CodeGenTypes.cpp revision 1.1.1.1
1//===--- CodeGenTypes.cpp - Type translation for LLVM CodeGen -------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This is the code that handles AST -> LLVM type lowering.
10//
11//===----------------------------------------------------------------------===//
12
13#include "CodeGenTypes.h"
14#include "CGCXXABI.h"
15#include "CGCall.h"
16#include "CGOpenCLRuntime.h"
17#include "CGRecordLayout.h"
18#include "TargetInfo.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/DeclCXX.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/Expr.h"
23#include "clang/AST/RecordLayout.h"
24#include "clang/CodeGen/CGFunctionInfo.h"
25#include "llvm/IR/DataLayout.h"
26#include "llvm/IR/DerivedTypes.h"
27#include "llvm/IR/Module.h"
28using namespace clang;
29using namespace CodeGen;
30
31CodeGenTypes::CodeGenTypes(CodeGenModule &cgm)
32  : CGM(cgm), Context(cgm.getContext()), TheModule(cgm.getModule()),
33    Target(cgm.getTarget()), TheCXXABI(cgm.getCXXABI()),
34    TheABIInfo(cgm.getTargetCodeGenInfo().getABIInfo()) {
35  SkippedLayout = false;
36}
37
38CodeGenTypes::~CodeGenTypes() {
39  llvm::DeleteContainerSeconds(CGRecordLayouts);
40
41  for (llvm::FoldingSet<CGFunctionInfo>::iterator
42       I = FunctionInfos.begin(), E = FunctionInfos.end(); I != E; )
43    delete &*I++;
44}
45
46const CodeGenOptions &CodeGenTypes::getCodeGenOpts() const {
47  return CGM.getCodeGenOpts();
48}
49
50void CodeGenTypes::addRecordTypeName(const RecordDecl *RD,
51                                     llvm::StructType *Ty,
52                                     StringRef suffix) {
53  SmallString<256> TypeName;
54  llvm::raw_svector_ostream OS(TypeName);
55  OS << RD->getKindName() << '.';
56
57  // Name the codegen type after the typedef name
58  // if there is no tag type name available
59  if (RD->getIdentifier()) {
60    // FIXME: We should not have to check for a null decl context here.
61    // Right now we do it because the implicit Obj-C decls don't have one.
62    if (RD->getDeclContext())
63      RD->printQualifiedName(OS);
64    else
65      RD->printName(OS);
66  } else if (const TypedefNameDecl *TDD = RD->getTypedefNameForAnonDecl()) {
67    // FIXME: We should not have to check for a null decl context here.
68    // Right now we do it because the implicit Obj-C decls don't have one.
69    if (TDD->getDeclContext())
70      TDD->printQualifiedName(OS);
71    else
72      TDD->printName(OS);
73  } else
74    OS << "anon";
75
76  if (!suffix.empty())
77    OS << suffix;
78
79  Ty->setName(OS.str());
80}
81
82/// ConvertTypeForMem - Convert type T into a llvm::Type.  This differs from
83/// ConvertType in that it is used to convert to the memory representation for
84/// a type.  For example, the scalar representation for _Bool is i1, but the
85/// memory representation is usually i8 or i32, depending on the target.
86llvm::Type *CodeGenTypes::ConvertTypeForMem(QualType T) {
87  llvm::Type *R = ConvertType(T);
88
89  // If this is a non-bool type, don't map it.
90  if (!R->isIntegerTy(1))
91    return R;
92
93  // Otherwise, return an integer of the target-specified size.
94  return llvm::IntegerType::get(getLLVMContext(),
95                                (unsigned)Context.getTypeSize(T));
96}
97
98
99/// isRecordLayoutComplete - Return true if the specified type is already
100/// completely laid out.
101bool CodeGenTypes::isRecordLayoutComplete(const Type *Ty) const {
102  llvm::DenseMap<const Type*, llvm::StructType *>::const_iterator I =
103  RecordDeclTypes.find(Ty);
104  return I != RecordDeclTypes.end() && !I->second->isOpaque();
105}
106
107static bool
108isSafeToConvert(QualType T, CodeGenTypes &CGT,
109                llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked);
110
111
112/// isSafeToConvert - Return true if it is safe to convert the specified record
113/// decl to IR and lay it out, false if doing so would cause us to get into a
114/// recursive compilation mess.
