CodeGenTypes.cpp revision 1.1.1.3
1//===--- CodeGenTypes.cpp - Type translation for LLVM CodeGen -------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This is the code that handles AST -> LLVM type lowering.
10//
11//===----------------------------------------------------------------------===//
12
13#include "CodeGenTypes.h"
14#include "CGCXXABI.h"
15#include "CGCall.h"
16#include "CGOpenCLRuntime.h"
17#include "CGRecordLayout.h"
18#include "TargetInfo.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/DeclCXX.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/Expr.h"
23#include "clang/AST/RecordLayout.h"
24#include "clang/CodeGen/CGFunctionInfo.h"
25#include "llvm/IR/DataLayout.h"
26#include "llvm/IR/DerivedTypes.h"
27#include "llvm/IR/Module.h"
28using namespace clang;
29using namespace CodeGen;
30
31CodeGenTypes::CodeGenTypes(CodeGenModule &cgm)
32  : CGM(cgm), Context(cgm.getContext()), TheModule(cgm.getModule()),
33    Target(cgm.getTarget()), TheCXXABI(cgm.getCXXABI()),
34    TheABIInfo(cgm.getTargetCodeGenInfo().getABIInfo()) {
35  SkippedLayout = false;
36}
37
38CodeGenTypes::~CodeGenTypes() {
39  for (llvm::FoldingSet<CGFunctionInfo>::iterator
40       I = FunctionInfos.begin(), E = FunctionInfos.end(); I != E; )
41    delete &*I++;
42}
43
44const CodeGenOptions &CodeGenTypes::getCodeGenOpts() const {
45  return CGM.getCodeGenOpts();
46}
47
48void CodeGenTypes::addRecordTypeName(const RecordDecl *RD,
49                                     llvm::StructType *Ty,
50                                     StringRef suffix) {
51  SmallString<256> TypeName;
52  llvm::raw_svector_ostream OS(TypeName);
53  OS << RD->getKindName() << '.';
54
55  // FIXME: We probably want to make more tweaks to the printing policy. For
56  // example, we should probably enable PrintCanonicalTypes and
57  // FullyQualifiedNames.
58  PrintingPolicy Policy = RD->getASTContext().getPrintingPolicy();
59  Policy.SuppressInlineNamespace = false;
60
61  // Name the codegen type after the typedef name
62  // if there is no tag type name available
63  if (RD->getIdentifier()) {
64    // FIXME: We should not have to check for a null decl context here.
65    // Right now we do it because the implicit Obj-C decls don't have one.
66    if (RD->getDeclContext())
67      RD->printQualifiedName(OS, Policy);
68    else
69      RD->printName(OS);
70  } else if (const TypedefNameDecl *TDD = RD->getTypedefNameForAnonDecl()) {
71    // FIXME: We should not have to check for a null decl context here.
72    // Right now we do it because the implicit Obj-C decls don't have one.
73    if (TDD->getDeclContext())
74      TDD->printQualifiedName(OS, Policy);
75    else
76      TDD->printName(OS);
77  } else
78    OS << "anon";
79
80  if (!suffix.empty())
81    OS << suffix;
82
83  Ty->setName(OS.str());
84}
85
86/// ConvertTypeForMem - Convert type T into a llvm::Type.  This differs from
87/// ConvertType in that it is used to convert to the memory representation for
88/// a type.  For example, the scalar representation for _Bool is i1, but the
89/// memory representation is usually i8 or i32, depending on the target.
90llvm::Type *CodeGenTypes::ConvertTypeForMem(QualType T, bool ForBitField) {
91  if (T->isConstantMatrixType()) {
92    const Type *Ty = Context.getCanonicalType(T).getTypePtr();
93    const ConstantMatrixType *MT = cast<ConstantMatrixType>(Ty);
94    return llvm::ArrayType::get(ConvertType(MT->getElementType()),
95                                MT->getNumRows() * MT->getNumColumns());
96  }
97
98  llvm::Type *R = ConvertType(T);
99
100  // If this is a bool type, or an ExtIntType in a bitfield representation,
101  // map this integer to the target-specified size.
102  if ((ForBitField && T->isExtIntType()) ||
103      (!T->isExtIntType() && R->isIntegerTy(1)))
104    return llvm::IntegerType::get(getLLVMContext(),
105                                  (unsigned)Context.getTypeSize(T));
106
107  // Else, don't map it.
108  return R;
109}
110
111/// isRecordLayoutComplete - Return true if the specified type is already
112/// completely laid out.
113bool CodeGenTypes::isRecordLayoutComplete(const Type *Ty) const {
114  llvm::DenseMap<const Type*, llvm::StructType *>::const_iterator I =
115  RecordDeclTypes.find(Ty);
116  return I != RecordDeclTypes.end() && !I->second->isOpaque();
117}
118
119static bool
120isSafeToConvert(QualType T, CodeGenTypes &CGT,
121                llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked);
122
123
124/// isSafeToConvert - Return true if it is safe to convert the specified record
125/// decl to IR and lay it out, false if doing so would cause us to get into a
126/// recursive compilation mess.
