1/* Language-independent node constructors for parse phase of GNU compiler.
2   Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3   1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
4   Free Software Foundation, Inc.
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
10Software Foundation; either version 2, or (at your option) any later
11version.
12
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16for more details.
17
18You should have received a copy of the GNU General Public License
19along with GCC; see the file COPYING.  If not, write to the Free
20Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
2102110-1301, USA.  */
22
23/* This file contains the low level primitives for operating on tree nodes,
24   including allocation, list operations, interning of identifiers,
25   construction of data type nodes and statement nodes,
26   and construction of type conversion nodes.  It also contains
27   tables index by tree code that describe how to take apart
28   nodes of that code.
29
30   It is intended to be language-independent, but occasionally
31   calls language-dependent routines defined (for C) in typecheck.c.  */
32
33#include "config.h"
34#include "system.h"
35#include "coretypes.h"
36#include "tm.h"
37#include "flags.h"
38#include "tree.h"
39#include "real.h"
40#include "tm_p.h"
41#include "function.h"
42#include "obstack.h"
43#include "toplev.h"
44#include "ggc.h"
45#include "hashtab.h"
46#include "output.h"
47#include "target.h"
48#include "langhooks.h"
49#include "tree-iterator.h"
50#include "basic-block.h"
51#include "tree-flow.h"
52#include "params.h"
53#include "pointer-set.h"
54
55/* Each tree code class has an associated string representation.
56   These must correspond to the tree_code_class entries.  */
57
58const char *const tree_code_class_strings[] =
59{
60  "exceptional",
61  "constant",
62  "type",
63  "declaration",
64  "reference",
65  "comparison",
66  "unary",
67  "binary",
68  "statement",
69  "expression",
70};
71
72/* obstack.[ch] explicitly declined to prototype this.  */
73extern int _obstack_allocated_p (struct obstack *h, void *obj);
74
75#ifdef GATHER_STATISTICS
76/* Statistics-gathering stuff.  */
77
78int tree_node_counts[(int) all_kinds];
79int tree_node_sizes[(int) all_kinds];
80
81/* Keep in sync with tree.h:enum tree_node_kind.  */
82static const char * const tree_node_kind_names[] = {
83  "decls",
84  "types",
85  "blocks",
86  "stmts",
87  "refs",
88  "exprs",
89  "constants",
90  "identifiers",
91  "perm_tree_lists",
92  "temp_tree_lists",
93  "vecs",
94  "binfos",
95  "phi_nodes",
96  "ssa names",
97  "constructors",
98  "random kinds",
99  "lang_decl kinds",
100  "lang_type kinds",
101  "omp clauses"
102};
103#endif /* GATHER_STATISTICS */
104
105/* Unique id for next decl created.  */
106static GTY(()) int next_decl_uid;
107/* Unique id for next type created.  */
108static GTY(()) int next_type_uid = 1;
109
110/* Since we cannot rehash a type after it is in the table, we have to
111   keep the hash code.  */
112
113struct type_hash GTY(())
114{
115  unsigned long hash;
116  tree type;
117};
118
119/* Initial size of the hash table (rounded to next prime).  */
120#define TYPE_HASH_INITIAL_SIZE 1000
121
122/* Now here is the hash table.  When recording a type, it is added to
123   the slot whose index is the hash code.  Note that the hash table is
124   used for several kinds of types (function types, array types and
125   array index range types, for now).  While all these live in the
126   same table, they are completely independent, and the hash code is
