1//===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This contains code to emit Aggregate Expr nodes as LLVM code.
10//
11//===----------------------------------------------------------------------===//
12
13#include "CGCXXABI.h"
14#include "CGObjCRuntime.h"
15#include "CodeGenFunction.h"
16#include "CodeGenModule.h"
17#include "ConstantEmitter.h"
18#include "TargetInfo.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/Attr.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/StmtVisitor.h"
24#include "llvm/IR/Constants.h"
25#include "llvm/IR/Function.h"
26#include "llvm/IR/GlobalVariable.h"
27#include "llvm/IR/IntrinsicInst.h"
28#include "llvm/IR/Intrinsics.h"
29using namespace clang;
30using namespace CodeGen;
31
32//===----------------------------------------------------------------------===//
33//                        Aggregate Expression Emitter
34//===----------------------------------------------------------------------===//
35
36namespace  {
37class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
38  CodeGenFunction &CGF;
39  CGBuilderTy &Builder;
40  AggValueSlot Dest;
41  bool IsResultUnused;
42
43  AggValueSlot EnsureSlot(QualType T) {
44    if (!Dest.isIgnored()) return Dest;
45    return CGF.CreateAggTemp(T, "agg.tmp.ensured");
46  }
47  void EnsureDest(QualType T) {
48    if (!Dest.isIgnored()) return;
49    Dest = CGF.CreateAggTemp(T, "agg.tmp.ensured");
50  }
51
52  // Calls `Fn` with a valid return value slot, potentially creating a temporary
53  // to do so. If a temporary is created, an appropriate copy into `Dest` will
54  // be emitted, as will lifetime markers.
55  //
56  // The given function should take a ReturnValueSlot, and return an RValue that
57  // points to said slot.
58  void withReturnValueSlot(const Expr *E,
59                           llvm::function_ref<RValue(ReturnValueSlot)> Fn);
60
61public:
62  AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, bool IsResultUnused)
63    : CGF(cgf), Builder(CGF.Builder), Dest(Dest),
64    IsResultUnused(IsResultUnused) { }
65
66  //===--------------------------------------------------------------------===//
67  //                               Utilities
68  //===--------------------------------------------------------------------===//
69
70  /// EmitAggLoadOfLValue - Given an expression with aggregate type that
71  /// represents a value lvalue, this method emits the address of the lvalue,
72  /// then loads the result into DestPtr.
73  void EmitAggLoadOfLValue(const Expr *E);
74
75  enum ExprValueKind {
76    EVK_RValue,
77    EVK_NonRValue
78  };
79
80  /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
81  /// SrcIsRValue is true if source comes from an RValue.
82  void EmitFinalDestCopy(QualType type, const LValue &src,
83                         ExprValueKind SrcValueKind = EVK_NonRValue);
84  void EmitFinalDestCopy(QualType type, RValue src);
85  void EmitCopy(QualType type, const AggValueSlot &dest,
86                const AggValueSlot &src);
87
88  void EmitMoveFromReturnSlot(const Expr *E, RValue Src);
89
90  void EmitArrayInit(Address DestPtr, llvm::ArrayType *AType, QualType ArrayQTy,
91                     Expr *ExprToVisit, ArrayRef<Expr *> Args,
92                     Expr *ArrayFiller);
93
94  AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) {
95    if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T))
96      return AggValueSlot::NeedsGCBarriers;
97    return AggValueSlot::DoesNotNeedGCBarriers;
98  }
99
100  bool TypeRequiresGCollection(QualType T);
101
102  //===--------------------------------------------------------------------===//
103  //                            Visitor Methods
104  //===--------------------------------------------------------------------===//
105
106  void Visit(Expr *E) {
107    ApplyDebugLocation DL(CGF, E);
108    StmtVisitor<AggExprEmitter>::Visit(E);
109  }
110
111  void VisitStmt(Stmt *S) {
112    CGF.ErrorUnsupported(S, "aggregate expression");
113  }
114  void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
115  void VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
116    Visit(GE->getResultExpr());
117  }
118  void VisitCoawaitExpr(CoawaitExpr *E) {
119    CGF.EmitCoawaitExpr(*E, Dest, IsResultUnused);
120  }
121  void VisitCoyieldExpr(CoyieldExpr *E) {
122    CGF.EmitCoyieldExpr(*E, Dest, IsResultUnused);
123  }
124  void VisitUnaryCoawait(UnaryOperator *E) { Visit(E->getSubExpr()); }
125  void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
126  void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
127    return Visit(E->getReplacement());
128  }
129
130  void VisitConstantExpr(ConstantExpr *E) {
131    EnsureDest(E->getType());
132
133    if (llvm::Value *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E)) {
134      CGF.EmitAggregateStore(Result, Dest.getAddress(),
135                             E->getType().isVolatileQualified());
136      return;
137    }
138    return Visit(E->getSubExpr());
139  }
140
141  // l-values.
142  void VisitDeclRefExpr(DeclRefExpr *E) { EmitAggLoadOfLValue(E); }
143  void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
144  void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
145  void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
146  void VisitCompoundLiteralExpr(CompoundLiteralExpr *E);
147  void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
148    EmitAggLoadOfLValue(E);
149  }
150  void VisitPredefinedExpr(const PredefinedExpr *E) {
151    EmitAggLoadOfLValue(E);
152  }
153
154  // Operators.
155  void VisitCastExpr(CastExpr *E);
156  void VisitCallExpr(const CallExpr *E);
157  void VisitStmtExpr(const StmtExpr *E);
158  void VisitBinaryOperator(const BinaryOperator *BO);
159  void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
160  void VisitBinAssign(const BinaryOperator *E);
161  void VisitBinComma(const BinaryOperator *E);
162  void VisitBinCmp(const BinaryOperator *E);
163  void VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) {
164    Visit(E->getSemanticForm());
165  }
166
167  void VisitObjCMessageExpr(ObjCMessageExpr *E);
168  void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
169    EmitAggLoadOfLValue(E);
170  }
171
172  void VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E);
173  void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
174  void VisitChooseExpr(const ChooseExpr *CE);
175  void VisitInitListExpr(InitListExpr *E);
176  void VisitCXXParenListOrInitListExpr(Expr *ExprToVisit, ArrayRef<Expr *> Args,
177                                       FieldDecl *InitializedFieldInUnion,
178                                       Expr *ArrayFiller);
179  void VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E,
180                              llvm::Value *outerBegin = nullptr);
181  void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
182  void VisitNoInitExpr(NoInitExpr *E) { } // Do nothing.
183  void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
184    CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
185    Visit(DAE->getExpr());
186  }
187  void VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
188    CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
189    Visit(DIE->getExpr());
190  }
191  void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
192  void VisitCXXConstructExpr(const CXXConstructExpr *E);
193  void VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E);
194  void VisitLambdaExpr(LambdaExpr *E);
195  void VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E);
196  void VisitExprWithCleanups(ExprWithCleanups *E);
197  void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
198  void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
199  void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E);
200  void VisitOpaqueValueExpr(OpaqueValueExpr *E);
201
202  void VisitPseudoObjectExpr(PseudoObjectExpr *E) {
203    if (E->isGLValue()) {
204      LValue LV = CGF.EmitPseudoObjectLValue(E);
205      return EmitFinalDestCopy(E->getType(), LV);
206    }
207
208    AggValueSlot Slot = EnsureSlot(E->getType());
209    bool NeedsDestruction =
210        !Slot.isExternallyDestructed() &&
211        E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct;
212    if (NeedsDestruction)
213      Slot.setExternallyDestructed();
214    CGF.EmitPseudoObjectRValue(E, Slot);
215    if (NeedsDestruction)
216      CGF.pushDestroy(QualType::DK_nontrivial_c_struct, Slot.getAddress(),
217                      E->getType());
218  }
219
220  void VisitVAArgExpr(VAArgExpr *E);
221  void VisitCXXParenListInitExpr(CXXParenListInitExpr *E);
222  void VisitCXXParenListOrInitListExpr(Expr *ExprToVisit, ArrayRef<Expr *> Args,
223                                       Expr *ArrayFiller);
224
225  void EmitInitializationToLValue(Expr *E, LValue Address);
226  void EmitNullInitializationToLValue(LValue Address);
227  //  case Expr::ChooseExprClass:
228  void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
229  void VisitAtomicExpr(AtomicExpr *E) {
230    RValue Res = CGF.EmitAtomicExpr(E);
231    EmitFinalDestCopy(E->getType(), Res);
232  }
233};
234}  // end anonymous namespace.
235
236//===----------------------------------------------------------------------===//
237//                                Utilities
238//===----------------------------------------------------------------------===//
239
240/// EmitAggLoadOfLValue - Given an expression with aggregate type that
241/// represents a value lvalue, this method emits the address of the lvalue,
242/// then loads the result into DestPtr.
243void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
244  LValue LV = CGF.EmitLValue(E);
245
246  // If the type of the l-value is atomic, then do an atomic load.
247  if (LV.getType()->isAtomicType() || CGF.LValueIsSuitableForInlineAtomic(LV)) {
248    CGF.EmitAtomicLoad(LV, E->getExprLoc(), Dest);
249    return;
250  }
251
252  EmitFinalDestCopy(E->getType(), LV);
253}
254
255/// True if the given aggregate type requires special GC API calls.
256bool AggExprEmitter::TypeRequiresGCollection(QualType T) {
257  // Only record types have members that might require garbage collection.
258  const RecordType *RecordTy = T->getAs<RecordType>();
259  if (!RecordTy) return false;
260
261  // Don't mess with non-trivial C++ types.
262  RecordDecl *Record = RecordTy->getDecl();
263  if (isa<CXXRecordDecl>(Record) &&
264      (cast<CXXRecordDecl>(Record)->hasNonTrivialCopyConstructor() ||
265       !cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
266    return false;
267
268  // Check whether the type has an object member.
269  return Record->hasObjectMember();
270}
271
272void AggExprEmitter::withReturnValueSlot(
273    const Expr *E, llvm::function_ref<RValue(ReturnValueSlot)> EmitCall) {
274  QualType RetTy = E->getType();
275  bool RequiresDestruction =
276      !Dest.isExternallyDestructed() &&
277      RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct;
278
279  // If it makes no observable difference, save a memcpy + temporary.
280  //
281  // We need to always provide our own temporary if destruction is required.
282  // Otherwise, EmitCall will emit its own, notice that it's "unused", and end
283  // its lifetime before we have the chance to emit a proper destructor call.
284  bool UseTemp = Dest.isPotentiallyAliased() || Dest.requiresGCollection() ||
285                 (RequiresDestruction && !Dest.getAddress().isValid());
286
287  Address RetAddr = Address::invalid();
288  Address RetAllocaAddr = Address::invalid();
289
290  EHScopeStack::stable_iterator LifetimeEndBlock;
291  llvm::Value *LifetimeSizePtr = nullptr;
292  llvm::IntrinsicInst *LifetimeStartInst = nullptr;
293  if (!UseTemp) {
294    RetAddr = Dest.getAddress();
295  } else {
296    RetAddr = CGF.CreateMemTemp(RetTy, "tmp", &RetAllocaAddr);
297    llvm::TypeSize Size =
298        CGF.CGM.getDataLayout().getTypeAllocSize(CGF.ConvertTypeForMem(RetTy));
299    LifetimeSizePtr = CGF.EmitLifetimeStart(Size, RetAllocaAddr.getPointer());
300    if (LifetimeSizePtr) {
301      LifetimeStartInst =
302          cast<llvm::IntrinsicInst>(std::prev(Builder.GetInsertPoint()));
303      assert(LifetimeStartInst->getIntrinsicID() ==
304                 llvm::Intrinsic::lifetime_start &&
305             "Last insertion wasn't a lifetime.start?");
306
307      CGF.pushFullExprCleanup<CodeGenFunction::CallLifetimeEnd>(
308          NormalEHLifetimeMarker, RetAllocaAddr, LifetimeSizePtr);
309      LifetimeEndBlock = CGF.EHStack.stable_begin();
310    }
311  }
312
313  RValue Src =
314      EmitCall(ReturnValueSlot(RetAddr, Dest.isVolatile(), IsResultUnused,
315                               Dest.isExternallyDestructed()));
316
317  if (!UseTemp)
318    return;
319
320  assert(Dest.isIgnored() || Dest.getPointer() != Src.getAggregatePointer());
321  EmitFinalDestCopy(E->getType(), Src);
322
323  if (!RequiresDestruction && LifetimeStartInst) {
324    // If there's no dtor to run, the copy was the last use of our temporary.