127static bool
128isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT,
129                llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) {
130  // If we have already checked this type (maybe the same type is used by-value
131  // multiple times in multiple structure fields, don't check again.
132  if (!AlreadyChecked.insert(RD).second)
133    return true;
134
135  const Type *Key = CGT.getContext().getTagDeclType(RD).getTypePtr();
136
137  // If this type is already laid out, converting it is a noop.
138  if (CGT.isRecordLayoutComplete(Key)) return true;
139
140  // If this type is currently being laid out, we can't recursively compile it.
141  if (CGT.isRecordBeingLaidOut(Key))
142    return false;
143
144  // If this type would require laying out bases that are currently being laid
145  // out, don't do it.  This includes virtual base classes which get laid out
146  // when a class is translated, even though they aren't embedded by-value into
147  // the class.
148  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
149    for (const auto &I : CRD->bases())
150      if (!isSafeToConvert(I.getType()->castAs<RecordType>()->getDecl(), CGT,
151                           AlreadyChecked))
152        return false;
153  }
154
155  // If this type would require laying out members that are currently being laid
156  // out, don't do it.
157  for (const auto *I : RD->fields())
158    if (!isSafeToConvert(I->getType(), CGT, AlreadyChecked))
159      return false;
160
161  // If there are no problems, lets do it.
162  return true;
163}
164
165/// isSafeToConvert - Return true if it is safe to convert this field type,
166/// which requires the structure elements contained by-value to all be
167/// recursively safe to convert.
168static bool
169isSafeToConvert(QualType T, CodeGenTypes &CGT,
170                llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) {
171  // Strip off atomic type sugar.
172  if (const auto *AT = T->getAs<AtomicType>())
173    T = AT->getValueType();
174
175  // If this is a record, check it.
176  if (const auto *RT = T->getAs<RecordType>())
177    return isSafeToConvert(RT->getDecl(), CGT, AlreadyChecked);
178
179  // If this is an array, check the elements, which are embedded inline.
180  if (const auto *AT = CGT.getContext().getAsArrayType(T))
181    return isSafeToConvert(AT->getElementType(), CGT, AlreadyChecked);
182
183  // Otherwise, there is no concern about transforming this.  We only care about
184  // things that are contained by-value in a structure that can have another
185  // structure as a member.
186  return true;
187}
188
189
190/// isSafeToConvert - Return true if it is safe to convert the specified record
191/// decl to IR and lay it out, false if doing so would cause us to get into a
192/// recursive compilation mess.
193static bool isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT) {
194  // If no structs are being laid out, we can certainly do this one.
195  if (CGT.noRecordsBeingLaidOut()) return true;
196
197  llvm::SmallPtrSet<const RecordDecl*, 16> AlreadyChecked;
198  return isSafeToConvert(RD, CGT, AlreadyChecked);
199}
200
201/// isFuncParamTypeConvertible - Return true if the specified type in a
202/// function parameter or result position can be converted to an IR type at this
203/// point.  This boils down to being whether it is complete, as well as whether
204/// we've temporarily deferred expanding the type because we're in a recursive
205/// context.
206bool CodeGenTypes::isFuncParamTypeConvertible(QualType Ty) {
207  // Some ABIs cannot have their member pointers represented in IR unless
208  // certain circumstances have been reached.
209  if (const auto *MPT = Ty->getAs<MemberPointerType>())
210    return getCXXABI().isMemberPointerConvertible(MPT);
211
212  // If this isn't a tagged type, we can convert it!
213  const TagType *TT = Ty->getAs<TagType>();
214  if (!TT) return true;
215
216  // Incomplete types cannot be converted.
217  if (TT->isIncompleteType())
218    return false;
219
220  // If this is an enum, then it is always safe to convert.
221  const RecordType *RT = dyn_cast<RecordType>(TT);
222  if (!RT) return true;
223
224  // Otherwise, we have to be careful.  If it is a struct that we're in the
225  // process of expanding, then we can't convert the function type.  That's ok
226  // though because we must be in a pointer context under the struct, so we can
227  // just convert it to a dummy type.
228  //
229  // We decide this by checking whether ConvertRecordDeclType returns us an
230  // opaque type for a struct that we know is defined.
231  return isSafeToConvert(RT->getDecl(), *this);
232}
233
234
235/// Code to verify a given function type is complete, i.e. the return type
236/// and all of the parameter types are complete.  Also check to see if we are in
237/// a RS_StructPointer context, and if so whether any struct types have been
238/// pended.  If so, we don't want to ask the ABI lowering code to handle a type
239/// that cannot be converted to an IR type.