127   computed differently for each of these.  */
128
129static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
130     htab_t type_hash_table;
131
132/* Hash table and temporary node for larger integer const values.  */
133static GTY (()) tree int_cst_node;
134static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
135     htab_t int_cst_hash_table;
136
137/* General tree->tree mapping  structure for use in hash tables.  */
138
139
140static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
141     htab_t debug_expr_for_decl;
142
143static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
144     htab_t value_expr_for_decl;
145
146static GTY ((if_marked ("tree_int_map_marked_p"), param_is (struct tree_int_map)))
147  htab_t init_priority_for_decl;
148
149static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
150  htab_t restrict_base_for_decl;
151
152struct tree_int_map GTY(())
153{
154  tree from;
155  unsigned short to;
156};
157static unsigned int tree_int_map_hash (const void *);
158static int tree_int_map_eq (const void *, const void *);
159static int tree_int_map_marked_p (const void *);
160static void set_type_quals (tree, int);
161static int type_hash_eq (const void *, const void *);
162static hashval_t type_hash_hash (const void *);
163static hashval_t int_cst_hash_hash (const void *);
164static int int_cst_hash_eq (const void *, const void *);
165static void print_type_hash_statistics (void);
166static void print_debug_expr_statistics (void);
167static void print_value_expr_statistics (void);
168static int type_hash_marked_p (const void *);
169static unsigned int type_hash_list (tree, hashval_t);
170static unsigned int attribute_hash_list (tree, hashval_t);
171
172tree global_trees[TI_MAX];
173tree integer_types[itk_none];
174
175unsigned char tree_contains_struct[256][64];
176
177/* Number of operands for each OpenMP clause.  */
178unsigned const char omp_clause_num_ops[] =
179{
180  0, /* OMP_CLAUSE_ERROR  */
181  1, /* OMP_CLAUSE_PRIVATE  */
182  1, /* OMP_CLAUSE_SHARED  */
183  1, /* OMP_CLAUSE_FIRSTPRIVATE  */
184  1, /* OMP_CLAUSE_LASTPRIVATE  */
185  4, /* OMP_CLAUSE_REDUCTION  */
186  1, /* OMP_CLAUSE_COPYIN  */
187  1, /* OMP_CLAUSE_COPYPRIVATE  */
188  1, /* OMP_CLAUSE_IF  */
189  1, /* OMP_CLAUSE_NUM_THREADS  */
190  1, /* OMP_CLAUSE_SCHEDULE  */
191  0, /* OMP_CLAUSE_NOWAIT  */
192  0, /* OMP_CLAUSE_ORDERED  */
193  0  /* OMP_CLAUSE_DEFAULT  */
194};
195
196const char * const omp_clause_code_name[] =
197{
198  "error_clause",
199  "private",
200  "shared",
201  "firstprivate",
202  "lastprivate",
203  "reduction",
204  "copyin",
205  "copyprivate",
206  "if",
207  "num_threads",
208  "schedule",
209  "nowait",
210  "ordered",
211  "default"
212};
213
214/* Init tree.c.  */
215
216void
217init_ttree (void)
218{
219  /* Initialize the hash table of types.  */
220  type_hash_table = htab_create_ggc (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
221				     type_hash_eq, 0);
222
223  debug_expr_for_decl = htab_create_ggc (512, tree_map_hash,
224					 tree_map_eq, 0);
225
226  value_expr_for_decl = htab_create_ggc (512, tree_map_hash,
227					 tree_map_eq, 0);
228  init_priority_for_decl = htab_create_ggc (512, tree_int_map_hash,
229					    tree_int_map_eq, 0);
230  restrict_base_for_decl = htab_create_ggc (256, tree_map_hash,
231					    tree_map_eq, 0);
232
233  int_cst_hash_table = htab_create_ggc (1024, int_cst_hash_hash,
234					int_cst_hash_eq, NULL);
235
236  int_cst_node = make_node (INTEGER_CST);
237