325    // Since we're not guaranteed to be in an ExprWithCleanups, clean up
326    // eagerly.
327    CGF.DeactivateCleanupBlock(LifetimeEndBlock, LifetimeStartInst);
328    CGF.EmitLifetimeEnd(LifetimeSizePtr, RetAllocaAddr.getPointer());
329  }
330}
331
332/// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
333void AggExprEmitter::EmitFinalDestCopy(QualType type, RValue src) {
334  assert(src.isAggregate() && "value must be aggregate value!");
335  LValue srcLV = CGF.MakeAddrLValue(src.getAggregateAddress(), type);
336  EmitFinalDestCopy(type, srcLV, EVK_RValue);
337}
338
339/// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
340void AggExprEmitter::EmitFinalDestCopy(QualType type, const LValue &src,
341                                       ExprValueKind SrcValueKind) {
342  // If Dest is ignored, then we're evaluating an aggregate expression
343  // in a context that doesn't care about the result.  Note that loads
344  // from volatile l-values force the existence of a non-ignored
345  // destination.
346  if (Dest.isIgnored())
347    return;
348
349  // Copy non-trivial C structs here.
350  LValue DstLV = CGF.MakeAddrLValue(
351      Dest.getAddress(), Dest.isVolatile() ? type.withVolatile() : type);
352
353  if (SrcValueKind == EVK_RValue) {
354    if (type.isNonTrivialToPrimitiveDestructiveMove() == QualType::PCK_Struct) {
355      if (Dest.isPotentiallyAliased())
356        CGF.callCStructMoveAssignmentOperator(DstLV, src);
357      else
358        CGF.callCStructMoveConstructor(DstLV, src);
359      return;
360    }
361  } else {
362    if (type.isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) {
363      if (Dest.isPotentiallyAliased())
364        CGF.callCStructCopyAssignmentOperator(DstLV, src);
365      else
366        CGF.callCStructCopyConstructor(DstLV, src);
367      return;
368    }
369  }
370
371  AggValueSlot srcAgg = AggValueSlot::forLValue(
372      src, CGF, AggValueSlot::IsDestructed, needsGC(type),
373      AggValueSlot::IsAliased, AggValueSlot::MayOverlap);
374  EmitCopy(type, Dest, srcAgg);
375}
376
377/// Perform a copy from the source into the destination.
378///
379/// \param type - the type of the aggregate being copied; qualifiers are
380///   ignored
381void AggExprEmitter::EmitCopy(QualType type, const AggValueSlot &dest,
382                              const AggValueSlot &src) {
383  if (dest.requiresGCollection()) {
384    CharUnits sz = dest.getPreferredSize(CGF.getContext(), type);
385    llvm::Value *size = llvm::ConstantInt::get(CGF.SizeTy, sz.getQuantity());
386    CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
387                                                      dest.getAddress(),
388                                                      src.getAddress(),
389                                                      size);
390    return;
391  }
392
393  // If the result of the assignment is used, copy the LHS there also.
394  // It's volatile if either side is.  Use the minimum alignment of
395  // the two sides.
396  LValue DestLV = CGF.MakeAddrLValue(dest.getAddress(), type);
397  LValue SrcLV = CGF.MakeAddrLValue(src.getAddress(), type);
398  CGF.EmitAggregateCopy(DestLV, SrcLV, type, dest.mayOverlap(),
399                        dest.isVolatile() || src.isVolatile());
400}
401
402/// Emit the initializer for a std::initializer_list initialized with a
403/// real initializer list.
404void
405AggExprEmitter::VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E) {
406  // Emit an array containing the elements.  The array is externally destructed
407  // if the std::initializer_list object is.
408  ASTContext &Ctx = CGF.getContext();
409  LValue Array = CGF.EmitLValue(E->getSubExpr());
410  assert(Array.isSimple() && "initializer_list array not a simple lvalue");
411  Address ArrayPtr = Array.getAddress(CGF);
412
413  const ConstantArrayType *ArrayType =
414      Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
415  assert(ArrayType && "std::initializer_list constructed from non-array");
416
417  // FIXME: Perform the checks on the field types in SemaInit.
418  RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
419  RecordDecl::field_iterator Field = Record->field_begin();
420  if (Field == Record->field_end()) {
421    CGF.ErrorUnsupported(E, "weird std::initializer_list");
422    return;
423  }
424
425  // Start pointer.
426  if (!Field->getType()->isPointerType() ||
427      !Ctx.hasSameType(Field->getType()->getPointeeType(),
428                       ArrayType->getElementType())) {
429    CGF.ErrorUnsupported(E, "weird std::initializer_list");
430    return;
431  }
432
433  AggValueSlot Dest = EnsureSlot(E->getType());
434  LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
435  LValue Start = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
436  llvm::Value *Zero = llvm::ConstantInt::get(CGF.PtrDiffTy, 0);
437  llvm::Value *IdxStart[] = { Zero, Zero };
438  llvm::Value *ArrayStart = Builder.CreateInBoundsGEP(
439      ArrayPtr.getElementType(), ArrayPtr.getPointer(), IdxStart, "arraystart");
440  CGF.EmitStoreThroughLValue(RValue::get(ArrayStart), Start);
441  ++Field;
442
443  if (Field == Record->field_end()) {
444    CGF.ErrorUnsupported(E, "weird std::initializer_list");
445    return;
446  }
447
448  llvm::Value *Size = Builder.getInt(ArrayType->getSize());
449  LValue EndOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
450  if (Field->getType()->isPointerType() &&
451      Ctx.hasSameType(Field->getType()->getPointeeType(),
452                      ArrayType->getElementType())) {
453    // End pointer.
454    llvm::Value *IdxEnd[] = { Zero, Size };
455    llvm::Value *ArrayEnd = Builder.CreateInBoundsGEP(
456        ArrayPtr.getElementType(), ArrayPtr.getPointer(), IdxEnd, "arrayend");
457    CGF.EmitStoreThroughLValue(RValue::get(ArrayEnd), EndOrLength);
458  } else if (Ctx.hasSameType(Field->getType(), Ctx.getSizeType())) {
459    // Length.
460    CGF.EmitStoreThroughLValue(RValue::get(Size), EndOrLength);
461  } else {
462    CGF.ErrorUnsupported(E, "weird std::initializer_list");
463    return;
464  }
465}
466
467/// Determine if E is a trivial array filler, that is, one that is
468/// equivalent to zero-initialization.
469static bool isTrivialFiller(Expr *E) {
470  if (!E)
471    return true;
472
473  if (isa<ImplicitValueInitExpr>(E))
474    return true;
475
476  if (auto *ILE = dyn_cast<InitListExpr>(E)) {
477    if (ILE->getNumInits())
478      return false;
479    return isTrivialFiller(ILE->getArrayFiller());
480  }
481
482  if (auto *Cons = dyn_cast_or_null<CXXConstructExpr>(E))
483    return Cons->getConstructor()->isDefaultConstructor() &&
484           Cons->getConstructor()->isTrivial();
485
486  // FIXME: Are there other cases where we can avoid emitting an initializer?
487  return false;
488}
489
490/// Emit initialization of an array from an initializer list. ExprToVisit must
491/// be either an InitListEpxr a CXXParenInitListExpr.
492void AggExprEmitter::EmitArrayInit(Address DestPtr, llvm::ArrayType *AType,
493                                   QualType ArrayQTy, Expr *ExprToVisit,
494                                   ArrayRef<Expr *> Args, Expr *ArrayFiller) {
495  uint64_t NumInitElements = Args.size();
496
497  uint64_t NumArrayElements = AType->getNumElements();
498  assert(NumInitElements <= NumArrayElements);
499
500  QualType elementType =
501      CGF.getContext().getAsArrayType(ArrayQTy)->getElementType();
502
503  // DestPtr is an array*.  Construct an elementType* by drilling
504  // down a level.
505  llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
506  llvm::Value *indices[] = { zero, zero };
507  llvm::Value *begin = Builder.CreateInBoundsGEP(
508      DestPtr.getElementType(), DestPtr.getPointer(), indices,
509      "arrayinit.begin");
510
511  CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
512  CharUnits elementAlign =
513    DestPtr.getAlignment().alignmentOfArrayElement(elementSize);
514  llvm::Type *llvmElementType = CGF.ConvertTypeForMem(elementType);
515
516  // Consider initializing the array by copying from a global. For this to be
517  // more efficient than per-element initialization, the size of the elements
518  // with explicit initializers should be large enough.
519  if (NumInitElements * elementSize.getQuantity() > 16 &&
520      elementType.isTriviallyCopyableType(CGF.getContext())) {
521    CodeGen::CodeGenModule &CGM = CGF.CGM;
522    ConstantEmitter Emitter(CGF);
523    LangAS AS = ArrayQTy.getAddressSpace();
524    if (llvm::Constant *C =
525            Emitter.tryEmitForInitializer(ExprToVisit, AS, ArrayQTy)) {
526      auto GV = new llvm::GlobalVariable(
527          CGM.getModule(), C->getType(),
528          CGM.isTypeConstant(ArrayQTy, /* ExcludeCtorDtor= */ true),
529          llvm::GlobalValue::PrivateLinkage, C, "constinit",
530          /* InsertBefore= */ nullptr, llvm::GlobalVariable::NotThreadLocal,
531          CGM.getContext().getTargetAddressSpace(AS));
532      Emitter.finalize(GV);
533      CharUnits Align = CGM.getContext().getTypeAlignInChars(ArrayQTy);
534      GV->setAlignment(Align.getAsAlign());
535      Address GVAddr(GV, GV->getValueType(), Align);
536      EmitFinalDestCopy(ArrayQTy, CGF.MakeAddrLValue(GVAddr, ArrayQTy));
537      return;
538    }
539  }
540
541  // Exception safety requires us to destroy all the
542  // already-constructed members if an initializer throws.
543  // For that, we'll need an EH cleanup.
544  QualType::DestructionKind dtorKind = elementType.isDestructedType();
545  Address endOfInit = Address::invalid();
546  EHScopeStack::stable_iterator cleanup;
547  llvm::Instruction *cleanupDominator = nullptr;
548  if (CGF.needsEHCleanup(dtorKind)) {
549    // In principle we could tell the cleanup where we are more
550    // directly, but the control flow can get so varied here that it
551    // would actually be quite complex.  Therefore we go through an
552    // alloca.
553    endOfInit = CGF.CreateTempAlloca(begin->getType(), CGF.getPointerAlign(),
554                                     "arrayinit.endOfInit");
555    cleanupDominator = Builder.CreateStore(begin, endOfInit);
556    CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType,
557                                         elementAlign,
558                                         CGF.getDestroyer(dtorKind));
559    cleanup = CGF.EHStack.stable_begin();
560
561  // Otherwise, remember that we didn't need a cleanup.
