1//===--- MicrosoftMangle.cpp - Microsoft Visual C++ Name Mangling ---------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This provides C++ name mangling targeting the Microsoft Visual C++ ABI.
10//
11//===----------------------------------------------------------------------===//
12
13#include "clang/AST/ASTContext.h"
14#include "clang/AST/Attr.h"
15#include "clang/AST/CXXInheritance.h"
16#include "clang/AST/CharUnits.h"
17#include "clang/AST/Decl.h"
18#include "clang/AST/DeclCXX.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/DeclOpenMP.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/Expr.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/GlobalDecl.h"
25#include "clang/AST/Mangle.h"
26#include "clang/AST/VTableBuilder.h"
27#include "clang/Basic/ABI.h"
28#include "clang/Basic/DiagnosticOptions.h"
29#include "clang/Basic/FileManager.h"
30#include "clang/Basic/SourceManager.h"
31#include "clang/Basic/TargetInfo.h"
32#include "llvm/ADT/StringExtras.h"
33#include "llvm/Support/CRC.h"
34#include "llvm/Support/MD5.h"
35#include "llvm/Support/MathExtras.h"
36#include "llvm/Support/StringSaver.h"
37#include "llvm/Support/xxhash.h"
38#include <optional>
39
40using namespace clang;
41
42namespace {
43
44// Get GlobalDecl of DeclContext of local entities.
45static GlobalDecl getGlobalDeclAsDeclContext(const DeclContext *DC) {
46  GlobalDecl GD;
47  if (auto *CD = dyn_cast<CXXConstructorDecl>(DC))
48    GD = GlobalDecl(CD, Ctor_Complete);
49  else if (auto *DD = dyn_cast<CXXDestructorDecl>(DC))
50    GD = GlobalDecl(DD, Dtor_Complete);
51  else
52    GD = GlobalDecl(cast<FunctionDecl>(DC));
53  return GD;
54}
55
56struct msvc_hashing_ostream : public llvm::raw_svector_ostream {
57  raw_ostream &OS;
58  llvm::SmallString<64> Buffer;
59
60  msvc_hashing_ostream(raw_ostream &OS)
61      : llvm::raw_svector_ostream(Buffer), OS(OS) {}
62  ~msvc_hashing_ostream() override {
63    StringRef MangledName = str();
64    bool StartsWithEscape = MangledName.startswith("\01");
65    if (StartsWithEscape)
66      MangledName = MangledName.drop_front(1);
67    if (MangledName.size() < 4096) {
68      OS << str();
69      return;
70    }
71
72    llvm::MD5 Hasher;
73    llvm::MD5::MD5Result Hash;
74    Hasher.update(MangledName);
75    Hasher.final(Hash);
76
77    SmallString<32> HexString;
78    llvm::MD5::stringifyResult(Hash, HexString);
79
80    if (StartsWithEscape)
81      OS << '\01';
82    OS << "??@" << HexString << '@';
83  }
84};
85
86static const DeclContext *
87getLambdaDefaultArgumentDeclContext(const Decl *D) {
88  if (const auto *RD = dyn_cast<CXXRecordDecl>(D))
89    if (RD->isLambda())
90      if (const auto *Parm =
91              dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
92        return Parm->getDeclContext();
93  return nullptr;
94}
95
96/// Retrieve the declaration context that should be used when mangling
97/// the given declaration.
98static const DeclContext *getEffectiveDeclContext(const Decl *D) {
99  // The ABI assumes that lambda closure types that occur within
100  // default arguments live in the context of the function. However, due to
101  // the way in which Clang parses and creates function declarations, this is
102  // not the case: the lambda closure type ends up living in the context
103  // where the function itself resides, because the function declaration itself
104  // had not yet been created. Fix the context here.
105  if (const auto *LDADC = getLambdaDefaultArgumentDeclContext(D))
106    return LDADC;
107
108  // Perform the same check for block literals.
109  if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
110    if (ParmVarDecl *ContextParam =
111            dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl()))
112      return ContextParam->getDeclContext();
113  }
114
115  const DeclContext *DC = D->getDeclContext();
116  if (isa<CapturedDecl>(DC) || isa<OMPDeclareReductionDecl>(DC) ||
117      isa<OMPDeclareMapperDecl>(DC)) {
118    return getEffectiveDeclContext(cast<Decl>(DC));
119  }
120
121  return DC->getRedeclContext();
122}
123
124static const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
125  return getEffectiveDeclContext(cast<Decl>(DC));
126}
127
128static const FunctionDecl *getStructor(const NamedDecl *ND) {
129  if (const auto *FTD = dyn_cast<FunctionTemplateDecl>(ND))
130    return FTD->getTemplatedDecl()->getCanonicalDecl();
131
132  const auto *FD = cast<FunctionDecl>(ND);
133  if (const auto *FTD = FD->getPrimaryTemplate())
134    return FTD->getTemplatedDecl()->getCanonicalDecl();
135
136  return FD->getCanonicalDecl();
137}
138
139/// MicrosoftMangleContextImpl - Overrides the default MangleContext for the
140/// Microsoft Visual C++ ABI.
141class MicrosoftMangleContextImpl : public MicrosoftMangleContext {
142  typedef std::pair<const DeclContext *, IdentifierInfo *> DiscriminatorKeyTy;
143  llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator;
144  llvm::DenseMap<const NamedDecl *, unsigned> Uniquifier;
145  llvm::DenseMap<const CXXRecordDecl *, unsigned> LambdaIds;
146  llvm::DenseMap<GlobalDecl, unsigned> SEHFilterIds;
147  llvm::DenseMap<GlobalDecl, unsigned> SEHFinallyIds;
148  SmallString<16> AnonymousNamespaceHash;
149
150public:
151  MicrosoftMangleContextImpl(ASTContext &Context, DiagnosticsEngine &Diags,
152                             bool IsAux = false);
153  bool shouldMangleCXXName(const NamedDecl *D) override;
154  bool shouldMangleStringLiteral(const StringLiteral *SL) override;
155  void mangleCXXName(GlobalDecl GD, raw_ostream &Out) override;
156  void mangleVirtualMemPtrThunk(const CXXMethodDecl *MD,
157                                const MethodVFTableLocation &ML,
158                                raw_ostream &Out) override;
159  void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk,
160                   raw_ostream &) override;
161  void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
162                          const ThisAdjustment &ThisAdjustment,
163                          raw_ostream &) override;
164  void mangleCXXVFTable(const CXXRecordDecl *Derived,
165                        ArrayRef<const CXXRecordDecl *> BasePath,
166                        raw_ostream &Out) override;
167  void mangleCXXVBTable(const CXXRecordDecl *Derived,
168                        ArrayRef<const CXXRecordDecl *> BasePath,
169                        raw_ostream &Out) override;
170  void mangleCXXVirtualDisplacementMap(const CXXRecordDecl *SrcRD,
171                                       const CXXRecordDecl *DstRD,
172                                       raw_ostream &Out) override;
173  void mangleCXXThrowInfo(QualType T, bool IsConst, bool IsVolatile,
174                          bool IsUnaligned, uint32_t NumEntries,
175                          raw_ostream &Out) override;
176  void mangleCXXCatchableTypeArray(QualType T, uint32_t NumEntries,
177                                   raw_ostream &Out) override;
178  void mangleCXXCatchableType(QualType T, const CXXConstructorDecl *CD,
179                              CXXCtorType CT, uint32_t Size, uint32_t NVOffset,
180                              int32_t VBPtrOffset, uint32_t VBIndex,
181                              raw_ostream &Out) override;
182  void mangleCXXRTTI(QualType T, raw_ostream &Out) override;
183  void mangleCXXRTTIName(QualType T, raw_ostream &Out) override;
184  void mangleCXXRTTIBaseClassDescriptor(const CXXRecordDecl *Derived,
185                                        uint32_t NVOffset, int32_t VBPtrOffset,
186                                        uint32_t VBTableOffset, uint32_t Flags,
187                                        raw_ostream &Out) override;
188  void mangleCXXRTTIBaseClassArray(const CXXRecordDecl *Derived,
189                                   raw_ostream &Out) override;
190  void mangleCXXRTTIClassHierarchyDescriptor(const CXXRecordDecl *Derived,
191                                             raw_ostream &Out) override;
192  void
193  mangleCXXRTTICompleteObjectLocator(const CXXRecordDecl *Derived,
194                                     ArrayRef<const CXXRecordDecl *> BasePath,
195                                     raw_ostream &Out) override;
196  void mangleTypeName(QualType T, raw_ostream &) override;
197  void mangleReferenceTemporary(const VarDecl *, unsigned ManglingNumber,
198                                raw_ostream &) override;
199  void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &Out) override;
200  void mangleThreadSafeStaticGuardVariable(const VarDecl *D, unsigned GuardNum,
201                                           raw_ostream &Out) override;
202  void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override;
203  void mangleDynamicAtExitDestructor(const VarDecl *D,
204                                     raw_ostream &Out) override;
205  void mangleSEHFilterExpression(GlobalDecl EnclosingDecl,
206                                 raw_ostream &Out) override;
207  void mangleSEHFinallyBlock(GlobalDecl EnclosingDecl,
208                             raw_ostream &Out) override;
209  void mangleStringLiteral(const StringLiteral *SL, raw_ostream &Out) override;
210  bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
211    const DeclContext *DC = getEffectiveDeclContext(ND);
212    if (!DC->isFunctionOrMethod())
213      return false;
214
215    // Lambda closure types are already numbered, give out a phony number so
216    // that they demangle nicely.
217    if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) {
218      if (RD->isLambda()) {
219        disc = 1;
220        return true;
221      }
222    }
223
224    // Use the canonical number for externally visible decls.
225    if (ND->isExternallyVisible()) {
226      disc = getASTContext().getManglingNumber(ND, isAux());
227      return true;
228    }
229
230    // Anonymous tags are already numbered.
231    if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) {
232      if (!Tag->hasNameForLinkage() &&
233          !getASTContext().getDeclaratorForUnnamedTagDecl(Tag) &&
234          !getASTContext().getTypedefNameForUnnamedTagDecl(Tag))
235        return false;
236    }
237
238    // Make up a reasonable number for internal decls.
239    unsigned &discriminator = Uniquifier[ND];
240    if (!discriminator)
241      discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())];
242    disc = discriminator + 1;
243    return true;
244  }
245
246  std::string getLambdaString(const CXXRecordDecl *Lambda) override {
247    assert(Lambda->isLambda() && "RD must be a lambda!");
248    std::string Name("<lambda_");
249
250    Decl *LambdaContextDecl = Lambda->getLambdaContextDecl();
251    unsigned LambdaManglingNumber = Lambda->getLambdaManglingNumber();
252    unsigned LambdaId;
253    const ParmVarDecl *Parm = dyn_cast_or_null<ParmVarDecl>(LambdaContextDecl);
254    const FunctionDecl *Func =
255        Parm ? dyn_cast<FunctionDecl>(Parm->getDeclContext()) : nullptr;
256
257    if (Func) {
258      unsigned DefaultArgNo =
259          Func->getNumParams() - Parm->getFunctionScopeIndex();
260      Name += llvm::utostr(DefaultArgNo);
261      Name += "_";
262    }
263
264    if (LambdaManglingNumber)
265      LambdaId = LambdaManglingNumber;
266    else
267      LambdaId = getLambdaIdForDebugInfo(Lambda);
268
269    Name += llvm::utostr(LambdaId);
270    Name += ">";
271    return Name;
272  }
273
274  unsigned getLambdaId(const CXXRecordDecl *RD) {
275    assert(RD->isLambda() && "RD must be a lambda!");
276    assert(!RD->isExternallyVisible() && "RD must not be visible!");
277    assert(RD->getLambdaManglingNumber() == 0 &&
278           "RD must not have a mangling number!");
279    std::pair<llvm::DenseMap<const CXXRecordDecl *, unsigned>::iterator, bool>
280        Result = LambdaIds.insert(std::make_pair(RD, LambdaIds.size()));
281    return Result.first->second;
282  }
283
284  unsigned getLambdaIdForDebugInfo(const CXXRecordDecl *RD) {
285    assert(RD->isLambda() && "RD must be a lambda!");
286    assert(!RD->isExternallyVisible() && "RD must not be visible!");
287    assert(RD->getLambdaManglingNumber() == 0 &&
288           "RD must not have a mangling number!");
289    llvm::DenseMap<const CXXRecordDecl *, unsigned>::iterator Result =
290        LambdaIds.find(RD);
291    // The lambda should exist, but return 0 in case it doesn't.
292    if (Result == LambdaIds.end())
293      return 0;
294    return Result->second;
295  }
296
297  /// Return a character sequence that is (somewhat) unique to the TU suitable
298  /// for mangling anonymous namespaces.
299  StringRef getAnonymousNamespaceHash() const {
300    return AnonymousNamespaceHash;
301  }
302
303private:
304  void mangleInitFiniStub(const VarDecl *D, char CharCode, raw_ostream &Out);
305};
306
307/// MicrosoftCXXNameMangler - Manage the mangling of a single name for the
308/// Microsoft Visual C++ ABI.
309class MicrosoftCXXNameMangler {
310  MicrosoftMangleContextImpl &Context;
311  raw_ostream &Out;
312
313  /// The "structor" is the top-level declaration being mangled, if
314  /// that's not a template specialization; otherwise it's the pattern
315  /// for that specialization.
316  const NamedDecl *Structor;
317  unsigned StructorType;
318
319  typedef llvm::SmallVector<std::string, 10> BackRefVec;
320  BackRefVec NameBackReferences;
321
322  typedef llvm::DenseMap<const void *, unsigned> ArgBackRefMap;
323  ArgBackRefMap FunArgBackReferences;
324  ArgBackRefMap TemplateArgBackReferences;
325
326  typedef llvm::DenseMap<const void *, StringRef> TemplateArgStringMap;
327  TemplateArgStringMap TemplateArgStrings;
328  llvm::StringSaver TemplateArgStringStorage;
329  llvm::BumpPtrAllocator TemplateArgStringStorageAlloc;
330
331  typedef std::set<std::pair<int, bool>> PassObjectSizeArgsSet;
332  PassObjectSizeArgsSet PassObjectSizeArgs;
333
334  ASTContext &getASTContext() const { return Context.getASTContext(); }
335
336  const bool PointersAre64Bit;
337
338public:
339  enum QualifierMangleMode { QMM_Drop, QMM_Mangle, QMM_Escape, QMM_Result };
340
341  MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_)
342      : Context(C), Out(Out_), Structor(nullptr), StructorType(-1),
343        TemplateArgStringStorage(TemplateArgStringStorageAlloc),
344        PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(
345                             LangAS::Default) == 64) {}
346
347  MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_,
348                          const CXXConstructorDecl *D, CXXCtorType Type)
349      : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
350        TemplateArgStringStorage(TemplateArgStringStorageAlloc),
351        PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(
352                             LangAS::Default) == 64) {}
353
354  MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_,
355                          const CXXDestructorDecl *D, CXXDtorType Type)
356      : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
357        TemplateArgStringStorage(TemplateArgStringStorageAlloc),
358        PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(
359                             LangAS::Default) == 64) {}
360
361  raw_ostream &getStream() const { return Out; }
362
363  void mangle(GlobalDecl GD, StringRef Prefix = "?");
364  void mangleName(GlobalDecl GD);
365  void mangleFunctionEncoding(GlobalDecl GD, bool ShouldMangle);
366  void mangleVariableEncoding(const VarDecl *VD);
367  void mangleMemberDataPointer(const CXXRecordDecl *RD, const ValueDecl *VD,
368                               StringRef Prefix = "$");
369  void mangleMemberFunctionPointer(const CXXRecordDecl *RD,
370                                   const CXXMethodDecl *MD,
371                                   StringRef Prefix = "$");
372  void mangleVirtualMemPtrThunk(const CXXMethodDecl *MD,
373                                const MethodVFTableLocation &ML);
374  void mangleNumber(int64_t Number);
375  void mangleNumber(llvm::APSInt Number);
376  void mangleFloat(llvm::APFloat Number);
377  void mangleBits(llvm::APInt Number);
378  void mangleTagTypeKind(TagTypeKind TK);
379  void mangleArtificialTagType(TagTypeKind TK, StringRef UnqualifiedName,
380                               ArrayRef<StringRef> NestedNames = std::nullopt);
381  void mangleAddressSpaceType(QualType T, Qualifiers Quals, SourceRange Range);
382  void mangleType(QualType T, SourceRange Range,
383                  QualifierMangleMode QMM = QMM_Mangle);
384  void mangleFunctionType(const FunctionType *T,
385                          const FunctionDecl *D = nullptr,
386                          bool ForceThisQuals = false,
387                          bool MangleExceptionSpec = true);
388  void mangleNestedName(GlobalDecl GD);
389
390private:
391  bool isStructorDecl(const NamedDecl *ND) const {
392    return ND == Structor || getStructor(ND) == Structor;
393  }
394
395  bool is64BitPointer(Qualifiers Quals) const {
396    LangAS AddrSpace = Quals.getAddressSpace();
397    return AddrSpace == LangAS::ptr64 ||
398           (PointersAre64Bit && !(AddrSpace == LangAS::ptr32_sptr ||
399                                  AddrSpace == LangAS::ptr32_uptr));
400  }
401
402  void mangleUnqualifiedName(GlobalDecl GD) {
403    mangleUnqualifiedName(GD, cast<NamedDecl>(GD.getDecl())->getDeclName());
404  }
405  void mangleUnqualifiedName(GlobalDecl GD, DeclarationName Name);
406  void mangleSourceName(StringRef Name);
407  void mangleOperatorName(OverloadedOperatorKind OO, SourceLocation Loc);
408  void mangleCXXDtorType(CXXDtorType T);
409  void mangleQualifiers(Qualifiers Quals, bool IsMember);
410  void mangleRefQualifier(RefQualifierKind RefQualifier);
411  void manglePointerCVQualifiers(Qualifiers Quals);
412  void manglePointerExtQualifiers(Qualifiers Quals, QualType PointeeType);
413
414  void mangleUnscopedTemplateName(GlobalDecl GD);
415  void
416  mangleTemplateInstantiationName(GlobalDecl GD,
417                                  const TemplateArgumentList &TemplateArgs);
418  void mangleObjCMethodName(const ObjCMethodDecl *MD);
419
420  void mangleFunctionArgumentType(QualType T, SourceRange Range);
421  void manglePassObjectSizeArg(const PassObjectSizeAttr *POSA);
422
423  bool isArtificialTagType(QualType T) const;
424
425  // Declare manglers for every type class.
426#define ABSTRACT_TYPE(CLASS, PARENT)
427#define NON_CANONICAL_TYPE(CLASS, PARENT)
428#define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T, \
429                                            Qualifiers Quals, \
430                                            SourceRange Range);
431#include "clang/AST/TypeNodes.inc"
432#undef ABSTRACT_TYPE
433#undef NON_CANONICAL_TYPE
434#undef TYPE
435
436  void mangleType(const TagDecl *TD);
437  void mangleDecayedArrayType(const ArrayType *T);
438  void mangleArrayType(const ArrayType *T);
439  void mangleFunctionClass(const FunctionDecl *FD);
440  void mangleCallingConvention(CallingConv CC);
441  void mangleCallingConvention(const FunctionType *T);
442  void mangleIntegerLiteral(const llvm::APSInt &Number,
443                            const NonTypeTemplateParmDecl *PD = nullptr,
444                            QualType TemplateArgType = QualType());
445  void mangleExpression(const Expr *E, const NonTypeTemplateParmDecl *PD);
446  void mangleThrowSpecification(const FunctionProtoType *T);
447
448  void mangleTemplateArgs(const TemplateDecl *TD,
449                          const TemplateArgumentList &TemplateArgs);
450  void mangleTemplateArg(const TemplateDecl *TD, const TemplateArgument &TA,
451                         const NamedDecl *Parm);
452  void mangleTemplateArgValue(QualType T, const APValue &V,
453                              bool WithScalarType = false);
454
455  void mangleObjCProtocol(const ObjCProtocolDecl *PD);
456  void mangleObjCLifetime(const QualType T, Qualifiers Quals,
457                          SourceRange Range);
458  void mangleObjCKindOfType(const ObjCObjectType *T, Qualifiers Quals,
459                            SourceRange Range);
460};
461}
462
463MicrosoftMangleContextImpl::MicrosoftMangleContextImpl(ASTContext &Context,
464                                                       DiagnosticsEngine &Diags,
465                                                       bool IsAux)
466    : MicrosoftMangleContext(Context, Diags, IsAux) {
467  // To mangle anonymous namespaces, hash the path to the main source file. The
468  // path should be whatever (probably relative) path was passed on the command
469  // line. The goal is for the compiler to produce the same output regardless of
470  // working directory, so use the uncanonicalized relative path.
471  //
472  // It's important to make the mangled names unique because, when CodeView
473  // debug info is in use, the debugger uses mangled type names to distinguish
474  // between otherwise identically named types in anonymous namespaces.
475  //
476  // These symbols are always internal, so there is no need for the hash to
477  // match what MSVC produces. For the same reason, clang is free to change the
478  // hash at any time without breaking compatibility with old versions of clang.
479  // The generated names are intended to look similar to what MSVC generates,
480  // which are something like "?A0x01234567@".
481  SourceManager &SM = Context.getSourceManager();
482  if (const FileEntry *FE = SM.getFileEntryForID(SM.getMainFileID())) {
483    // Truncate the hash so we get 8 characters of hexadecimal.
484    uint32_t TruncatedHash = uint32_t(xxHash64(FE->getName()));
485    AnonymousNamespaceHash = llvm::utohexstr(TruncatedHash);
486  } else {
487    // If we don't have a path to the main file, we'll just use 0.