240bool CodeGenTypes::isFuncTypeConvertible(const FunctionType *FT) {
241  if (!isFuncParamTypeConvertible(FT->getReturnType()))
242    return false;
243
244  if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT))
245    for (unsigned i = 0, e = FPT->getNumParams(); i != e; i++)
246      if (!isFuncParamTypeConvertible(FPT->getParamType(i)))
247        return false;
248
249  return true;
250}
251
252/// UpdateCompletedType - When we find the full definition for a TagDecl,
253/// replace the 'opaque' type we previously made for it if applicable.
254void CodeGenTypes::UpdateCompletedType(const TagDecl *TD) {
255  // If this is an enum being completed, then we flush all non-struct types from
256  // the cache.  This allows function types and other things that may be derived
257  // from the enum to be recomputed.
258  if (const EnumDecl *ED = dyn_cast<EnumDecl>(TD)) {
259    // Only flush the cache if we've actually already converted this type.
260    if (TypeCache.count(ED->getTypeForDecl())) {
261      // Okay, we formed some types based on this.  We speculated that the enum
262      // would be lowered to i32, so we only need to flush the cache if this
263      // didn't happen.
264      if (!ConvertType(ED->getIntegerType())->isIntegerTy(32))
265        TypeCache.clear();
266    }
267    // If necessary, provide the full definition of a type only used with a
268    // declaration so far.
269    if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
270      DI->completeType(ED);
271    return;
272  }
273
274  // If we completed a RecordDecl that we previously used and converted to an
275  // anonymous type, then go ahead and complete it now.
276  const RecordDecl *RD = cast<RecordDecl>(TD);
277  if (RD->isDependentType()) return;
278
279  // Only complete it if we converted it already.  If we haven't converted it
280  // yet, we'll just do it lazily.
281  if (RecordDeclTypes.count(Context.getTagDeclType(RD).getTypePtr()))
282    ConvertRecordDeclType(RD);
283
284  // If necessary, provide the full definition of a type only used with a
285  // declaration so far.
286  if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
287    DI->completeType(RD);
288}
289
290void CodeGenTypes::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
291  QualType T = Context.getRecordType(RD);
292  T = Context.getCanonicalType(T);
293
294  const Type *Ty = T.getTypePtr();
295  if (RecordsWithOpaqueMemberPointers.count(Ty)) {
296    TypeCache.clear();
297    RecordsWithOpaqueMemberPointers.clear();
298  }
299}
300
301static llvm::Type *getTypeForFormat(llvm::LLVMContext &VMContext,
302                                    const llvm::fltSemantics &format,
303                                    bool UseNativeHalf = false) {
304  if (&format == &llvm::APFloat::IEEEhalf()) {
305    if (UseNativeHalf)
306      return llvm::Type::getHalfTy(VMContext);
307    else
308      return llvm::Type::getInt16Ty(VMContext);
309  }
310  if (&format == &llvm::APFloat::BFloat())
311    return llvm::Type::getBFloatTy(VMContext);
312  if (&format == &llvm::APFloat::IEEEsingle())
313    return llvm::Type::getFloatTy(VMContext);
314  if (&format == &llvm::APFloat::IEEEdouble())
315    return llvm::Type::getDoubleTy(VMContext);
316  if (&format == &llvm::APFloat::IEEEquad())
317    return llvm::Type::getFP128Ty(VMContext);
318  if (&format == &llvm::APFloat::PPCDoubleDouble())
319    return llvm::Type::getPPC_FP128Ty(VMContext);
320  if (&format == &llvm::APFloat::x87DoubleExtended())
321    return llvm::Type::getX86_FP80Ty(VMContext);
322  llvm_unreachable("Unknown float format!");
323}
324
325llvm::Type *CodeGenTypes::ConvertFunctionTypeInternal(QualType QFT) {
326  assert(QFT.isCanonical());
327  const Type *Ty = QFT.getTypePtr();
328  const FunctionType *FT = cast<FunctionType>(QFT.getTypePtr());
329  // First, check whether we can build the full function type.  If the
330  // function type depends on an incomplete type (e.g. a struct or enum), we
331  // cannot lower the function type.
332  if (!isFuncTypeConvertible(FT)) {
333    // This function's type depends on an incomplete tag type.
334
335    // Force conversion of all the relevant record types, to make sure
336    // we re-convert the FunctionType when appropriate.
337    if (const RecordType *RT = FT->getReturnType()->getAs<RecordType>())
338      ConvertRecordDeclType(RT->getDecl());
339    if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT))
340      for (unsigned i = 0, e = FPT->getNumParams(); i != e; i++)
341        if (const RecordType *RT = FPT->getParamType(i)->getAs<RecordType>())
342          ConvertRecordDeclType(RT->getDecl());
343
344    SkippedLayout = true;
345
346    // Return a placeholder type.
347    return llvm::StructType::get(getLLVMContext());
348  }
349
350  // While we're converting the parameter types for a function, we don't want
351  // to recursively convert any pointed-to structs.  Converting directly-used
352  // structs is ok though.