562  } else {
563    dtorKind = QualType::DK_none;
564  }
565
566  llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1);
567
568  // The 'current element to initialize'.  The invariants on this
569  // variable are complicated.  Essentially, after each iteration of
570  // the loop, it points to the last initialized element, except
571  // that it points to the beginning of the array before any
572  // elements have been initialized.
573  llvm::Value *element = begin;
574
575  // Emit the explicit initializers.
576  for (uint64_t i = 0; i != NumInitElements; ++i) {
577    // Advance to the next element.
578    if (i > 0) {
579      element = Builder.CreateInBoundsGEP(
580          llvmElementType, element, one, "arrayinit.element");
581
582      // Tell the cleanup that it needs to destroy up to this
583      // element.  TODO: some of these stores can be trivially
584      // observed to be unnecessary.
585      if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit);
586    }
587
588    LValue elementLV = CGF.MakeAddrLValue(
589        Address(element, llvmElementType, elementAlign), elementType);
590    EmitInitializationToLValue(Args[i], elementLV);
591  }
592
593  // Check whether there's a non-trivial array-fill expression.
594  bool hasTrivialFiller = isTrivialFiller(ArrayFiller);
595
596  // Any remaining elements need to be zero-initialized, possibly
597  // using the filler expression.  We can skip this if the we're
598  // emitting to zeroed memory.
599  if (NumInitElements != NumArrayElements &&
600      !(Dest.isZeroed() && hasTrivialFiller &&
601        CGF.getTypes().isZeroInitializable(elementType))) {
602
603    // Use an actual loop.  This is basically
604    //   do { *array++ = filler; } while (array != end);
605
606    // Advance to the start of the rest of the array.
607    if (NumInitElements) {
608      element = Builder.CreateInBoundsGEP(
609          llvmElementType, element, one, "arrayinit.start");
610      if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit);
611    }
612
613    // Compute the end of the array.
614    llvm::Value *end = Builder.CreateInBoundsGEP(
615        llvmElementType, begin,
616        llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements), "arrayinit.end");
617
618    llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
619    llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
620
621    // Jump into the body.
622    CGF.EmitBlock(bodyBB);
623    llvm::PHINode *currentElement =
624      Builder.CreatePHI(element->getType(), 2, "arrayinit.cur");
625    currentElement->addIncoming(element, entryBB);
626
627    // Emit the actual filler expression.
628    {
629      // C++1z [class.temporary]p5:
630      //   when a default constructor is called to initialize an element of
631      //   an array with no corresponding initializer [...] the destruction of
632      //   every temporary created in a default argument is sequenced before
633      //   the construction of the next array element, if any
634      CodeGenFunction::RunCleanupsScope CleanupsScope(CGF);
635      LValue elementLV = CGF.MakeAddrLValue(
636          Address(currentElement, llvmElementType, elementAlign), elementType);
637      if (ArrayFiller)
638        EmitInitializationToLValue(ArrayFiller, elementLV);
639      else
640        EmitNullInitializationToLValue(elementLV);
641    }
642
643    // Move on to the next element.
644    llvm::Value *nextElement = Builder.CreateInBoundsGEP(
645        llvmElementType, currentElement, one, "arrayinit.next");
646
647    // Tell the EH cleanup that we finished with the last element.
648    if (endOfInit.isValid()) Builder.CreateStore(nextElement, endOfInit);
649
650    // Leave the loop if we're done.
651    llvm::Value *done = Builder.CreateICmpEQ(nextElement, end,
652                                             "arrayinit.done");
653    llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
654    Builder.CreateCondBr(done, endBB, bodyBB);
655    currentElement->addIncoming(nextElement, Builder.GetInsertBlock());
656
657    CGF.EmitBlock(endBB);
658  }
659
660  // Leave the partial-array cleanup if we entered one.
661  if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator);
662}
663
664//===----------------------------------------------------------------------===//
665//                            Visitor Methods
666//===----------------------------------------------------------------------===//
667
668void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){
669  Visit(E->getSubExpr());
670}
671
672void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) {
673  // If this is a unique OVE, just visit its source expression.
674  if (e->isUnique())
675    Visit(e->getSourceExpr());
676  else
677    EmitFinalDestCopy(e->getType(), CGF.getOrCreateOpaqueLValueMapping(e));
678}
679
680void
681AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
682  if (Dest.isPotentiallyAliased() &&
683      E->getType().isPODType(CGF.getContext())) {
684    // For a POD type, just emit a load of the lvalue + a copy, because our
685    // compound literal might alias the destination.
686    EmitAggLoadOfLValue(E);
687    return;
688  }
689
690  AggValueSlot Slot = EnsureSlot(E->getType());
691
692  // Block-scope compound literals are destroyed at the end of the enclosing
693  // scope in C.
694  bool Destruct =
695      !CGF.getLangOpts().CPlusPlus && !Slot.isExternallyDestructed();
696  if (Destruct)
697    Slot.setExternallyDestructed();
698
699  CGF.EmitAggExpr(E->getInitializer(), Slot);
700
701  if (Destruct)
702    if (QualType::DestructionKind DtorKind = E->getType().isDestructedType())
703      CGF.pushLifetimeExtendedDestroy(
704          CGF.getCleanupKind(DtorKind), Slot.getAddress(), E->getType(),
705          CGF.getDestroyer(DtorKind), DtorKind & EHCleanup);
706}
707
708/// Attempt to look through various unimportant expressions to find a
709/// cast of the given kind.
710static Expr *findPeephole(Expr *op, CastKind kind, const ASTContext &ctx) {
711  op = op->IgnoreParenNoopCasts(ctx);
712  if (auto castE = dyn_cast<CastExpr>(op)) {
713    if (castE->getCastKind() == kind)
714      return castE->getSubExpr();
715  }
716  return nullptr;
717}
718
719void AggExprEmitter::VisitCastExpr(CastExpr *E) {
720  if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
721    CGF.CGM.EmitExplicitCastExprType(ECE, &CGF);
722  switch (E->getCastKind()) {
723  case CK_Dynamic: {
724    // FIXME: Can this actually happen? We have no test coverage for it.
725    assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
726    LValue LV = CGF.EmitCheckedLValue(E->getSubExpr(),
727                                      CodeGenFunction::TCK_Load);
728    // FIXME: Do we also need to handle property references here?
729    if (LV.isSimple())
730      CGF.EmitDynamicCast(LV.getAddress(CGF), cast<CXXDynamicCastExpr>(E));
731    else
732      CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
733
734    if (!Dest.isIgnored())
735      CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
736    break;
737  }
738
739  case CK_ToUnion: {
740    // Evaluate even if the destination is ignored.
741    if (Dest.isIgnored()) {
742      CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(),
743                      /*ignoreResult=*/true);
744      break;
745    }
746
747    // GCC union extension
748    QualType Ty = E->getSubExpr()->getType();
749    Address CastPtr =
750      Builder.CreateElementBitCast(Dest.getAddress(), CGF.ConvertType(Ty));
751    EmitInitializationToLValue(E->getSubExpr(),
752                               CGF.MakeAddrLValue(CastPtr, Ty));
753    break;
754  }
755
756  case CK_LValueToRValueBitCast: {
757    if (Dest.isIgnored()) {
758      CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(),
759                      /*ignoreResult=*/true);
760      break;
761    }
762
763    LValue SourceLV = CGF.EmitLValue(E->getSubExpr());
764    Address SourceAddress =
765        Builder.CreateElementBitCast(SourceLV.getAddress(CGF), CGF.Int8Ty);
766    Address DestAddress =
767        Builder.CreateElementBitCast(Dest.getAddress(), CGF.Int8Ty);
768    llvm::Value *SizeVal = llvm::ConstantInt::get(
769        CGF.SizeTy,
770        CGF.getContext().getTypeSizeInChars(E->getType()).getQuantity());
771    Builder.CreateMemCpy(DestAddress, SourceAddress, SizeVal);
772    break;
773  }
774
775  case CK_DerivedToBase:
776  case CK_BaseToDerived:
777  case CK_UncheckedDerivedToBase: {
778    llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: "
779                "should have been unpacked before we got here");
780  }
781
782  case CK_NonAtomicToAtomic:
783  case CK_AtomicToNonAtomic: {
784    bool isToAtomic = (E->getCastKind() == CK_NonAtomicToAtomic);
785
786    // Determine the atomic and value types.
787    QualType atomicType = E->getSubExpr()->getType();
788    QualType valueType = E->getType();
789    if (isToAtomic) std::swap(atomicType, valueType);
790
791    assert(atomicType->isAtomicType());
792    assert(CGF.getContext().hasSameUnqualifiedType(valueType,
793                          atomicType->castAs<AtomicType>()->getValueType()));
794
795    // Just recurse normally if we're ignoring the result or the
796    // atomic type doesn't change representation.
797    if (Dest.isIgnored() || !CGF.CGM.isPaddedAtomicType(atomicType)) {
798      return Visit(E->getSubExpr());
799    }
800
801    CastKind peepholeTarget =
802      (isToAtomic ? CK_AtomicToNonAtomic : CK_NonAtomicToAtomic);
803
804    // These two cases are reverses of each other; try to peephole them.
805    if (Expr *op =
806            findPeephole(E->getSubExpr(), peepholeTarget, CGF.getContext())) {
807      assert(CGF.getContext().hasSameUnqualifiedType(op->getType(),
808                                                     E->getType()) &&
809           "peephole significantly changed types?");
810      return Visit(op);
811    }
812
813    // If we're converting an r-value of non-atomic type to an r-value
814    // of atomic type, just emit directly into the relevant sub-object.
815    if (isToAtomic) {
816      AggValueSlot valueDest = Dest;
817      if (!valueDest.isIgnored() && CGF.CGM.isPaddedAtomicType(atomicType)) {
818        // Zero-initialize.  (Strictly speaking, we only need to initialize
819        // the padding at the end, but this is simpler.)
820        if (!Dest.isZeroed())
821          CGF.EmitNullInitialization(Dest.getAddress(), atomicType);
822
823        // Build a GEP to refer to the subobject.
824        Address valueAddr =
825            CGF.Builder.CreateStructGEP(valueDest.getAddress(), 0);
826        valueDest = AggValueSlot::forAddr(valueAddr,
827                                          valueDest.getQualifiers(),
828                                          valueDest.isExternallyDestructed(),
829                                          valueDest.requiresGCollection(),
830                                          valueDest.isPotentiallyAliased(),
831                                          AggValueSlot::DoesNotOverlap,
832                                          AggValueSlot::IsZeroed);
833      }
834
835      CGF.EmitAggExpr(E->getSubExpr(), valueDest);
836      return;
837    }
838
839    // Otherwise, we're converting an atomic type to a non-atomic type.
840    // Make an atomic temporary, emit into that, and then copy the value out.
841    AggValueSlot atomicSlot =
842      CGF.CreateAggTemp(atomicType, "atomic-to-nonatomic.temp");
843    CGF.EmitAggExpr(E->getSubExpr(), atomicSlot);
844
845    Address valueAddr = Builder.CreateStructGEP(atomicSlot.getAddress(), 0);
846    RValue rvalue = RValue::getAggregate(valueAddr, atomicSlot.isVolatile());
847    return EmitFinalDestCopy(valueType, rvalue);
848  }
849  case CK_AddressSpaceConversion:
850     return Visit(E->getSubExpr());
851
852  case CK_LValueToRValue:
853    // If we're loading from a volatile type, force the destination
854    // into existence.