488    AnonymousNamespaceHash = "0";
489  }
490}
491
492bool MicrosoftMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) {
493  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
494    LanguageLinkage L = FD->getLanguageLinkage();
495    // Overloadable functions need mangling.
496    if (FD->hasAttr<OverloadableAttr>())
497      return true;
498
499    // The ABI expects that we would never mangle "typical" user-defined entry
500    // points regardless of visibility or freestanding-ness.
501    //
502    // N.B. This is distinct from asking about "main".  "main" has a lot of
503    // special rules associated with it in the standard while these
504    // user-defined entry points are outside of the purview of the standard.
505    // For example, there can be only one definition for "main" in a standards
506    // compliant program; however nothing forbids the existence of wmain and
507    // WinMain in the same translation unit.
508    if (FD->isMSVCRTEntryPoint())
509      return false;
510
511    // C++ functions and those whose names are not a simple identifier need
512    // mangling.
513    if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage)
514      return true;
515
516    // C functions are not mangled.
517    if (L == CLanguageLinkage)
518      return false;
519  }
520
521  // Otherwise, no mangling is done outside C++ mode.
522  if (!getASTContext().getLangOpts().CPlusPlus)
523    return false;
524
525  const VarDecl *VD = dyn_cast<VarDecl>(D);
526  if (VD && !isa<DecompositionDecl>(D)) {
527    // C variables are not mangled.
528    if (VD->isExternC())
529      return false;
530
531    // Variables at global scope with internal linkage are not mangled.
532    const DeclContext *DC = getEffectiveDeclContext(D);
533    // Check for extern variable declared locally.
534    if (DC->isFunctionOrMethod() && D->hasLinkage())
535      while (!DC->isNamespace() && !DC->isTranslationUnit())
536        DC = getEffectiveParentContext(DC);
537
538    if (DC->isTranslationUnit() && D->getFormalLinkage() == InternalLinkage &&
539        !isa<VarTemplateSpecializationDecl>(D) &&
540        D->getIdentifier() != nullptr)
541      return false;
542  }
543
544  return true;
545}
546
547bool
548MicrosoftMangleContextImpl::shouldMangleStringLiteral(const StringLiteral *SL) {
549  return true;
550}
551
552void MicrosoftCXXNameMangler::mangle(GlobalDecl GD, StringRef Prefix) {
553  const NamedDecl *D = cast<NamedDecl>(GD.getDecl());
554  // MSVC doesn't mangle C++ names the same way it mangles extern "C" names.
555  // Therefore it's really important that we don't decorate the
556  // name with leading underscores or leading/trailing at signs. So, by
557  // default, we emit an asm marker at the start so we get the name right.
558  // Callers can override this with a custom prefix.
559
560  // <mangled-name> ::= ? <name> <type-encoding>
561  Out << Prefix;
562  mangleName(GD);
563  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
564    mangleFunctionEncoding(GD, Context.shouldMangleDeclName(FD));
565  else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
566    mangleVariableEncoding(VD);
567  else if (isa<MSGuidDecl>(D))
568    // MSVC appears to mangle GUIDs as if they were variables of type
569    // 'const struct __s_GUID'.
570    Out << "3U__s_GUID@@B";
571  else if (isa<TemplateParamObjectDecl>(D)) {
572    // Template parameter objects don't get a <type-encoding>; their type is
573    // specified as part of their value.
574  } else
575    llvm_unreachable("Tried to mangle unexpected NamedDecl!");
576}
577
578void MicrosoftCXXNameMangler::mangleFunctionEncoding(GlobalDecl GD,
579                                                     bool ShouldMangle) {
580  const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
581  // <type-encoding> ::= <function-class> <function-type>
582
583  // Since MSVC operates on the type as written and not the canonical type, it
584  // actually matters which decl we have here.  MSVC appears to choose the
585  // first, since it is most likely to be the declaration in a header file.
586  FD = FD->getFirstDecl();
587
588  // We should never ever see a FunctionNoProtoType at this point.
589  // We don't even know how to mangle their types anyway :).
590  const FunctionProtoType *FT = FD->getType()->castAs<FunctionProtoType>();
591
592  // extern "C" functions can hold entities that must be mangled.
593  // As it stands, these functions still need to get expressed in the full
594  // external name.  They have their class and type omitted, replaced with '9'.
595  if (ShouldMangle) {
596    // We would like to mangle all extern "C" functions using this additional
597    // component but this would break compatibility with MSVC's behavior.
598    // Instead, do this when we know that compatibility isn't important (in
599    // other words, when it is an overloaded extern "C" function).
600    if (FD->isExternC() && FD->hasAttr<OverloadableAttr>())
601      Out << "$$J0";
602
603    mangleFunctionClass(FD);
604
605    mangleFunctionType(FT, FD, false, false);
606  } else {
607    Out << '9';
608  }
609}
610
611void MicrosoftCXXNameMangler::mangleVariableEncoding(const VarDecl *VD) {
612  // <type-encoding> ::= <storage-class> <variable-type>
613  // <storage-class> ::= 0  # private static member
614  //                 ::= 1  # protected static member
615  //                 ::= 2  # public static member
616  //                 ::= 3  # global
617  //                 ::= 4  # static local
618
619  // The first character in the encoding (after the name) is the storage class.
620  if (VD->isStaticDataMember()) {
621    // If it's a static member, it also encodes the access level.
622    switch (VD->getAccess()) {
623      default:
624      case AS_private: Out << '0'; break;
625      case AS_protected: Out << '1'; break;
626      case AS_public: Out << '2'; break;
627    }
628  }
629  else if (!VD->isStaticLocal())
630    Out << '3';
631  else
632    Out << '4';
633  // Now mangle the type.
634  // <variable-type> ::= <type> <cvr-qualifiers>
635  //                 ::= <type> <pointee-cvr-qualifiers> # pointers, references
636  // Pointers and references are odd. The type of 'int * const foo;' gets
637  // mangled as 'QAHA' instead of 'PAHB', for example.
638  SourceRange SR = VD->getSourceRange();
639  QualType Ty = VD->getType();
640  if (Ty->isPointerType() || Ty->isReferenceType() ||
641      Ty->isMemberPointerType()) {
642    mangleType(Ty, SR, QMM_Drop);
643    manglePointerExtQualifiers(
644        Ty.getDesugaredType(getASTContext()).getLocalQualifiers(), QualType());
645    if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>()) {
646      mangleQualifiers(MPT->getPointeeType().getQualifiers(), true);
647      // Member pointers are suffixed with a back reference to the member
648      // pointer's class name.
649      mangleName(MPT->getClass()->getAsCXXRecordDecl());
650    } else
651      mangleQualifiers(Ty->getPointeeType().getQualifiers(), false);
652  } else if (const ArrayType *AT = getASTContext().getAsArrayType(Ty)) {
653    // Global arrays are funny, too.
654    mangleDecayedArrayType(AT);
655    if (AT->getElementType()->isArrayType())
656      Out << 'A';
657    else
658      mangleQualifiers(Ty.getQualifiers(), false);
659  } else {
660    mangleType(Ty, SR, QMM_Drop);
661    mangleQualifiers(Ty.getQualifiers(), false);
662  }
663}
664
665void MicrosoftCXXNameMangler::mangleMemberDataPointer(const CXXRecordDecl *RD,
666                                                      const ValueDecl *VD,
667                                                      StringRef Prefix) {
668  // <member-data-pointer> ::= <integer-literal>
669  //                       ::= $F <number> <number>
670  //                       ::= $G <number> <number> <number>
671
672  int64_t FieldOffset;
673  int64_t VBTableOffset;
674  MSInheritanceModel IM = RD->getMSInheritanceModel();
675  if (VD) {
676    FieldOffset = getASTContext().getFieldOffset(VD);
677    assert(FieldOffset % getASTContext().getCharWidth() == 0 &&
678           "cannot take address of bitfield");
679    FieldOffset /= getASTContext().getCharWidth();
680
681    VBTableOffset = 0;
682
683    if (IM == MSInheritanceModel::Virtual)
684      FieldOffset -= getASTContext().getOffsetOfBaseWithVBPtr(RD).getQuantity();
685  } else {
686    FieldOffset = RD->nullFieldOffsetIsZero() ? 0 : -1;
687
688    VBTableOffset = -1;
689  }
690
691  char Code = '\0';
692  switch (IM) {
693  case MSInheritanceModel::Single:      Code = '0'; break;
694  case MSInheritanceModel::Multiple:    Code = '0'; break;
695  case MSInheritanceModel::Virtual:     Code = 'F'; break;
696  case MSInheritanceModel::Unspecified: Code = 'G'; break;
697  }
698
699  Out << Prefix << Code;
700
701  mangleNumber(FieldOffset);
702
703  // The C++ standard doesn't allow base-to-derived member pointer conversions
704  // in template parameter contexts, so the vbptr offset of data member pointers
705  // is always zero.
706  if (inheritanceModelHasVBPtrOffsetField(IM))
707    mangleNumber(0);
708  if (inheritanceModelHasVBTableOffsetField(IM))
709    mangleNumber(VBTableOffset);
710}
711
712void
713MicrosoftCXXNameMangler::mangleMemberFunctionPointer(const CXXRecordDecl *RD,
714                                                     const CXXMethodDecl *MD,
715                                                     StringRef Prefix) {
716  // <member-function-pointer> ::= $1? <name>
717  //                           ::= $H? <name> <number>
718  //                           ::= $I? <name> <number> <number>
719  //                           ::= $J? <name> <number> <number> <number>
720
721  MSInheritanceModel IM = RD->getMSInheritanceModel();
722
723  char Code = '\0';
724  switch (IM) {
725  case MSInheritanceModel::Single:      Code = '1'; break;
726  case MSInheritanceModel::Multiple:    Code = 'H'; break;
727  case MSInheritanceModel::Virtual:     Code = 'I'; break;
728  case MSInheritanceModel::Unspecified: Code = 'J'; break;
729  }
730
731  // If non-virtual, mangle the name.  If virtual, mangle as a virtual memptr
732  // thunk.
733  uint64_t NVOffset = 0;
734  uint64_t VBTableOffset = 0;
735  uint64_t VBPtrOffset = 0;
736  if (MD) {
737    Out << Prefix << Code << '?';
738    if (MD->isVirtual()) {
739      MicrosoftVTableContext *VTContext =
740          cast<MicrosoftVTableContext>(getASTContext().getVTableContext());
741      MethodVFTableLocation ML =
742          VTContext->getMethodVFTableLocation(GlobalDecl(MD));
743      mangleVirtualMemPtrThunk(MD, ML);
744      NVOffset = ML.VFPtrOffset.getQuantity();
745      VBTableOffset = ML.VBTableIndex * 4;
746      if (ML.VBase) {
747        const ASTRecordLayout &Layout = getASTContext().getASTRecordLayout(RD);
748        VBPtrOffset = Layout.getVBPtrOffset().getQuantity();
749      }
750    } else {
751      mangleName(MD);
752      mangleFunctionEncoding(MD, /*ShouldMangle=*/true);
753    }
754
755    if (VBTableOffset == 0 && IM == MSInheritanceModel::Virtual)
756      NVOffset -= getASTContext().getOffsetOfBaseWithVBPtr(RD).getQuantity();
757  } else {
758    // Null single inheritance member functions are encoded as a simple nullptr.
759    if (IM == MSInheritanceModel::Single) {
760      Out << Prefix << "0A@";
761      return;
762    }
763    if (IM == MSInheritanceModel::Unspecified)
764      VBTableOffset = -1;
765    Out << Prefix << Code;
766  }
767
768  if (inheritanceModelHasNVOffsetField(/*IsMemberFunction=*/true, IM))
769    mangleNumber(static_cast<uint32_t>(NVOffset));
770  if (inheritanceModelHasVBPtrOffsetField(IM))
771    mangleNumber(VBPtrOffset);
772  if (inheritanceModelHasVBTableOffsetField(IM))
773    mangleNumber(VBTableOffset);
774}
775
776void MicrosoftCXXNameMangler::mangleVirtualMemPtrThunk(
777    const CXXMethodDecl *MD, const MethodVFTableLocation &ML) {
778  // Get the vftable offset.
779  CharUnits PointerWidth = getASTContext().toCharUnitsFromBits(
780      getASTContext().getTargetInfo().getPointerWidth(LangAS::Default));
781  uint64_t OffsetInVFTable = ML.Index * PointerWidth.getQuantity();
782
783  Out << "?_9";
784  mangleName(MD->getParent());
785  Out << "$B";
786  mangleNumber(OffsetInVFTable);
787  Out << 'A';
788  mangleCallingConvention(MD->getType()->castAs<FunctionProtoType>());
789}
790
791void MicrosoftCXXNameMangler::mangleName(GlobalDecl GD) {
792  // <name> ::= <unscoped-name> {[<named-scope>]+ | [<nested-name>]}? @
793
794  // Always start with the unqualified name.
795  mangleUnqualifiedName(GD);
796
797  mangleNestedName(GD);
798
799  // Terminate the whole name with an '@'.
800  Out << '@';
801}
802
803void MicrosoftCXXNameMangler::mangleNumber(int64_t Number) {
804  mangleNumber(llvm::APSInt(llvm::APInt(64, Number), /*IsUnsigned*/false));
805}
806
807void MicrosoftCXXNameMangler::mangleNumber(llvm::APSInt Number) {
808  // MSVC never mangles any integer wider than 64 bits. In general it appears
809  // to convert every integer to signed 64 bit before mangling (including
810  // unsigned 64 bit values). Do the same, but preserve bits beyond the bottom
811  // 64.
812  unsigned Width = std::max(Number.getBitWidth(), 64U);
813  llvm::APInt Value = Number.extend(Width);
814
815  // <non-negative integer> ::= A@              # when Number == 0
816  //                        ::= <decimal digit> # when 1 <= Number <= 10
817  //                        ::= <hex digit>+ @  # when Number >= 10
818  //
819  // <number>               ::= [?] <non-negative integer>
820
821  if (Value.isNegative()) {
822    Value = -Value;
823    Out << '?';
824  }
825  mangleBits(Value);
826}
827
828void MicrosoftCXXNameMangler::mangleFloat(llvm::APFloat Number) {
829  using llvm::APFloat;
830
831  switch (APFloat::SemanticsToEnum(Number.getSemantics())) {
832  case APFloat::S_IEEEsingle: Out << 'A'; break;
833  case APFloat::S_IEEEdouble: Out << 'B'; break;
834
835  // The following are all Clang extensions. We try to pick manglings that are
836  // unlikely to conflict with MSVC's scheme.
837  case APFloat::S_IEEEhalf: Out << 'V'; break;
838  case APFloat::S_BFloat: Out << 'W'; break;
839  case APFloat::S_x87DoubleExtended: Out << 'X'; break;
840  case APFloat::S_IEEEquad: Out << 'Y'; break;
841  case APFloat::S_PPCDoubleDouble: Out << 'Z'; break;
842  case APFloat::S_Float8E5M2:
843  case APFloat::S_Float8E4M3FN:
844    llvm_unreachable("Tried to mangle unexpected APFloat semantics");
845  }
846
847  mangleBits(Number.bitcastToAPInt());
848}
849
850void MicrosoftCXXNameMangler::mangleBits(llvm::APInt Value) {
851  if (Value == 0)
852    Out << "A@";
853  else if (Value.uge(1) && Value.ule(10))
854    Out << (Value - 1);
855  else {
856    // Numbers that are not encoded as decimal digits are represented as nibbles
857    // in the range of ASCII characters 'A' to 'P'.
858    // The number 0x123450 would be encoded as 'BCDEFA'
859    llvm::SmallString<32> EncodedNumberBuffer;
860    for (; Value != 0; Value.lshrInPlace(4))
861      EncodedNumberBuffer.push_back('A' + (Value & 0xf).getZExtValue());
862    std::reverse(EncodedNumberBuffer.begin(), EncodedNumberBuffer.end());
863    Out.write(EncodedNumberBuffer.data(), EncodedNumberBuffer.size());
864    Out << '@';
865  }
866}
867
868static GlobalDecl isTemplate(GlobalDecl GD,
869                             const TemplateArgumentList *&TemplateArgs) {
870  const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
871  // Check if we have a function template.
872  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
873    if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
874      TemplateArgs = FD->getTemplateSpecializationArgs();
875      return GD.getWithDecl(TD);
876    }
877  }
878
879  // Check if we have a class template.
880  if (const ClassTemplateSpecializationDecl *Spec =
881          dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
882    TemplateArgs = &Spec->getTemplateArgs();
883    return GD.getWithDecl(Spec->getSpecializedTemplate());
884  }
885
886  // Check if we have a variable template.
887  if (const VarTemplateSpecializationDecl *Spec =
888          dyn_cast<VarTemplateSpecializationDecl>(ND)) {
889    TemplateArgs = &Spec->getTemplateArgs();
890    return GD.getWithDecl(Spec->getSpecializedTemplate());
891  }
892
893  return GlobalDecl();
894}
895
896void MicrosoftCXXNameMangler::mangleUnqualifiedName(GlobalDecl GD,
897                                                    DeclarationName Name) {
898  const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
899  //  <unqualified-name> ::= <operator-name>
900  //                     ::= <ctor-dtor-name>
901  //                     ::= <source-name>
902  //                     ::= <template-name>
903
904  // Check if we have a template.
905  const TemplateArgumentList *TemplateArgs = nullptr;
906  if (GlobalDecl TD = isTemplate(GD, TemplateArgs)) {
907    // Function templates aren't considered for name back referencing.  This
908    // makes sense since function templates aren't likely to occur multiple
909    // times in a symbol.
910    if (isa<FunctionTemplateDecl>(TD.getDecl())) {
911      mangleTemplateInstantiationName(TD, *TemplateArgs);
912      Out << '@';
913      return;
914    }
915
916    // Here comes the tricky thing: if we need to mangle something like
917    //   void foo(A::X<Y>, B::X<Y>),
918    // the X<Y> part is aliased. However, if you need to mangle
919    //   void foo(A::X<A::Y>, A::X<B::Y>),
920    // the A::X<> part is not aliased.
921    // That is, from the mangler's perspective we have a structure like this:
922    //   namespace[s] -> type[ -> template-parameters]
923    // but from the Clang perspective we have
924    //   type [ -> template-parameters]
925    //      \-> namespace[s]
926    // What we do is we create a new mangler, mangle the same type (without
927    // a namespace suffix) to a string using the extra mangler and then use
928    // the mangled type name as a key to check the mangling of different types
929    // for aliasing.
930
931    // It's important to key cache reads off ND, not TD -- the same TD can
932    // be used with different TemplateArgs, but ND uniquely identifies
933    // TD / TemplateArg pairs.
934    ArgBackRefMap::iterator Found = TemplateArgBackReferences.find(ND);
935    if (Found == TemplateArgBackReferences.end()) {
936
937      TemplateArgStringMap::iterator Found = TemplateArgStrings.find(ND);
938      if (Found == TemplateArgStrings.end()) {
939        // Mangle full template name into temporary buffer.
940        llvm::SmallString<64> TemplateMangling;
941        llvm::raw_svector_ostream Stream(TemplateMangling);
942        MicrosoftCXXNameMangler Extra(Context, Stream);
943        Extra.mangleTemplateInstantiationName(TD, *TemplateArgs);
944
945        // Use the string backref vector to possibly get a back reference.
946        mangleSourceName(TemplateMangling);
947
948        // Memoize back reference for this type if one exist, else memoize
949        // the mangling itself.
950        BackRefVec::iterator StringFound =
951            llvm::find(NameBackReferences, TemplateMangling);
952        if (StringFound != NameBackReferences.end()) {
953          TemplateArgBackReferences[ND] =
954              StringFound - NameBackReferences.begin();
955        } else {
956          TemplateArgStrings[ND] =
957              TemplateArgStringStorage.save(TemplateMangling.str());
958        }
959      } else {
960        Out << Found->second << '@'; // Outputs a StringRef.
961      }
962    } else {
963      Out << Found->second; // Outputs a back reference (an int).
964    }
965    return;
966  }
967
968  switch (Name.getNameKind()) {
969    case DeclarationName::Identifier: {
970      if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) {
971        bool IsDeviceStub =
972            ND &&
973            ((isa<FunctionDecl>(ND) && ND->hasAttr<CUDAGlobalAttr>()) ||
974             (isa<FunctionTemplateDecl>(ND) &&
975              cast<FunctionTemplateDecl>(ND)
976                  ->getTemplatedDecl()
977                  ->hasAttr<CUDAGlobalAttr>())) &&
978            GD.getKernelReferenceKind() == KernelReferenceKind::Stub;
979        if (IsDeviceStub)
980          mangleSourceName(
981              (llvm::Twine("__device_stub__") + II->getName()).str());
982        else
983          mangleSourceName(II->getName());
984        break;
985      }
986
987      // Otherwise, an anonymous entity.  We must have a declaration.
988      assert(ND && "mangling empty name without declaration");
989
990      if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
991        if (NS->isAnonymousNamespace()) {
992          Out << "?A0x" << Context.getAnonymousNamespaceHash() << '@';
993          break;
994        }
995      }
996
997      if (const DecompositionDecl *DD = dyn_cast<DecompositionDecl>(ND)) {
998        // Decomposition declarations are considered anonymous, and get
999        // numbered with a $S prefix.
1000        llvm::SmallString<64> Name("$S");
1001        // Get a unique id for the anonymous struct.
1002        Name += llvm::utostr(Context.getAnonymousStructId(DD) + 1);
1003        mangleSourceName(Name);
1004        break;
1005      }
1006
1007      if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1008        // We must have an anonymous union or struct declaration.
1009        const CXXRecordDecl *RD = VD->getType()->getAsCXXRecordDecl();
1010        assert(RD && "expected variable decl to have a record type");
1011        // Anonymous types with no tag or typedef get the name of their
1012        // declarator mangled in.  If they have no declarator, number them with
1013        // a $S prefix.