115static bool
116isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT,
117                llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) {
118  // If we have already checked this type (maybe the same type is used by-value
119  // multiple times in multiple structure fields, don't check again.
120  if (!AlreadyChecked.insert(RD).second)
121    return true;
122
123  const Type *Key = CGT.getContext().getTagDeclType(RD).getTypePtr();
124
125  // If this type is already laid out, converting it is a noop.
126  if (CGT.isRecordLayoutComplete(Key)) return true;
127
128  // If this type is currently being laid out, we can't recursively compile it.
129  if (CGT.isRecordBeingLaidOut(Key))
130    return false;
131
132  // If this type would require laying out bases that are currently being laid
133  // out, don't do it.  This includes virtual base classes which get laid out
134  // when a class is translated, even though they aren't embedded by-value into
135  // the class.
136  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
137    for (const auto &I : CRD->bases())
138      if (!isSafeToConvert(I.getType()->castAs<RecordType>()->getDecl(), CGT,
139                           AlreadyChecked))
140        return false;
141  }
142
143  // If this type would require laying out members that are currently being laid
144  // out, don't do it.
145  for (const auto *I : RD->fields())
146    if (!isSafeToConvert(I->getType(), CGT, AlreadyChecked))
147      return false;
148
149  // If there are no problems, lets do it.
150  return true;
151}
152
153/// isSafeToConvert - Return true if it is safe to convert this field type,
154/// which requires the structure elements contained by-value to all be
155/// recursively safe to convert.
156static bool
157isSafeToConvert(QualType T, CodeGenTypes &CGT,
158                llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) {
159  // Strip off atomic type sugar.
160  if (const auto *AT = T->getAs<AtomicType>())
161    T = AT->getValueType();
162
163  // If this is a record, check it.
164  if (const auto *RT = T->getAs<RecordType>())
165    return isSafeToConvert(RT->getDecl(), CGT, AlreadyChecked);
166
167  // If this is an array, check the elements, which are embedded inline.
168  if (const auto *AT = CGT.getContext().getAsArrayType(T))
169    return isSafeToConvert(AT->getElementType(), CGT, AlreadyChecked);
170
171  // Otherwise, there is no concern about transforming this.  We only care about
172  // things that are contained by-value in a structure that can have another
173  // structure as a member.
174  return true;
175}
176
177
178/// isSafeToConvert - Return true if it is safe to convert the specified record
179/// decl to IR and lay it out, false if doing so would cause us to get into a
180/// recursive compilation mess.
181static bool isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT) {
182  // If no structs are being laid out, we can certainly do this one.
183  if (CGT.noRecordsBeingLaidOut()) return true;
184
185  llvm::SmallPtrSet<const RecordDecl*, 16> AlreadyChecked;
186  return isSafeToConvert(RD, CGT, AlreadyChecked);
187}
188
189/// isFuncParamTypeConvertible - Return true if the specified type in a
190/// function parameter or result position can be converted to an IR type at this
191/// point.  This boils down to being whether it is complete, as well as whether
192/// we've temporarily deferred expanding the type because we're in a recursive
193/// context.
194bool CodeGenTypes::isFuncParamTypeConvertible(QualType Ty) {
195  // Some ABIs cannot have their member pointers represented in IR unless
196  // certain circumstances have been reached.
197  if (const auto *MPT = Ty->getAs<MemberPointerType>())
198    return getCXXABI().isMemberPointerConvertible(MPT);
199
200  // If this isn't a tagged type, we can convert it!
201  const TagType *TT = Ty->getAs<TagType>();
202  if (!TT) return true;
203
204  // Incomplete types cannot be converted.
205  if (TT->isIncompleteType())
206    return false;
207
208  // If this is an enum, then it is always safe to convert.
209  const RecordType *RT = dyn_cast<RecordType>(TT);
210  if (!RT) return true;
211
212  // Otherwise, we have to be careful.  If it is a struct that we're in the
213  // process of expanding, then we can't convert the function type.  That's ok
214  // though because we must be in a pointer context under the struct, so we can
215  // just convert it to a dummy type.
216  //
217  // We decide this by checking whether ConvertRecordDeclType returns us an
218  // opaque type for a struct that we know is defined.