855    if (E->getSubExpr()->getType().isVolatileQualified()) {
856      bool Destruct =
857          !Dest.isExternallyDestructed() &&
858          E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct;
859      if (Destruct)
860        Dest.setExternallyDestructed();
861      EnsureDest(E->getType());
862      Visit(E->getSubExpr());
863
864      if (Destruct)
865        CGF.pushDestroy(QualType::DK_nontrivial_c_struct, Dest.getAddress(),
866                        E->getType());
867
868      return;
869    }
870
871    [[fallthrough]];
872
873
874  case CK_NoOp:
875  case CK_UserDefinedConversion:
876  case CK_ConstructorConversion:
877    assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
878                                                   E->getType()) &&
879           "Implicit cast types must be compatible");
880    Visit(E->getSubExpr());
881    break;
882
883  case CK_LValueBitCast:
884    llvm_unreachable("should not be emitting lvalue bitcast as rvalue");
885
886  case CK_Dependent:
887  case CK_BitCast:
888  case CK_ArrayToPointerDecay:
889  case CK_FunctionToPointerDecay:
890  case CK_NullToPointer:
891  case CK_NullToMemberPointer:
892  case CK_BaseToDerivedMemberPointer:
893  case CK_DerivedToBaseMemberPointer:
894  case CK_MemberPointerToBoolean:
895  case CK_ReinterpretMemberPointer:
896  case CK_IntegralToPointer:
897  case CK_PointerToIntegral:
898  case CK_PointerToBoolean:
899  case CK_ToVoid:
900  case CK_VectorSplat:
901  case CK_IntegralCast:
902  case CK_BooleanToSignedIntegral:
903  case CK_IntegralToBoolean:
904  case CK_IntegralToFloating:
905  case CK_FloatingToIntegral:
906  case CK_FloatingToBoolean:
907  case CK_FloatingCast:
908  case CK_CPointerToObjCPointerCast:
909  case CK_BlockPointerToObjCPointerCast:
910  case CK_AnyPointerToBlockPointerCast:
911  case CK_ObjCObjectLValueCast:
912  case CK_FloatingRealToComplex:
913  case CK_FloatingComplexToReal:
914  case CK_FloatingComplexToBoolean:
915  case CK_FloatingComplexCast:
916  case CK_FloatingComplexToIntegralComplex:
917  case CK_IntegralRealToComplex:
918  case CK_IntegralComplexToReal:
919  case CK_IntegralComplexToBoolean:
920  case CK_IntegralComplexCast:
921  case CK_IntegralComplexToFloatingComplex:
922  case CK_ARCProduceObject:
923  case CK_ARCConsumeObject:
924  case CK_ARCReclaimReturnedObject:
925  case CK_ARCExtendBlockObject:
926  case CK_CopyAndAutoreleaseBlockObject:
927  case CK_BuiltinFnToFnPtr:
928  case CK_ZeroToOCLOpaqueType:
929  case CK_MatrixCast:
930
931  case CK_IntToOCLSampler:
932  case CK_FloatingToFixedPoint:
933  case CK_FixedPointToFloating:
934  case CK_FixedPointCast:
935  case CK_FixedPointToBoolean:
936  case CK_FixedPointToIntegral:
937  case CK_IntegralToFixedPoint:
938    llvm_unreachable("cast kind invalid for aggregate types");
939  }
940}
941
942void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
943  if (E->getCallReturnType(CGF.getContext())->isReferenceType()) {
944    EmitAggLoadOfLValue(E);
945    return;
946  }
947
948  withReturnValueSlot(E, [&](ReturnValueSlot Slot) {
949    return CGF.EmitCallExpr(E, Slot);
950  });
951}
952
953void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
954  withReturnValueSlot(E, [&](ReturnValueSlot Slot) {
955    return CGF.EmitObjCMessageExpr(E, Slot);
956  });
957}
958
959void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
960  CGF.EmitIgnoredExpr(E->getLHS());
961  Visit(E->getRHS());
962}
963
964void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
965  CodeGenFunction::StmtExprEvaluation eval(CGF);
966  CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest);
967}
968
969enum CompareKind {
970  CK_Less,
971  CK_Greater,
972  CK_Equal,
973};
974
975static llvm::Value *EmitCompare(CGBuilderTy &Builder, CodeGenFunction &CGF,
976                                const BinaryOperator *E, llvm::Value *LHS,
977                                llvm::Value *RHS, CompareKind Kind,
978                                const char *NameSuffix = "") {
979  QualType ArgTy = E->getLHS()->getType();
980  if (const ComplexType *CT = ArgTy->getAs<ComplexType>())
981    ArgTy = CT->getElementType();
982
983  if (const auto *MPT = ArgTy->getAs<MemberPointerType>()) {
984    assert(Kind == CK_Equal &&
985           "member pointers may only be compared for equality");
986    return CGF.CGM.getCXXABI().EmitMemberPointerComparison(
987        CGF, LHS, RHS, MPT, /*IsInequality*/ false);
988  }
989
990  // Compute the comparison instructions for the specified comparison kind.
991  struct CmpInstInfo {
992    const char *Name;
993    llvm::CmpInst::Predicate FCmp;
994    llvm::CmpInst::Predicate SCmp;
995    llvm::CmpInst::Predicate UCmp;
996  };
997  CmpInstInfo InstInfo = [&]() -> CmpInstInfo {
998    using FI = llvm::FCmpInst;
999    using II = llvm::ICmpInst;
1000    switch (Kind) {
1001    case CK_Less:
1002      return {"cmp.lt", FI::FCMP_OLT, II::ICMP_SLT, II::ICMP_ULT};
1003    case CK_Greater:
1004      return {"cmp.gt", FI::FCMP_OGT, II::ICMP_SGT, II::ICMP_UGT};
1005    case CK_Equal:
1006      return {"cmp.eq", FI::FCMP_OEQ, II::ICMP_EQ, II::ICMP_EQ};
1007    }
1008    llvm_unreachable("Unrecognised CompareKind enum");
1009  }();
1010
1011  if (ArgTy->hasFloatingRepresentation())
1012    return Builder.CreateFCmp(InstInfo.FCmp, LHS, RHS,
1013                              llvm::Twine(InstInfo.Name) + NameSuffix);
1014  if (ArgTy->isIntegralOrEnumerationType() || ArgTy->isPointerType()) {
1015    auto Inst =
1016        ArgTy->hasSignedIntegerRepresentation() ? InstInfo.SCmp : InstInfo.UCmp;
1017    return Builder.CreateICmp(Inst, LHS, RHS,
1018                              llvm::Twine(InstInfo.Name) + NameSuffix);
1019  }
1020
1021  llvm_unreachable("unsupported aggregate binary expression should have "
1022                   "already been handled");
1023}
1024
1025void AggExprEmitter::VisitBinCmp(const BinaryOperator *E) {
1026  using llvm::BasicBlock;
1027  using llvm::PHINode;
1028  using llvm::Value;
1029  assert(CGF.getContext().hasSameType(E->getLHS()->getType(),
1030                                      E->getRHS()->getType()));
1031  const ComparisonCategoryInfo &CmpInfo =
1032      CGF.getContext().CompCategories.getInfoForType(E->getType());
1033  assert(CmpInfo.Record->isTriviallyCopyable() &&
1034         "cannot copy non-trivially copyable aggregate");
1035
1036  QualType ArgTy = E->getLHS()->getType();
1037
1038  if (!ArgTy->isIntegralOrEnumerationType() && !ArgTy->isRealFloatingType() &&
1039      !ArgTy->isNullPtrType() && !ArgTy->isPointerType() &&
1040      !ArgTy->isMemberPointerType() && !ArgTy->isAnyComplexType()) {
1041    return CGF.ErrorUnsupported(E, "aggregate three-way comparison");
1042  }
1043  bool IsComplex = ArgTy->isAnyComplexType();
1044
1045  // Evaluate the operands to the expression and extract their values.
1046  auto EmitOperand = [&](Expr *E) -> std::pair<Value *, Value *> {
1047    RValue RV = CGF.EmitAnyExpr(E);
1048    if (RV.isScalar())
1049      return {RV.getScalarVal(), nullptr};
1050    if (RV.isAggregate())
1051      return {RV.getAggregatePointer(), nullptr};
1052    assert(RV.isComplex());
1053    return RV.getComplexVal();
1054  };
1055  auto LHSValues = EmitOperand(E->getLHS()),
1056       RHSValues = EmitOperand(E->getRHS());
1057
1058  auto EmitCmp = [&](CompareKind K) {
1059    Value *Cmp = EmitCompare(Builder, CGF, E, LHSValues.first, RHSValues.first,
1060                             K, IsComplex ? ".r" : "");
1061    if (!IsComplex)
1062      return Cmp;
1063    assert(K == CompareKind::CK_Equal);
1064    Value *CmpImag = EmitCompare(Builder, CGF, E, LHSValues.second,
1065                                 RHSValues.second, K, ".i");
1066    return Builder.CreateAnd(Cmp, CmpImag, "and.eq");
1067  };
1068  auto EmitCmpRes = [&](const ComparisonCategoryInfo::ValueInfo *VInfo) {
1069    return Builder.getInt(VInfo->getIntValue());
1070  };
1071
1072  Value *Select;
1073  if (ArgTy->isNullPtrType()) {
1074    Select = EmitCmpRes(CmpInfo.getEqualOrEquiv());
1075  } else if (!CmpInfo.isPartial()) {
1076    Value *SelectOne =
1077        Builder.CreateSelect(EmitCmp(CK_Less), EmitCmpRes(CmpInfo.getLess()),
1078                             EmitCmpRes(CmpInfo.getGreater()), "sel.lt");
1079    Select = Builder.CreateSelect(EmitCmp(CK_Equal),
1080                                  EmitCmpRes(CmpInfo.getEqualOrEquiv()),
1081                                  SelectOne, "sel.eq");
1082  } else {
1083    Value *SelectEq = Builder.CreateSelect(
1084        EmitCmp(CK_Equal), EmitCmpRes(CmpInfo.getEqualOrEquiv()),
1085        EmitCmpRes(CmpInfo.getUnordered()), "sel.eq");
1086    Value *SelectGT = Builder.CreateSelect(EmitCmp(CK_Greater),
1087                                           EmitCmpRes(CmpInfo.getGreater()),
1088                                           SelectEq, "sel.gt");
1089    Select = Builder.CreateSelect(
1090        EmitCmp(CK_Less), EmitCmpRes(CmpInfo.getLess()), SelectGT, "sel.lt");
1091  }
1092  // Create the return value in the destination slot.
1093  EnsureDest(E->getType());
1094  LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1095
1096  // Emit the address of the first (and only) field in the comparison category
1097  // type, and initialize it from the constant integer value selected above.
1098  LValue FieldLV = CGF.EmitLValueForFieldInitialization(
1099      DestLV, *CmpInfo.Record->field_begin());
1100  CGF.EmitStoreThroughLValue(RValue::get(Select), FieldLV, /*IsInit*/ true);
1101
1102  // All done! The result is in the Dest slot.
1103}
1104
1105void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
1106  if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI)
1107    VisitPointerToDataMemberBinaryOperator(E);
1108  else
1109    CGF.ErrorUnsupported(E, "aggregate binary expression");
1110}
1111
1112void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
1113                                                    const BinaryOperator *E) {
1114  LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
1115  EmitFinalDestCopy(E->getType(), LV);
1116}
1117
1118/// Is the value of the given expression possibly a reference to or
1119/// into a __block variable?
1120static bool isBlockVarRef(const Expr *E) {
1121  // Make sure we look through parens.
1122  E = E->IgnoreParens();
1123
1124  // Check for a direct reference to a __block variable.