1014        llvm::SmallString<64> Name("$S");
1015        // Get a unique id for the anonymous struct.
1016        Name += llvm::utostr(Context.getAnonymousStructId(RD) + 1);
1017        mangleSourceName(Name.str());
1018        break;
1019      }
1020
1021      if (const MSGuidDecl *GD = dyn_cast<MSGuidDecl>(ND)) {
1022        // Mangle a GUID object as if it were a variable with the corresponding
1023        // mangled name.
1024        SmallString<sizeof("_GUID_12345678_1234_1234_1234_1234567890ab")> GUID;
1025        llvm::raw_svector_ostream GUIDOS(GUID);
1026        Context.mangleMSGuidDecl(GD, GUIDOS);
1027        mangleSourceName(GUID);
1028        break;
1029      }
1030
1031      if (const auto *TPO = dyn_cast<TemplateParamObjectDecl>(ND)) {
1032        Out << "?__N";
1033        mangleTemplateArgValue(TPO->getType().getUnqualifiedType(),
1034                               TPO->getValue());
1035        break;
1036      }
1037
1038      // We must have an anonymous struct.
1039      const TagDecl *TD = cast<TagDecl>(ND);
1040      if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
1041        assert(TD->getDeclContext() == D->getDeclContext() &&
1042               "Typedef should not be in another decl context!");
1043        assert(D->getDeclName().getAsIdentifierInfo() &&
1044               "Typedef was not named!");
1045        mangleSourceName(D->getDeclName().getAsIdentifierInfo()->getName());
1046        break;
1047      }
1048
1049      if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) {
1050        if (Record->isLambda()) {
1051          llvm::SmallString<10> Name("<lambda_");
1052
1053          Decl *LambdaContextDecl = Record->getLambdaContextDecl();
1054          unsigned LambdaManglingNumber = Record->getLambdaManglingNumber();
1055          unsigned LambdaId;
1056          const ParmVarDecl *Parm =
1057              dyn_cast_or_null<ParmVarDecl>(LambdaContextDecl);
1058          const FunctionDecl *Func =
1059              Parm ? dyn_cast<FunctionDecl>(Parm->getDeclContext()) : nullptr;
1060
1061          if (Func) {
1062            unsigned DefaultArgNo =
1063                Func->getNumParams() - Parm->getFunctionScopeIndex();
1064            Name += llvm::utostr(DefaultArgNo);
1065            Name += "_";
1066          }
1067
1068          if (LambdaManglingNumber)
1069            LambdaId = LambdaManglingNumber;
1070          else
1071            LambdaId = Context.getLambdaId(Record);
1072
1073          Name += llvm::utostr(LambdaId);
1074          Name += ">";
1075
1076          mangleSourceName(Name);
1077
1078          // If the context is a variable or a class member and not a parameter,
1079          // it is encoded in a qualified name.
1080          if (LambdaManglingNumber && LambdaContextDecl) {
1081            if ((isa<VarDecl>(LambdaContextDecl) ||
1082                 isa<FieldDecl>(LambdaContextDecl)) &&
1083                !isa<ParmVarDecl>(LambdaContextDecl)) {
1084              mangleUnqualifiedName(cast<NamedDecl>(LambdaContextDecl));
1085            }
1086          }
1087          break;
1088        }
1089      }
1090
1091      llvm::SmallString<64> Name;
1092      if (DeclaratorDecl *DD =
1093              Context.getASTContext().getDeclaratorForUnnamedTagDecl(TD)) {
1094        // Anonymous types without a name for linkage purposes have their
1095        // declarator mangled in if they have one.
1096        Name += "<unnamed-type-";
1097        Name += DD->getName();
1098      } else if (TypedefNameDecl *TND =
1099                     Context.getASTContext().getTypedefNameForUnnamedTagDecl(
1100                         TD)) {
1101        // Anonymous types without a name for linkage purposes have their
1102        // associate typedef mangled in if they have one.
1103        Name += "<unnamed-type-";
1104        Name += TND->getName();
1105      } else if (isa<EnumDecl>(TD) &&
1106                 cast<EnumDecl>(TD)->enumerator_begin() !=
1107                     cast<EnumDecl>(TD)->enumerator_end()) {
1108        // Anonymous non-empty enums mangle in the first enumerator.
1109        auto *ED = cast<EnumDecl>(TD);
1110        Name += "<unnamed-enum-";
1111        Name += ED->enumerator_begin()->getName();
1112      } else {
1113        // Otherwise, number the types using a $S prefix.
1114        Name += "<unnamed-type-$S";
1115        Name += llvm::utostr(Context.getAnonymousStructId(TD) + 1);
1116      }
1117      Name += ">";
1118      mangleSourceName(Name.str());
1119      break;
1120    }
1121
1122    case DeclarationName::ObjCZeroArgSelector:
1123    case DeclarationName::ObjCOneArgSelector:
1124    case DeclarationName::ObjCMultiArgSelector: {
1125      // This is reachable only when constructing an outlined SEH finally
1126      // block.  Nothing depends on this mangling and it's used only with
1127      // functinos with internal linkage.
1128      llvm::SmallString<64> Name;
1129      mangleSourceName(Name.str());
1130      break;
1131    }
1132
1133    case DeclarationName::CXXConstructorName:
1134      if (isStructorDecl(ND)) {
1135        if (StructorType == Ctor_CopyingClosure) {
1136          Out << "?_O";
1137          return;
1138        }
1139        if (StructorType == Ctor_DefaultClosure) {
1140          Out << "?_F";
1141          return;
1142        }
1143      }
1144      Out << "?0";
1145      return;
1146
1147    case DeclarationName::CXXDestructorName:
1148      if (isStructorDecl(ND))
1149        // If the named decl is the C++ destructor we're mangling,
1150        // use the type we were given.
1151        mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
1152      else
1153        // Otherwise, use the base destructor name. This is relevant if a
1154        // class with a destructor is declared within a destructor.
1155        mangleCXXDtorType(Dtor_Base);
1156      break;
1157
1158    case DeclarationName::CXXConversionFunctionName:
1159      // <operator-name> ::= ?B # (cast)
1160      // The target type is encoded as the return type.
1161      Out << "?B";
1162      break;
1163
1164    case DeclarationName::CXXOperatorName:
1165      mangleOperatorName(Name.getCXXOverloadedOperator(), ND->getLocation());
1166      break;
1167
1168    case DeclarationName::CXXLiteralOperatorName: {
1169      Out << "?__K";
1170      mangleSourceName(Name.getCXXLiteralIdentifier()->getName());
1171      break;
1172    }
1173
1174    case DeclarationName::CXXDeductionGuideName:
1175      llvm_unreachable("Can't mangle a deduction guide name!");
1176
1177    case DeclarationName::CXXUsingDirective:
1178      llvm_unreachable("Can't mangle a using directive name!");
1179  }
1180}
1181
1182// <postfix> ::= <unqualified-name> [<postfix>]
1183//           ::= <substitution> [<postfix>]
1184void MicrosoftCXXNameMangler::mangleNestedName(GlobalDecl GD) {
1185  const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
1186  const DeclContext *DC = getEffectiveDeclContext(ND);
1187  while (!DC->isTranslationUnit()) {
1188    if (isa<TagDecl>(ND) || isa<VarDecl>(ND)) {
1189      unsigned Disc;
1190      if (Context.getNextDiscriminator(ND, Disc)) {
1191        Out << '?';
1192        mangleNumber(Disc);
1193        Out << '?';
1194      }
1195    }
1196
1197    if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) {
1198      auto Discriminate =
1199          [](StringRef Name, const unsigned Discriminator,
1200             const unsigned ParameterDiscriminator) -> std::string {
1201        std::string Buffer;
1202        llvm::raw_string_ostream Stream(Buffer);
1203        Stream << Name;
1204        if (Discriminator)
1205          Stream << '_' << Discriminator;
1206        if (ParameterDiscriminator)
1207          Stream << '_' << ParameterDiscriminator;
1208        return Stream.str();
1209      };
1210
1211      unsigned Discriminator = BD->getBlockManglingNumber();
1212      if (!Discriminator)
1213        Discriminator = Context.getBlockId(BD, /*Local=*/false);
1214
1215      // Mangle the parameter position as a discriminator to deal with unnamed
1216      // parameters.  Rather than mangling the unqualified parameter name,
1217      // always use the position to give a uniform mangling.
1218      unsigned ParameterDiscriminator = 0;
1219      if (const auto *MC = BD->getBlockManglingContextDecl())
1220        if (const auto *P = dyn_cast<ParmVarDecl>(MC))
1221          if (const auto *F = dyn_cast<FunctionDecl>(P->getDeclContext()))
1222            ParameterDiscriminator =
1223                F->getNumParams() - P->getFunctionScopeIndex();
1224
1225      DC = getEffectiveDeclContext(BD);
1226
1227      Out << '?';
1228      mangleSourceName(Discriminate("_block_invoke", Discriminator,
1229                                    ParameterDiscriminator));
1230      // If we have a block mangling context, encode that now.  This allows us
1231      // to discriminate between named static data initializers in the same
1232      // scope.  This is handled differently from parameters, which use
1233      // positions to discriminate between multiple instances.
1234      if (const auto *MC = BD->getBlockManglingContextDecl())
1235        if (!isa<ParmVarDecl>(MC))
1236          if (const auto *ND = dyn_cast<NamedDecl>(MC))
1237            mangleUnqualifiedName(ND);
1238      // MS ABI and Itanium manglings are in inverted scopes.  In the case of a
1239      // RecordDecl, mangle the entire scope hierarchy at this point rather than
1240      // just the unqualified name to get the ordering correct.
1241      if (const auto *RD = dyn_cast<RecordDecl>(DC))
1242        mangleName(RD);
1243      else
1244        Out << '@';
1245      // void __cdecl
1246      Out << "YAX";
1247      // struct __block_literal *
1248      Out << 'P';
1249      // __ptr64
1250      if (PointersAre64Bit)
1251        Out << 'E';
1252      Out << 'A';
1253      mangleArtificialTagType(TTK_Struct,
1254                             Discriminate("__block_literal", Discriminator,
1255                                          ParameterDiscriminator));
1256      Out << "@Z";
1257
1258      // If the effective context was a Record, we have fully mangled the
1259      // qualified name and do not need to continue.
1260      if (isa<RecordDecl>(DC))
1261        break;
1262      continue;
1263    } else if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(DC)) {
1264      mangleObjCMethodName(Method);
1265    } else if (isa<NamedDecl>(DC)) {
1266      ND = cast<NamedDecl>(DC);
1267      if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
1268        mangle(getGlobalDeclAsDeclContext(FD), "?");
1269        break;
1270      } else {
1271        mangleUnqualifiedName(ND);
1272        // Lambdas in default arguments conceptually belong to the function the
1273        // parameter corresponds to.
1274        if (const auto *LDADC = getLambdaDefaultArgumentDeclContext(ND)) {
1275          DC = LDADC;
1276          continue;
1277        }
1278      }
1279    }
1280    DC = DC->getParent();
1281  }
1282}
1283
1284void MicrosoftCXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
1285  // Microsoft uses the names on the case labels for these dtor variants.  Clang
1286  // uses the Itanium terminology internally.  Everything in this ABI delegates
1287  // towards the base dtor.
1288  switch (T) {
1289  // <operator-name> ::= ?1  # destructor
1290  case Dtor_Base: Out << "?1"; return;
1291  // <operator-name> ::= ?_D # vbase destructor
1292  case Dtor_Complete: Out << "?_D"; return;
1293  // <operator-name> ::= ?_G # scalar deleting destructor
1294  case Dtor_Deleting: Out << "?_G"; return;
1295  // <operator-name> ::= ?_E # vector deleting destructor
1296  // FIXME: Add a vector deleting dtor type.  It goes in the vtable, so we need
1297  // it.
1298  case Dtor_Comdat:
1299    llvm_unreachable("not expecting a COMDAT");
1300  }
1301  llvm_unreachable("Unsupported dtor type?");
1302}
1303
1304void MicrosoftCXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO,
1305                                                 SourceLocation Loc) {
1306  switch (OO) {
1307  //                     ?0 # constructor
1308  //                     ?1 # destructor
1309  // <operator-name> ::= ?2 # new
1310  case OO_New: Out << "?2"; break;
1311  // <operator-name> ::= ?3 # delete
1312  case OO_Delete: Out << "?3"; break;
1313  // <operator-name> ::= ?4 # =
1314  case OO_Equal: Out << "?4"; break;
1315  // <operator-name> ::= ?5 # >>
1316  case OO_GreaterGreater: Out << "?5"; break;
1317  // <operator-name> ::= ?6 # <<
1318  case OO_LessLess: Out << "?6"; break;
1319  // <operator-name> ::= ?7 # !
1320  case OO_Exclaim: Out << "?7"; break;
1321  // <operator-name> ::= ?8 # ==
1322  case OO_EqualEqual: Out << "?8"; break;
1323  // <operator-name> ::= ?9 # !=
1324  case OO_ExclaimEqual: Out << "?9"; break;
1325  // <operator-name> ::= ?A # []
1326  case OO_Subscript: Out << "?A"; break;
1327  //                     ?B # conversion
1328  // <operator-name> ::= ?C # ->
1329  case OO_Arrow: Out << "?C"; break;
1330  // <operator-name> ::= ?D # *
1331  case OO_Star: Out << "?D"; break;
1332  // <operator-name> ::= ?E # ++
1333  case OO_PlusPlus: Out << "?E"; break;
1334  // <operator-name> ::= ?F # --
1335  case OO_MinusMinus: Out << "?F"; break;
1336  // <operator-name> ::= ?G # -
1337  case OO_Minus: Out << "?G"; break;
1338  // <operator-name> ::= ?H # +
1339  case OO_Plus: Out << "?H"; break;
1340  // <operator-name> ::= ?I # &
1341  case OO_Amp: Out << "?I"; break;
1342  // <operator-name> ::= ?J # ->*
1343  case OO_ArrowStar: Out << "?J"; break;
1344  // <operator-name> ::= ?K # /
1345  case OO_Slash: Out << "?K"; break;
1346  // <operator-name> ::= ?L # %
1347  case OO_Percent: Out << "?L"; break;
1348  // <operator-name> ::= ?M # <
1349  case OO_Less: Out << "?M"; break;
1350  // <operator-name> ::= ?N # <=
1351  case OO_LessEqual: Out << "?N"; break;
1352  // <operator-name> ::= ?O # >
1353  case OO_Greater: Out << "?O"; break;
1354  // <operator-name> ::= ?P # >=
1355  case OO_GreaterEqual: Out << "?P"; break;
1356  // <operator-name> ::= ?Q # ,
1357  case OO_Comma: Out << "?Q"; break;
1358  // <operator-name> ::= ?R # ()
1359  case OO_Call: Out << "?R"; break;
1360  // <operator-name> ::= ?S # ~
1361  case OO_Tilde: Out << "?S"; break;
1362  // <operator-name> ::= ?T # ^
1363  case OO_Caret: Out << "?T"; break;
1364  // <operator-name> ::= ?U # |
1365  case OO_Pipe: Out << "?U"; break;
1366  // <operator-name> ::= ?V # &&
1367  case OO_AmpAmp: Out << "?V"; break;
1368  // <operator-name> ::= ?W # ||
1369  case OO_PipePipe: Out << "?W"; break;
1370  // <operator-name> ::= ?X # *=
1371  case OO_StarEqual: Out << "?X"; break;
1372  // <operator-name> ::= ?Y # +=
1373  case OO_PlusEqual: Out << "?Y"; break;
1374  // <operator-name> ::= ?Z # -=
1375  case OO_MinusEqual: Out << "?Z"; break;
1376  // <operator-name> ::= ?_0 # /=
1377  case OO_SlashEqual: Out << "?_0"; break;
1378  // <operator-name> ::= ?_1 # %=
1379  case OO_PercentEqual: Out << "?_1"; break;
1380  // <operator-name> ::= ?_2 # >>=
1381  case OO_GreaterGreaterEqual: Out << "?_2"; break;
1382  // <operator-name> ::= ?_3 # <<=
1383  case OO_LessLessEqual: Out << "?_3"; break;
1384  // <operator-name> ::= ?_4 # &=
1385  case OO_AmpEqual: Out << "?_4"; break;
1386  // <operator-name> ::= ?_5 # |=
1387  case OO_PipeEqual: Out << "?_5"; break;
1388  // <operator-name> ::= ?_6 # ^=
1389  case OO_CaretEqual: Out << "?_6"; break;
1390  //                     ?_7 # vftable
1391  //                     ?_8 # vbtable
1392  //                     ?_9 # vcall
1393  //                     ?_A # typeof
1394  //                     ?_B # local static guard
1395  //                     ?_C # string
1396  //                     ?_D # vbase destructor
1397  //                     ?_E # vector deleting destructor
1398  //                     ?_F # default constructor closure
1399  //                     ?_G # scalar deleting destructor
1400  //                     ?_H # vector constructor iterator
1401  //                     ?_I # vector destructor iterator
1402  //                     ?_J # vector vbase constructor iterator
1403  //                     ?_K # virtual displacement map
1404  //                     ?_L # eh vector constructor iterator
1405  //                     ?_M # eh vector destructor iterator
1406  //                     ?_N # eh vector vbase constructor iterator
1407  //                     ?_O # copy constructor closure
1408  //                     ?_P<name> # udt returning <name>
1409  //                     ?_Q # <unknown>
1410  //                     ?_R0 # RTTI Type Descriptor
1411  //                     ?_R1 # RTTI Base Class Descriptor at (a,b,c,d)
1412  //                     ?_R2 # RTTI Base Class Array
1413  //                     ?_R3 # RTTI Class Hierarchy Descriptor
1414  //                     ?_R4 # RTTI Complete Object Locator
1415  //                     ?_S # local vftable
1416  //                     ?_T # local vftable constructor closure
1417  // <operator-name> ::= ?_U # new[]
1418  case OO_Array_New: Out << "?_U"; break;
1419  // <operator-name> ::= ?_V # delete[]
1420  case OO_Array_Delete: Out << "?_V"; break;
1421  // <operator-name> ::= ?__L # co_await
1422  case OO_Coawait: Out << "?__L"; break;
1423  // <operator-name> ::= ?__M # <=>
1424  case OO_Spaceship: Out << "?__M"; break;
1425
1426  case OO_Conditional: {
1427    DiagnosticsEngine &Diags = Context.getDiags();
1428    unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1429      "cannot mangle this conditional operator yet");
1430    Diags.Report(Loc, DiagID);
1431    break;
1432  }
1433
1434  case OO_None:
1435  case NUM_OVERLOADED_OPERATORS:
1436    llvm_unreachable("Not an overloaded operator");
1437  }
1438}
1439
1440void MicrosoftCXXNameMangler::mangleSourceName(StringRef Name) {
1441  // <source name> ::= <identifier> @
1442  BackRefVec::iterator Found = llvm::find(NameBackReferences, Name);
1443  if (Found == NameBackReferences.end()) {
1444    if (NameBackReferences.size() < 10)
1445      NameBackReferences.push_back(std::string(Name));
1446    Out << Name << '@';
1447  } else {
1448    Out << (Found - NameBackReferences.begin());
1449  }
1450}
1451
1452void MicrosoftCXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
1453  Context.mangleObjCMethodNameAsSourceName(MD, Out);
1454}
1455
1456void MicrosoftCXXNameMangler::mangleTemplateInstantiationName(
1457    GlobalDecl GD, const TemplateArgumentList &TemplateArgs) {
1458  // <template-name> ::= <unscoped-template-name> <template-args>
1459  //                 ::= <substitution>
1460  // Always start with the unqualified name.
1461
1462  // Templates have their own context for back references.
1463  ArgBackRefMap OuterFunArgsContext;
1464  ArgBackRefMap OuterTemplateArgsContext;
1465  BackRefVec OuterTemplateContext;
1466  PassObjectSizeArgsSet OuterPassObjectSizeArgs;
1467  NameBackReferences.swap(OuterTemplateContext);
1468  FunArgBackReferences.swap(OuterFunArgsContext);
1469  TemplateArgBackReferences.swap(OuterTemplateArgsContext);
1470  PassObjectSizeArgs.swap(OuterPassObjectSizeArgs);
1471
1472  mangleUnscopedTemplateName(GD);
1473  mangleTemplateArgs(cast<TemplateDecl>(GD.getDecl()), TemplateArgs);
1474
1475  // Restore the previous back reference contexts.
1476  NameBackReferences.swap(OuterTemplateContext);
1477  FunArgBackReferences.swap(OuterFunArgsContext);
1478  TemplateArgBackReferences.swap(OuterTemplateArgsContext);
1479  PassObjectSizeArgs.swap(OuterPassObjectSizeArgs);
1480}
1481
1482void MicrosoftCXXNameMangler::mangleUnscopedTemplateName(GlobalDecl GD) {
1483  // <unscoped-template-name> ::= ?$ <unqualified-name>
1484  Out << "?$";
1485  mangleUnqualifiedName(GD);
1486}
1487
1488void MicrosoftCXXNameMangler::mangleIntegerLiteral(
1489    const llvm::APSInt &Value, const NonTypeTemplateParmDecl *PD,
1490    QualType TemplateArgType) {
1491  // <integer-literal> ::= $0 <number>
1492  Out << "$";
1493
1494  // Since MSVC 2019, add 'M[<type>]' after '$' for auto template parameter when
1495  // argument is integer.