353  if (!RecordsBeingLaidOut.insert(Ty).second) {
354    SkippedLayout = true;
355    return llvm::StructType::get(getLLVMContext());
356  }
357
358  // The function type can be built; call the appropriate routines to
359  // build it.
360  const CGFunctionInfo *FI;
361  if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
362    FI = &arrangeFreeFunctionType(
363        CanQual<FunctionProtoType>::CreateUnsafe(QualType(FPT, 0)));
364  } else {
365    const FunctionNoProtoType *FNPT = cast<FunctionNoProtoType>(FT);
366    FI = &arrangeFreeFunctionType(
367        CanQual<FunctionNoProtoType>::CreateUnsafe(QualType(FNPT, 0)));
368  }
369
370  llvm::Type *ResultType = nullptr;
371  // If there is something higher level prodding our CGFunctionInfo, then
372  // don't recurse into it again.
373  if (FunctionsBeingProcessed.count(FI)) {
374
375    ResultType = llvm::StructType::get(getLLVMContext());
376    SkippedLayout = true;
377  } else {
378
379    // Otherwise, we're good to go, go ahead and convert it.
380    ResultType = GetFunctionType(*FI);
381  }
382
383  RecordsBeingLaidOut.erase(Ty);
384
385  if (SkippedLayout)
386    TypeCache.clear();
387
388  if (RecordsBeingLaidOut.empty())
389    while (!DeferredRecords.empty())
390      ConvertRecordDeclType(DeferredRecords.pop_back_val());
391  return ResultType;
392}
393
394/// ConvertType - Convert the specified type to its LLVM form.
395llvm::Type *CodeGenTypes::ConvertType(QualType T) {
396  T = Context.getCanonicalType(T);
397
398  const Type *Ty = T.getTypePtr();
399
400  // For the device-side compilation, CUDA device builtin surface/texture types
401  // may be represented in different types.
402  if (Context.getLangOpts().CUDAIsDevice) {
403    if (T->isCUDADeviceBuiltinSurfaceType()) {
404      if (auto *Ty = CGM.getTargetCodeGenInfo()
405                         .getCUDADeviceBuiltinSurfaceDeviceType())
406        return Ty;
407    } else if (T->isCUDADeviceBuiltinTextureType()) {
408      if (auto *Ty = CGM.getTargetCodeGenInfo()
409                         .getCUDADeviceBuiltinTextureDeviceType())
410        return Ty;
411    }
412  }
413
414  // RecordTypes are cached and processed specially.
415  if (const RecordType *RT = dyn_cast<RecordType>(Ty))
416    return ConvertRecordDeclType(RT->getDecl());
417
418  // See if type is already cached.
419  llvm::DenseMap<const Type *, llvm::Type *>::iterator TCI = TypeCache.find(Ty);
420  // If type is found in map then use it. Otherwise, convert type T.
421  if (TCI != TypeCache.end())
422    return TCI->second;
423
424  // If we don't have it in the cache, convert it now.
425  llvm::Type *ResultType = nullptr;
426  switch (Ty->getTypeClass()) {
427  case Type::Record: // Handled above.
428#define TYPE(Class, Base)
429#define ABSTRACT_TYPE(Class, Base)
430#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
431#define DEPENDENT_TYPE(Class, Base) case Type::Class:
432#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
433#include "clang/AST/TypeNodes.inc"
434    llvm_unreachable("Non-canonical or dependent types aren't possible.");
435
436  case Type::Builtin: {
437    switch (cast<BuiltinType>(Ty)->getKind()) {
438    case BuiltinType::Void:
439    case BuiltinType::ObjCId:
440    case BuiltinType::ObjCClass:
441    case BuiltinType::ObjCSel:
442      // LLVM void type can only be used as the result of a function call.  Just
443      // map to the same as char.
444      ResultType = llvm::Type::getInt8Ty(getLLVMContext());
445      break;
446
447    case BuiltinType::Bool:
448      // Note that we always return bool as i1 for use as a scalar type.