1125  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
1126    const VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
1127    return (var && var->hasAttr<BlocksAttr>());
1128  }
1129
1130  // More complicated stuff.
1131
1132  // Binary operators.
1133  if (const BinaryOperator *op = dyn_cast<BinaryOperator>(E)) {
1134    // For an assignment or pointer-to-member operation, just care
1135    // about the LHS.
1136    if (op->isAssignmentOp() || op->isPtrMemOp())
1137      return isBlockVarRef(op->getLHS());
1138
1139    // For a comma, just care about the RHS.
1140    if (op->getOpcode() == BO_Comma)
1141      return isBlockVarRef(op->getRHS());
1142
1143    // FIXME: pointer arithmetic?
1144    return false;
1145
1146  // Check both sides of a conditional operator.
1147  } else if (const AbstractConditionalOperator *op
1148               = dyn_cast<AbstractConditionalOperator>(E)) {
1149    return isBlockVarRef(op->getTrueExpr())
1150        || isBlockVarRef(op->getFalseExpr());
1151
1152  // OVEs are required to support BinaryConditionalOperators.
1153  } else if (const OpaqueValueExpr *op
1154               = dyn_cast<OpaqueValueExpr>(E)) {
1155    if (const Expr *src = op->getSourceExpr())
1156      return isBlockVarRef(src);
1157
1158  // Casts are necessary to get things like (*(int*)&var) = foo().
1159  // We don't really care about the kind of cast here, except
1160  // we don't want to look through l2r casts, because it's okay
1161  // to get the *value* in a __block variable.
1162  } else if (const CastExpr *cast = dyn_cast<CastExpr>(E)) {
1163    if (cast->getCastKind() == CK_LValueToRValue)
1164      return false;
1165    return isBlockVarRef(cast->getSubExpr());
1166
1167  // Handle unary operators.  Again, just aggressively look through
1168  // it, ignoring the operation.
1169  } else if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E)) {
1170    return isBlockVarRef(uop->getSubExpr());
1171
1172  // Look into the base of a field access.
1173  } else if (const MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
1174    return isBlockVarRef(mem->getBase());
1175
1176  // Look into the base of a subscript.
1177  } else if (const ArraySubscriptExpr *sub = dyn_cast<ArraySubscriptExpr>(E)) {
1178    return isBlockVarRef(sub->getBase());
1179  }
1180
1181  return false;
1182}
1183
1184void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
1185  // For an assignment to work, the value on the right has
1186  // to be compatible with the value on the left.
1187  assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
1188                                                 E->getRHS()->getType())
1189         && "Invalid assignment");
1190
1191  // If the LHS might be a __block variable, and the RHS can
1192  // potentially cause a block copy, we need to evaluate the RHS first
1193  // so that the assignment goes the right place.
1194  // This is pretty semantically fragile.
1195  if (isBlockVarRef(E->getLHS()) &&
1196      E->getRHS()->HasSideEffects(CGF.getContext())) {
1197    // Ensure that we have a destination, and evaluate the RHS into that.
1198    EnsureDest(E->getRHS()->getType());
1199    Visit(E->getRHS());
1200
1201    // Now emit the LHS and copy into it.
1202    LValue LHS = CGF.EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
1203
1204    // That copy is an atomic copy if the LHS is atomic.
1205    if (LHS.getType()->isAtomicType() ||
1206        CGF.LValueIsSuitableForInlineAtomic(LHS)) {
1207      CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
1208      return;
1209    }
1210
1211    EmitCopy(E->getLHS()->getType(),
1212             AggValueSlot::forLValue(LHS, CGF, AggValueSlot::IsDestructed,
1213                                     needsGC(E->getLHS()->getType()),
1214                                     AggValueSlot::IsAliased,
1215                                     AggValueSlot::MayOverlap),
1216             Dest);
1217    return;
1218  }
1219
1220  LValue LHS = CGF.EmitLValue(E->getLHS());
1221
1222  // If we have an atomic type, evaluate into the destination and then
1223  // do an atomic copy.
1224  if (LHS.getType()->isAtomicType() ||
1225      CGF.LValueIsSuitableForInlineAtomic(LHS)) {
1226    EnsureDest(E->getRHS()->getType());
1227    Visit(E->getRHS());
1228    CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
1229    return;
1230  }
1231
1232  // Codegen the RHS so that it stores directly into the LHS.
1233  AggValueSlot LHSSlot = AggValueSlot::forLValue(
1234      LHS, CGF, AggValueSlot::IsDestructed, needsGC(E->getLHS()->getType()),
1235      AggValueSlot::IsAliased, AggValueSlot::MayOverlap);
1236  // A non-volatile aggregate destination might have volatile member.
1237  if (!LHSSlot.isVolatile() &&
1238      CGF.hasVolatileMember(E->getLHS()->getType()))
1239    LHSSlot.setVolatile(true);
1240
1241  CGF.EmitAggExpr(E->getRHS(), LHSSlot);
1242
1243  // Copy into the destination if the assignment isn't ignored.
1244  EmitFinalDestCopy(E->getType(), LHS);
1245
1246  if (!Dest.isIgnored() && !Dest.isExternallyDestructed() &&
1247      E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
1248    CGF.pushDestroy(QualType::DK_nontrivial_c_struct, Dest.getAddress(),
1249                    E->getType());
1250}
1251
1252void AggExprEmitter::
1253VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
1254  llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
1255  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
1256  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
1257
1258  // Bind the common expression if necessary.
1259  CodeGenFunction::OpaqueValueMapping binding(CGF, E);
1260
1261  CodeGenFunction::ConditionalEvaluation eval(CGF);
1262  CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock,
1263                           CGF.getProfileCount(E));
1264
1265  // Save whether the destination's lifetime is externally managed.
1266  bool isExternallyDestructed = Dest.isExternallyDestructed();
1267  bool destructNonTrivialCStruct =
1268      !isExternallyDestructed &&
1269      E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct;
1270  isExternallyDestructed |= destructNonTrivialCStruct;
1271  Dest.setExternallyDestructed(isExternallyDestructed);
1272
1273  eval.begin(CGF);
1274  CGF.EmitBlock(LHSBlock);
1275  CGF.incrementProfileCounter(E);
1276  Visit(E->getTrueExpr());
1277  eval.end(CGF);
1278
1279  assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!");
1280  CGF.Builder.CreateBr(ContBlock);
1281
1282  // If the result of an agg expression is unused, then the emission
1283  // of the LHS might need to create a destination slot.  That's fine
1284  // with us, and we can safely emit the RHS into the same slot, but
1285  // we shouldn't claim that it's already being destructed.
1286  Dest.setExternallyDestructed(isExternallyDestructed);
1287
1288  eval.begin(CGF);
1289  CGF.EmitBlock(RHSBlock);
1290  Visit(E->getFalseExpr());
1291  eval.end(CGF);
1292
1293  if (destructNonTrivialCStruct)
1294    CGF.pushDestroy(QualType::DK_nontrivial_c_struct, Dest.getAddress(),
1295                    E->getType());
1296
1297  CGF.EmitBlock(ContBlock);
1298}
1299
1300void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
1301  Visit(CE->getChosenSubExpr());
1302}
1303
1304void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
1305  Address ArgValue = Address::invalid();
1306  Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
1307
1308  // If EmitVAArg fails, emit an error.
1309  if (!ArgPtr.isValid()) {
1310    CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
1311    return;
1312  }
1313
1314  EmitFinalDestCopy(VE->getType(), CGF.MakeAddrLValue(ArgPtr, VE->getType()));
1315}
1316
1317void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
1318  // Ensure that we have a slot, but if we already do, remember
1319  // whether it was externally destructed.
1320  bool wasExternallyDestructed = Dest.isExternallyDestructed();
1321  EnsureDest(E->getType());
1322
1323  // We're going to push a destructor if there isn't already one.
1324  Dest.setExternallyDestructed();
1325
1326  Visit(E->getSubExpr());
1327
1328  // Push that destructor we promised.
1329  if (!wasExternallyDestructed)
1330    CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddress());
1331}
1332
1333void
1334AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
1335  AggValueSlot Slot = EnsureSlot(E->getType());
1336  CGF.EmitCXXConstructExpr(E, Slot);
1337}
1338
1339void AggExprEmitter::VisitCXXInheritedCtorInitExpr(
1340    const CXXInheritedCtorInitExpr *E) {
1341  AggValueSlot Slot = EnsureSlot(E->getType());
1342  CGF.EmitInheritedCXXConstructorCall(
1343      E->getConstructor(), E->constructsVBase(), Slot.getAddress(),
1344      E->inheritedFromVBase(), E);
1345}
1346
1347void
1348AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) {
1349  AggValueSlot Slot = EnsureSlot(E->getType());
1350  LValue SlotLV = CGF.MakeAddrLValue(Slot.getAddress(), E->getType());
1351
1352  // We'll need to enter cleanup scopes in case any of the element
1353  // initializers throws an exception.
1354  SmallVector<EHScopeStack::stable_iterator, 16> Cleanups;
1355  llvm::Instruction *CleanupDominator = nullptr;
1356
1357  CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin();
1358  for (LambdaExpr::const_capture_init_iterator i = E->capture_init_begin(),
1359                                               e = E->capture_init_end();
1360       i != e; ++i, ++CurField) {
1361    // Emit initialization
1362    LValue LV = CGF.EmitLValueForFieldInitialization(SlotLV, *CurField);
1363    if (CurField->hasCapturedVLAType()) {
1364      CGF.EmitLambdaVLACapture(CurField->getCapturedVLAType(), LV);
1365      continue;
1366    }
1367
1368    EmitInitializationToLValue(*i, LV);
1369
1370    // Push a destructor if necessary.
1371    if (QualType::DestructionKind DtorKind =
1372            CurField->getType().isDestructedType()) {
1373      assert(LV.isSimple());
1374      if (CGF.needsEHCleanup(DtorKind)) {
1375        if (!CleanupDominator)
1376          CleanupDominator = CGF.Builder.CreateAlignedLoad(
1377              CGF.Int8Ty,
1378              llvm::Constant::getNullValue(CGF.Int8PtrTy),
1379              CharUnits::One()); // placeholder
1380
1381        CGF.pushDestroy(EHCleanup, LV.getAddress(CGF), CurField->getType(),
1382                        CGF.getDestroyer(DtorKind), false);
1383        Cleanups.push_back(CGF.EHStack.stable_begin());
1384      }
1385    }
1386  }
1387
1388  // Deactivate all the partial cleanups in reverse order, which
1389  // generally means popping them.
1390  for (unsigned i = Cleanups.size(); i != 0; --i)
1391    CGF.DeactivateCleanupBlock(Cleanups[i-1], CleanupDominator);
1392
1393  // Destroy the placeholder if we made one.
1394  if (CleanupDominator)
1395    CleanupDominator->eraseFromParent();
1396}
1397
1398void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
1399  CodeGenFunction::RunCleanupsScope cleanups(CGF);
1400  Visit(E->getSubExpr());
1401}
1402
1403void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
1404  QualType T = E->getType();
1405  AggValueSlot Slot = EnsureSlot(T);
1406  EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T));
1407}
1408
1409void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
1410  QualType T = E->getType();
1411  AggValueSlot Slot = EnsureSlot(T);
1412  EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T));
1413}
1414
1415/// Determine whether the given cast kind is known to always convert values
1416/// with all zero bits in their value representation to values with all zero
1417/// bits in their value representation.
1418static bool castPreservesZero(const CastExpr *CE) {
1419  switch (CE->getCastKind()) {
1420    // No-ops.