1496  if (getASTContext().getLangOpts().isCompatibleWithMSVC(
1497          LangOptions::MSVC2019) &&
1498      PD && PD->getType()->getTypeClass() == Type::Auto &&
1499      !TemplateArgType.isNull()) {
1500    Out << "M";
1501    mangleType(TemplateArgType, SourceRange(), QMM_Drop);
1502  }
1503
1504  Out << "0";
1505
1506  mangleNumber(Value);
1507}
1508
1509void MicrosoftCXXNameMangler::mangleExpression(
1510    const Expr *E, const NonTypeTemplateParmDecl *PD) {
1511  // See if this is a constant expression.
1512  if (std::optional<llvm::APSInt> Value =
1513          E->getIntegerConstantExpr(Context.getASTContext())) {
1514    mangleIntegerLiteral(*Value, PD, E->getType());
1515    return;
1516  }
1517
1518  // As bad as this diagnostic is, it's better than crashing.
1519  DiagnosticsEngine &Diags = Context.getDiags();
1520  unsigned DiagID = Diags.getCustomDiagID(
1521      DiagnosticsEngine::Error, "cannot yet mangle expression type %0");
1522  Diags.Report(E->getExprLoc(), DiagID) << E->getStmtClassName()
1523                                        << E->getSourceRange();
1524}
1525
1526void MicrosoftCXXNameMangler::mangleTemplateArgs(
1527    const TemplateDecl *TD, const TemplateArgumentList &TemplateArgs) {
1528  // <template-args> ::= <template-arg>+
1529  const TemplateParameterList *TPL = TD->getTemplateParameters();
1530  assert(TPL->size() == TemplateArgs.size() &&
1531         "size mismatch between args and parms!");
1532
1533  for (size_t i = 0; i < TemplateArgs.size(); ++i) {
1534    const TemplateArgument &TA = TemplateArgs[i];
1535
1536    // Separate consecutive packs by $$Z.
1537    if (i > 0 && TA.getKind() == TemplateArgument::Pack &&
1538        TemplateArgs[i - 1].getKind() == TemplateArgument::Pack)
1539      Out << "$$Z";
1540
1541    mangleTemplateArg(TD, TA, TPL->getParam(i));
1542  }
1543}
1544
1545void MicrosoftCXXNameMangler::mangleTemplateArg(const TemplateDecl *TD,
1546                                                const TemplateArgument &TA,
1547                                                const NamedDecl *Parm) {
1548  // <template-arg> ::= <type>
1549  //                ::= <integer-literal>
1550  //                ::= <member-data-pointer>
1551  //                ::= <member-function-pointer>
1552  //                ::= $ <constant-value>
1553  //                ::= <template-args>
1554  //
1555  // <constant-value> ::= 0 <number>                   # integer
1556  //                  ::= 1 <mangled-name>             # address of D
1557  //                  ::= 2 <type> <typed-constant-value>* @ # struct
1558  //                  ::= 3 <type> <constant-value>* @ # array
1559  //                  ::= 4 ???                        # string
1560  //                  ::= 5 <constant-value> @         # address of subobject
1561  //                  ::= 6 <constant-value> <unqualified-name> @ # a.b
1562  //                  ::= 7 <type> [<unqualified-name> <constant-value>] @
1563  //                      # union, with or without an active member
1564  //                  # pointer to member, symbolically
1565  //                  ::= 8 <class> <unqualified-name> @
1566  //                  ::= A <type> <non-negative integer>  # float
1567  //                  ::= B <type> <non-negative integer>  # double
1568  //                  ::= E <mangled-name>             # reference to D
1569  //                  # pointer to member, by component value
1570  //                  ::= F <number> <number>
1571  //                  ::= G <number> <number> <number>
1572  //                  ::= H <mangled-name> <number>
1573  //                  ::= I <mangled-name> <number> <number>
1574  //                  ::= J <mangled-name> <number> <number> <number>
1575  //
1576  // <typed-constant-value> ::= [<type>] <constant-value>
1577  //
1578  // The <type> appears to be included in a <typed-constant-value> only in the
1579  // '0', '1', '8', 'A', 'B', and 'E' cases.
1580
1581  switch (TA.getKind()) {
1582  case TemplateArgument::Null:
1583    llvm_unreachable("Can't mangle null template arguments!");
1584  case TemplateArgument::TemplateExpansion:
1585    llvm_unreachable("Can't mangle template expansion arguments!");
1586  case TemplateArgument::Type: {
1587    QualType T = TA.getAsType();
1588    mangleType(T, SourceRange(), QMM_Escape);
1589    break;
1590  }
1591  case TemplateArgument::Declaration: {
1592    const NamedDecl *ND = TA.getAsDecl();
1593    if (isa<FieldDecl>(ND) || isa<IndirectFieldDecl>(ND)) {
1594      mangleMemberDataPointer(cast<CXXRecordDecl>(ND->getDeclContext())
1595                                  ->getMostRecentNonInjectedDecl(),
1596                              cast<ValueDecl>(ND));
1597    } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
1598      const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1599      if (MD && MD->isInstance()) {
1600        mangleMemberFunctionPointer(
1601            MD->getParent()->getMostRecentNonInjectedDecl(), MD);
1602      } else {
1603        Out << "$1?";
1604        mangleName(FD);
1605        mangleFunctionEncoding(FD, /*ShouldMangle=*/true);
1606      }
1607    } else if (TA.getParamTypeForDecl()->isRecordType()) {
1608      Out << "$";
1609      auto *TPO = cast<TemplateParamObjectDecl>(ND);
1610      mangleTemplateArgValue(TPO->getType().getUnqualifiedType(),
1611                             TPO->getValue());
1612    } else {
1613      mangle(ND, TA.getParamTypeForDecl()->isReferenceType() ? "$E?" : "$1?");
1614    }
1615    break;
1616  }
1617  case TemplateArgument::Integral: {
1618    QualType T = TA.getIntegralType();
1619    mangleIntegerLiteral(TA.getAsIntegral(),
1620                         cast<NonTypeTemplateParmDecl>(Parm), T);
1621    break;
1622  }
1623  case TemplateArgument::NullPtr: {
1624    QualType T = TA.getNullPtrType();
1625    if (const MemberPointerType *MPT = T->getAs<MemberPointerType>()) {
1626      const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
1627      if (MPT->isMemberFunctionPointerType() &&
1628          !isa<FunctionTemplateDecl>(TD)) {
1629        mangleMemberFunctionPointer(RD, nullptr);
1630        return;
1631      }
1632      if (MPT->isMemberDataPointer()) {
1633        if (!isa<FunctionTemplateDecl>(TD)) {
1634          mangleMemberDataPointer(RD, nullptr);
1635          return;
1636        }
1637        // nullptr data pointers are always represented with a single field
1638        // which is initialized with either 0 or -1.  Why -1?  Well, we need to
1639        // distinguish the case where the data member is at offset zero in the
1640        // record.
1641        // However, we are free to use 0 *if* we would use multiple fields for
1642        // non-nullptr member pointers.
1643        if (!RD->nullFieldOffsetIsZero()) {
1644          mangleIntegerLiteral(llvm::APSInt::get(-1),
1645                               cast<NonTypeTemplateParmDecl>(Parm), T);
1646          return;
1647        }
1648      }
1649    }
1650    mangleIntegerLiteral(llvm::APSInt::getUnsigned(0),
1651                         cast<NonTypeTemplateParmDecl>(Parm), T);
1652    break;
1653  }
1654  case TemplateArgument::Expression:
1655    mangleExpression(TA.getAsExpr(), cast<NonTypeTemplateParmDecl>(Parm));
1656    break;
1657  case TemplateArgument::Pack: {
1658    ArrayRef<TemplateArgument> TemplateArgs = TA.getPackAsArray();
1659    if (TemplateArgs.empty()) {
1660      if (isa<TemplateTypeParmDecl>(Parm) ||
1661          isa<TemplateTemplateParmDecl>(Parm))
1662        // MSVC 2015 changed the mangling for empty expanded template packs,
1663        // use the old mangling for link compatibility for old versions.
1664        Out << (Context.getASTContext().getLangOpts().isCompatibleWithMSVC(
1665                    LangOptions::MSVC2015)
1666                    ? "$$V"
1667                    : "$$$V");
1668      else if (isa<NonTypeTemplateParmDecl>(Parm))
1669        Out << "$S";
1670      else
1671        llvm_unreachable("unexpected template parameter decl!");
1672    } else {
1673      for (const TemplateArgument &PA : TemplateArgs)
1674        mangleTemplateArg(TD, PA, Parm);
1675    }
1676    break;
1677  }
1678  case TemplateArgument::Template: {
1679    const NamedDecl *ND =
1680        TA.getAsTemplate().getAsTemplateDecl()->getTemplatedDecl();
1681    if (const auto *TD = dyn_cast<TagDecl>(ND)) {
1682      mangleType(TD);
1683    } else if (isa<TypeAliasDecl>(ND)) {
1684      Out << "$$Y";
1685      mangleName(ND);
1686    } else {
1687      llvm_unreachable("unexpected template template NamedDecl!");
1688    }
1689    break;
1690  }
1691  }
1692}
1693
1694void MicrosoftCXXNameMangler::mangleTemplateArgValue(QualType T,
1695                                                     const APValue &V,
1696                                                     bool WithScalarType) {
1697  switch (V.getKind()) {
1698  case APValue::None:
1699  case APValue::Indeterminate:
1700    // FIXME: MSVC doesn't allow this, so we can't be sure how it should be
1701    // mangled.
1702    if (WithScalarType)
1703      mangleType(T, SourceRange(), QMM_Escape);
1704    Out << '@';
1705    return;
1706
1707  case APValue::Int:
1708    if (WithScalarType)
1709      mangleType(T, SourceRange(), QMM_Escape);
1710    Out << '0';
1711    mangleNumber(V.getInt());
1712    return;
1713
1714  case APValue::Float:
1715    if (WithScalarType)
1716      mangleType(T, SourceRange(), QMM_Escape);
1717    mangleFloat(V.getFloat());
1718    return;
1719
1720  case APValue::LValue: {
1721    if (WithScalarType)
1722      mangleType(T, SourceRange(), QMM_Escape);
1723
1724    // We don't know how to mangle past-the-end pointers yet.
1725    if (V.isLValueOnePastTheEnd())
1726      break;
1727
1728    APValue::LValueBase Base = V.getLValueBase();
1729    if (!V.hasLValuePath() || V.getLValuePath().empty()) {
1730      // Taking the address of a complete object has a special-case mangling.
1731      if (Base.isNull()) {
1732        // MSVC emits 0A@ for null pointers. Generalize this for arbitrary
1733        // integers cast to pointers.
1734        // FIXME: This mangles 0 cast to a pointer the same as a null pointer,
1735        // even in cases where the two are different values.
1736        Out << "0";
1737        mangleNumber(V.getLValueOffset().getQuantity());
1738      } else if (!V.hasLValuePath()) {
1739        // FIXME: This can only happen as an extension. Invent a mangling.
1740        break;
1741      } else if (auto *VD = Base.dyn_cast<const ValueDecl*>()) {
1742        Out << (T->isReferenceType() ? "E" : "1");
1743        mangle(VD);
1744      } else {
1745        break;
1746      }
1747    } else {
1748      unsigned NumAts = 0;
1749      if (T->isPointerType()) {
1750        Out << "5";
1751        ++NumAts;
1752      }
1753
1754      QualType T = Base.getType();
1755      for (APValue::LValuePathEntry E : V.getLValuePath()) {
1756        // We don't know how to mangle array subscripting yet.
1757        if (T->isArrayType())
1758          goto mangling_unknown;
1759
1760        const Decl *D = E.getAsBaseOrMember().getPointer();
1761        auto *FD = dyn_cast<FieldDecl>(D);
1762        // We don't know how to mangle derived-to-base conversions yet.
1763        if (!FD)
1764          goto mangling_unknown;
1765
1766        Out << "6";
1767        ++NumAts;
1768        T = FD->getType();
1769      }
1770
1771      auto *VD = Base.dyn_cast<const ValueDecl*>();
1772      if (!VD)
1773        break;
1774      Out << "E";
1775      mangle(VD);
1776
1777      for (APValue::LValuePathEntry E : V.getLValuePath()) {
1778        const Decl *D = E.getAsBaseOrMember().getPointer();
1779        mangleUnqualifiedName(cast<FieldDecl>(D));
1780      }
1781      for (unsigned I = 0; I != NumAts; ++I)
1782        Out << '@';
1783    }
1784
1785    return;
1786  }
1787
1788  case APValue::MemberPointer: {
1789    if (WithScalarType)
1790      mangleType(T, SourceRange(), QMM_Escape);
1791
1792    // FIXME: The below manglings don't include a conversion, so bail if there
1793    // would be one. MSVC mangles the (possibly converted) value of the
1794    // pointer-to-member object as if it were a struct, leading to collisions
1795    // in some cases.
1796    if (!V.getMemberPointerPath().empty())
1797      break;
1798
1799    const CXXRecordDecl *RD =
1800        T->castAs<MemberPointerType>()->getMostRecentCXXRecordDecl();
1801    const ValueDecl *D = V.getMemberPointerDecl();
1802    if (T->isMemberDataPointerType())
1803      mangleMemberDataPointer(RD, D, "");
1804    else
1805      mangleMemberFunctionPointer(RD, cast_or_null<CXXMethodDecl>(D), "");
1806    return;
1807  }
1808
1809  case APValue::Struct: {
1810    Out << '2';
1811    mangleType(T, SourceRange(), QMM_Escape);
1812    const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
1813    assert(RD && "unexpected type for record value");
1814
1815    unsigned BaseIndex = 0;
1816    for (const CXXBaseSpecifier &B : RD->bases())
1817      mangleTemplateArgValue(B.getType(), V.getStructBase(BaseIndex++));
1818    for (const FieldDecl *FD : RD->fields())
1819      if (!FD->isUnnamedBitfield())
1820        mangleTemplateArgValue(FD->getType(),
1821                               V.getStructField(FD->getFieldIndex()),
1822                               /*WithScalarType*/ true);
1823    Out << '@';
1824    return;
1825  }
1826
1827  case APValue::Union:
1828    Out << '7';
1829    mangleType(T, SourceRange(), QMM_Escape);
1830    if (const FieldDecl *FD = V.getUnionField()) {
1831      mangleUnqualifiedName(FD);
1832      mangleTemplateArgValue(FD->getType(), V.getUnionValue());
1833    }
1834    Out << '@';
1835    return;
1836
1837  case APValue::ComplexInt:
1838    // We mangle complex types as structs, so mangle the value as a struct too.
1839    Out << '2';
1840    mangleType(T, SourceRange(), QMM_Escape);
1841    Out << '0';
1842    mangleNumber(V.getComplexIntReal());
1843    Out << '0';
1844    mangleNumber(V.getComplexIntImag());
1845    Out << '@';
1846    return;
1847
1848  case APValue::ComplexFloat:
1849    Out << '2';
1850    mangleType(T, SourceRange(), QMM_Escape);
1851    mangleFloat(V.getComplexFloatReal());
1852    mangleFloat(V.getComplexFloatImag());
1853    Out << '@';
1854    return;
1855
1856  case APValue::Array: {
1857    Out << '3';
1858    QualType ElemT = getASTContext().getAsArrayType(T)->getElementType();
1859    mangleType(ElemT, SourceRange(), QMM_Escape);
1860    for (unsigned I = 0, N = V.getArraySize(); I != N; ++I) {
1861      const APValue &ElemV = I < V.getArrayInitializedElts()
1862                                 ? V.getArrayInitializedElt(I)
1863                                 : V.getArrayFiller();
1864      mangleTemplateArgValue(ElemT, ElemV);
1865      Out << '@';
1866    }
1867    Out << '@';
1868    return;
1869  }
1870
1871  case APValue::Vector: {
1872    // __m128 is mangled as a struct containing an array. We follow this
1873    // approach for all vector types.
1874    Out << '2';
1875    mangleType(T, SourceRange(), QMM_Escape);
1876    Out << '3';
1877    QualType ElemT = T->castAs<VectorType>()->getElementType();
1878    mangleType(ElemT, SourceRange(), QMM_Escape);
1879    for (unsigned I = 0, N = V.getVectorLength(); I != N; ++I) {
1880      const APValue &ElemV = V.getVectorElt(I);
1881      mangleTemplateArgValue(ElemT, ElemV);
1882      Out << '@';
1883    }
1884    Out << "@@";
1885    return;
1886  }
1887
1888  case APValue::AddrLabelDiff:
1889  case APValue::FixedPoint:
1890    break;
1891  }
1892
1893mangling_unknown:
1894  DiagnosticsEngine &Diags = Context.getDiags();
1895  unsigned DiagID = Diags.getCustomDiagID(
1896      DiagnosticsEngine::Error, "cannot mangle this template argument yet");
1897  Diags.Report(DiagID);
1898}
1899
1900void MicrosoftCXXNameMangler::mangleObjCProtocol(const ObjCProtocolDecl *PD) {
1901  llvm::SmallString<64> TemplateMangling;
1902  llvm::raw_svector_ostream Stream(TemplateMangling);
1903  MicrosoftCXXNameMangler Extra(Context, Stream);
1904
1905  Stream << "?$";
1906  Extra.mangleSourceName("Protocol");
1907  Extra.mangleArtificialTagType(TTK_Struct, PD->getName());
1908
1909  mangleArtificialTagType(TTK_Struct, TemplateMangling, {"__ObjC"});
1910}
1911
1912void MicrosoftCXXNameMangler::mangleObjCLifetime(const QualType Type,
1913                                                 Qualifiers Quals,
1914                                                 SourceRange Range) {
1915  llvm::SmallString<64> TemplateMangling;
1916  llvm::raw_svector_ostream Stream(TemplateMangling);
1917  MicrosoftCXXNameMangler Extra(Context, Stream);
1918
1919  Stream << "?$";
1920  switch (Quals.getObjCLifetime()) {
1921  case Qualifiers::OCL_None:
1922  case Qualifiers::OCL_ExplicitNone:
1923    break;
1924  case Qualifiers::OCL_Autoreleasing:
1925    Extra.mangleSourceName("Autoreleasing");
1926    break;
1927  case Qualifiers::OCL_Strong:
1928    Extra.mangleSourceName("Strong");
1929    break;
1930  case Qualifiers::OCL_Weak:
1931    Extra.mangleSourceName("Weak");
1932    break;
1933  }
1934  Extra.manglePointerCVQualifiers(Quals);
1935  Extra.manglePointerExtQualifiers(Quals, Type);
1936  Extra.mangleType(Type, Range);
1937
1938  mangleArtificialTagType(TTK_Struct, TemplateMangling, {"__ObjC"});
1939}
1940
1941void MicrosoftCXXNameMangler::mangleObjCKindOfType(const ObjCObjectType *T,
1942                                                   Qualifiers Quals,
1943                                                   SourceRange Range) {
1944  llvm::SmallString<64> TemplateMangling;
1945  llvm::raw_svector_ostream Stream(TemplateMangling);
1946  MicrosoftCXXNameMangler Extra(Context, Stream);
1947
1948  Stream << "?$";
1949  Extra.mangleSourceName("KindOf");
1950  Extra.mangleType(QualType(T, 0)
1951                       .stripObjCKindOfType(getASTContext())
1952                       ->castAs<ObjCObjectType>(),
1953                   Quals, Range);
1954
1955  mangleArtificialTagType(TTK_Struct, TemplateMangling, {"__ObjC"});
1956}
1957
1958void MicrosoftCXXNameMangler::mangleQualifiers(Qualifiers Quals,
1959                                               bool IsMember) {
1960  // <cvr-qualifiers> ::= [E] [F] [I] <base-cvr-qualifiers>
1961  // 'E' means __ptr64 (32-bit only); 'F' means __unaligned (32/64-bit only);
1962  // 'I' means __restrict (32/64-bit).
1963  // Note that the MSVC __restrict keyword isn't the same as the C99 restrict
1964  // keyword!
1965  // <base-cvr-qualifiers> ::= A  # near
1966  //                       ::= B  # near const
1967  //                       ::= C  # near volatile
1968  //                       ::= D  # near const volatile
1969  //                       ::= E  # far (16-bit)
1970  //                       ::= F  # far const (16-bit)
1971  //                       ::= G  # far volatile (16-bit)
1972  //                       ::= H  # far const volatile (16-bit)
1973  //                       ::= I  # huge (16-bit)
1974  //                       ::= J  # huge const (16-bit)
1975  //                       ::= K  # huge volatile (16-bit)
1976  //                       ::= L  # huge const volatile (16-bit)
1977  //                       ::= M <basis> # based
1978  //                       ::= N <basis> # based const
1979  //                       ::= O <basis> # based volatile
1980  //                       ::= P <basis> # based const volatile
1981  //                       ::= Q  # near member
1982  //                       ::= R  # near const member
1983  //                       ::= S  # near volatile member
1984  //                       ::= T  # near const volatile member
1985  //                       ::= U  # far member (16-bit)
1986  //                       ::= V  # far const member (16-bit)
1987  //                       ::= W  # far volatile member (16-bit)
1988  //                       ::= X  # far const volatile member (16-bit)
1989  //                       ::= Y  # huge member (16-bit)
1990  //                       ::= Z  # huge const member (16-bit)
1991  //                       ::= 0  # huge volatile member (16-bit)
1992  //                       ::= 1  # huge const volatile member (16-bit)
1993  //                       ::= 2 <basis> # based member
1994  //                       ::= 3 <basis> # based const member
1995  //                       ::= 4 <basis> # based volatile member
1996  //                       ::= 5 <basis> # based const volatile member
1997  //                       ::= 6  # near function (pointers only)
1998  //                       ::= 7  # far function (pointers only)
1999  //                       ::= 8  # near method (pointers only)
2000  //                       ::= 9  # far method (pointers only)
2001  //                       ::= _A <basis> # based function (pointers only)
2002  //                       ::= _B <basis> # based function (far?) (pointers only)
2003  //                       ::= _C <basis> # based method (pointers only)
2004  //                       ::= _D <basis> # based method (far?) (pointers only)
2005  //                       ::= _E # block (Clang)
2006  // <basis> ::= 0 # __based(void)
2007  //         ::= 1 # __based(segment)?