449      ResultType = llvm::Type::getInt1Ty(getLLVMContext());
450      break;
451
452    case BuiltinType::Char_S:
453    case BuiltinType::Char_U:
454    case BuiltinType::SChar:
455    case BuiltinType::UChar:
456    case BuiltinType::Short:
457    case BuiltinType::UShort:
458    case BuiltinType::Int:
459    case BuiltinType::UInt:
460    case BuiltinType::Long:
461    case BuiltinType::ULong:
462    case BuiltinType::LongLong:
463    case BuiltinType::ULongLong:
464    case BuiltinType::WChar_S:
465    case BuiltinType::WChar_U:
466    case BuiltinType::Char8:
467    case BuiltinType::Char16:
468    case BuiltinType::Char32:
469    case BuiltinType::ShortAccum:
470    case BuiltinType::Accum:
471    case BuiltinType::LongAccum:
472    case BuiltinType::UShortAccum:
473    case BuiltinType::UAccum:
474    case BuiltinType::ULongAccum:
475    case BuiltinType::ShortFract:
476    case BuiltinType::Fract:
477    case BuiltinType::LongFract:
478    case BuiltinType::UShortFract:
479    case BuiltinType::UFract:
480    case BuiltinType::ULongFract:
481    case BuiltinType::SatShortAccum:
482    case BuiltinType::SatAccum:
483    case BuiltinType::SatLongAccum:
484    case BuiltinType::SatUShortAccum:
485    case BuiltinType::SatUAccum:
486    case BuiltinType::SatULongAccum:
487    case BuiltinType::SatShortFract:
488    case BuiltinType::SatFract:
489    case BuiltinType::SatLongFract:
490    case BuiltinType::SatUShortFract:
491    case BuiltinType::SatUFract:
492    case BuiltinType::SatULongFract:
493      ResultType = llvm::IntegerType::get(getLLVMContext(),
494                                 static_cast<unsigned>(Context.getTypeSize(T)));
495      break;
496
497    case BuiltinType::Float16:
498      ResultType =
499          getTypeForFormat(getLLVMContext(), Context.getFloatTypeSemantics(T),
500                           /* UseNativeHalf = */ true);
501      break;
502
503    case BuiltinType::Half:
504      // Half FP can either be storage-only (lowered to i16) or native.
505      ResultType = getTypeForFormat(
506          getLLVMContext(), Context.getFloatTypeSemantics(T),
507          Context.getLangOpts().NativeHalfType ||
508              !Context.getTargetInfo().useFP16ConversionIntrinsics());
509      break;
510    case BuiltinType::BFloat16:
511    case BuiltinType::Float:
512    case BuiltinType::Double:
513    case BuiltinType::LongDouble:
514    case BuiltinType::Float128:
515      ResultType = getTypeForFormat(getLLVMContext(),
516                                    Context.getFloatTypeSemantics(T),
517                                    /* UseNativeHalf = */ false);
518      break;
519
520    case BuiltinType::NullPtr:
521      // Model std::nullptr_t as i8*
522      ResultType = llvm::Type::getInt8PtrTy(getLLVMContext());
523      break;
524
525    case BuiltinType::UInt128:
526    case BuiltinType::Int128:
527      ResultType = llvm::IntegerType::get(getLLVMContext(), 128);
528      break;
529
530#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
531    case BuiltinType::Id:
532#include "clang/Basic/OpenCLImageTypes.def"
533#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
534    case BuiltinType::Id:
535#include "clang/Basic/OpenCLExtensionTypes.def"
536    case BuiltinType::OCLSampler:
537    case BuiltinType::OCLEvent:
538    case BuiltinType::OCLClkEvent:
539    case BuiltinType::OCLQueue:
540    case BuiltinType::OCLReserveID:
541      ResultType = CGM.getOpenCLRuntime().convertOpenCLSpecificType(Ty);
542      break;
543    case BuiltinType::SveInt8:
544    case BuiltinType::SveUint8:
545    case BuiltinType::SveInt8x2:
546    case BuiltinType::SveUint8x2:
547    case BuiltinType::SveInt8x3:
548    case BuiltinType::SveUint8x3:
549    case BuiltinType::SveInt8x4:
550    case BuiltinType::SveUint8x4:
551    case BuiltinType::SveInt16:
552    case BuiltinType::SveUint16:
553    case BuiltinType::SveInt16x2:
554    case BuiltinType::SveUint16x2:
555    case BuiltinType::SveInt16x3:
556    case BuiltinType::SveUint16x3:
557    case BuiltinType::SveInt16x4:
558    case BuiltinType::SveUint16x4:
559    case BuiltinType::SveInt32:
560    case BuiltinType::SveUint32:
561    case BuiltinType::SveInt32x2:
562    case BuiltinType::SveUint32x2:
563    case BuiltinType::SveInt32x3:
564    case BuiltinType::SveUint32x3:
565    case BuiltinType::SveInt32x4:
566    case BuiltinType::SveUint32x4:
567    case BuiltinType::SveInt64:
568    case BuiltinType::SveUint64:
569    case BuiltinType::SveInt64x2:
570    case BuiltinType::SveUint64x2:
571    case BuiltinType::SveInt64x3:
572    case BuiltinType::SveUint64x3:
573    case BuiltinType::SveInt64x4:
574    case BuiltinType::SveUint64x4:
575    case BuiltinType::SveBool:
576    case BuiltinType::SveFloat16:
577    case BuiltinType::SveFloat16x2:
578    case BuiltinType::SveFloat16x3:
579    case BuiltinType::SveFloat16x4:
580    case BuiltinType::SveFloat32:
581    case BuiltinType::SveFloat32x2:
582    case BuiltinType::SveFloat32x3:
583    case BuiltinType::SveFloat32x4:
584    case BuiltinType::SveFloat64:
585    case BuiltinType::SveFloat64x2:
586    case BuiltinType::SveFloat64x3:
587    case BuiltinType::SveFloat64x4:
588    case BuiltinType::SveBFloat16:
589    case BuiltinType::SveBFloat16x2:
590    case BuiltinType::SveBFloat16x3:
591    case BuiltinType::SveBFloat16x4: {
592      ASTContext::BuiltinVectorTypeInfo Info =
593          Context.getBuiltinVectorTypeInfo(cast<BuiltinType>(Ty));
594      return llvm::ScalableVectorType::get(ConvertType(Info.ElementType),
595                                           Info.EC.getKnownMinValue() *
596                                               Info.NumVectors);
597    }
598#define PPC_VECTOR_TYPE(Name, Id, Size) \
599    case BuiltinType::Id: \
600      ResultType = \
601        llvm::FixedVectorType::get(ConvertType(Context.BoolTy), Size); \
602      break;
603#include "clang/Basic/PPCTypes.def"
604#define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
605#include "clang/Basic/RISCVVTypes.def"
606    {
607      ASTContext::BuiltinVectorTypeInfo Info =
608          Context.getBuiltinVectorTypeInfo(cast<BuiltinType>(Ty));
609      return llvm::ScalableVectorType::get(ConvertType(Info.ElementType),
610                                           Info.EC.getKnownMinValue() *
611                                           Info.NumVectors);
612    }
613   case BuiltinType::Dependent:
614#define BUILTIN_TYPE(Id, SingletonId)
615#define PLACEHOLDER_TYPE(Id, SingletonId) \
616    case BuiltinType::Id:
617#include "clang/AST/BuiltinTypes.def"
618      llvm_unreachable("Unexpected placeholder builtin type!");
619    }
620    break;
621  }
622  case Type::Auto:
623  case Type::DeducedTemplateSpecialization:
624    llvm_unreachable("Unexpected undeduced type!");
625  case Type::Complex: {
626    llvm::Type *EltTy = ConvertType(cast<ComplexType>(Ty)->getElementType());
627    ResultType = llvm::StructType::get(EltTy, EltTy);
628    break;
629  }
630  case Type::LValueReference:
631  case Type::RValueReference: {
632    const ReferenceType *RTy = cast<ReferenceType>(Ty);
633    QualType ETy = RTy->getPointeeType();
634    llvm::Type *PointeeType = ConvertTypeForMem(ETy);
635    unsigned AS = Context.getTargetAddressSpace(ETy);
636    ResultType = llvm::PointerType::get(PointeeType, AS);
637    break;
638  }
639  case Type::Pointer: {
640    const PointerType *PTy = cast<PointerType>(Ty);
641    QualType ETy = PTy->getPointeeType();
642    llvm::Type *PointeeType = ConvertTypeForMem(ETy);
643    if (PointeeType->isVoidTy())
644      PointeeType = llvm::Type::getInt8Ty(getLLVMContext());
645
646    unsigned AS = PointeeType->isFunctionTy()
647                      ? getDataLayout().getProgramAddressSpace()
648                      : Context.getTargetAddressSpace(ETy);
649
650    ResultType = llvm::PointerType::get(PointeeType, AS);
651    break;
652  }
653
654  case Type::VariableArray: {
655    const VariableArrayType *A = cast<VariableArrayType>(Ty);
656    assert(A->getIndexTypeCVRQualifiers() == 0 &&
657           "FIXME: We only handle trivial array types so far!");
658    // VLAs resolve to the innermost element type; this matches
659    // the return of alloca, and there isn't any obviously better choice.
660    ResultType = ConvertTypeForMem(A->getElementType());
661    break;
662  }
663  case Type::IncompleteArray: {
664    const IncompleteArrayType *A = cast<IncompleteArrayType>(Ty);
665    assert(A->getIndexTypeCVRQualifiers() == 0 &&
666           "FIXME: We only handle trivial array types so far!");
667    // int X[] -> [0 x int], unless the element type is not sized.  If it is
668    // unsized (e.g. an incomplete struct) just use [0 x i8].
669    ResultType = ConvertTypeForMem(A->getElementType());
670    if (!ResultType->isSized()) {
671      SkippedLayout = true;
672      ResultType = llvm::Type::getInt8Ty(getLLVMContext());
673    }
674    ResultType = llvm::ArrayType::get(ResultType, 0);
675    break;
676  }
677  case Type::ConstantArray: {
678    const ConstantArrayType *A = cast<ConstantArrayType>(Ty);
679    llvm::Type *EltTy = ConvertTypeForMem(A->getElementType());
680
681    // Lower arrays of undefined struct type to arrays of i8 just to have a
682    // concrete type.