1421  case CK_NoOp:
1422  case CK_UserDefinedConversion:
1423  case CK_ConstructorConversion:
1424  case CK_BitCast:
1425  case CK_ToUnion:
1426  case CK_ToVoid:
1427    // Conversions between (possibly-complex) integral, (possibly-complex)
1428    // floating-point, and bool.
1429  case CK_BooleanToSignedIntegral:
1430  case CK_FloatingCast:
1431  case CK_FloatingComplexCast:
1432  case CK_FloatingComplexToBoolean:
1433  case CK_FloatingComplexToIntegralComplex:
1434  case CK_FloatingComplexToReal:
1435  case CK_FloatingRealToComplex:
1436  case CK_FloatingToBoolean:
1437  case CK_FloatingToIntegral:
1438  case CK_IntegralCast:
1439  case CK_IntegralComplexCast:
1440  case CK_IntegralComplexToBoolean:
1441  case CK_IntegralComplexToFloatingComplex:
1442  case CK_IntegralComplexToReal:
1443  case CK_IntegralRealToComplex:
1444  case CK_IntegralToBoolean:
1445  case CK_IntegralToFloating:
1446    // Reinterpreting integers as pointers and vice versa.
1447  case CK_IntegralToPointer:
1448  case CK_PointerToIntegral:
1449    // Language extensions.
1450  case CK_VectorSplat:
1451  case CK_MatrixCast:
1452  case CK_NonAtomicToAtomic:
1453  case CK_AtomicToNonAtomic:
1454    return true;
1455
1456  case CK_BaseToDerivedMemberPointer:
1457  case CK_DerivedToBaseMemberPointer:
1458  case CK_MemberPointerToBoolean:
1459  case CK_NullToMemberPointer:
1460  case CK_ReinterpretMemberPointer:
1461    // FIXME: ABI-dependent.
1462    return false;
1463
1464  case CK_AnyPointerToBlockPointerCast:
1465  case CK_BlockPointerToObjCPointerCast:
1466  case CK_CPointerToObjCPointerCast:
1467  case CK_ObjCObjectLValueCast:
1468  case CK_IntToOCLSampler:
1469  case CK_ZeroToOCLOpaqueType:
1470    // FIXME: Check these.
1471    return false;
1472
1473  case CK_FixedPointCast:
1474  case CK_FixedPointToBoolean:
1475  case CK_FixedPointToFloating:
1476  case CK_FixedPointToIntegral:
1477  case CK_FloatingToFixedPoint:
1478  case CK_IntegralToFixedPoint:
1479    // FIXME: Do all fixed-point types represent zero as all 0 bits?
1480    return false;
1481
1482  case CK_AddressSpaceConversion:
1483  case CK_BaseToDerived:
1484  case CK_DerivedToBase:
1485  case CK_Dynamic:
1486  case CK_NullToPointer:
1487  case CK_PointerToBoolean:
1488    // FIXME: Preserves zeroes only if zero pointers and null pointers have the
1489    // same representation in all involved address spaces.
1490    return false;
1491
1492  case CK_ARCConsumeObject:
1493  case CK_ARCExtendBlockObject:
1494  case CK_ARCProduceObject:
1495  case CK_ARCReclaimReturnedObject:
1496  case CK_CopyAndAutoreleaseBlockObject:
1497  case CK_ArrayToPointerDecay:
1498  case CK_FunctionToPointerDecay:
1499  case CK_BuiltinFnToFnPtr:
1500  case CK_Dependent:
1501  case CK_LValueBitCast:
1502  case CK_LValueToRValue:
1503  case CK_LValueToRValueBitCast:
1504  case CK_UncheckedDerivedToBase:
1505    return false;
1506  }
1507  llvm_unreachable("Unhandled clang::CastKind enum");
1508}
1509
1510/// isSimpleZero - If emitting this value will obviously just cause a store of
1511/// zero to memory, return true.  This can return false if uncertain, so it just
1512/// handles simple cases.
1513static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) {
1514  E = E->IgnoreParens();
1515  while (auto *CE = dyn_cast<CastExpr>(E)) {
1516    if (!castPreservesZero(CE))
1517      break;
1518    E = CE->getSubExpr()->IgnoreParens();
1519  }
1520
1521  // 0
1522  if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E))
1523    return IL->getValue() == 0;
1524  // +0.0
1525  if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E))
1526    return FL->getValue().isPosZero();
1527  // int()
1528  if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) &&
1529      CGF.getTypes().isZeroInitializable(E->getType()))
1530    return true;
1531  // (int*)0 - Null pointer expressions.
1532  if (const CastExpr *ICE = dyn_cast<CastExpr>(E))
1533    return ICE->getCastKind() == CK_NullToPointer &&
1534           CGF.getTypes().isPointerZeroInitializable(E->getType()) &&
1535           !E->HasSideEffects(CGF.getContext());
1536  // '\0'
1537  if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E))
1538    return CL->getValue() == 0;
1539
1540  // Otherwise, hard case: conservatively return false.
1541  return false;
1542}
1543
1544
1545void
1546AggExprEmitter::EmitInitializationToLValue(Expr *E, LValue LV) {
1547  QualType type = LV.getType();
1548  // FIXME: Ignore result?
1549  // FIXME: Are initializers affected by volatile?
1550  if (Dest.isZeroed() && isSimpleZero(E, CGF)) {
1551    // Storing "i32 0" to a zero'd memory location is a noop.
1552    return;
1553  } else if (isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) {
1554    return EmitNullInitializationToLValue(LV);
1555  } else if (isa<NoInitExpr>(E)) {
1556    // Do nothing.
1557    return;
1558  } else if (type->isReferenceType()) {
1559    RValue RV = CGF.EmitReferenceBindingToExpr(E);
1560    return CGF.EmitStoreThroughLValue(RV, LV);
1561  }
1562
1563  switch (CGF.getEvaluationKind(type)) {
1564  case TEK_Complex:
1565    CGF.EmitComplexExprIntoLValue(E, LV, /*isInit*/ true);
1566    return;
1567  case TEK_Aggregate:
1568    CGF.EmitAggExpr(
1569        E, AggValueSlot::forLValue(LV, CGF, AggValueSlot::IsDestructed,
1570                                   AggValueSlot::DoesNotNeedGCBarriers,
1571                                   AggValueSlot::IsNotAliased,
1572                                   AggValueSlot::MayOverlap, Dest.isZeroed()));
1573    return;
1574  case TEK_Scalar:
1575    if (LV.isSimple()) {
1576      CGF.EmitScalarInit(E, /*D=*/nullptr, LV, /*Captured=*/false);
1577    } else {
1578      CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV);
1579    }
1580    return;
1581  }
1582  llvm_unreachable("bad evaluation kind");
1583}
1584
1585void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) {
1586  QualType type = lv.getType();
1587
1588  // If the destination slot is already zeroed out before the aggregate is
1589  // copied into it, we don't have to emit any zeros here.
1590  if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type))
1591    return;
1592
1593  if (CGF.hasScalarEvaluationKind(type)) {
1594    // For non-aggregates, we can store the appropriate null constant.
1595    llvm::Value *null = CGF.CGM.EmitNullConstant(type);
1596    // Note that the following is not equivalent to
1597    // EmitStoreThroughBitfieldLValue for ARC types.
1598    if (lv.isBitField()) {
1599      CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv);
1600    } else {
1601      assert(lv.isSimple());
1602      CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true);
1603    }
1604  } else {
1605    // There's a potential optimization opportunity in combining
1606    // memsets; that would be easy for arrays, but relatively
1607    // difficult for structures with the current code.
1608    CGF.EmitNullInitialization(lv.getAddress(CGF), lv.getType());
1609  }
1610}
1611
1612void AggExprEmitter::VisitCXXParenListInitExpr(CXXParenListInitExpr *E) {
1613  VisitCXXParenListOrInitListExpr(E, E->getInitExprs(),
1614                                  E->getInitializedFieldInUnion(),
1615                                  E->getArrayFiller());
1616}
1617
1618void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
1619  if (E->hadArrayRangeDesignator())
1620    CGF.ErrorUnsupported(E, "GNU array range designator extension");
1621
1622  if (E->isTransparent())
1623    return Visit(E->getInit(0));
1624
1625  VisitCXXParenListOrInitListExpr(
1626      E, E->inits(), E->getInitializedFieldInUnion(), E->getArrayFiller());
1627}
1628
1629void AggExprEmitter::VisitCXXParenListOrInitListExpr(
1630    Expr *ExprToVisit, ArrayRef<Expr *> InitExprs,
1631    FieldDecl *InitializedFieldInUnion, Expr *ArrayFiller) {
1632#if 0
1633  // FIXME: Assess perf here?  Figure out what cases are worth optimizing here
1634  // (Length of globals? Chunks of zeroed-out space?).
1635  //
1636  // If we can, prefer a copy from a global; this is a lot less code for long
1637  // globals, and it's easier for the current optimizers to analyze.
1638  if (llvm::Constant *C =
1639          CGF.CGM.EmitConstantExpr(ExprToVisit, ExprToVisit->getType(), &CGF)) {
1640    llvm::GlobalVariable* GV =
1641    new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
1642                             llvm::GlobalValue::InternalLinkage, C, "");
1643    EmitFinalDestCopy(ExprToVisit->getType(),
1644                      CGF.MakeAddrLValue(GV, ExprToVisit->getType()));
1645    return;
1646  }
1647#endif
1648
1649  AggValueSlot Dest = EnsureSlot(ExprToVisit->getType());
1650
1651  LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), ExprToVisit->getType());
1652
1653  // Handle initialization of an array.
1654  if (ExprToVisit->getType()->isArrayType()) {
1655    auto AType = cast<llvm::ArrayType>(Dest.getAddress().getElementType());
1656    EmitArrayInit(Dest.getAddress(), AType, ExprToVisit->getType(), ExprToVisit,
1657                  InitExprs, ArrayFiller);
1658    return;
1659  }
1660
1661  assert(ExprToVisit->getType()->isRecordType() &&
1662         "Only support structs/unions here!");
1663
1664  // Do struct initialization; this code just sets each individual member
1665  // to the approprate value.  This makes bitfield support automatic;
1666  // the disadvantage is that the generated code is more difficult for
1667  // the optimizer, especially with bitfields.
1668  unsigned NumInitElements = InitExprs.size();
1669  RecordDecl *record = ExprToVisit->getType()->castAs<RecordType>()->getDecl();
1670
1671  // We'll need to enter cleanup scopes in case any of the element
1672  // initializers throws an exception.
1673  SmallVector<EHScopeStack::stable_iterator, 16> cleanups;
1674  llvm::Instruction *cleanupDominator = nullptr;
1675  auto addCleanup = [&](const EHScopeStack::stable_iterator &cleanup) {
1676    cleanups.push_back(cleanup);
1677    if (!cleanupDominator) // create placeholder once needed
1678      cleanupDominator = CGF.Builder.CreateAlignedLoad(
1679          CGF.Int8Ty, llvm::Constant::getNullValue(CGF.Int8PtrTy),
1680          CharUnits::One());
1681  };
1682
1683  unsigned curInitIndex = 0;
1684
1685  // Emit initialization of base classes.