2008  //         ::= 2 <name> # __based(name)
2009  //         ::= 3 # ?
2010  //         ::= 4 # ?
2011  //         ::= 5 # not really based
2012  bool HasConst = Quals.hasConst(),
2013       HasVolatile = Quals.hasVolatile();
2014
2015  if (!IsMember) {
2016    if (HasConst && HasVolatile) {
2017      Out << 'D';
2018    } else if (HasVolatile) {
2019      Out << 'C';
2020    } else if (HasConst) {
2021      Out << 'B';
2022    } else {
2023      Out << 'A';
2024    }
2025  } else {
2026    if (HasConst && HasVolatile) {
2027      Out << 'T';
2028    } else if (HasVolatile) {
2029      Out << 'S';
2030    } else if (HasConst) {
2031      Out << 'R';
2032    } else {
2033      Out << 'Q';
2034    }
2035  }
2036
2037  // FIXME: For now, just drop all extension qualifiers on the floor.
2038}
2039
2040void
2041MicrosoftCXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
2042  // <ref-qualifier> ::= G                # lvalue reference
2043  //                 ::= H                # rvalue-reference
2044  switch (RefQualifier) {
2045  case RQ_None:
2046    break;
2047
2048  case RQ_LValue:
2049    Out << 'G';
2050    break;
2051
2052  case RQ_RValue:
2053    Out << 'H';
2054    break;
2055  }
2056}
2057
2058void MicrosoftCXXNameMangler::manglePointerExtQualifiers(Qualifiers Quals,
2059                                                         QualType PointeeType) {
2060  // Check if this is a default 64-bit pointer or has __ptr64 qualifier.
2061  bool is64Bit = PointeeType.isNull() ? PointersAre64Bit :
2062      is64BitPointer(PointeeType.getQualifiers());
2063  if (is64Bit && (PointeeType.isNull() || !PointeeType->isFunctionType()))
2064    Out << 'E';
2065
2066  if (Quals.hasRestrict())
2067    Out << 'I';
2068
2069  if (Quals.hasUnaligned() ||
2070      (!PointeeType.isNull() && PointeeType.getLocalQualifiers().hasUnaligned()))
2071    Out << 'F';
2072}
2073
2074void MicrosoftCXXNameMangler::manglePointerCVQualifiers(Qualifiers Quals) {
2075  // <pointer-cv-qualifiers> ::= P  # no qualifiers
2076  //                         ::= Q  # const
2077  //                         ::= R  # volatile
2078  //                         ::= S  # const volatile
2079  bool HasConst = Quals.hasConst(),
2080       HasVolatile = Quals.hasVolatile();
2081
2082  if (HasConst && HasVolatile) {
2083    Out << 'S';
2084  } else if (HasVolatile) {
2085    Out << 'R';
2086  } else if (HasConst) {
2087    Out << 'Q';
2088  } else {
2089    Out << 'P';
2090  }
2091}
2092
2093void MicrosoftCXXNameMangler::mangleFunctionArgumentType(QualType T,
2094                                                         SourceRange Range) {
2095  // MSVC will backreference two canonically equivalent types that have slightly
2096  // different manglings when mangled alone.
2097
2098  // Decayed types do not match up with non-decayed versions of the same type.
2099  //
2100  // e.g.
2101  // void (*x)(void) will not form a backreference with void x(void)
2102  void *TypePtr;
2103  if (const auto *DT = T->getAs<DecayedType>()) {
2104    QualType OriginalType = DT->getOriginalType();
2105    // All decayed ArrayTypes should be treated identically; as-if they were
2106    // a decayed IncompleteArrayType.
2107    if (const auto *AT = getASTContext().getAsArrayType(OriginalType))
2108      OriginalType = getASTContext().getIncompleteArrayType(
2109          AT->getElementType(), AT->getSizeModifier(),
2110          AT->getIndexTypeCVRQualifiers());
2111
2112    TypePtr = OriginalType.getCanonicalType().getAsOpaquePtr();
2113    // If the original parameter was textually written as an array,
2114    // instead treat the decayed parameter like it's const.
2115    //
2116    // e.g.
2117    // int [] -> int * const
2118    if (OriginalType->isArrayType())
2119      T = T.withConst();
2120  } else {
2121    TypePtr = T.getCanonicalType().getAsOpaquePtr();
2122  }
2123
2124  ArgBackRefMap::iterator Found = FunArgBackReferences.find(TypePtr);
2125
2126  if (Found == FunArgBackReferences.end()) {
2127    size_t OutSizeBefore = Out.tell();
2128
2129    mangleType(T, Range, QMM_Drop);
2130
2131    // See if it's worth creating a back reference.
2132    // Only types longer than 1 character are considered
2133    // and only 10 back references slots are available:
2134    bool LongerThanOneChar = (Out.tell() - OutSizeBefore > 1);
2135    if (LongerThanOneChar && FunArgBackReferences.size() < 10) {
2136      size_t Size = FunArgBackReferences.size();
2137      FunArgBackReferences[TypePtr] = Size;
2138    }
2139  } else {
2140    Out << Found->second;
2141  }
2142}
2143
2144void MicrosoftCXXNameMangler::manglePassObjectSizeArg(
2145    const PassObjectSizeAttr *POSA) {
2146  int Type = POSA->getType();
2147  bool Dynamic = POSA->isDynamic();
2148
2149  auto Iter = PassObjectSizeArgs.insert({Type, Dynamic}).first;
2150  auto *TypePtr = (const void *)&*Iter;
2151  ArgBackRefMap::iterator Found = FunArgBackReferences.find(TypePtr);
2152
2153  if (Found == FunArgBackReferences.end()) {
2154    std::string Name =
2155        Dynamic ? "__pass_dynamic_object_size" : "__pass_object_size";
2156    mangleArtificialTagType(TTK_Enum, Name + llvm::utostr(Type), {"__clang"});
2157
2158    if (FunArgBackReferences.size() < 10) {
2159      size_t Size = FunArgBackReferences.size();
2160      FunArgBackReferences[TypePtr] = Size;
2161    }
2162  } else {
2163    Out << Found->second;
2164  }
2165}
2166
2167void MicrosoftCXXNameMangler::mangleAddressSpaceType(QualType T,
2168                                                     Qualifiers Quals,
2169                                                     SourceRange Range) {
2170  // Address space is mangled as an unqualified templated type in the __clang
2171  // namespace. The demangled version of this is:
2172  // In the case of a language specific address space:
2173  // __clang::struct _AS[language_addr_space]<Type>
2174  // where:
2175  //  <language_addr_space> ::= <OpenCL-addrspace> | <CUDA-addrspace>
2176  //    <OpenCL-addrspace> ::= "CL" [ "global" | "local" | "constant" |
2177  //                                "private"| "generic" | "device" | "host" ]
2178  //    <CUDA-addrspace> ::= "CU" [ "device" | "constant" | "shared" ]
2179  //    Note that the above were chosen to match the Itanium mangling for this.
2180  //
2181  // In the case of a non-language specific address space:
2182  //  __clang::struct _AS<TargetAS, Type>
2183  assert(Quals.hasAddressSpace() && "Not valid without address space");
2184  llvm::SmallString<32> ASMangling;
2185  llvm::raw_svector_ostream Stream(ASMangling);
2186  MicrosoftCXXNameMangler Extra(Context, Stream);
2187  Stream << "?$";
2188
2189  LangAS AS = Quals.getAddressSpace();
2190  if (Context.getASTContext().addressSpaceMapManglingFor(AS)) {
2191    unsigned TargetAS = Context.getASTContext().getTargetAddressSpace(AS);
2192    Extra.mangleSourceName("_AS");
2193    Extra.mangleIntegerLiteral(llvm::APSInt::getUnsigned(TargetAS));
2194  } else {
2195    switch (AS) {
2196    default:
2197      llvm_unreachable("Not a language specific address space");
2198    case LangAS::opencl_global:
2199      Extra.mangleSourceName("_ASCLglobal");
2200      break;
2201    case LangAS::opencl_global_device:
2202      Extra.mangleSourceName("_ASCLdevice");
2203      break;
2204    case LangAS::opencl_global_host:
2205      Extra.mangleSourceName("_ASCLhost");
2206      break;
2207    case LangAS::opencl_local:
2208      Extra.mangleSourceName("_ASCLlocal");
2209      break;
2210    case LangAS::opencl_constant:
2211      Extra.mangleSourceName("_ASCLconstant");
2212      break;
2213    case LangAS::opencl_private:
2214      Extra.mangleSourceName("_ASCLprivate");
2215      break;
2216    case LangAS::opencl_generic:
2217      Extra.mangleSourceName("_ASCLgeneric");
2218      break;
2219    case LangAS::cuda_device:
2220      Extra.mangleSourceName("_ASCUdevice");
2221      break;
2222    case LangAS::cuda_constant:
2223      Extra.mangleSourceName("_ASCUconstant");
2224      break;
2225    case LangAS::cuda_shared:
2226      Extra.mangleSourceName("_ASCUshared");
2227      break;
2228    case LangAS::ptr32_sptr:
2229    case LangAS::ptr32_uptr:
2230    case LangAS::ptr64:
2231      llvm_unreachable("don't mangle ptr address spaces with _AS");
2232    }
2233  }
2234
2235  Extra.mangleType(T, Range, QMM_Escape);
2236  mangleQualifiers(Qualifiers(), false);
2237  mangleArtificialTagType(TTK_Struct, ASMangling, {"__clang"});
2238}
2239
2240void MicrosoftCXXNameMangler::mangleType(QualType T, SourceRange Range,
2241                                         QualifierMangleMode QMM) {
2242  // Don't use the canonical types.  MSVC includes things like 'const' on
2243  // pointer arguments to function pointers that canonicalization strips away.
2244  T = T.getDesugaredType(getASTContext());
2245  Qualifiers Quals = T.getLocalQualifiers();
2246
2247  if (const ArrayType *AT = getASTContext().getAsArrayType(T)) {
2248    // If there were any Quals, getAsArrayType() pushed them onto the array
2249    // element type.
2250    if (QMM == QMM_Mangle)
2251      Out << 'A';
2252    else if (QMM == QMM_Escape || QMM == QMM_Result)
2253      Out << "$$B";
2254    mangleArrayType(AT);
2255    return;
2256  }
2257
2258  bool IsPointer = T->isAnyPointerType() || T->isMemberPointerType() ||
2259                   T->isReferenceType() || T->isBlockPointerType();
2260
2261  switch (QMM) {
2262  case QMM_Drop:
2263    if (Quals.hasObjCLifetime())
2264      Quals = Quals.withoutObjCLifetime();
2265    break;
2266  case QMM_Mangle:
2267    if (const FunctionType *FT = dyn_cast<FunctionType>(T)) {
2268      Out << '6';
2269      mangleFunctionType(FT);
2270      return;
2271    }
2272    mangleQualifiers(Quals, false);
2273    break;
2274  case QMM_Escape:
2275    if (!IsPointer && Quals) {
2276      Out << "$$C";
2277      mangleQualifiers(Quals, false);
2278    }
2279    break;
2280  case QMM_Result:
2281    // Presence of __unaligned qualifier shouldn't affect mangling here.
2282    Quals.removeUnaligned();
2283    if (Quals.hasObjCLifetime())
2284      Quals = Quals.withoutObjCLifetime();
2285    if ((!IsPointer && Quals) || isa<TagType>(T) || isArtificialTagType(T)) {
2286      Out << '?';
2287      mangleQualifiers(Quals, false);
2288    }
2289    break;
2290  }
2291
2292  const Type *ty = T.getTypePtr();
2293
2294  switch (ty->getTypeClass()) {
2295#define ABSTRACT_TYPE(CLASS, PARENT)
2296#define NON_CANONICAL_TYPE(CLASS, PARENT) \
2297  case Type::CLASS: \
2298    llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
2299    return;
2300#define TYPE(CLASS, PARENT) \
2301  case Type::CLASS: \
2302    mangleType(cast<CLASS##Type>(ty), Quals, Range); \
2303    break;
2304#include "clang/AST/TypeNodes.inc"
2305#undef ABSTRACT_TYPE
2306#undef NON_CANONICAL_TYPE
2307#undef TYPE
2308  }
2309}
2310
2311void MicrosoftCXXNameMangler::mangleType(const BuiltinType *T, Qualifiers,
2312                                         SourceRange Range) {
2313  //  <type>         ::= <builtin-type>
2314  //  <builtin-type> ::= X  # void
2315  //                 ::= C  # signed char
2316  //                 ::= D  # char
2317  //                 ::= E  # unsigned char
2318  //                 ::= F  # short
2319  //                 ::= G  # unsigned short (or wchar_t if it's not a builtin)
2320  //                 ::= H  # int
2321  //                 ::= I  # unsigned int
2322  //                 ::= J  # long
2323  //                 ::= K  # unsigned long
2324  //                     L  # <none>
2325  //                 ::= M  # float
2326  //                 ::= N  # double
2327  //                 ::= O  # long double (__float80 is mangled differently)
2328  //                 ::= _J # long long, __int64
2329  //                 ::= _K # unsigned long long, __int64
2330  //                 ::= _L # __int128
2331  //                 ::= _M # unsigned __int128
2332  //                 ::= _N # bool
2333  //                     _O # <array in parameter>
2334  //                 ::= _Q # char8_t
2335  //                 ::= _S # char16_t
2336  //                 ::= _T # __float80 (Intel)
2337  //                 ::= _U # char32_t
2338  //                 ::= _W # wchar_t
2339  //                 ::= _Z # __float80 (Digital Mars)
2340  switch (T->getKind()) {
2341  case BuiltinType::Void:
2342    Out << 'X';
2343    break;
2344  case BuiltinType::SChar:
2345    Out << 'C';
2346    break;
2347  case BuiltinType::Char_U:
2348  case BuiltinType::Char_S:
2349    Out << 'D';
2350    break;
2351  case BuiltinType::UChar:
2352    Out << 'E';
2353    break;
2354  case BuiltinType::Short:
2355    Out << 'F';
2356    break;
2357  case BuiltinType::UShort:
2358    Out << 'G';
2359    break;
2360  case BuiltinType::Int:
2361    Out << 'H';
2362    break;
2363  case BuiltinType::UInt:
2364    Out << 'I';
2365    break;
2366  case BuiltinType::Long:
2367    Out << 'J';
2368    break;
2369  case BuiltinType::ULong:
2370    Out << 'K';
2371    break;
2372  case BuiltinType::Float:
2373    Out << 'M';
2374    break;
2375  case BuiltinType::Double:
2376    Out << 'N';
2377    break;
2378  // TODO: Determine size and mangle accordingly
2379  case BuiltinType::LongDouble:
2380    Out << 'O';
2381    break;
2382  case BuiltinType::LongLong:
2383    Out << "_J";
2384    break;
2385  case BuiltinType::ULongLong:
2386    Out << "_K";
2387    break;
2388  case BuiltinType::Int128:
2389    Out << "_L";
2390    break;
2391  case BuiltinType::UInt128:
2392    Out << "_M";
2393    break;
2394  case BuiltinType::Bool:
2395    Out << "_N";
2396    break;
2397  case BuiltinType::Char8:
2398    Out << "_Q";
2399    break;
2400  case BuiltinType::Char16:
2401    Out << "_S";
2402    break;
2403  case BuiltinType::Char32:
2404    Out << "_U";
2405    break;
2406  case BuiltinType::WChar_S:
2407  case BuiltinType::WChar_U:
2408    Out << "_W";
2409    break;
2410
2411#define BUILTIN_TYPE(Id, SingletonId)
2412#define PLACEHOLDER_TYPE(Id, SingletonId) \
2413  case BuiltinType::Id:
2414#include "clang/AST/BuiltinTypes.def"
2415  case BuiltinType::Dependent:
2416    llvm_unreachable("placeholder types shouldn't get to name mangling");
2417
2418  case BuiltinType::ObjCId:
2419    mangleArtificialTagType(TTK_Struct, "objc_object");
2420    break;
2421  case BuiltinType::ObjCClass:
2422    mangleArtificialTagType(TTK_Struct, "objc_class");
2423    break;
2424  case BuiltinType::ObjCSel:
2425    mangleArtificialTagType(TTK_Struct, "objc_selector");
2426    break;
2427
2428#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
2429  case BuiltinType::Id: \
2430    Out << "PAUocl_" #ImgType "_" #Suffix "@@"; \
2431    break;
2432#include "clang/Basic/OpenCLImageTypes.def"
2433  case BuiltinType::OCLSampler:
2434    Out << "PA";
2435    mangleArtificialTagType(TTK_Struct, "ocl_sampler");
2436    break;
2437  case BuiltinType::OCLEvent:
2438    Out << "PA";
2439    mangleArtificialTagType(TTK_Struct, "ocl_event");
2440    break;
2441  case BuiltinType::OCLClkEvent:
2442    Out << "PA";
2443    mangleArtificialTagType(TTK_Struct, "ocl_clkevent");
2444    break;
2445  case BuiltinType::OCLQueue:
2446    Out << "PA";
2447    mangleArtificialTagType(TTK_Struct, "ocl_queue");
2448    break;
2449  case BuiltinType::OCLReserveID:
2450    Out << "PA";
2451    mangleArtificialTagType(TTK_Struct, "ocl_reserveid");
2452    break;
2453#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
2454  case BuiltinType::Id: \
2455    mangleArtificialTagType(TTK_Struct, "ocl_" #ExtType); \
2456    break;
2457#include "clang/Basic/OpenCLExtensionTypes.def"
2458
2459  case BuiltinType::NullPtr:
2460    Out << "$$T";
2461    break;
2462
2463  case BuiltinType::Float16:
2464    mangleArtificialTagType(TTK_Struct, "_Float16", {"__clang"});
2465    break;
2466
2467  case BuiltinType::Half:
2468    if (!getASTContext().getLangOpts().HLSL)
2469      mangleArtificialTagType(TTK_Struct, "_Half", {"__clang"});
2470    else if (getASTContext().getLangOpts().NativeHalfType)
2471      Out << "$f16@";
2472    else
2473      Out << "$halff@";
2474    break;
2475
2476  case BuiltinType::BFloat16:
2477    mangleArtificialTagType(TTK_Struct, "__bf16", {"__clang"});
2478    break;
2479
2480#define SVE_TYPE(Name, Id, SingletonId) \
2481  case BuiltinType::Id:
2482#include "clang/Basic/AArch64SVEACLETypes.def"
2483#define PPC_VECTOR_TYPE(Name, Id, Size) \
2484  case BuiltinType::Id:
2485#include "clang/Basic/PPCTypes.def"
2486#define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
2487#include "clang/Basic/RISCVVTypes.def"
2488  case BuiltinType::ShortAccum:
2489  case BuiltinType::Accum:
2490  case BuiltinType::LongAccum:
2491  case BuiltinType::UShortAccum:
2492  case BuiltinType::UAccum:
2493  case BuiltinType::ULongAccum:
2494  case BuiltinType::ShortFract:
2495  case BuiltinType::Fract:
2496  case BuiltinType::LongFract:
2497  case BuiltinType::UShortFract:
2498  case BuiltinType::UFract:
2499  case BuiltinType::ULongFract:
2500  case BuiltinType::SatShortAccum:
2501  case BuiltinType::SatAccum:
2502  case BuiltinType::SatLongAccum:
2503  case BuiltinType::SatUShortAccum:
2504  case BuiltinType::SatUAccum:
2505  case BuiltinType::SatULongAccum:
2506  case BuiltinType::SatShortFract:
2507  case BuiltinType::SatFract:
2508  case BuiltinType::SatLongFract:
2509  case BuiltinType::SatUShortFract:
2510  case BuiltinType::SatUFract:
2511  case BuiltinType::SatULongFract:
2512  case BuiltinType::Ibm128:
2513  case BuiltinType::Float128: {
2514    DiagnosticsEngine &Diags = Context.getDiags();
2515    unsigned DiagID = Diags.getCustomDiagID(
2516        DiagnosticsEngine::Error, "cannot mangle this built-in %0 type yet");
2517    Diags.Report(Range.getBegin(), DiagID)
2518        << T->getName(Context.getASTContext().getPrintingPolicy()) << Range;
2519    break;
2520  }
2521  }
2522}
2523
2524// <type>          ::= <function-type>
2525void MicrosoftCXXNameMangler::mangleType(const FunctionProtoType *T, Qualifiers,
2526                                         SourceRange) {
2527  // Structors only appear in decls, so at this point we know it's not a
2528  // structor type.
2529  // FIXME: This may not be lambda-friendly.
2530  if (T->getMethodQuals() || T->getRefQualifier() != RQ_None) {
2531    Out << "$$A8@@";
2532    mangleFunctionType(T, /*D=*/nullptr, /*ForceThisQuals=*/true);
2533  } else {
2534    Out << "$$A6";
2535    mangleFunctionType(T);
2536  }
2537}
2538void MicrosoftCXXNameMangler::mangleType(const FunctionNoProtoType *T,
2539                                         Qualifiers, SourceRange) {
2540  Out << "$$A6";
2541  mangleFunctionType(T);
2542}
2543
2544void MicrosoftCXXNameMangler::mangleFunctionType(const FunctionType *T,
2545                                                 const FunctionDecl *D,
2546                                                 bool ForceThisQuals,
2547                                                 bool MangleExceptionSpec) {
2548  // <function-type> ::= <this-cvr-qualifiers> <calling-convention>
2549  //                     <return-type> <argument-list> <throw-spec>
2550  const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(T);
2551
2552  SourceRange Range;
2553  if (D) Range = D->getSourceRange();
2554
2555  bool IsInLambda = false;
2556  bool IsStructor = false, HasThisQuals = ForceThisQuals, IsCtorClosure = false;
2557  CallingConv CC = T->getCallConv();
2558  if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(D)) {
2559    if (MD->getParent()->isLambda())
2560      IsInLambda = true;
2561    if (MD->isInstance())
2562      HasThisQuals = true;
2563    if (isa<CXXDestructorDecl>(MD)) {
2564      IsStructor = true;
2565    } else if (isa<CXXConstructorDecl>(MD)) {
2566      IsStructor = true;
2567      IsCtorClosure = (StructorType == Ctor_CopyingClosure ||
2568                       StructorType == Ctor_DefaultClosure) &&
2569                      isStructorDecl(MD);
2570      if (IsCtorClosure)
2571        CC = getASTContext().getDefaultCallingConvention(
2572            /*IsVariadic=*/false, /*IsCXXMethod=*/true);
2573    }
2574  }
2575
2576  // If this is a C++ instance method, mangle the CVR qualifiers for the
2577  // this pointer.