683    if (!EltTy->isSized()) {
684      SkippedLayout = true;
685      EltTy = llvm::Type::getInt8Ty(getLLVMContext());
686    }
687
688    ResultType = llvm::ArrayType::get(EltTy, A->getSize().getZExtValue());
689    break;
690  }
691  case Type::ExtVector:
692  case Type::Vector: {
693    const VectorType *VT = cast<VectorType>(Ty);
694    ResultType = llvm::FixedVectorType::get(ConvertType(VT->getElementType()),
695                                            VT->getNumElements());
696    break;
697  }
698  case Type::ConstantMatrix: {
699    const ConstantMatrixType *MT = cast<ConstantMatrixType>(Ty);
700    ResultType =
701        llvm::FixedVectorType::get(ConvertType(MT->getElementType()),
702                                   MT->getNumRows() * MT->getNumColumns());
703    break;
704  }
705  case Type::FunctionNoProto:
706  case Type::FunctionProto:
707    ResultType = ConvertFunctionTypeInternal(T);
708    break;
709  case Type::ObjCObject:
710    ResultType = ConvertType(cast<ObjCObjectType>(Ty)->getBaseType());
711    break;
712
713  case Type::ObjCInterface: {
714    // Objective-C interfaces are always opaque (outside of the
715    // runtime, which can do whatever it likes); we never refine
716    // these.
717    llvm::Type *&T = InterfaceTypes[cast<ObjCInterfaceType>(Ty)];
718    if (!T)
719      T = llvm::StructType::create(getLLVMContext());
720    ResultType = T;
721    break;
722  }
723
724  case Type::ObjCObjectPointer: {
725    // Protocol qualifications do not influence the LLVM type, we just return a
726    // pointer to the underlying interface type. We don't need to worry about
727    // recursive conversion.
728    llvm::Type *T =
729      ConvertTypeForMem(cast<ObjCObjectPointerType>(Ty)->getPointeeType());
730    ResultType = T->getPointerTo();
731    break;
732  }
733
734  case Type::Enum: {
735    const EnumDecl *ED = cast<EnumType>(Ty)->getDecl();
736    if (ED->isCompleteDefinition() || ED->isFixed())
737      return ConvertType(ED->getIntegerType());
738    // Return a placeholder 'i32' type.  This can be changed later when the
739    // type is defined (see UpdateCompletedType), but is likely to be the
740    // "right" answer.
741    ResultType = llvm::Type::getInt32Ty(getLLVMContext());
742    break;
743  }
744
745  case Type::BlockPointer: {
746    const QualType FTy = cast<BlockPointerType>(Ty)->getPointeeType();
747    llvm::Type *PointeeType = CGM.getLangOpts().OpenCL
748                                  ? CGM.getGenericBlockLiteralType()
749                                  : ConvertTypeForMem(FTy);
750    unsigned AS = Context.getTargetAddressSpace(FTy);
751    ResultType = llvm::PointerType::get(PointeeType, AS);
752    break;
753  }
754
755  case Type::MemberPointer: {
756    auto *MPTy = cast<MemberPointerType>(Ty);
757    if (!getCXXABI().isMemberPointerConvertible(MPTy)) {
758      RecordsWithOpaqueMemberPointers.insert(MPTy->getClass());
759      ResultType = llvm::StructType::create(getLLVMContext());
760    } else {
761      ResultType = getCXXABI().ConvertMemberPointerType(MPTy);
762    }
763    break;
764  }
765
766  case Type::Atomic: {
767    QualType valueType = cast<AtomicType>(Ty)->getValueType();
768    ResultType = ConvertTypeForMem(valueType);
769
770    // Pad out to the inflated size if necessary.
771    uint64_t valueSize = Context.getTypeSize(valueType);
772    uint64_t atomicSize = Context.getTypeSize(Ty);
773    if (valueSize != atomicSize) {
774      assert(valueSize < atomicSize);
775      llvm::Type *elts[] = {
776        ResultType,
777        llvm::ArrayType::get(CGM.Int8Ty, (atomicSize - valueSize) / 8)
778      };
779      ResultType = llvm::StructType::get(getLLVMContext(),
780                                         llvm::makeArrayRef(elts));
781    }
782    break;
783  }
784  case Type::Pipe: {
785    ResultType = CGM.getOpenCLRuntime().getPipeType(cast<PipeType>(Ty));
786    break;
787  }
788  case Type::ExtInt: {
789    const auto &EIT = cast<ExtIntType>(Ty);
790    ResultType = llvm::Type::getIntNTy(getLLVMContext(), EIT->getNumBits());
791    break;
792  }
793  }
794
795  assert(ResultType && "Didn't convert a type?");
796
797  TypeCache[Ty] = ResultType;
798  return ResultType;
799}
800
801bool CodeGenModule::isPaddedAtomicType(QualType type) {
802  return isPaddedAtomicType(type->castAs<AtomicType>());
803}
804
805bool CodeGenModule::isPaddedAtomicType(const AtomicType *type) {
806  return Context.getTypeSize(type) != Context.getTypeSize(type->getValueType());
807}
808
809/// ConvertRecordDeclType - Lay out a tagged decl type like struct or union.