219  return isSafeToConvert(RT->getDecl(), *this);
220}
221
222
223/// Code to verify a given function type is complete, i.e. the return type
224/// and all of the parameter types are complete.  Also check to see if we are in
225/// a RS_StructPointer context, and if so whether any struct types have been
226/// pended.  If so, we don't want to ask the ABI lowering code to handle a type
227/// that cannot be converted to an IR type.
228bool CodeGenTypes::isFuncTypeConvertible(const FunctionType *FT) {
229  if (!isFuncParamTypeConvertible(FT->getReturnType()))
230    return false;
231
232  if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT))
233    for (unsigned i = 0, e = FPT->getNumParams(); i != e; i++)
234      if (!isFuncParamTypeConvertible(FPT->getParamType(i)))
235        return false;
236
237  return true;
238}
239
240/// UpdateCompletedType - When we find the full definition for a TagDecl,
241/// replace the 'opaque' type we previously made for it if applicable.
242void CodeGenTypes::UpdateCompletedType(const TagDecl *TD) {
243  // If this is an enum being completed, then we flush all non-struct types from
244  // the cache.  This allows function types and other things that may be derived
245  // from the enum to be recomputed.
246  if (const EnumDecl *ED = dyn_cast<EnumDecl>(TD)) {
247    // Only flush the cache if we've actually already converted this type.
248    if (TypeCache.count(ED->getTypeForDecl())) {
249      // Okay, we formed some types based on this.  We speculated that the enum
250      // would be lowered to i32, so we only need to flush the cache if this
251      // didn't happen.
252      if (!ConvertType(ED->getIntegerType())->isIntegerTy(32))
253        TypeCache.clear();
254    }
255    // If necessary, provide the full definition of a type only used with a
256    // declaration so far.
257    if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
258      DI->completeType(ED);
259    return;
260  }
261
262  // If we completed a RecordDecl that we previously used and converted to an
263  // anonymous type, then go ahead and complete it now.
264  const RecordDecl *RD = cast<RecordDecl>(TD);
265  if (RD->isDependentType()) return;
266
267  // Only complete it if we converted it already.  If we haven't converted it
268  // yet, we'll just do it lazily.
269  if (RecordDeclTypes.count(Context.getTagDeclType(RD).getTypePtr()))
270    ConvertRecordDeclType(RD);
271
272  // If necessary, provide the full definition of a type only used with a
273  // declaration so far.
274  if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
275    DI->completeType(RD);
276}
277
278void CodeGenTypes::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
279  QualType T = Context.getRecordType(RD);
280  T = Context.getCanonicalType(T);
281
282  const Type *Ty = T.getTypePtr();
283  if (RecordsWithOpaqueMemberPointers.count(Ty)) {
284    TypeCache.clear();
285    RecordsWithOpaqueMemberPointers.clear();
286  }
287}
288
289static llvm::Type *getTypeForFormat(llvm::LLVMContext &VMContext,
290                                    const llvm::fltSemantics &format,
291                                    bool UseNativeHalf = false) {
292  if (&format == &llvm::APFloat::IEEEhalf()) {
293    if (UseNativeHalf)
294      return llvm::Type::getHalfTy(VMContext);
295    else
296      return llvm::Type::getInt16Ty(VMContext);
297  }
298  if (&format == &llvm::APFloat::IEEEsingle())
299    return llvm::Type::getFloatTy(VMContext);
300  if (&format == &llvm::APFloat::IEEEdouble())
301    return llvm::Type::getDoubleTy(VMContext);
302  if (&format == &llvm::APFloat::IEEEquad())
303    return llvm::Type::getFP128Ty(VMContext);
304  if (&format == &llvm::APFloat::PPCDoubleDouble())
305    return llvm::Type::getPPC_FP128Ty(VMContext);
306  if (&format == &llvm::APFloat::x87DoubleExtended())
307    return llvm::Type::getX86_FP80Ty(VMContext);
308  llvm_unreachable("Unknown float format!");
309}
310
311llvm::Type *CodeGenTypes::ConvertFunctionTypeInternal(QualType QFT) {
312  assert(QFT.isCanonical());
313  const Type *Ty = QFT.getTypePtr();
314  const FunctionType *FT = cast<FunctionType>(QFT.getTypePtr());
315  // First, check whether we can build the full function type.  If the
316  // function type depends on an incomplete type (e.g. a struct or enum), we
317  // cannot lower the function type.