2578  if (HasThisQuals) {
2579    Qualifiers Quals = Proto->getMethodQuals();
2580    manglePointerExtQualifiers(Quals, /*PointeeType=*/QualType());
2581    mangleRefQualifier(Proto->getRefQualifier());
2582    mangleQualifiers(Quals, /*IsMember=*/false);
2583  }
2584
2585  mangleCallingConvention(CC);
2586
2587  // <return-type> ::= <type>
2588  //               ::= @ # structors (they have no declared return type)
2589  if (IsStructor) {
2590    if (isa<CXXDestructorDecl>(D) && isStructorDecl(D)) {
2591      // The scalar deleting destructor takes an extra int argument which is not
2592      // reflected in the AST.
2593      if (StructorType == Dtor_Deleting) {
2594        Out << (PointersAre64Bit ? "PEAXI@Z" : "PAXI@Z");
2595        return;
2596      }
2597      // The vbase destructor returns void which is not reflected in the AST.
2598      if (StructorType == Dtor_Complete) {
2599        Out << "XXZ";
2600        return;
2601      }
2602    }
2603    if (IsCtorClosure) {
2604      // Default constructor closure and copy constructor closure both return
2605      // void.
2606      Out << 'X';
2607
2608      if (StructorType == Ctor_DefaultClosure) {
2609        // Default constructor closure always has no arguments.
2610        Out << 'X';
2611      } else if (StructorType == Ctor_CopyingClosure) {
2612        // Copy constructor closure always takes an unqualified reference.
2613        mangleFunctionArgumentType(getASTContext().getLValueReferenceType(
2614                                       Proto->getParamType(0)
2615                                           ->getAs<LValueReferenceType>()
2616                                           ->getPointeeType(),
2617                                       /*SpelledAsLValue=*/true),
2618                                   Range);
2619        Out << '@';
2620      } else {
2621        llvm_unreachable("unexpected constructor closure!");
2622      }
2623      Out << 'Z';
2624      return;
2625    }
2626    Out << '@';
2627  } else if (IsInLambda && D && isa<CXXConversionDecl>(D)) {
2628    // The only lambda conversion operators are to function pointers, which
2629    // can differ by their calling convention and are typically deduced.  So
2630    // we make sure that this type gets mangled properly.
2631    mangleType(T->getReturnType(), Range, QMM_Result);
2632  } else {
2633    QualType ResultType = T->getReturnType();
2634    if (IsInLambda && isa<CXXConversionDecl>(D)) {
2635      // The only lambda conversion operators are to function pointers, which
2636      // can differ by their calling convention and are typically deduced.  So
2637      // we make sure that this type gets mangled properly.
2638      mangleType(ResultType, Range, QMM_Result);
2639    } else if (const auto *AT = dyn_cast_or_null<AutoType>(
2640                   ResultType->getContainedAutoType())) {
2641      Out << '?';
2642      mangleQualifiers(ResultType.getLocalQualifiers(), /*IsMember=*/false);
2643      Out << '?';
2644      assert(AT->getKeyword() != AutoTypeKeyword::GNUAutoType &&
2645             "shouldn't need to mangle __auto_type!");
2646      mangleSourceName(AT->isDecltypeAuto() ? "<decltype-auto>" : "<auto>");
2647      Out << '@';
2648    } else if (IsInLambda) {
2649      Out << '@';
2650    } else {
2651      if (ResultType->isVoidType())
2652        ResultType = ResultType.getUnqualifiedType();
2653      mangleType(ResultType, Range, QMM_Result);
2654    }
2655  }
2656
2657  // <argument-list> ::= X # void
2658  //                 ::= <type>+ @
2659  //                 ::= <type>* Z # varargs
2660  if (!Proto) {
2661    // Function types without prototypes can arise when mangling a function type
2662    // within an overloadable function in C. We mangle these as the absence of
2663    // any parameter types (not even an empty parameter list).
2664    Out << '@';
2665  } else if (Proto->getNumParams() == 0 && !Proto->isVariadic()) {
2666    Out << 'X';
2667  } else {
2668    // Happens for function pointer type arguments for example.
2669    for (unsigned I = 0, E = Proto->getNumParams(); I != E; ++I) {
2670      mangleFunctionArgumentType(Proto->getParamType(I), Range);
2671      // Mangle each pass_object_size parameter as if it's a parameter of enum
2672      // type passed directly after the parameter with the pass_object_size
2673      // attribute. The aforementioned enum's name is __pass_object_size, and we
2674      // pretend it resides in a top-level namespace called __clang.
2675      //
2676      // FIXME: Is there a defined extension notation for the MS ABI, or is it
2677      // necessary to just cross our fingers and hope this type+namespace
2678      // combination doesn't conflict with anything?
2679      if (D)
2680        if (const auto *P = D->getParamDecl(I)->getAttr<PassObjectSizeAttr>())
2681          manglePassObjectSizeArg(P);
2682    }
2683    // <builtin-type>      ::= Z  # ellipsis
2684    if (Proto->isVariadic())
2685      Out << 'Z';
2686    else
2687      Out << '@';
2688  }
2689
2690  if (MangleExceptionSpec && getASTContext().getLangOpts().CPlusPlus17 &&
2691      getASTContext().getLangOpts().isCompatibleWithMSVC(
2692          LangOptions::MSVC2017_5))
2693    mangleThrowSpecification(Proto);
2694  else
2695    Out << 'Z';
2696}
2697
2698void MicrosoftCXXNameMangler::mangleFunctionClass(const FunctionDecl *FD) {
2699  // <function-class>  ::= <member-function> E? # E designates a 64-bit 'this'
2700  //                                            # pointer. in 64-bit mode *all*
2701  //                                            # 'this' pointers are 64-bit.
2702  //                   ::= <global-function>
2703  // <member-function> ::= A # private: near
2704  //                   ::= B # private: far
2705  //                   ::= C # private: static near
2706  //                   ::= D # private: static far
2707  //                   ::= E # private: virtual near
2708  //                   ::= F # private: virtual far
2709  //                   ::= I # protected: near
2710  //                   ::= J # protected: far
2711  //                   ::= K # protected: static near
2712  //                   ::= L # protected: static far
2713  //                   ::= M # protected: virtual near
2714  //                   ::= N # protected: virtual far
2715  //                   ::= Q # public: near
2716  //                   ::= R # public: far
2717  //                   ::= S # public: static near
2718  //                   ::= T # public: static far
2719  //                   ::= U # public: virtual near
2720  //                   ::= V # public: virtual far
2721  // <global-function> ::= Y # global near
2722  //                   ::= Z # global far
2723  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
2724    bool IsVirtual = MD->isVirtual();
2725    // When mangling vbase destructor variants, ignore whether or not the
2726    // underlying destructor was defined to be virtual.
2727    if (isa<CXXDestructorDecl>(MD) && isStructorDecl(MD) &&
2728        StructorType == Dtor_Complete) {
2729      IsVirtual = false;
2730    }
2731    switch (MD->getAccess()) {
2732      case AS_none:
2733        llvm_unreachable("Unsupported access specifier");
2734      case AS_private:
2735        if (MD->isStatic())
2736          Out << 'C';
2737        else if (IsVirtual)
2738          Out << 'E';
2739        else
2740          Out << 'A';
2741        break;
2742      case AS_protected:
2743        if (MD->isStatic())
2744          Out << 'K';
2745        else if (IsVirtual)
2746          Out << 'M';
2747        else
2748          Out << 'I';
2749        break;
2750      case AS_public:
2751        if (MD->isStatic())
2752          Out << 'S';
2753        else if (IsVirtual)
2754          Out << 'U';
2755        else
2756          Out << 'Q';
2757    }
2758  } else {
2759    Out << 'Y';
2760  }
2761}
2762void MicrosoftCXXNameMangler::mangleCallingConvention(CallingConv CC) {
2763  // <calling-convention> ::= A # __cdecl
2764  //                      ::= B # __export __cdecl
2765  //                      ::= C # __pascal
2766  //                      ::= D # __export __pascal
2767  //                      ::= E # __thiscall
2768  //                      ::= F # __export __thiscall
2769  //                      ::= G # __stdcall
2770  //                      ::= H # __export __stdcall
2771  //                      ::= I # __fastcall
2772  //                      ::= J # __export __fastcall
2773  //                      ::= Q # __vectorcall
2774  //                      ::= S # __attribute__((__swiftcall__)) // Clang-only
2775  //                      ::= T # __attribute__((__swiftasynccall__))
2776  //                            // Clang-only
2777  //                      ::= w # __regcall
2778  // The 'export' calling conventions are from a bygone era
2779  // (*cough*Win16*cough*) when functions were declared for export with
2780  // that keyword. (It didn't actually export them, it just made them so
2781  // that they could be in a DLL and somebody from another module could call
2782  // them.)
2783
2784  switch (CC) {
2785    default:
2786      llvm_unreachable("Unsupported CC for mangling");
2787    case CC_Win64:
2788    case CC_X86_64SysV:
2789    case CC_C: Out << 'A'; break;
2790    case CC_X86Pascal: Out << 'C'; break;
2791    case CC_X86ThisCall: Out << 'E'; break;
2792    case CC_X86StdCall: Out << 'G'; break;
2793    case CC_X86FastCall: Out << 'I'; break;
2794    case CC_X86VectorCall: Out << 'Q'; break;
2795    case CC_Swift: Out << 'S'; break;
2796    case CC_SwiftAsync: Out << 'W'; break;
2797    case CC_PreserveMost: Out << 'U'; break;
2798    case CC_X86RegCall: Out << 'w'; break;
2799  }
2800}
2801void MicrosoftCXXNameMangler::mangleCallingConvention(const FunctionType *T) {
2802  mangleCallingConvention(T->getCallConv());
2803}
2804
2805void MicrosoftCXXNameMangler::mangleThrowSpecification(
2806                                                const FunctionProtoType *FT) {
2807  // <throw-spec> ::= Z # (default)
2808  //              ::= _E # noexcept
2809  if (FT->canThrow())
2810    Out << 'Z';
2811  else
2812    Out << "_E";
2813}
2814
2815void MicrosoftCXXNameMangler::mangleType(const UnresolvedUsingType *T,
2816                                         Qualifiers, SourceRange Range) {
2817  // Probably should be mangled as a template instantiation; need to see what
2818  // VC does first.
2819  DiagnosticsEngine &Diags = Context.getDiags();
2820  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2821    "cannot mangle this unresolved dependent type yet");
2822  Diags.Report(Range.getBegin(), DiagID)
2823    << Range;
2824}
2825
2826// <type>        ::= <union-type> | <struct-type> | <class-type> | <enum-type>
2827// <union-type>  ::= T <name>
2828// <struct-type> ::= U <name>
2829// <class-type>  ::= V <name>
2830// <enum-type>   ::= W4 <name>
2831void MicrosoftCXXNameMangler::mangleTagTypeKind(TagTypeKind TTK) {
2832  switch (TTK) {
2833    case TTK_Union:
2834      Out << 'T';
2835      break;
2836    case TTK_Struct:
2837    case TTK_Interface:
2838      Out << 'U';
2839      break;
2840    case TTK_Class:
2841      Out << 'V';
2842      break;
2843    case TTK_Enum:
2844      Out << "W4";
2845      break;
2846  }
2847}
2848void MicrosoftCXXNameMangler::mangleType(const EnumType *T, Qualifiers,
2849                                         SourceRange) {
2850  mangleType(cast<TagType>(T)->getDecl());
2851}
2852void MicrosoftCXXNameMangler::mangleType(const RecordType *T, Qualifiers,
2853                                         SourceRange) {
2854  mangleType(cast<TagType>(T)->getDecl());
2855}
2856void MicrosoftCXXNameMangler::mangleType(const TagDecl *TD) {
2857  mangleTagTypeKind(TD->getTagKind());
2858  mangleName(TD);
2859}
2860
2861// If you add a call to this, consider updating isArtificialTagType() too.
2862void MicrosoftCXXNameMangler::mangleArtificialTagType(
2863    TagTypeKind TK, StringRef UnqualifiedName,
2864    ArrayRef<StringRef> NestedNames) {
2865  // <name> ::= <unscoped-name> {[<named-scope>]+ | [<nested-name>]}? @
2866  mangleTagTypeKind(TK);
2867
2868  // Always start with the unqualified name.
2869  mangleSourceName(UnqualifiedName);
2870
2871  for (StringRef N : llvm::reverse(NestedNames))
2872    mangleSourceName(N);
2873
2874  // Terminate the whole name with an '@'.
2875  Out << '@';
2876}
2877
2878// <type>       ::= <array-type>
2879// <array-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers>
2880//                  [Y <dimension-count> <dimension>+]
2881//                  <element-type> # as global, E is never required
2882// It's supposed to be the other way around, but for some strange reason, it
2883// isn't. Today this behavior is retained for the sole purpose of backwards
2884// compatibility.
2885void MicrosoftCXXNameMangler::mangleDecayedArrayType(const ArrayType *T) {
2886  // This isn't a recursive mangling, so now we have to do it all in this
2887  // one call.
2888  manglePointerCVQualifiers(T->getElementType().getQualifiers());
2889  mangleType(T->getElementType(), SourceRange());
2890}
2891void MicrosoftCXXNameMangler::mangleType(const ConstantArrayType *T, Qualifiers,
2892                                         SourceRange) {
2893  llvm_unreachable("Should have been special cased");
2894}
2895void MicrosoftCXXNameMangler::mangleType(const VariableArrayType *T, Qualifiers,
2896                                         SourceRange) {
2897  llvm_unreachable("Should have been special cased");
2898}
2899void MicrosoftCXXNameMangler::mangleType(const DependentSizedArrayType *T,
2900                                         Qualifiers, SourceRange) {
2901  llvm_unreachable("Should have been special cased");
2902}
2903void MicrosoftCXXNameMangler::mangleType(const IncompleteArrayType *T,
2904                                         Qualifiers, SourceRange) {
2905  llvm_unreachable("Should have been special cased");
2906}
2907void MicrosoftCXXNameMangler::mangleArrayType(const ArrayType *T) {
2908  QualType ElementTy(T, 0);
2909  SmallVector<llvm::APInt, 3> Dimensions;
2910  for (;;) {
2911    if (ElementTy->isConstantArrayType()) {
2912      const ConstantArrayType *CAT =
2913          getASTContext().getAsConstantArrayType(ElementTy);
2914      Dimensions.push_back(CAT->getSize());
2915      ElementTy = CAT->getElementType();
2916    } else if (ElementTy->isIncompleteArrayType()) {
2917      const IncompleteArrayType *IAT =
2918          getASTContext().getAsIncompleteArrayType(ElementTy);
2919      Dimensions.push_back(llvm::APInt(32, 0));
2920      ElementTy = IAT->getElementType();
2921    } else if (ElementTy->isVariableArrayType()) {
2922      const VariableArrayType *VAT =
2923        getASTContext().getAsVariableArrayType(ElementTy);
2924      Dimensions.push_back(llvm::APInt(32, 0));
2925      ElementTy = VAT->getElementType();
2926    } else if (ElementTy->isDependentSizedArrayType()) {
2927      // The dependent expression has to be folded into a constant (TODO).
2928      const DependentSizedArrayType *DSAT =
2929        getASTContext().getAsDependentSizedArrayType(ElementTy);
2930      DiagnosticsEngine &Diags = Context.getDiags();
2931      unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2932        "cannot mangle this dependent-length array yet");
2933      Diags.Report(DSAT->getSizeExpr()->getExprLoc(), DiagID)
2934        << DSAT->getBracketsRange();
2935      return;
2936    } else {
2937      break;
2938    }
2939  }
2940  Out << 'Y';
2941  // <dimension-count> ::= <number> # number of extra dimensions
2942  mangleNumber(Dimensions.size());
2943  for (const llvm::APInt &Dimension : Dimensions)
2944    mangleNumber(Dimension.getLimitedValue());
2945  mangleType(ElementTy, SourceRange(), QMM_Escape);
2946}
2947
2948// <type>                   ::= <pointer-to-member-type>
2949// <pointer-to-member-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers>
2950//                                                          <class name> <type>
2951void MicrosoftCXXNameMangler::mangleType(const MemberPointerType *T,
2952                                         Qualifiers Quals, SourceRange Range) {
2953  QualType PointeeType = T->getPointeeType();
2954  manglePointerCVQualifiers(Quals);
2955  manglePointerExtQualifiers(Quals, PointeeType);
2956  if (const FunctionProtoType *FPT = PointeeType->getAs<FunctionProtoType>()) {
2957    Out << '8';
2958    mangleName(T->getClass()->castAs<RecordType>()->getDecl());
2959    mangleFunctionType(FPT, nullptr, true);
2960  } else {
2961    mangleQualifiers(PointeeType.getQualifiers(), true);
2962    mangleName(T->getClass()->castAs<RecordType>()->getDecl());
2963    mangleType(PointeeType, Range, QMM_Drop);
2964  }
2965}
2966
2967void MicrosoftCXXNameMangler::mangleType(const TemplateTypeParmType *T,
2968                                         Qualifiers, SourceRange Range) {
2969  DiagnosticsEngine &Diags = Context.getDiags();
2970  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2971    "cannot mangle this template type parameter type yet");
2972  Diags.Report(Range.getBegin(), DiagID)
2973    << Range;
2974}
2975
2976void MicrosoftCXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T,
2977                                         Qualifiers, SourceRange Range) {
2978  DiagnosticsEngine &Diags = Context.getDiags();
2979  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2980    "cannot mangle this substituted parameter pack yet");
2981  Diags.Report(Range.getBegin(), DiagID)
2982    << Range;
2983}
2984
2985// <type> ::= <pointer-type>
2986// <pointer-type> ::= E? <pointer-cvr-qualifiers> <cvr-qualifiers> <type>
2987//                       # the E is required for 64-bit non-static pointers
2988void MicrosoftCXXNameMangler::mangleType(const PointerType *T, Qualifiers Quals,
2989                                         SourceRange Range) {
2990  QualType PointeeType = T->getPointeeType();
2991  manglePointerCVQualifiers(Quals);
2992  manglePointerExtQualifiers(Quals, PointeeType);
2993
2994  // For pointer size address spaces, go down the same type mangling path as
2995  // non address space types.
2996  LangAS AddrSpace = PointeeType.getQualifiers().getAddressSpace();
2997  if (isPtrSizeAddressSpace(AddrSpace) || AddrSpace == LangAS::Default)
2998    mangleType(PointeeType, Range);
2999  else
3000    mangleAddressSpaceType(PointeeType, PointeeType.getQualifiers(), Range);
3001}
3002
3003void MicrosoftCXXNameMangler::mangleType(const ObjCObjectPointerType *T,
3004                                         Qualifiers Quals, SourceRange Range) {
3005  QualType PointeeType = T->getPointeeType();
3006  switch (Quals.getObjCLifetime()) {
3007  case Qualifiers::OCL_None:
3008  case Qualifiers::OCL_ExplicitNone:
3009    break;
3010  case Qualifiers::OCL_Autoreleasing:
3011  case Qualifiers::OCL_Strong:
3012  case Qualifiers::OCL_Weak:
3013    return mangleObjCLifetime(PointeeType, Quals, Range);
3014  }
3015  manglePointerCVQualifiers(Quals);
3016  manglePointerExtQualifiers(Quals, PointeeType);
3017  mangleType(PointeeType, Range);
3018}
3019
3020// <type> ::= <reference-type>
3021// <reference-type> ::= A E? <cvr-qualifiers> <type>
3022//                 # the E is required for 64-bit non-static lvalue references
3023void MicrosoftCXXNameMangler::mangleType(const LValueReferenceType *T,
3024                                         Qualifiers Quals, SourceRange Range) {
3025  QualType PointeeType = T->getPointeeType();
3026  assert(!Quals.hasConst() && !Quals.hasVolatile() && "unexpected qualifier!");
3027  Out << 'A';
3028  manglePointerExtQualifiers(Quals, PointeeType);
3029  mangleType(PointeeType, Range);
3030}
3031
3032// <type> ::= <r-value-reference-type>
3033// <r-value-reference-type> ::= $$Q E? <cvr-qualifiers> <type>
3034//                 # the E is required for 64-bit non-static rvalue references
3035void MicrosoftCXXNameMangler::mangleType(const RValueReferenceType *T,
3036                                         Qualifiers Quals, SourceRange Range) {
3037  QualType PointeeType = T->getPointeeType();
3038  assert(!Quals.hasConst() && !Quals.hasVolatile() && "unexpected qualifier!");
3039  Out << "$$Q";
3040  manglePointerExtQualifiers(Quals, PointeeType);
3041  mangleType(PointeeType, Range);
3042}
3043
3044void MicrosoftCXXNameMangler::mangleType(const ComplexType *T, Qualifiers,
3045                                         SourceRange Range) {
3046  QualType ElementType = T->getElementType();
3047
3048  llvm::SmallString<64> TemplateMangling;
3049  llvm::raw_svector_ostream Stream(TemplateMangling);
3050  MicrosoftCXXNameMangler Extra(Context, Stream);
3051  Stream << "?$";
3052  Extra.mangleSourceName("_Complex");
3053  Extra.mangleType(ElementType, Range, QMM_Escape);
3054
3055  mangleArtificialTagType(TTK_Struct, TemplateMangling, {"__clang"});
3056}
3057
3058// Returns true for types that mangleArtificialTagType() gets called for with
3059// TTK_Union, TTK_Struct, TTK_Class and where compatibility with MSVC's
3060// mangling matters.