1686  if (auto *CXXRD = dyn_cast<CXXRecordDecl>(record)) {
1687    assert(NumInitElements >= CXXRD->getNumBases() &&
1688           "missing initializer for base class");
1689    for (auto &Base : CXXRD->bases()) {
1690      assert(!Base.isVirtual() && "should not see vbases here");
1691      auto *BaseRD = Base.getType()->getAsCXXRecordDecl();
1692      Address V = CGF.GetAddressOfDirectBaseInCompleteClass(
1693          Dest.getAddress(), CXXRD, BaseRD,
1694          /*isBaseVirtual*/ false);
1695      AggValueSlot AggSlot = AggValueSlot::forAddr(
1696          V, Qualifiers(),
1697          AggValueSlot::IsDestructed,
1698          AggValueSlot::DoesNotNeedGCBarriers,
1699          AggValueSlot::IsNotAliased,
1700          CGF.getOverlapForBaseInit(CXXRD, BaseRD, Base.isVirtual()));
1701      CGF.EmitAggExpr(InitExprs[curInitIndex++], AggSlot);
1702
1703      if (QualType::DestructionKind dtorKind =
1704              Base.getType().isDestructedType()) {
1705        CGF.pushDestroy(dtorKind, V, Base.getType());
1706        addCleanup(CGF.EHStack.stable_begin());
1707      }
1708    }
1709  }
1710
1711  // Prepare a 'this' for CXXDefaultInitExprs.
1712  CodeGenFunction::FieldConstructionScope FCS(CGF, Dest.getAddress());
1713
1714  if (record->isUnion()) {
1715    // Only initialize one field of a union. The field itself is
1716    // specified by the initializer list.
1717    if (!InitializedFieldInUnion) {
1718      // Empty union; we have nothing to do.
1719
1720#ifndef NDEBUG
1721      // Make sure that it's really an empty and not a failure of
1722      // semantic analysis.
1723      for (const auto *Field : record->fields())
1724        assert((Field->isUnnamedBitfield() || Field->isAnonymousStructOrUnion()) && "Only unnamed bitfields or ananymous class allowed");
1725#endif
1726      return;
1727    }
1728
1729    // FIXME: volatility
1730    FieldDecl *Field = InitializedFieldInUnion;
1731
1732    LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field);
1733    if (NumInitElements) {
1734      // Store the initializer into the field
1735      EmitInitializationToLValue(InitExprs[0], FieldLoc);
1736    } else {
1737      // Default-initialize to null.
1738      EmitNullInitializationToLValue(FieldLoc);
1739    }
1740
1741    return;
1742  }
1743
1744  // Here we iterate over the fields; this makes it simpler to both
1745  // default-initialize fields and skip over unnamed fields.
1746  for (const auto *field : record->fields()) {
1747    // We're done once we hit the flexible array member.
1748    if (field->getType()->isIncompleteArrayType())
1749      break;
1750
1751    // Always skip anonymous bitfields.
1752    if (field->isUnnamedBitfield())
1753      continue;
1754
1755    // We're done if we reach the end of the explicit initializers, we
1756    // have a zeroed object, and the rest of the fields are
1757    // zero-initializable.
1758    if (curInitIndex == NumInitElements && Dest.isZeroed() &&
1759        CGF.getTypes().isZeroInitializable(ExprToVisit->getType()))
1760      break;
1761
1762
1763    LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, field);
1764    // We never generate write-barries for initialized fields.
1765    LV.setNonGC(true);
1766
1767    if (curInitIndex < NumInitElements) {
1768      // Store the initializer into the field.
1769      EmitInitializationToLValue(InitExprs[curInitIndex++], LV);
1770    } else {
1771      // We're out of initializers; default-initialize to null
1772      EmitNullInitializationToLValue(LV);
1773    }
1774
1775    // Push a destructor if necessary.
1776    // FIXME: if we have an array of structures, all explicitly
1777    // initialized, we can end up pushing a linear number of cleanups.
1778    bool pushedCleanup = false;
1779    if (QualType::DestructionKind dtorKind
1780          = field->getType().isDestructedType()) {
1781      assert(LV.isSimple());
1782      if (CGF.needsEHCleanup(dtorKind)) {
1783        CGF.pushDestroy(EHCleanup, LV.getAddress(CGF), field->getType(),
1784                        CGF.getDestroyer(dtorKind), false);
1785        addCleanup(CGF.EHStack.stable_begin());
1786        pushedCleanup = true;
1787      }
1788    }
1789
1790    // If the GEP didn't get used because of a dead zero init or something
1791    // else, clean it up for -O0 builds and general tidiness.
1792    if (!pushedCleanup && LV.isSimple())
1793      if (llvm::GetElementPtrInst *GEP =
1794              dyn_cast<llvm::GetElementPtrInst>(LV.getPointer(CGF)))
1795        if (GEP->use_empty())
1796          GEP->eraseFromParent();
1797  }
1798
1799  // Deactivate all the partial cleanups in reverse order, which
1800  // generally means popping them.
1801  assert((cleanupDominator || cleanups.empty()) &&
1802         "Missing cleanupDominator before deactivating cleanup blocks");
1803  for (unsigned i = cleanups.size(); i != 0; --i)
1804    CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator);
1805
1806  // Destroy the placeholder if we made one.
1807  if (cleanupDominator)
1808    cleanupDominator->eraseFromParent();
1809}
1810
1811void AggExprEmitter::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E,
1812                                            llvm::Value *outerBegin) {
1813  // Emit the common subexpression.
1814  CodeGenFunction::OpaqueValueMapping binding(CGF, E->getCommonExpr());
1815
1816  Address destPtr = EnsureSlot(E->getType()).getAddress();
1817  uint64_t numElements = E->getArraySize().getZExtValue();
1818
1819  if (!numElements)
1820    return;
1821
1822  // destPtr is an array*. Construct an elementType* by drilling down a level.
1823  llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
1824  llvm::Value *indices[] = {zero, zero};
1825  llvm::Value *begin = Builder.CreateInBoundsGEP(
1826      destPtr.getElementType(), destPtr.getPointer(), indices,
1827      "arrayinit.begin");
1828
1829  // Prepare to special-case multidimensional array initialization: we avoid
1830  // emitting multiple destructor loops in that case.
1831  if (!outerBegin)
1832    outerBegin = begin;
1833  ArrayInitLoopExpr *InnerLoop = dyn_cast<ArrayInitLoopExpr>(E->getSubExpr());
1834
1835  QualType elementType =
1836      CGF.getContext().getAsArrayType(E->getType())->getElementType();
1837  CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
1838  CharUnits elementAlign =
1839      destPtr.getAlignment().alignmentOfArrayElement(elementSize);
1840  llvm::Type *llvmElementType = CGF.ConvertTypeForMem(elementType);
1841
1842  llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1843  llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
1844
1845  // Jump into the body.
1846  CGF.EmitBlock(bodyBB);
1847  llvm::PHINode *index =
1848      Builder.CreatePHI(zero->getType(), 2, "arrayinit.index");
1849  index->addIncoming(zero, entryBB);
1850  llvm::Value *element =
1851      Builder.CreateInBoundsGEP(llvmElementType, begin, index);
1852
1853  // Prepare for a cleanup.
1854  QualType::DestructionKind dtorKind = elementType.isDestructedType();
1855  EHScopeStack::stable_iterator cleanup;
1856  if (CGF.needsEHCleanup(dtorKind) && !InnerLoop) {
1857    if (outerBegin->getType() != element->getType())
1858      outerBegin = Builder.CreateBitCast(outerBegin, element->getType());
1859    CGF.pushRegularPartialArrayCleanup(outerBegin, element, elementType,
1860                                       elementAlign,
1861                                       CGF.getDestroyer(dtorKind));
1862    cleanup = CGF.EHStack.stable_begin();
1863  } else {
1864    dtorKind = QualType::DK_none;
1865  }
1866
1867  // Emit the actual filler expression.
1868  {
1869    // Temporaries created in an array initialization loop are destroyed
1870    // at the end of each iteration.
1871    CodeGenFunction::RunCleanupsScope CleanupsScope(CGF);
1872    CodeGenFunction::ArrayInitLoopExprScope Scope(CGF, index);
1873    LValue elementLV = CGF.MakeAddrLValue(
1874        Address(element, llvmElementType, elementAlign), elementType);
1875
1876    if (InnerLoop) {
1877      // If the subexpression is an ArrayInitLoopExpr, share its cleanup.
1878      auto elementSlot = AggValueSlot::forLValue(
1879          elementLV, CGF, AggValueSlot::IsDestructed,
1880          AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased,
1881          AggValueSlot::DoesNotOverlap);
1882      AggExprEmitter(CGF, elementSlot, false)
1883          .VisitArrayInitLoopExpr(InnerLoop, outerBegin);
1884    } else
1885      EmitInitializationToLValue(E->getSubExpr(), elementLV);
1886  }
1887
1888  // Move on to the next element.
1889  llvm::Value *nextIndex = Builder.CreateNUWAdd(
1890      index, llvm::ConstantInt::get(CGF.SizeTy, 1), "arrayinit.next");
1891  index->addIncoming(nextIndex, Builder.GetInsertBlock());
1892
1893  // Leave the loop if we're done.
1894  llvm::Value *done = Builder.CreateICmpEQ(
1895      nextIndex, llvm::ConstantInt::get(CGF.SizeTy, numElements),
1896      "arrayinit.done");
1897  llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
1898  Builder.CreateCondBr(done, endBB, bodyBB);
1899
1900  CGF.EmitBlock(endBB);
1901
1902  // Leave the partial-array cleanup if we entered one.
1903  if (dtorKind)
1904    CGF.DeactivateCleanupBlock(cleanup, index);
1905}
1906
1907void AggExprEmitter::VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E) {
1908  AggValueSlot Dest = EnsureSlot(E->getType());
1909
1910  LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1911  EmitInitializationToLValue(E->getBase(), DestLV);
1912  VisitInitListExpr(E->getUpdater());
1913}
1914
1915//===----------------------------------------------------------------------===//
1916//                        Entry Points into this File
1917//===----------------------------------------------------------------------===//
1918
1919/// GetNumNonZeroBytesInInit - Get an approximate count of the number of
1920/// non-zero bytes that will be stored when outputting the initializer for the
1921/// specified initializer expression.
1922static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) {
1923  if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E))
1924    E = MTE->getSubExpr();
1925  E = E->IgnoreParenNoopCasts(CGF.getContext());
1926
1927  // 0 and 0.0 won't require any non-zero stores!
1928  if (isSimpleZero(E, CGF)) return CharUnits::Zero();
1929
1930  // If this is an initlist expr, sum up the size of sizes of the (present)
1931  // elements.  If this is something weird, assume the whole thing is non-zero.
1932  const InitListExpr *ILE = dyn_cast<InitListExpr>(E);
1933  while (ILE && ILE->isTransparent())
1934    ILE = dyn_cast<InitListExpr>(ILE->getInit(0));
1935  if (!ILE || !CGF.getTypes().isZeroInitializable(ILE->getType()))
1936    return CGF.getContext().getTypeSizeInChars(E->getType());
1937
1938  // InitListExprs for structs have to be handled carefully.  If there are
1939  // reference members, we need to consider the size of the reference, not the
1940  // referencee.  InitListExprs for unions and arrays can't have references.
1941  if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
1942    if (!RT->isUnionType()) {
1943      RecordDecl *SD = RT->getDecl();
1944      CharUnits NumNonZeroBytes = CharUnits::Zero();
1945
1946      unsigned ILEElement = 0;
1947      if (auto *CXXRD = dyn_cast<CXXRecordDecl>(SD))
1948        while (ILEElement != CXXRD->getNumBases())
1949          NumNonZeroBytes +=
1950              GetNumNonZeroBytesInInit(ILE->getInit(ILEElement++), CGF);
1951      for (const auto *Field : SD->fields()) {
1952        // We're done once we hit the flexible array member or run out of
1953        // InitListExpr elements.