318  if (!isFuncTypeConvertible(FT)) {
319    // This function's type depends on an incomplete tag type.
320
321    // Force conversion of all the relevant record types, to make sure
322    // we re-convert the FunctionType when appropriate.
323    if (const RecordType *RT = FT->getReturnType()->getAs<RecordType>())
324      ConvertRecordDeclType(RT->getDecl());
325    if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT))
326      for (unsigned i = 0, e = FPT->getNumParams(); i != e; i++)
327        if (const RecordType *RT = FPT->getParamType(i)->getAs<RecordType>())
328          ConvertRecordDeclType(RT->getDecl());
329
330    SkippedLayout = true;
331
332    // Return a placeholder type.
333    return llvm::StructType::get(getLLVMContext());
334  }
335
336  // While we're converting the parameter types for a function, we don't want
337  // to recursively convert any pointed-to structs.  Converting directly-used
338  // structs is ok though.
339  if (!RecordsBeingLaidOut.insert(Ty).second) {
340    SkippedLayout = true;
341    return llvm::StructType::get(getLLVMContext());
342  }
343
344  // The function type can be built; call the appropriate routines to
345  // build it.
346  const CGFunctionInfo *FI;
347  if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
348    FI = &arrangeFreeFunctionType(
349        CanQual<FunctionProtoType>::CreateUnsafe(QualType(FPT, 0)));
350  } else {
351    const FunctionNoProtoType *FNPT = cast<FunctionNoProtoType>(FT);
352    FI = &arrangeFreeFunctionType(
353        CanQual<FunctionNoProtoType>::CreateUnsafe(QualType(FNPT, 0)));
354  }
355
356  llvm::Type *ResultType = nullptr;
357  // If there is something higher level prodding our CGFunctionInfo, then
358  // don't recurse into it again.
359  if (FunctionsBeingProcessed.count(FI)) {
360
361    ResultType = llvm::StructType::get(getLLVMContext());
362    SkippedLayout = true;
363  } else {
364
365    // Otherwise, we're good to go, go ahead and convert it.
366    ResultType = GetFunctionType(*FI);
367  }
368
369  RecordsBeingLaidOut.erase(Ty);
370
371  if (SkippedLayout)
372    TypeCache.clear();
373
374  if (RecordsBeingLaidOut.empty())
375    while (!DeferredRecords.empty())
376      ConvertRecordDeclType(DeferredRecords.pop_back_val());
377  return ResultType;
378}
379
380/// ConvertType - Convert the specified type to its LLVM form.
381llvm::Type *CodeGenTypes::ConvertType(QualType T) {
382  T = Context.getCanonicalType(T);
383
384  const Type *Ty = T.getTypePtr();
385
386  // RecordTypes are cached and processed specially.
387  if (const RecordType *RT = dyn_cast<RecordType>(Ty))
388    return ConvertRecordDeclType(RT->getDecl());
389
390  // See if type is already cached.
391  llvm::DenseMap<const Type *, llvm::Type *>::iterator TCI = TypeCache.find(Ty);
392  // If type is found in map then use it. Otherwise, convert type T.
393  if (TCI != TypeCache.end())
394    return TCI->second;
395
396  // If we don't have it in the cache, convert it now.
397  llvm::Type *ResultType = nullptr;
398  switch (Ty->getTypeClass()) {
399  case Type::Record: // Handled above.
400#define TYPE(Class, Base)
401#define ABSTRACT_TYPE(Class, Base)
402#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
403#define DEPENDENT_TYPE(Class, Base) case Type::Class:
404#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
405#include "clang/AST/TypeNodes.inc"
406    llvm_unreachable("Non-canonical or dependent types aren't possible.");
407
408  case Type::Builtin: {
409    switch (cast<BuiltinType>(Ty)->getKind()) {
410    case BuiltinType::Void:
411    case BuiltinType::ObjCId:
412    case BuiltinType::ObjCClass:
413    case BuiltinType::ObjCSel:
414      // LLVM void type can only be used as the result of a function call.  Just
415      // map to the same as char.