3061// (It doesn't matter for Objective-C types and the like that cl.exe doesn't
3062// support.)
3063bool MicrosoftCXXNameMangler::isArtificialTagType(QualType T) const {
3064  const Type *ty = T.getTypePtr();
3065  switch (ty->getTypeClass()) {
3066  default:
3067    return false;
3068
3069  case Type::Vector: {
3070    // For ABI compatibility only __m64, __m128(id), and __m256(id) matter,
3071    // but since mangleType(VectorType*) always calls mangleArtificialTagType()
3072    // just always return true (the other vector types are clang-only).
3073    return true;
3074  }
3075  }
3076}
3077
3078void MicrosoftCXXNameMangler::mangleType(const VectorType *T, Qualifiers Quals,
3079                                         SourceRange Range) {
3080  QualType EltTy = T->getElementType();
3081  const BuiltinType *ET = EltTy->getAs<BuiltinType>();
3082  const BitIntType *BitIntTy = EltTy->getAs<BitIntType>();
3083  assert((ET || BitIntTy) &&
3084         "vectors with non-builtin/_BitInt elements are unsupported");
3085  uint64_t Width = getASTContext().getTypeSize(T);
3086  // Pattern match exactly the typedefs in our intrinsic headers.  Anything that
3087  // doesn't match the Intel types uses a custom mangling below.
3088  size_t OutSizeBefore = Out.tell();
3089  if (!isa<ExtVectorType>(T)) {
3090    if (getASTContext().getTargetInfo().getTriple().isX86() && ET) {
3091      if (Width == 64 && ET->getKind() == BuiltinType::LongLong) {
3092        mangleArtificialTagType(TTK_Union, "__m64");
3093      } else if (Width >= 128) {
3094        if (ET->getKind() == BuiltinType::Float)
3095          mangleArtificialTagType(TTK_Union, "__m" + llvm::utostr(Width));
3096        else if (ET->getKind() == BuiltinType::LongLong)
3097          mangleArtificialTagType(TTK_Union, "__m" + llvm::utostr(Width) + 'i');
3098        else if (ET->getKind() == BuiltinType::Double)
3099          mangleArtificialTagType(TTK_Struct, "__m" + llvm::utostr(Width) + 'd');
3100      }
3101    }
3102  }
3103
3104  bool IsBuiltin = Out.tell() != OutSizeBefore;
3105  if (!IsBuiltin) {
3106    // The MS ABI doesn't have a special mangling for vector types, so we define
3107    // our own mangling to handle uses of __vector_size__ on user-specified
3108    // types, and for extensions like __v4sf.
3109
3110    llvm::SmallString<64> TemplateMangling;
3111    llvm::raw_svector_ostream Stream(TemplateMangling);
3112    MicrosoftCXXNameMangler Extra(Context, Stream);
3113    Stream << "?$";
3114    Extra.mangleSourceName("__vector");
3115    Extra.mangleType(QualType(ET ? static_cast<const Type *>(ET) : BitIntTy, 0),
3116                     Range, QMM_Escape);
3117    Extra.mangleIntegerLiteral(llvm::APSInt::getUnsigned(T->getNumElements()));
3118
3119    mangleArtificialTagType(TTK_Union, TemplateMangling, {"__clang"});
3120  }
3121}
3122
3123void MicrosoftCXXNameMangler::mangleType(const ExtVectorType *T,
3124                                         Qualifiers Quals, SourceRange Range) {
3125  mangleType(static_cast<const VectorType *>(T), Quals, Range);
3126}
3127
3128void MicrosoftCXXNameMangler::mangleType(const DependentVectorType *T,
3129                                         Qualifiers, SourceRange Range) {
3130  DiagnosticsEngine &Diags = Context.getDiags();
3131  unsigned DiagID = Diags.getCustomDiagID(
3132      DiagnosticsEngine::Error,
3133      "cannot mangle this dependent-sized vector type yet");
3134  Diags.Report(Range.getBegin(), DiagID) << Range;
3135}
3136
3137void MicrosoftCXXNameMangler::mangleType(const DependentSizedExtVectorType *T,
3138                                         Qualifiers, SourceRange Range) {
3139  DiagnosticsEngine &Diags = Context.getDiags();
3140  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
3141    "cannot mangle this dependent-sized extended vector type yet");
3142  Diags.Report(Range.getBegin(), DiagID)
3143    << Range;
3144}
3145
3146void MicrosoftCXXNameMangler::mangleType(const ConstantMatrixType *T,
3147                                         Qualifiers quals, SourceRange Range) {
3148  DiagnosticsEngine &Diags = Context.getDiags();
3149  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
3150                                          "Cannot mangle this matrix type yet");
3151  Diags.Report(Range.getBegin(), DiagID) << Range;
3152}
3153
3154void MicrosoftCXXNameMangler::mangleType(const DependentSizedMatrixType *T,
3155                                         Qualifiers quals, SourceRange Range) {
3156  DiagnosticsEngine &Diags = Context.getDiags();
3157  unsigned DiagID = Diags.getCustomDiagID(
3158      DiagnosticsEngine::Error,
3159      "Cannot mangle this dependent-sized matrix type yet");
3160  Diags.Report(Range.getBegin(), DiagID) << Range;
3161}
3162
3163void MicrosoftCXXNameMangler::mangleType(const DependentAddressSpaceType *T,
3164                                         Qualifiers, SourceRange Range) {
3165  DiagnosticsEngine &Diags = Context.getDiags();
3166  unsigned DiagID = Diags.getCustomDiagID(
3167      DiagnosticsEngine::Error,
3168      "cannot mangle this dependent address space type yet");
3169  Diags.Report(Range.getBegin(), DiagID) << Range;
3170}
3171
3172void MicrosoftCXXNameMangler::mangleType(const ObjCInterfaceType *T, Qualifiers,
3173                                         SourceRange) {
3174  // ObjC interfaces have structs underlying them.
3175  mangleTagTypeKind(TTK_Struct);
3176  mangleName(T->getDecl());
3177}
3178
3179void MicrosoftCXXNameMangler::mangleType(const ObjCObjectType *T,
3180                                         Qualifiers Quals, SourceRange Range) {
3181  if (T->isKindOfType())
3182    return mangleObjCKindOfType(T, Quals, Range);
3183
3184  if (T->qual_empty() && !T->isSpecialized())
3185    return mangleType(T->getBaseType(), Range, QMM_Drop);
3186
3187  ArgBackRefMap OuterFunArgsContext;
3188  ArgBackRefMap OuterTemplateArgsContext;
3189  BackRefVec OuterTemplateContext;
3190
3191  FunArgBackReferences.swap(OuterFunArgsContext);
3192  TemplateArgBackReferences.swap(OuterTemplateArgsContext);
3193  NameBackReferences.swap(OuterTemplateContext);
3194
3195  mangleTagTypeKind(TTK_Struct);
3196
3197  Out << "?$";
3198  if (T->isObjCId())
3199    mangleSourceName("objc_object");
3200  else if (T->isObjCClass())
3201    mangleSourceName("objc_class");
3202  else
3203    mangleSourceName(T->getInterface()->getName());
3204
3205  for (const auto &Q : T->quals())
3206    mangleObjCProtocol(Q);
3207
3208  if (T->isSpecialized())
3209    for (const auto &TA : T->getTypeArgs())
3210      mangleType(TA, Range, QMM_Drop);
3211
3212  Out << '@';
3213
3214  Out << '@';
3215
3216  FunArgBackReferences.swap(OuterFunArgsContext);
3217  TemplateArgBackReferences.swap(OuterTemplateArgsContext);
3218  NameBackReferences.swap(OuterTemplateContext);
3219}
3220
3221void MicrosoftCXXNameMangler::mangleType(const BlockPointerType *T,
3222                                         Qualifiers Quals, SourceRange Range) {
3223  QualType PointeeType = T->getPointeeType();
3224  manglePointerCVQualifiers(Quals);
3225  manglePointerExtQualifiers(Quals, PointeeType);
3226
3227  Out << "_E";
3228
3229  mangleFunctionType(PointeeType->castAs<FunctionProtoType>());
3230}
3231
3232void MicrosoftCXXNameMangler::mangleType(const InjectedClassNameType *,
3233                                         Qualifiers, SourceRange) {
3234  llvm_unreachable("Cannot mangle injected class name type.");
3235}
3236
3237void MicrosoftCXXNameMangler::mangleType(const TemplateSpecializationType *T,
3238                                         Qualifiers, SourceRange Range) {
3239  DiagnosticsEngine &Diags = Context.getDiags();
3240  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
3241    "cannot mangle this template specialization type yet");
3242  Diags.Report(Range.getBegin(), DiagID)
3243    << Range;
3244}
3245
3246void MicrosoftCXXNameMangler::mangleType(const DependentNameType *T, Qualifiers,
3247                                         SourceRange Range) {
3248  DiagnosticsEngine &Diags = Context.getDiags();
3249  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
3250    "cannot mangle this dependent name type yet");
3251  Diags.Report(Range.getBegin(), DiagID)
3252    << Range;
3253}
3254
3255void MicrosoftCXXNameMangler::mangleType(
3256    const DependentTemplateSpecializationType *T, Qualifiers,
3257    SourceRange Range) {
3258  DiagnosticsEngine &Diags = Context.getDiags();
3259  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
3260    "cannot mangle this dependent template specialization type yet");
3261  Diags.Report(Range.getBegin(), DiagID)
3262    << Range;
3263}
3264
3265void MicrosoftCXXNameMangler::mangleType(const PackExpansionType *T, Qualifiers,
3266                                         SourceRange Range) {
3267  DiagnosticsEngine &Diags = Context.getDiags();
3268  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
3269    "cannot mangle this pack expansion yet");
3270  Diags.Report(Range.getBegin(), DiagID)
3271    << Range;
3272}
3273
3274void MicrosoftCXXNameMangler::mangleType(const TypeOfType *T, Qualifiers,
3275                                         SourceRange Range) {
3276  DiagnosticsEngine &Diags = Context.getDiags();
3277  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
3278    "cannot mangle this typeof(type) yet");
3279  Diags.Report(Range.getBegin(), DiagID)
3280    << Range;
3281}
3282
3283void MicrosoftCXXNameMangler::mangleType(const TypeOfExprType *T, Qualifiers,
3284                                         SourceRange Range) {
3285  DiagnosticsEngine &Diags = Context.getDiags();
3286  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
3287    "cannot mangle this typeof(expression) yet");
3288  Diags.Report(Range.getBegin(), DiagID)
3289    << Range;
3290}
3291
3292void MicrosoftCXXNameMangler::mangleType(const DecltypeType *T, Qualifiers,
3293                                         SourceRange Range) {
3294  DiagnosticsEngine &Diags = Context.getDiags();
3295  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
3296    "cannot mangle this decltype() yet");
3297  Diags.Report(Range.getBegin(), DiagID)
3298    << Range;
3299}
3300
3301void MicrosoftCXXNameMangler::mangleType(const UnaryTransformType *T,
3302                                         Qualifiers, SourceRange Range) {
3303  DiagnosticsEngine &Diags = Context.getDiags();
3304  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
3305    "cannot mangle this unary transform type yet");
3306  Diags.Report(Range.getBegin(), DiagID)
3307    << Range;
3308}
3309
3310void MicrosoftCXXNameMangler::mangleType(const AutoType *T, Qualifiers,
3311                                         SourceRange Range) {
3312  assert(T->getDeducedType().isNull() && "expecting a dependent type!");
3313
3314  DiagnosticsEngine &Diags = Context.getDiags();
3315  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
3316    "cannot mangle this 'auto' type yet");
3317  Diags.Report(Range.getBegin(), DiagID)
3318    << Range;
3319}
3320
3321void MicrosoftCXXNameMangler::mangleType(
3322    const DeducedTemplateSpecializationType *T, Qualifiers, SourceRange Range) {
3323  assert(T->getDeducedType().isNull() && "expecting a dependent type!");
3324
3325  DiagnosticsEngine &Diags = Context.getDiags();
3326  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
3327    "cannot mangle this deduced class template specialization type yet");
3328  Diags.Report(Range.getBegin(), DiagID)
3329    << Range;
3330}
3331
3332void MicrosoftCXXNameMangler::mangleType(const AtomicType *T, Qualifiers,
3333                                         SourceRange Range) {
3334  QualType ValueType = T->getValueType();
3335
3336  llvm::SmallString<64> TemplateMangling;
3337  llvm::raw_svector_ostream Stream(TemplateMangling);
3338  MicrosoftCXXNameMangler Extra(Context, Stream);
3339  Stream << "?$";
3340  Extra.mangleSourceName("_Atomic");
3341  Extra.mangleType(ValueType, Range, QMM_Escape);
3342
3343  mangleArtificialTagType(TTK_Struct, TemplateMangling, {"__clang"});
3344}
3345
3346void MicrosoftCXXNameMangler::mangleType(const PipeType *T, Qualifiers,
3347                                         SourceRange Range) {
3348  QualType ElementType = T->getElementType();
3349
3350  llvm::SmallString<64> TemplateMangling;
3351  llvm::raw_svector_ostream Stream(TemplateMangling);
3352  MicrosoftCXXNameMangler Extra(Context, Stream);
3353  Stream << "?$";
3354  Extra.mangleSourceName("ocl_pipe");
3355  Extra.mangleType(ElementType, Range, QMM_Escape);
3356  Extra.mangleIntegerLiteral(llvm::APSInt::get(T->isReadOnly()));
3357
3358  mangleArtificialTagType(TTK_Struct, TemplateMangling, {"__clang"});
3359}
3360
3361void MicrosoftMangleContextImpl::mangleCXXName(GlobalDecl GD,
3362                                               raw_ostream &Out) {
3363  const NamedDecl *D = cast<NamedDecl>(GD.getDecl());
3364  PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
3365                                 getASTContext().getSourceManager(),
3366                                 "Mangling declaration");
3367
3368  msvc_hashing_ostream MHO(Out);
3369
3370  if (auto *CD = dyn_cast<CXXConstructorDecl>(D)) {
3371    auto Type = GD.getCtorType();
3372    MicrosoftCXXNameMangler mangler(*this, MHO, CD, Type);
3373    return mangler.mangle(GD);
3374  }
3375
3376  if (auto *DD = dyn_cast<CXXDestructorDecl>(D)) {
3377    auto Type = GD.getDtorType();
3378    MicrosoftCXXNameMangler mangler(*this, MHO, DD, Type);
3379    return mangler.mangle(GD);
3380  }
3381
3382  MicrosoftCXXNameMangler Mangler(*this, MHO);
3383  return Mangler.mangle(GD);
3384}
3385
3386void MicrosoftCXXNameMangler::mangleType(const BitIntType *T, Qualifiers,
3387                                         SourceRange Range) {
3388  llvm::SmallString<64> TemplateMangling;
3389  llvm::raw_svector_ostream Stream(TemplateMangling);
3390  MicrosoftCXXNameMangler Extra(Context, Stream);
3391  Stream << "?$";
3392  if (T->isUnsigned())
3393    Extra.mangleSourceName("_UBitInt");
3394  else
3395    Extra.mangleSourceName("_BitInt");
3396  Extra.mangleIntegerLiteral(llvm::APSInt::getUnsigned(T->getNumBits()));
3397
3398  mangleArtificialTagType(TTK_Struct, TemplateMangling, {"__clang"});
3399}
3400
3401void MicrosoftCXXNameMangler::mangleType(const DependentBitIntType *T,
3402                                         Qualifiers, SourceRange Range) {
3403  DiagnosticsEngine &Diags = Context.getDiags();
3404  unsigned DiagID = Diags.getCustomDiagID(
3405      DiagnosticsEngine::Error, "cannot mangle this DependentBitInt type yet");
3406  Diags.Report(Range.getBegin(), DiagID) << Range;
3407}
3408
3409// <this-adjustment> ::= <no-adjustment> | <static-adjustment> |
3410//                       <virtual-adjustment>
3411// <no-adjustment>      ::= A # private near
3412//                      ::= B # private far
3413//                      ::= I # protected near
3414//                      ::= J # protected far
3415//                      ::= Q # public near
3416//                      ::= R # public far
3417// <static-adjustment>  ::= G <static-offset> # private near
3418//                      ::= H <static-offset> # private far
3419//                      ::= O <static-offset> # protected near
3420//                      ::= P <static-offset> # protected far
3421//                      ::= W <static-offset> # public near
3422//                      ::= X <static-offset> # public far
3423// <virtual-adjustment> ::= $0 <virtual-shift> <static-offset> # private near
3424//                      ::= $1 <virtual-shift> <static-offset> # private far
3425//                      ::= $2 <virtual-shift> <static-offset> # protected near
3426//                      ::= $3 <virtual-shift> <static-offset> # protected far
3427//                      ::= $4 <virtual-shift> <static-offset> # public near
3428//                      ::= $5 <virtual-shift> <static-offset> # public far
3429// <virtual-shift>      ::= <vtordisp-shift> | <vtordispex-shift>
3430// <vtordisp-shift>     ::= <offset-to-vtordisp>
3431// <vtordispex-shift>   ::= <offset-to-vbptr> <vbase-offset-offset>
3432//                          <offset-to-vtordisp>
3433static void mangleThunkThisAdjustment(AccessSpecifier AS,
3434                                      const ThisAdjustment &Adjustment,
3435                                      MicrosoftCXXNameMangler &Mangler,
3436                                      raw_ostream &Out) {
3437  if (!Adjustment.Virtual.isEmpty()) {
3438    Out << '$';
3439    char AccessSpec;
3440    switch (AS) {
3441    case AS_none:
3442      llvm_unreachable("Unsupported access specifier");
3443    case AS_private:
3444      AccessSpec = '0';
3445      break;
3446    case AS_protected:
3447      AccessSpec = '2';
3448      break;
3449    case AS_public:
3450      AccessSpec = '4';
3451    }
3452    if (Adjustment.Virtual.Microsoft.VBPtrOffset) {
3453      Out << 'R' << AccessSpec;
3454      Mangler.mangleNumber(
3455          static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VBPtrOffset));
3456      Mangler.mangleNumber(
3457          static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VBOffsetOffset));
3458      Mangler.mangleNumber(
3459          static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VtordispOffset));
3460      Mangler.mangleNumber(static_cast<uint32_t>(Adjustment.NonVirtual));
3461    } else {
3462      Out << AccessSpec;
3463      Mangler.mangleNumber(
3464          static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VtordispOffset));
3465      Mangler.mangleNumber(-static_cast<uint32_t>(Adjustment.NonVirtual));
3466    }
3467  } else if (Adjustment.NonVirtual != 0) {
3468    switch (AS) {
3469    case AS_none:
3470      llvm_unreachable("Unsupported access specifier");
3471    case AS_private:
3472      Out << 'G';
3473      break;
3474    case AS_protected:
3475      Out << 'O';
3476      break;
3477    case AS_public:
3478      Out << 'W';
3479    }
3480    Mangler.mangleNumber(-static_cast<uint32_t>(Adjustment.NonVirtual));
3481  } else {
3482    switch (AS) {
3483    case AS_none:
3484      llvm_unreachable("Unsupported access specifier");
3485    case AS_private:
3486      Out << 'A';
3487      break;
3488    case AS_protected:
3489      Out << 'I';
3490      break;
3491    case AS_public:
3492      Out << 'Q';
3493    }
3494  }
3495}
3496
3497void MicrosoftMangleContextImpl::mangleVirtualMemPtrThunk(
3498    const CXXMethodDecl *MD, const MethodVFTableLocation &ML,
3499    raw_ostream &Out) {
3500  msvc_hashing_ostream MHO(Out);
3501  MicrosoftCXXNameMangler Mangler(*this, MHO);
3502  Mangler.getStream() << '?';
3503  Mangler.mangleVirtualMemPtrThunk(MD, ML);
3504}
3505
3506void MicrosoftMangleContextImpl::mangleThunk(const CXXMethodDecl *MD,
3507                                             const ThunkInfo &Thunk,
3508                                             raw_ostream &Out) {
3509  msvc_hashing_ostream MHO(Out);
3510  MicrosoftCXXNameMangler Mangler(*this, MHO);
3511  Mangler.getStream() << '?';
3512  Mangler.mangleName(MD);
3513
3514  // Usually the thunk uses the access specifier of the new method, but if this
3515  // is a covariant return thunk, then MSVC always uses the public access
3516  // specifier, and we do the same.
3517  AccessSpecifier AS = Thunk.Return.isEmpty() ? MD->getAccess() : AS_public;
3518  mangleThunkThisAdjustment(AS, Thunk.This, Mangler, MHO);
3519
3520  if (!Thunk.Return.isEmpty())
3521    assert(Thunk.Method != nullptr &&
3522           "Thunk info should hold the overridee decl");
3523
3524  const CXXMethodDecl *DeclForFPT = Thunk.Method ? Thunk.Method : MD;
3525  Mangler.mangleFunctionType(
3526      DeclForFPT->getType()->castAs<FunctionProtoType>(), MD);
3527}
3528
3529void MicrosoftMangleContextImpl::mangleCXXDtorThunk(
3530    const CXXDestructorDecl *DD, CXXDtorType Type,
3531    const ThisAdjustment &Adjustment, raw_ostream &Out) {
3532  // FIXME: Actually, the dtor thunk should be emitted for vector deleting
3533  // dtors rather than scalar deleting dtors. Just use the vector deleting dtor
3534  // mangling manually until we support both deleting dtor types.