1954        if (Field->getType()->isIncompleteArrayType() ||
1955            ILEElement == ILE->getNumInits())
1956          break;
1957        if (Field->isUnnamedBitfield())
1958          continue;
1959
1960        const Expr *E = ILE->getInit(ILEElement++);
1961
1962        // Reference values are always non-null and have the width of a pointer.
1963        if (Field->getType()->isReferenceType())
1964          NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits(
1965              CGF.getTarget().getPointerWidth(LangAS::Default));
1966        else
1967          NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF);
1968      }
1969
1970      return NumNonZeroBytes;
1971    }
1972  }
1973
1974  // FIXME: This overestimates the number of non-zero bytes for bit-fields.
1975  CharUnits NumNonZeroBytes = CharUnits::Zero();
1976  for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1977    NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF);
1978  return NumNonZeroBytes;
1979}
1980
1981/// CheckAggExprForMemSetUse - If the initializer is large and has a lot of
1982/// zeros in it, emit a memset and avoid storing the individual zeros.
1983///
1984static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E,
1985                                     CodeGenFunction &CGF) {
1986  // If the slot is already known to be zeroed, nothing to do.  Don't mess with
1987  // volatile stores.
1988  if (Slot.isZeroed() || Slot.isVolatile() || !Slot.getAddress().isValid())
1989    return;
1990
1991  // C++ objects with a user-declared constructor don't need zero'ing.
1992  if (CGF.getLangOpts().CPlusPlus)
1993    if (const RecordType *RT = CGF.getContext()
1994                       .getBaseElementType(E->getType())->getAs<RecordType>()) {
1995      const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1996      if (RD->hasUserDeclaredConstructor())
1997        return;
1998    }
1999
2000  // If the type is 16-bytes or smaller, prefer individual stores over memset.
2001  CharUnits Size = Slot.getPreferredSize(CGF.getContext(), E->getType());
2002  if (Size <= CharUnits::fromQuantity(16))
2003    return;
2004
2005  // Check to see if over 3/4 of the initializer are known to be zero.  If so,
2006  // we prefer to emit memset + individual stores for the rest.
2007  CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF);
2008  if (NumNonZeroBytes*4 > Size)
2009    return;
2010
2011  // Okay, it seems like a good idea to use an initial memset, emit the call.
2012  llvm::Constant *SizeVal = CGF.Builder.getInt64(Size.getQuantity());
2013
2014  Address Loc = Slot.getAddress();
2015  Loc = CGF.Builder.CreateElementBitCast(Loc, CGF.Int8Ty);
2016  CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, false);
2017
2018  // Tell the AggExprEmitter that the slot is known zero.
2019  Slot.setZeroed();
2020}
2021
2022
2023
2024
2025/// EmitAggExpr - Emit the computation of the specified expression of aggregate
2026/// type.  The result is computed into DestPtr.  Note that if DestPtr is null,
2027/// the value of the aggregate expression is not needed.  If VolatileDest is
2028/// true, DestPtr cannot be 0.
2029void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot) {
2030  assert(E && hasAggregateEvaluationKind(E->getType()) &&
2031         "Invalid aggregate expression to emit");
2032  assert((Slot.getAddress().isValid() || Slot.isIgnored()) &&
2033         "slot has bits but no address");
2034
2035  // Optimize the slot if possible.
2036  CheckAggExprForMemSetUse(Slot, E, *this);
2037
2038  AggExprEmitter(*this, Slot, Slot.isIgnored()).Visit(const_cast<Expr*>(E));
2039}
2040
2041LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
2042  assert(hasAggregateEvaluationKind(E->getType()) && "Invalid argument!");
2043  Address Temp = CreateMemTemp(E->getType());
2044  LValue LV = MakeAddrLValue(Temp, E->getType());
2045  EmitAggExpr(E, AggValueSlot::forLValue(
2046                     LV, *this, AggValueSlot::IsNotDestructed,
2047                     AggValueSlot::DoesNotNeedGCBarriers,
2048                     AggValueSlot::IsNotAliased, AggValueSlot::DoesNotOverlap));
2049  return LV;
2050}
2051
2052AggValueSlot::Overlap_t
2053CodeGenFunction::getOverlapForFieldInit(const FieldDecl *FD) {
2054  if (!FD->hasAttr<NoUniqueAddressAttr>() || !FD->getType()->isRecordType())
2055    return AggValueSlot::DoesNotOverlap;
2056
2057  // If the field lies entirely within the enclosing class's nvsize, its tail
2058  // padding cannot overlap any already-initialized object. (The only subobjects
2059  // with greater addresses that might already be initialized are vbases.)
2060  const RecordDecl *ClassRD = FD->getParent();
2061  const ASTRecordLayout &Layout = getContext().getASTRecordLayout(ClassRD);
2062  if (Layout.getFieldOffset(FD->getFieldIndex()) +
2063          getContext().getTypeSize(FD->getType()) <=
2064      (uint64_t)getContext().toBits(Layout.getNonVirtualSize()))
2065    return AggValueSlot::DoesNotOverlap;
2066
2067  // The tail padding may contain values we need to preserve.
2068  return AggValueSlot::MayOverlap;
2069}
2070
2071AggValueSlot::Overlap_t CodeGenFunction::getOverlapForBaseInit(
2072    const CXXRecordDecl *RD, const CXXRecordDecl *BaseRD, bool IsVirtual) {
2073  // If the most-derived object is a field declared with [[no_unique_address]],
2074  // the tail padding of any virtual base could be reused for other subobjects
2075  // of that field's class.
2076  if (IsVirtual)
2077    return AggValueSlot::MayOverlap;
2078
2079  // If the base class is laid out entirely within the nvsize of the derived
2080  // class, its tail padding cannot yet be initialized, so we can issue
2081  // stores at the full width of the base class.
2082  const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2083  if (Layout.getBaseClassOffset(BaseRD) +
2084          getContext().getASTRecordLayout(BaseRD).getSize() <=
2085      Layout.getNonVirtualSize())
2086    return AggValueSlot::DoesNotOverlap;
2087
2088  // The tail padding may contain values we need to preserve.
2089  return AggValueSlot::MayOverlap;
2090}
2091
2092void CodeGenFunction::EmitAggregateCopy(LValue Dest, LValue Src, QualType Ty,
2093                                        AggValueSlot::Overlap_t MayOverlap,
2094                                        bool isVolatile) {
2095  assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
2096
2097  Address DestPtr = Dest.getAddress(*this);
2098  Address SrcPtr = Src.getAddress(*this);
2099
2100  if (getLangOpts().CPlusPlus) {
2101    if (const RecordType *RT = Ty->getAs<RecordType>()) {
2102      CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
2103      assert((Record->hasTrivialCopyConstructor() ||
2104              Record->hasTrivialCopyAssignment() ||
2105              Record->hasTrivialMoveConstructor() ||
2106              Record->hasTrivialMoveAssignment() ||
2107              Record->hasAttr<TrivialABIAttr>() || Record->isUnion()) &&
2108             "Trying to aggregate-copy a type without a trivial copy/move "
2109             "constructor or assignment operator");
2110      // Ignore empty classes in C++.
2111      if (Record->isEmpty())
2112        return;
2113    }
2114  }
2115
2116  if (getLangOpts().CUDAIsDevice) {
2117    if (Ty->isCUDADeviceBuiltinSurfaceType()) {
2118      if (getTargetHooks().emitCUDADeviceBuiltinSurfaceDeviceCopy(*this, Dest,
2119                                                                  Src))
2120        return;
2121    } else if (Ty->isCUDADeviceBuiltinTextureType()) {
2122      if (getTargetHooks().emitCUDADeviceBuiltinTextureDeviceCopy(*this, Dest,
2123                                                                  Src))
2124        return;
2125    }
2126  }
2127
2128  // Aggregate assignment turns into llvm.memcpy.  This is almost valid per
2129  // C99 6.5.16.1p3, which states "If the value being stored in an object is
2130  // read from another object that overlaps in anyway the storage of the first
2131  // object, then the overlap shall be exact and the two objects shall have
2132  // qualified or unqualified versions of a compatible type."
2133  //
2134  // memcpy is not defined if the source and destination pointers are exactly
2135  // equal, but other compilers do this optimization, and almost every memcpy
2136  // implementation handles this case safely.  If there is a libc that does not
2137  // safely handle this, we can add a target hook.
2138
2139  // Get data size info for this aggregate. Don't copy the tail padding if this
2140  // might be a potentially-overlapping subobject, since the tail padding might
2141  // be occupied by a different object. Otherwise, copying it is fine.
2142  TypeInfoChars TypeInfo;
2143  if (MayOverlap)
2144    TypeInfo = getContext().getTypeInfoDataSizeInChars(Ty);
2145  else
2146    TypeInfo = getContext().getTypeInfoInChars(Ty);
2147
2148  llvm::Value *SizeVal = nullptr;
2149  if (TypeInfo.Width.isZero()) {
2150    // But note that getTypeInfo returns 0 for a VLA.
2151    if (auto *VAT = dyn_cast_or_null<VariableArrayType>(
2152            getContext().getAsArrayType(Ty))) {
2153      QualType BaseEltTy;
2154      SizeVal = emitArrayLength(VAT, BaseEltTy, DestPtr);
2155      TypeInfo = getContext().getTypeInfoInChars(BaseEltTy);
2156      assert(!TypeInfo.Width.isZero());
2157      SizeVal = Builder.CreateNUWMul(
2158          SizeVal,
2159          llvm::ConstantInt::get(SizeTy, TypeInfo.Width.getQuantity()));
2160    }
2161  }
2162  if (!SizeVal) {
2163    SizeVal = llvm::ConstantInt::get(SizeTy, TypeInfo.Width.getQuantity());
2164  }
2165
2166  // FIXME: If we have a volatile struct, the optimizer can remove what might
2167  // appear to be `extra' memory ops:
2168  //
2169  // volatile struct { int i; } a, b;
2170  //
2171  // int main() {
2172  //   a = b;
2173  //   a = b;
2174  // }
2175  //
2176  // we need to use a different call here.  We use isVolatile to indicate when
2177  // either the source or the destination is volatile.
2178
2179  DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
2180  SrcPtr = Builder.CreateElementBitCast(SrcPtr, Int8Ty);
2181
2182  // Don't do any of the memmove_collectable tests if GC isn't set.
2183  if (CGM.getLangOpts().getGC() == LangOptions::NonGC) {
2184    // fall through
2185  } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
2186    RecordDecl *Record = RecordTy->getDecl();
2187    if (Record->hasObjectMember()) {
2188      CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
2189                                                    SizeVal);
2190      return;
2191    }
2192  } else if (Ty->isArrayType()) {
2193    QualType BaseType = getContext().getBaseElementType(Ty);
2194    if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
2195      if (RecordTy->getDecl()->hasObjectMember()) {
2196        CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
2197                                                      SizeVal);
2198        return;
2199      }
2200    }
2201  }
2202
2203  auto Inst = Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, isVolatile);
2204
2205  // Determine the metadata to describe the position of any padding in this
2206  // memcpy, as well as the TBAA tags for the members of the struct, in case
2207  // the optimizer wishes to expand it in to scalar memory operations.
2208  if (llvm::MDNode *TBAAStructTag = CGM.getTBAAStructInfo(Ty))
2209    Inst->setMetadata(llvm::LLVMContext::MD_tbaa_struct, TBAAStructTag);
2210
2211  if (CGM.getCodeGenOpts().NewStructPathTBAA) {
2212    TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForMemoryTransfer(
2213        Dest.getTBAAInfo(), Src.getTBAAInfo());
2214    CGM.DecorateInstructionWithTBAA(Inst, TBAAInfo);
2215  }
2216}
2217