416      ResultType = llvm::Type::getInt8Ty(getLLVMContext());
417      break;
418
419    case BuiltinType::Bool:
420      // Note that we always return bool as i1 for use as a scalar type.
421      ResultType = llvm::Type::getInt1Ty(getLLVMContext());
422      break;
423
424    case BuiltinType::Char_S:
425    case BuiltinType::Char_U:
426    case BuiltinType::SChar:
427    case BuiltinType::UChar:
428    case BuiltinType::Short:
429    case BuiltinType::UShort:
430    case BuiltinType::Int:
431    case BuiltinType::UInt:
432    case BuiltinType::Long:
433    case BuiltinType::ULong:
434    case BuiltinType::LongLong:
435    case BuiltinType::ULongLong:
436    case BuiltinType::WChar_S:
437    case BuiltinType::WChar_U:
438    case BuiltinType::Char8:
439    case BuiltinType::Char16:
440    case BuiltinType::Char32:
441    case BuiltinType::ShortAccum:
442    case BuiltinType::Accum:
443    case BuiltinType::LongAccum:
444    case BuiltinType::UShortAccum:
445    case BuiltinType::UAccum:
446    case BuiltinType::ULongAccum:
447    case BuiltinType::ShortFract:
448    case BuiltinType::Fract:
449    case BuiltinType::LongFract:
450    case BuiltinType::UShortFract:
451    case BuiltinType::UFract:
452    case BuiltinType::ULongFract:
453    case BuiltinType::SatShortAccum:
454    case BuiltinType::SatAccum:
455    case BuiltinType::SatLongAccum:
456    case BuiltinType::SatUShortAccum:
457    case BuiltinType::SatUAccum:
458    case BuiltinType::SatULongAccum:
459    case BuiltinType::SatShortFract:
460    case BuiltinType::SatFract:
461    case BuiltinType::SatLongFract:
462    case BuiltinType::SatUShortFract:
463    case BuiltinType::SatUFract:
464    case BuiltinType::SatULongFract:
465      ResultType = llvm::IntegerType::get(getLLVMContext(),
466                                 static_cast<unsigned>(Context.getTypeSize(T)));
467      break;
468
469    case BuiltinType::Float16:
470      ResultType =
471          getTypeForFormat(getLLVMContext(), Context.getFloatTypeSemantics(T),
472                           /* UseNativeHalf = */ true);
473      break;
474
475    case BuiltinType::Half:
476      // Half FP can either be storage-only (lowered to i16) or native.
477      ResultType = getTypeForFormat(
478          getLLVMContext(), Context.getFloatTypeSemantics(T),
479          Context.getLangOpts().NativeHalfType ||
480              !Context.getTargetInfo().useFP16ConversionIntrinsics());
481      break;
482    case BuiltinType::Float:
483    case BuiltinType::Double:
484    case BuiltinType::LongDouble:
485    case BuiltinType::Float128:
486      ResultType = getTypeForFormat(getLLVMContext(),
487                                    Context.getFloatTypeSemantics(T),
488                                    /* UseNativeHalf = */ false);
489      break;
490
491    case BuiltinType::NullPtr:
492      // Model std::nullptr_t as i8*
493      ResultType = llvm::Type::getInt8PtrTy(getLLVMContext());
494      break;
495
496    case BuiltinType::UInt128:
497    case BuiltinType::Int128:
498      ResultType = llvm::IntegerType::get(getLLVMContext(), 128);
499      break;
500
501#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
502    case BuiltinType::Id:
503#include "clang/Basic/OpenCLImageTypes.def"
504#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
505    case BuiltinType::Id:
506#include "clang/Basic/OpenCLExtensionTypes.def"
507    case BuiltinType::OCLSampler:
508    case BuiltinType::OCLEvent:
509    case BuiltinType::OCLClkEvent:
510    case BuiltinType::OCLQueue:
511    case BuiltinType::OCLReserveID:
512      ResultType = CGM.getOpenCLRuntime().convertOpenCLSpecificType(Ty);
513      break;
514
515    // TODO: real CodeGen support for SVE types requires more infrastructure
516    // to be added first.  Report an error until then.