3535  assert(Type == Dtor_Deleting);
3536  msvc_hashing_ostream MHO(Out);
3537  MicrosoftCXXNameMangler Mangler(*this, MHO, DD, Type);
3538  Mangler.getStream() << "??_E";
3539  Mangler.mangleName(DD->getParent());
3540  mangleThunkThisAdjustment(DD->getAccess(), Adjustment, Mangler, MHO);
3541  Mangler.mangleFunctionType(DD->getType()->castAs<FunctionProtoType>(), DD);
3542}
3543
3544void MicrosoftMangleContextImpl::mangleCXXVFTable(
3545    const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath,
3546    raw_ostream &Out) {
3547  // <mangled-name> ::= ?_7 <class-name> <storage-class>
3548  //                    <cvr-qualifiers> [<name>] @
3549  // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class>
3550  // is always '6' for vftables.
3551  msvc_hashing_ostream MHO(Out);
3552  MicrosoftCXXNameMangler Mangler(*this, MHO);
3553  if (Derived->hasAttr<DLLImportAttr>())
3554    Mangler.getStream() << "??_S";
3555  else
3556    Mangler.getStream() << "??_7";
3557  Mangler.mangleName(Derived);
3558  Mangler.getStream() << "6B"; // '6' for vftable, 'B' for const.
3559  for (const CXXRecordDecl *RD : BasePath)
3560    Mangler.mangleName(RD);
3561  Mangler.getStream() << '@';
3562}
3563
3564void MicrosoftMangleContextImpl::mangleCXXVBTable(
3565    const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath,
3566    raw_ostream &Out) {
3567  // <mangled-name> ::= ?_8 <class-name> <storage-class>
3568  //                    <cvr-qualifiers> [<name>] @
3569  // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class>
3570  // is always '7' for vbtables.
3571  msvc_hashing_ostream MHO(Out);
3572  MicrosoftCXXNameMangler Mangler(*this, MHO);
3573  Mangler.getStream() << "??_8";
3574  Mangler.mangleName(Derived);
3575  Mangler.getStream() << "7B";  // '7' for vbtable, 'B' for const.
3576  for (const CXXRecordDecl *RD : BasePath)
3577    Mangler.mangleName(RD);
3578  Mangler.getStream() << '@';
3579}
3580
3581void MicrosoftMangleContextImpl::mangleCXXRTTI(QualType T, raw_ostream &Out) {
3582  msvc_hashing_ostream MHO(Out);
3583  MicrosoftCXXNameMangler Mangler(*this, MHO);
3584  Mangler.getStream() << "??_R0";
3585  Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result);
3586  Mangler.getStream() << "@8";
3587}
3588
3589void MicrosoftMangleContextImpl::mangleCXXRTTIName(QualType T,
3590                                                   raw_ostream &Out) {
3591  MicrosoftCXXNameMangler Mangler(*this, Out);
3592  Mangler.getStream() << '.';
3593  Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result);
3594}
3595
3596void MicrosoftMangleContextImpl::mangleCXXVirtualDisplacementMap(
3597    const CXXRecordDecl *SrcRD, const CXXRecordDecl *DstRD, raw_ostream &Out) {
3598  msvc_hashing_ostream MHO(Out);
3599  MicrosoftCXXNameMangler Mangler(*this, MHO);
3600  Mangler.getStream() << "??_K";
3601  Mangler.mangleName(SrcRD);
3602  Mangler.getStream() << "$C";
3603  Mangler.mangleName(DstRD);
3604}
3605
3606void MicrosoftMangleContextImpl::mangleCXXThrowInfo(QualType T, bool IsConst,
3607                                                    bool IsVolatile,
3608                                                    bool IsUnaligned,
3609                                                    uint32_t NumEntries,
3610                                                    raw_ostream &Out) {
3611  msvc_hashing_ostream MHO(Out);
3612  MicrosoftCXXNameMangler Mangler(*this, MHO);
3613  Mangler.getStream() << "_TI";
3614  if (IsConst)
3615    Mangler.getStream() << 'C';
3616  if (IsVolatile)
3617    Mangler.getStream() << 'V';
3618  if (IsUnaligned)
3619    Mangler.getStream() << 'U';
3620  Mangler.getStream() << NumEntries;
3621  Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result);
3622}
3623
3624void MicrosoftMangleContextImpl::mangleCXXCatchableTypeArray(
3625    QualType T, uint32_t NumEntries, raw_ostream &Out) {
3626  msvc_hashing_ostream MHO(Out);
3627  MicrosoftCXXNameMangler Mangler(*this, MHO);
3628  Mangler.getStream() << "_CTA";
3629  Mangler.getStream() << NumEntries;
3630  Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result);
3631}
3632
3633void MicrosoftMangleContextImpl::mangleCXXCatchableType(
3634    QualType T, const CXXConstructorDecl *CD, CXXCtorType CT, uint32_t Size,
3635    uint32_t NVOffset, int32_t VBPtrOffset, uint32_t VBIndex,
3636    raw_ostream &Out) {
3637  MicrosoftCXXNameMangler Mangler(*this, Out);
3638  Mangler.getStream() << "_CT";
3639
3640  llvm::SmallString<64> RTTIMangling;
3641  {
3642    llvm::raw_svector_ostream Stream(RTTIMangling);
3643    msvc_hashing_ostream MHO(Stream);
3644    mangleCXXRTTI(T, MHO);
3645  }
3646  Mangler.getStream() << RTTIMangling;
3647
3648  // VS2015 and VS2017.1 omit the copy-constructor in the mangled name but
3649  // both older and newer versions include it.
3650  // FIXME: It is known that the Ctor is present in 2013, and in 2017.7
3651  // (_MSC_VER 1914) and newer, and that it's omitted in 2015 and 2017.4
3652  // (_MSC_VER 1911), but it's unknown when exactly it reappeared (1914?
3653  // Or 1912, 1913 already?).
3654  bool OmitCopyCtor = getASTContext().getLangOpts().isCompatibleWithMSVC(
3655                          LangOptions::MSVC2015) &&
3656                      !getASTContext().getLangOpts().isCompatibleWithMSVC(
3657                          LangOptions::MSVC2017_7);
3658  llvm::SmallString<64> CopyCtorMangling;
3659  if (!OmitCopyCtor && CD) {
3660    llvm::raw_svector_ostream Stream(CopyCtorMangling);
3661    msvc_hashing_ostream MHO(Stream);
3662    mangleCXXName(GlobalDecl(CD, CT), MHO);
3663  }
3664  Mangler.getStream() << CopyCtorMangling;
3665
3666  Mangler.getStream() << Size;
3667  if (VBPtrOffset == -1) {
3668    if (NVOffset) {
3669      Mangler.getStream() << NVOffset;
3670    }
3671  } else {
3672    Mangler.getStream() << NVOffset;
3673    Mangler.getStream() << VBPtrOffset;
3674    Mangler.getStream() << VBIndex;
3675  }
3676}
3677
3678void MicrosoftMangleContextImpl::mangleCXXRTTIBaseClassDescriptor(
3679    const CXXRecordDecl *Derived, uint32_t NVOffset, int32_t VBPtrOffset,
3680    uint32_t VBTableOffset, uint32_t Flags, raw_ostream &Out) {
3681  msvc_hashing_ostream MHO(Out);
3682  MicrosoftCXXNameMangler Mangler(*this, MHO);
3683  Mangler.getStream() << "??_R1";
3684  Mangler.mangleNumber(NVOffset);
3685  Mangler.mangleNumber(VBPtrOffset);
3686  Mangler.mangleNumber(VBTableOffset);
3687  Mangler.mangleNumber(Flags);
3688  Mangler.mangleName(Derived);
3689  Mangler.getStream() << "8";
3690}
3691
3692void MicrosoftMangleContextImpl::mangleCXXRTTIBaseClassArray(
3693    const CXXRecordDecl *Derived, raw_ostream &Out) {
3694  msvc_hashing_ostream MHO(Out);
3695  MicrosoftCXXNameMangler Mangler(*this, MHO);
3696  Mangler.getStream() << "??_R2";
3697  Mangler.mangleName(Derived);
3698  Mangler.getStream() << "8";
3699}
3700
3701void MicrosoftMangleContextImpl::mangleCXXRTTIClassHierarchyDescriptor(
3702    const CXXRecordDecl *Derived, raw_ostream &Out) {
3703  msvc_hashing_ostream MHO(Out);
3704  MicrosoftCXXNameMangler Mangler(*this, MHO);
3705  Mangler.getStream() << "??_R3";
3706  Mangler.mangleName(Derived);
3707  Mangler.getStream() << "8";
3708}
3709
3710void MicrosoftMangleContextImpl::mangleCXXRTTICompleteObjectLocator(
3711    const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath,
3712    raw_ostream &Out) {
3713  // <mangled-name> ::= ?_R4 <class-name> <storage-class>
3714  //                    <cvr-qualifiers> [<name>] @
3715  // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class>
3716  // is always '6' for vftables.
3717  llvm::SmallString<64> VFTableMangling;
3718  llvm::raw_svector_ostream Stream(VFTableMangling);
3719  mangleCXXVFTable(Derived, BasePath, Stream);
3720
3721  if (VFTableMangling.startswith("??@")) {
3722    assert(VFTableMangling.endswith("@"));
3723    Out << VFTableMangling << "??_R4@";
3724    return;
3725  }
3726
3727  assert(VFTableMangling.startswith("??_7") ||
3728         VFTableMangling.startswith("??_S"));
3729
3730  Out << "??_R4" << VFTableMangling.str().drop_front(4);
3731}
3732
3733void MicrosoftMangleContextImpl::mangleSEHFilterExpression(
3734    GlobalDecl EnclosingDecl, raw_ostream &Out) {
3735  msvc_hashing_ostream MHO(Out);
3736  MicrosoftCXXNameMangler Mangler(*this, MHO);
3737  // The function body is in the same comdat as the function with the handler,
3738  // so the numbering here doesn't have to be the same across TUs.
3739  //
3740  // <mangled-name> ::= ?filt$ <filter-number> @0
3741  Mangler.getStream() << "?filt$" << SEHFilterIds[EnclosingDecl]++ << "@0@";
3742  Mangler.mangleName(EnclosingDecl);
3743}
3744
3745void MicrosoftMangleContextImpl::mangleSEHFinallyBlock(
3746    GlobalDecl EnclosingDecl, raw_ostream &Out) {
3747  msvc_hashing_ostream MHO(Out);
3748  MicrosoftCXXNameMangler Mangler(*this, MHO);
3749  // The function body is in the same comdat as the function with the handler,
3750  // so the numbering here doesn't have to be the same across TUs.
3751  //
3752  // <mangled-name> ::= ?fin$ <filter-number> @0
3753  Mangler.getStream() << "?fin$" << SEHFinallyIds[EnclosingDecl]++ << "@0@";
3754  Mangler.mangleName(EnclosingDecl);
3755}
3756
3757void MicrosoftMangleContextImpl::mangleTypeName(QualType T, raw_ostream &Out) {
3758  // This is just a made up unique string for the purposes of tbaa.  undname
3759  // does *not* know how to demangle it.
3760  MicrosoftCXXNameMangler Mangler(*this, Out);
3761  Mangler.getStream() << '?';
3762  Mangler.mangleType(T, SourceRange());
3763}
3764
3765void MicrosoftMangleContextImpl::mangleReferenceTemporary(
3766    const VarDecl *VD, unsigned ManglingNumber, raw_ostream &Out) {
3767  msvc_hashing_ostream MHO(Out);
3768  MicrosoftCXXNameMangler Mangler(*this, MHO);
3769
3770  Mangler.getStream() << "?$RT" << ManglingNumber << '@';
3771  Mangler.mangle(VD, "");
3772}
3773
3774void MicrosoftMangleContextImpl::mangleThreadSafeStaticGuardVariable(
3775    const VarDecl *VD, unsigned GuardNum, raw_ostream &Out) {
3776  msvc_hashing_ostream MHO(Out);
3777  MicrosoftCXXNameMangler Mangler(*this, MHO);
3778
3779  Mangler.getStream() << "?$TSS" << GuardNum << '@';
3780  Mangler.mangleNestedName(VD);
3781  Mangler.getStream() << "@4HA";
3782}
3783
3784void MicrosoftMangleContextImpl::mangleStaticGuardVariable(const VarDecl *VD,
3785                                                           raw_ostream &Out) {
3786  // <guard-name> ::= ?_B <postfix> @5 <scope-depth>
3787  //              ::= ?__J <postfix> @5 <scope-depth>
3788  //              ::= ?$S <guard-num> @ <postfix> @4IA
3789
3790  // The first mangling is what MSVC uses to guard static locals in inline
3791  // functions.  It uses a different mangling in external functions to support
3792  // guarding more than 32 variables.  MSVC rejects inline functions with more
3793  // than 32 static locals.  We don't fully implement the second mangling
3794  // because those guards are not externally visible, and instead use LLVM's
3795  // default renaming when creating a new guard variable.
3796  msvc_hashing_ostream MHO(Out);
3797  MicrosoftCXXNameMangler Mangler(*this, MHO);
3798
3799  bool Visible = VD->isExternallyVisible();
3800  if (Visible) {
3801    Mangler.getStream() << (VD->getTLSKind() ? "??__J" : "??_B");
3802  } else {
3803    Mangler.getStream() << "?$S1@";
3804  }
3805  unsigned ScopeDepth = 0;
3806  if (Visible && !getNextDiscriminator(VD, ScopeDepth))
3807    // If we do not have a discriminator and are emitting a guard variable for
3808    // use at global scope, then mangling the nested name will not be enough to
3809    // remove ambiguities.
3810    Mangler.mangle(VD, "");
3811  else
3812    Mangler.mangleNestedName(VD);
3813  Mangler.getStream() << (Visible ? "@5" : "@4IA");
3814  if (ScopeDepth)
3815    Mangler.mangleNumber(ScopeDepth);
3816}
3817
3818void MicrosoftMangleContextImpl::mangleInitFiniStub(const VarDecl *D,
3819                                                    char CharCode,
3820                                                    raw_ostream &Out) {
3821  msvc_hashing_ostream MHO(Out);
3822  MicrosoftCXXNameMangler Mangler(*this, MHO);
3823  Mangler.getStream() << "??__" << CharCode;
3824  if (D->isStaticDataMember()) {
3825    Mangler.getStream() << '?';
3826    Mangler.mangleName(D);
3827    Mangler.mangleVariableEncoding(D);
3828    Mangler.getStream() << "@@";
3829  } else {
3830    Mangler.mangleName(D);
3831  }
3832  // This is the function class mangling.  These stubs are global, non-variadic,
3833  // cdecl functions that return void and take no args.
3834  Mangler.getStream() << "YAXXZ";
3835}
3836
3837void MicrosoftMangleContextImpl::mangleDynamicInitializer(const VarDecl *D,
3838                                                          raw_ostream &Out) {
3839  // <initializer-name> ::= ?__E <name> YAXXZ
3840  mangleInitFiniStub(D, 'E', Out);
3841}
3842
3843void
3844MicrosoftMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D,
3845                                                          raw_ostream &Out) {
3846  // <destructor-name> ::= ?__F <name> YAXXZ
3847  mangleInitFiniStub(D, 'F', Out);
3848}
3849
3850void MicrosoftMangleContextImpl::mangleStringLiteral(const StringLiteral *SL,
3851                                                     raw_ostream &Out) {
3852  // <char-type> ::= 0   # char, char16_t, char32_t
3853  //                     # (little endian char data in mangling)
3854  //             ::= 1   # wchar_t (big endian char data in mangling)
3855  //
3856  // <literal-length> ::= <non-negative integer>  # the length of the literal
3857  //
3858  // <encoded-crc>    ::= <hex digit>+ @          # crc of the literal including
3859  //                                              # trailing null bytes
3860  //
3861  // <encoded-string> ::= <simple character>           # uninteresting character
3862  //                  ::= '?$' <hex digit> <hex digit> # these two nibbles
3863  //                                                   # encode the byte for the
3864  //                                                   # character
3865  //                  ::= '?' [a-z]                    # \xe1 - \xfa
3866  //                  ::= '?' [A-Z]                    # \xc1 - \xda
3867  //                  ::= '?' [0-9]                    # [,/\:. \n\t'-]
3868  //
3869  // <literal> ::= '??_C@_' <char-type> <literal-length> <encoded-crc>
3870  //               <encoded-string> '@'
3871  MicrosoftCXXNameMangler Mangler(*this, Out);
3872  Mangler.getStream() << "??_C@_";
3873
3874  // The actual string length might be different from that of the string literal
3875  // in cases like:
3876  // char foo[3] = "foobar";
3877  // char bar[42] = "foobar";
3878  // Where it is truncated or zero-padded to fit the array. This is the length
3879  // used for mangling, and any trailing null-bytes also need to be mangled.
3880  unsigned StringLength = getASTContext()
3881                              .getAsConstantArrayType(SL->getType())
3882                              ->getSize()
3883                              .getZExtValue();
3884  unsigned StringByteLength = StringLength * SL->getCharByteWidth();
3885
3886  // <char-type>: The "kind" of string literal is encoded into the mangled name.
3887  if (SL->isWide())
3888    Mangler.getStream() << '1';
3889  else
3890    Mangler.getStream() << '0';
3891
3892  // <literal-length>: The next part of the mangled name consists of the length
3893  // of the string in bytes.
3894  Mangler.mangleNumber(StringByteLength);
3895
3896  auto GetLittleEndianByte = [&SL](unsigned Index) {
3897    unsigned CharByteWidth = SL->getCharByteWidth();
3898    if (Index / CharByteWidth >= SL->getLength())
3899      return static_cast<char>(0);
3900    uint32_t CodeUnit = SL->getCodeUnit(Index / CharByteWidth);
3901    unsigned OffsetInCodeUnit = Index % CharByteWidth;
3902    return static_cast<char>((CodeUnit >> (8 * OffsetInCodeUnit)) & 0xff);
3903  };
3904
3905  auto GetBigEndianByte = [&SL](unsigned Index) {
3906    unsigned CharByteWidth = SL->getCharByteWidth();
3907    if (Index / CharByteWidth >= SL->getLength())
3908      return static_cast<char>(0);
3909    uint32_t CodeUnit = SL->getCodeUnit(Index / CharByteWidth);
3910    unsigned OffsetInCodeUnit = (CharByteWidth - 1) - (Index % CharByteWidth);
3911    return static_cast<char>((CodeUnit >> (8 * OffsetInCodeUnit)) & 0xff);
3912  };
3913
3914  // CRC all the bytes of the StringLiteral.
3915  llvm::JamCRC JC;
3916  for (unsigned I = 0, E = StringByteLength; I != E; ++I)
3917    JC.update(GetLittleEndianByte(I));
3918
3919  // <encoded-crc>: The CRC is encoded utilizing the standard number mangling
3920  // scheme.
3921  Mangler.mangleNumber(JC.getCRC());
3922
3923  // <encoded-string>: The mangled name also contains the first 32 bytes
3924  // (including null-terminator bytes) of the encoded StringLiteral.
3925  // Each character is encoded by splitting them into bytes and then encoding
3926  // the constituent bytes.
3927  auto MangleByte = [&Mangler](char Byte) {
3928    // There are five different manglings for characters:
3929    // - [a-zA-Z0-9_$]: A one-to-one mapping.
3930    // - ?[a-z]: The range from \xe1 to \xfa.
3931    // - ?[A-Z]: The range from \xc1 to \xda.
3932    // - ?[0-9]: The set of [,/\:. \n\t'-].
3933    // - ?$XX: A fallback which maps nibbles.
3934    if (isAsciiIdentifierContinue(Byte, /*AllowDollar=*/true)) {
3935      Mangler.getStream() << Byte;
3936    } else if (isLetter(Byte & 0x7f)) {
3937      Mangler.getStream() << '?' << static_cast<char>(Byte & 0x7f);
3938    } else {
3939      const char SpecialChars[] = {',', '/',  '\\', ':',  '.',
3940                                   ' ', '\n', '\t', '\'', '-'};
3941      const char *Pos = llvm::find(SpecialChars, Byte);
3942      if (Pos != std::end(SpecialChars)) {
3943        Mangler.getStream() << '?' << (Pos - std::begin(SpecialChars));
3944      } else {
3945        Mangler.getStream() << "?$";
3946        Mangler.getStream() << static_cast<char>('A' + ((Byte >> 4) & 0xf));
3947        Mangler.getStream() << static_cast<char>('A' + (Byte & 0xf));
3948      }
3949    }
3950  };
3951
3952  // Enforce our 32 bytes max, except wchar_t which gets 32 chars instead.
3953  unsigned MaxBytesToMangle = SL->isWide() ? 64U : 32U;
3954  unsigned NumBytesToMangle = std::min(MaxBytesToMangle, StringByteLength);
3955  for (unsigned I = 0; I != NumBytesToMangle; ++I) {
3956    if (SL->isWide())
3957      MangleByte(GetBigEndianByte(I));
3958    else
3959      MangleByte(GetLittleEndianByte(I));
3960  }
3961
3962  Mangler.getStream() << '@';
3963}
3964
3965MicrosoftMangleContext *MicrosoftMangleContext::create(ASTContext &Context,
3966                                                       DiagnosticsEngine &Diags,
3967                                                       bool IsAux) {
3968  return new MicrosoftMangleContextImpl(Context, Diags, IsAux);
3969}
3970