mm256_setzero_si256());
235}
236
237static __inline__ __m128i __DEFAULT_FN_ATTRS128
238_mm_mask_dpbusd_epi32(__m128i __S, __mmask8 __U, __m128i __A, __m128i __B)
239{
240  return (__m128i)__builtin_ia32_selectd_128(__U,
241                                        (__v4si)_mm_dpbusd_epi32(__S, __A, __B),
242                                        (__v4si)__S);
243}
244
245static __inline__ __m128i __DEFAULT_FN_ATTRS128
246_mm_maskz_dpbusd_epi32(__mmask8 __U, __m128i __S, __m128i __A, __m128i __B)
247{
248  return (__m128i)__builtin_ia32_selectd_128(__U,
249                                        (__v4si)_mm_dpbusd_epi32(__S, __A, __B),
250                                        (__v4si)_mm_setzero_si128());
251}
252
253static __inline__ __m128i __DEFAULT_FN_ATTRS128
254_mm_mask_dpbusds_epi32(__m128i __S, __mmask8 __U, __m128i __A, __m128i __B)
255{
256  return (__m128i)__builtin_ia32_selectd_128(__U,
257                                       (__v4si)_mm_dpbusds_epi32(__S, __A, __B),
258                                       (__v4si)__S);
259}
260
261static __inline__ __m128i __DEFAULT_FN_ATTRS128
262_mm_maskz_dpbusds_epi32(__mmask8 __U, __m128i __S, __m128i __A, __m128i __B)
263{
264  return (__m128i)__builtin_ia32_selectd_128(__U,
265                                       (__v4si)_mm_dpbusds_epi32(__S, __A, __B),
266                                       (__v4si)_mm_setzero_si128());
267}
268
269static __inline__ __m128i __DEFAULT_FN_ATTRS128
270_mm_mask_dpwssd_epi32(__m128i __S, __mmask8 __U, __m128i __A, __m128i __B)
271{
272  return (__m128i)__builtin_ia32_selectd_128(__U,
273                                        (__v4si)_mm_dpwssd_epi32(__S, __A, __B),
274                                        (__v4si)__S);
275}
276
277static __inline__ __m128i __DEFAULT_FN_ATTRS128
278_mm_maskz_dpwssd_epi32(__mmask8 __U, __m128i __S, __m128i __A, __m128i __B)
279{
280  return (__m128i)__builtin_ia32_selectd_128(__U,
281                                        (__v4si)_mm_dpwssd_epi32(__S, __A, __B),
282                                        (__v4si)_mm_setzero_si128());
283}
284
285static __inline__ __m128i __DEFAULT_FN_ATTRS128
286_mm_mask_dpwssds_epi32(__m128i __S, __mmask8 __U, __m128i __A, __m128i __B)
287{
288  return (__m128i)__builtin_ia32_selectd_128(__U,
289                                       (__v4si)_mm_dpwssds_epi32(__S, __A, __B),
290                                       (__v4si)__S);
291}
292
293static __inline__ __m128i __DEFAULT_FN_ATTRS128
294_mm_maskz_dpwssds_epi32(__mmask8 __U, __m128i __S, __m128i __A, __m128i __B)
295{
296  return (__m128i)__builtin_ia32_selectd_128(__U,
297                                       (__v4si)_mm_dpwssds_epi32(__S, __A, __B),
298                                       (__v4si)_mm_setzero_si128());
299}
300
301#undef __DEFAULT_FN_ATTRS128
302#undef __DEFAULT_FN_ATTRS256
303
304#endif
305