517#define SVE_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
518#include "clang/Basic/AArch64SVEACLETypes.def"
519    {
520      unsigned DiagID = CGM.getDiags().getCustomDiagID(
521          DiagnosticsEngine::Error,
522          "cannot yet generate code for SVE type '%0'");
523      auto *BT = cast<BuiltinType>(Ty);
524      auto Name = BT->getName(CGM.getContext().getPrintingPolicy());
525      CGM.getDiags().Report(DiagID) << Name;
526      // Return something safe.
527      ResultType = llvm::IntegerType::get(getLLVMContext(), 32);
528      break;
529    }
530
531    case BuiltinType::Dependent:
532#define BUILTIN_TYPE(Id, SingletonId)
533#define PLACEHOLDER_TYPE(Id, SingletonId) \
534    case BuiltinType::Id:
535#include "clang/AST/BuiltinTypes.def"
536      llvm_unreachable("Unexpected placeholder builtin type!");
537    }
538    break;
539  }
540  case Type::Auto:
541  case Type::DeducedTemplateSpecialization:
542    llvm_unreachable("Unexpected undeduced type!");
543  case Type::Complex: {
544    llvm::Type *EltTy = ConvertType(cast<ComplexType>(Ty)->getElementType());
545    ResultType = llvm::StructType::get(EltTy, EltTy);
546    break;
547  }
548  case Type::LValueReference:
549  case Type::RValueReference: {
550    const ReferenceType *RTy = cast<ReferenceType>(Ty);
551    QualType ETy = RTy->getPointeeType();
552    llvm::Type *PointeeType = ConvertTypeForMem(ETy);
553    unsigned AS = Context.getTargetAddressSpace(ETy);
554    ResultType = llvm::PointerType::get(PointeeType, AS);
555    break;
556  }
557  case Type::Pointer: {
558    const PointerType *PTy = cast<PointerType>(Ty);
559    QualType ETy = PTy->getPointeeType();
560    llvm::Type *PointeeType = ConvertTypeForMem(ETy);
561    if (PointeeType->isVoidTy())
562      PointeeType = llvm::Type::getInt8Ty(getLLVMContext());
563    unsigned AS = Context.getTargetAddressSpace(ETy);
564    ResultType = llvm::PointerType::get(PointeeType, AS);
565    break;
566  }
567
568  case Type::VariableArray: {
569    const VariableArrayType *A = cast<VariableArrayType>(Ty);
570    assert(A->getIndexTypeCVRQualifiers() == 0 &&
571           "FIXME: We only handle trivial array types so far!");
572    // VLAs resolve to the innermost element type; this matches
573    // the return of alloca, and there isn't any obviously better choice.
574    ResultType = ConvertTypeForMem(A->getElementType());
575    break;
576  }
577  case Type::IncompleteArray: {
578    const IncompleteArrayType *A = cast<IncompleteArrayType>(Ty);
579    assert(A->getIndexTypeCVRQualifiers() == 0 &&
580           "FIXME: We only handle trivial array types so far!");
581    // int X[] -> [0 x int], unless the element type is not sized.  If it is
582    // unsized (e.g. an incomplete struct) just use [0 x i8].
583    ResultType = ConvertTypeForMem(A->getElementType());
584    if (!ResultType->isSized()) {
585      SkippedLayout = true;
586      ResultType = llvm::Type::getInt8Ty(getLLVMContext());
587    }
588    ResultType = llvm::ArrayType::get(ResultType, 0);
589    break;
590  }
591  case Type::ConstantArray: {
592    const ConstantArrayType *A = cast<ConstantArrayType>(Ty);
593    llvm::Type *EltTy = ConvertTypeForMem(A->getElementType());
594
595    // Lower arrays of undefined struct type to arrays of i8 just to have a
596    // concrete type.
597    if (!EltTy->isSized()) {
598      SkippedLayout = true;
599      EltTy = llvm::Type::getInt8Ty(getLLVMContext());
600    }
601
602    ResultType = llvm::ArrayType::get(EltTy, A->getSize().getZExtValue());
603    break;
604  }
605  case Type::ExtVector:
606  case Type::Vector: {
607    const VectorType *VT = cast<VectorType>(Ty);
608    ResultType = llvm::VectorType::get(ConvertType(VT->getElementType()),
609                                       VT->getNumElements());
610    break;
611  }
612  case Type::FunctionNoProto:
613  case Type::FunctionProto:
614    ResultType = ConvertFunctionTypeInternal(T);
615    break;
616  case Type::ObjCObject:
617    ResultType = ConvertType(cast<ObjCObjectType>(Ty)->getBaseType());
618    break;
619
620  case Type::ObjCInterface: {
621    // Objective-C interfaces are always opaque (outside of the
622    // runtime, which can do whatever it likes); we never refine
623    // these.