810llvm::StructType *CodeGenTypes::ConvertRecordDeclType(const RecordDecl *RD) {
811  // TagDecl's are not necessarily unique, instead use the (clang)
812  // type connected to the decl.
813  const Type *Key = Context.getTagDeclType(RD).getTypePtr();
814
815  llvm::StructType *&Entry = RecordDeclTypes[Key];
816
817  // If we don't have a StructType at all yet, create the forward declaration.
818  if (!Entry) {
819    Entry = llvm::StructType::create(getLLVMContext());
820    addRecordTypeName(RD, Entry, "");
821  }
822  llvm::StructType *Ty = Entry;
823
824  // If this is still a forward declaration, or the LLVM type is already
825  // complete, there's nothing more to do.
826  RD = RD->getDefinition();
827  if (!RD || !RD->isCompleteDefinition() || !Ty->isOpaque())
828    return Ty;
829
830  // If converting this type would cause us to infinitely loop, don't do it!
831  if (!isSafeToConvert(RD, *this)) {
832    DeferredRecords.push_back(RD);
833    return Ty;
834  }
835
836  // Okay, this is a definition of a type.  Compile the implementation now.
837  bool InsertResult = RecordsBeingLaidOut.insert(Key).second;
838  (void)InsertResult;
839  assert(InsertResult && "Recursively compiling a struct?");
840
841  // Force conversion of non-virtual base classes recursively.
842  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
843    for (const auto &I : CRD->bases()) {
844      if (I.isVirtual()) continue;
845      ConvertRecordDeclType(I.getType()->castAs<RecordType>()->getDecl());
846    }
847  }
848
849  // Layout fields.
850  std::unique_ptr<CGRecordLayout> Layout = ComputeRecordLayout(RD, Ty);
851  CGRecordLayouts[Key] = std::move(Layout);
852
853  // We're done laying out this struct.
854  bool EraseResult = RecordsBeingLaidOut.erase(Key); (void)EraseResult;
855  assert(EraseResult && "struct not in RecordsBeingLaidOut set?");
856
857  // If this struct blocked a FunctionType conversion, then recompute whatever
858  // was derived from that.
859  // FIXME: This is hugely overconservative.
860  if (SkippedLayout)
861    TypeCache.clear();
862
863  // If we're done converting the outer-most record, then convert any deferred
864  // structs as well.
865  if (RecordsBeingLaidOut.empty())
866    while (!DeferredRecords.empty())
867      ConvertRecordDeclType(DeferredRecords.pop_back_val());
868
869  return Ty;
870}
871
872/// getCGRecordLayout - Return record layout info for the given record decl.
873const CGRecordLayout &
874CodeGenTypes::getCGRecordLayout(const RecordDecl *RD) {
875  const Type *Key = Context.getTagDeclType(RD).getTypePtr();
876
877  auto I = CGRecordLayouts.find(Key);
878  if (I != CGRecordLayouts.end())
879    return *I->second;
880  // Compute the type information.
881  ConvertRecordDeclType(RD);
882
883  // Now try again.
884  I = CGRecordLayouts.find(Key);
885
886  assert(I != CGRecordLayouts.end() &&
887         "Unable to find record layout information for type");
888  return *I->second;
889}
890
891bool CodeGenTypes::isPointerZeroInitializable(QualType T) {
892  assert((T->isAnyPointerType() || T->isBlockPointerType()) && "Invalid type");
893  return isZeroInitializable(T);
894}
895
896bool CodeGenTypes::isZeroInitializable(QualType T) {
897  if (T->getAs<PointerType>())
898    return Context.getTargetNullPointerValue(T) == 0;
899
900  if (const auto *AT = Context.getAsArrayType(T)) {
901    if (isa<IncompleteArrayType>(AT))
902      return true;
903    if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
904      if (Context.getConstantArrayElementCount(CAT) == 0)
905        return true;
906    T = Context.getBaseElementType(T);
907  }
908
909  // Records are non-zero-initializable if they contain any
910  // non-zero-initializable subobjects.
911  if (const RecordType *RT = T->getAs<RecordType>()) {
912    const RecordDecl *RD = RT->getDecl();
913    return isZeroInitializable(RD);
914  }
915
916  // We have to ask the ABI about member pointers.
917  if (const MemberPointerType *MPT = T->getAs<MemberPointerType>())
918    return getCXXABI().isZeroInitializable(MPT);
919
920  // Everything else is okay.
921  return true;
922}
923
924bool CodeGenTypes::isZeroInitializable(const RecordDecl *RD) {
925  return getCGRecordLayout(RD).isZeroInitializable();
926}
927