624    llvm::Type *&T = InterfaceTypes[cast<ObjCInterfaceType>(Ty)];
625    if (!T)
626      T = llvm::StructType::create(getLLVMContext());
627    ResultType = T;
628    break;
629  }
630
631  case Type::ObjCObjectPointer: {
632    // Protocol qualifications do not influence the LLVM type, we just return a
633    // pointer to the underlying interface type. We don't need to worry about
634    // recursive conversion.
635    llvm::Type *T =
636      ConvertTypeForMem(cast<ObjCObjectPointerType>(Ty)->getPointeeType());
637    ResultType = T->getPointerTo();
638    break;
639  }
640
641  case Type::Enum: {
642    const EnumDecl *ED = cast<EnumType>(Ty)->getDecl();
643    if (ED->isCompleteDefinition() || ED->isFixed())
644      return ConvertType(ED->getIntegerType());
645    // Return a placeholder 'i32' type.  This can be changed later when the
646    // type is defined (see UpdateCompletedType), but is likely to be the
647    // "right" answer.
648    ResultType = llvm::Type::getInt32Ty(getLLVMContext());
649    break;
650  }
651
652  case Type::BlockPointer: {
653    const QualType FTy = cast<BlockPointerType>(Ty)->getPointeeType();
654    llvm::Type *PointeeType = CGM.getLangOpts().OpenCL
655                                  ? CGM.getGenericBlockLiteralType()
656                                  : ConvertTypeForMem(FTy);
657    unsigned AS = Context.getTargetAddressSpace(FTy);
658    ResultType = llvm::PointerType::get(PointeeType, AS);
659    break;
660  }
661
662  case Type::MemberPointer: {
663    auto *MPTy = cast<MemberPointerType>(Ty);
664    if (!getCXXABI().isMemberPointerConvertible(MPTy)) {
665      RecordsWithOpaqueMemberPointers.insert(MPTy->getClass());
666      ResultType = llvm::StructType::create(getLLVMContext());
667    } else {
668      ResultType = getCXXABI().ConvertMemberPointerType(MPTy);
669    }
670    break;
671  }
672
673  case Type::Atomic: {
674    QualType valueType = cast<AtomicType>(Ty)->getValueType();
675    ResultType = ConvertTypeForMem(valueType);
676
677    // Pad out to the inflated size if necessary.
678    uint64_t valueSize = Context.getTypeSize(valueType);
679    uint64_t atomicSize = Context.getTypeSize(Ty);
680    if (valueSize != atomicSize) {
681      assert(valueSize < atomicSize);
682      llvm::Type *elts[] = {
683        ResultType,
684        llvm::ArrayType::get(CGM.Int8Ty, (atomicSize - valueSize) / 8)
685      };
686      ResultType = llvm::StructType::get(getLLVMContext(),
687                                         llvm::makeArrayRef(elts));
688    }
689    break;
690  }
691  case Type::Pipe: {
692    ResultType = CGM.getOpenCLRuntime().getPipeType(cast<PipeType>(Ty));
693    break;
694  }
695  }
696
697  assert(ResultType && "Didn't convert a type?");
698
699  TypeCache[Ty] = ResultType;
700  return ResultType;
701}
702
703bool CodeGenModule::isPaddedAtomicType(QualType type) {
704  return isPaddedAtomicType(type->castAs<AtomicType>());
705}
706
707bool CodeGenModule::isPaddedAtomicType(const AtomicType *type) {
708  return Context.getTypeSize(type) != Context.getTypeSize(type->getValueType());
709}
710
711/// ConvertRecordDeclType - Lay out a tagged decl type like struct or union.
712llvm::StructType *CodeGenTypes::ConvertRecordDeclType(const RecordDecl *RD) {
713  // TagDecl's are not necessarily unique, instead use the (clang)
714  // type connected to the decl.
715  const Type *Key = Context.getTagDeclType(RD).getTypePtr();
716
717  llvm::StructType *&Entry = RecordDeclTypes[Key];
718
719  // If we don't have a StructType at all yet, create the forward declaration.
720  if (!Entry) {
721    Entry = llvm::StructType::create(getLLVMContext());
722    addRecordTypeName(RD, Entry, "");
723  }
724  llvm::StructType *Ty = Entry;
725
726  // If this is still a forward declaration, or the LLVM type is already
727  // complete, there's nothing more to do.
728  RD = RD->getDefinition();
729  if (!RD || !RD->isCompleteDefinition() || !Ty->isOpaque())
730    return Ty;
731
732  // If converting this type would cause us to infinitely loop, don't do it!
733  if (!isSafeToConvert(RD, *this)) {
734    DeferredRecords.push_back(RD);
735    return Ty;
736  }
737
738  // Okay, this is a definition of a type.  Compile the implementation now.
739  bool InsertResult = RecordsBeingLaidOut.insert(Key).second;
740  (void)InsertResult;
741  assert(InsertResult && "Recursively compiling a struct?");
742
743  // Force conversion of non-virtual base classes recursively.
744  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
745    for (const auto &I : CRD->bases()) {
746      if (I.isVirtual()) continue;
747      ConvertRecordDeclType(I.getType()->castAs<RecordType>()->getDecl());
748    }
749  }
750
751  // Layout fields.
752  CGRecordLayout *Layout = ComputeRecordLayout(RD, Ty);
753  CGRecordLayouts[Key] = Layout;
754
755  // We're done laying out this struct.
756  bool EraseResult = RecordsBeingLaidOut.erase(Key); (void)EraseResult;
757  assert(EraseResult && "struct not in RecordsBeingLaidOut set?");
758
759  // If this struct blocked a FunctionType conversion, then recompute whatever
760  // was derived from that.
761  // FIXME: This is hugely overconservative.
762  if (SkippedLayout)
763    TypeCache.clear();
764
765  // If we're done converting the outer-most record, then convert any deferred
766  // structs as well.
767  if (RecordsBeingLaidOut.empty())
768    while (!DeferredRecords.empty())
769      ConvertRecordDeclType(DeferredRecords.pop_back_val());
770
771  return Ty;
772}
773
774/// getCGRecordLayout - Return record layout info for the given record decl.
775const CGRecordLayout &
776CodeGenTypes::getCGRecordLayout(const RecordDecl *RD) {
777  const Type *Key = Context.getTagDeclType(RD).getTypePtr();
778
779  const CGRecordLayout *Layout = CGRecordLayouts.lookup(Key);
780  if (!Layout) {
781    // Compute the type information.
782    ConvertRecordDeclType(RD);
783
784    // Now try again.
785    Layout = CGRecordLayouts.lookup(Key);
786  }
787
788  assert(Layout && "Unable to find record layout information for type");
789  return *Layout;
790}
791
792bool CodeGenTypes::isPointerZeroInitializable(QualType T) {
793  assert((T->isAnyPointerType() || T->isBlockPointerType()) && "Invalid type");
794  return isZeroInitializable(T);
795}
796
797bool CodeGenTypes::isZeroInitializable(QualType T) {
798  if (T->getAs<PointerType>())
799    return Context.getTargetNullPointerValue(T) == 0;
800
801  if (const auto *AT = Context.getAsArrayType(T)) {
802    if (isa<IncompleteArrayType>(AT))
803      return true;
804    if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
805      if (Context.getConstantArrayElementCount(CAT) == 0)
806        return true;
807    T = Context.getBaseElementType(T);
808  }
809
810  // Records are non-zero-initializable if they contain any
811  // non-zero-initializable subobjects.
812  if (const RecordType *RT = T->getAs<RecordType>()) {
813    const RecordDecl *RD = RT->getDecl();
814    return isZeroInitializable(RD);
815  }
816
817  // We have to ask the ABI about member pointers.
818  if (const MemberPointerType *MPT = T->getAs<MemberPointerType>())
819    return getCXXABI().isZeroInitializable(MPT);
820
821  // Everything else is okay.
822  return true;
823}
824
825bool CodeGenTypes::isZeroInitializable(const RecordDecl *RD) {
826  return getCGRecordLayout(RD).isZeroInitializable();
827}
828