238  tree_contains_struct[FUNCTION_DECL][TS_DECL_NON_COMMON] = 1;
239  tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_NON_COMMON] = 1;
240  tree_contains_struct[TYPE_DECL][TS_DECL_NON_COMMON] = 1;
241
242
243  tree_contains_struct[CONST_DECL][TS_DECL_COMMON] = 1;
244  tree_contains_struct[VAR_DECL][TS_DECL_COMMON] = 1;
245  tree_contains_struct[PARM_DECL][TS_DECL_COMMON] = 1;
246  tree_contains_struct[RESULT_DECL][TS_DECL_COMMON] = 1;
247  tree_contains_struct[FUNCTION_DECL][TS_DECL_COMMON] = 1;
248  tree_contains_struct[TYPE_DECL][TS_DECL_COMMON] = 1;
249  tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_COMMON] = 1;
250  tree_contains_struct[LABEL_DECL][TS_DECL_COMMON] = 1;
251  tree_contains_struct[FIELD_DECL][TS_DECL_COMMON] = 1;
252
253
254  tree_contains_struct[CONST_DECL][TS_DECL_WRTL] = 1;
255  tree_contains_struct[VAR_DECL][TS_DECL_WRTL] = 1;
256  tree_contains_struct[PARM_DECL][TS_DECL_WRTL] = 1;
257  tree_contains_struct[RESULT_DECL][TS_DECL_WRTL] = 1;
258  tree_contains_struct[FUNCTION_DECL][TS_DECL_WRTL] = 1;
259  tree_contains_struct[LABEL_DECL][TS_DECL_WRTL] = 1;
260
261  tree_contains_struct[CONST_DECL][TS_DECL_MINIMAL] = 1;
262  tree_contains_struct[VAR_DECL][TS_DECL_MINIMAL] = 1;
263  tree_contains_struct[PARM_DECL][TS_DECL_MINIMAL] = 1;
264  tree_contains_struct[RESULT_DECL][TS_DECL_MINIMAL] = 1;
265  tree_contains_struct[FUNCTION_DECL][TS_DECL_MINIMAL] = 1;
266  tree_contains_struct[TYPE_DECL][TS_DECL_MINIMAL] = 1;
267  tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_MINIMAL] = 1;
268  tree_contains_struct[LABEL_DECL][TS_DECL_MINIMAL] = 1;
269  tree_contains_struct[FIELD_DECL][TS_DECL_MINIMAL] = 1;
270  tree_contains_struct[STRUCT_FIELD_TAG][TS_DECL_MINIMAL] = 1;
271  tree_contains_struct[NAME_MEMORY_TAG][TS_DECL_MINIMAL] = 1;
272  tree_contains_struct[SYMBOL_MEMORY_TAG][TS_DECL_MINIMAL] = 1;
273
274  tree_contains_struct[STRUCT_FIELD_TAG][TS_MEMORY_TAG] = 1;
275  tree_contains_struct[NAME_MEMORY_TAG][TS_MEMORY_TAG] = 1;
276  tree_contains_struct[SYMBOL_MEMORY_TAG][TS_MEMORY_TAG] = 1;
277
278  tree_contains_struct[STRUCT_FIELD_TAG][TS_STRUCT_FIELD_TAG] = 1;
279
280  tree_contains_struct[VAR_DECL][TS_DECL_WITH_VIS] = 1;
281  tree_contains_struct[FUNCTION_DECL][TS_DECL_WITH_VIS] = 1;
282  tree_contains_struct[TYPE_DECL][TS_DECL_WITH_VIS] = 1;
283  tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_WITH_VIS] = 1;
284
285  tree_contains_struct[VAR_DECL][TS_VAR_DECL] = 1;
286  tree_contains_struct[FIELD_DECL][TS_FIELD_DECL] = 1;
287  tree_contains_struct[PARM_DECL][TS_PARM_DECL] = 1;
288  tree_contains_struct[LABEL_DECL][TS_LABEL_DECL] = 1;
289  tree_contains_struct[RESULT_DECL][TS_RESULT_DECL] = 1;
290  tree_contains_struct[CONST_DECL][TS_CONST_DECL] = 1;
291  tree_contains_struct[TYPE_DECL][TS_TYPE_DECL] = 1;
292  tree_contains_struct[FUNCTION_DECL][TS_FUNCTION_DECL] = 1;
293
294  lang_hooks.init_ts ();
295}
296
297
298/* The name of the object as the assembler will see it (but before any
299   translations made by ASM_OUTPUT_LABELREF).  Often this is the same
300   as DECL_NAME.  It is an IDENTIFIER_NODE.  */
301tree
302decl_assembler_name (tree decl)
303{
304  if (!DECL_ASSEMBLER_NAME_SET_P (decl))
305    lang_hooks.set_decl_assembler_name (decl);
306  return DECL_WITH_VIS_CHECK (decl)->decl_with_vis.assembler_name;
307}
308
309/* Compute the number of bytes occupied by a tree with code CODE.
310   This function cannot be used for TREE_VEC, PHI_NODE, or STRING_CST
311   codes, which are of variable length.  */
312size_t
313tree_code_size (enum tree_code code)
314{
315  switch (TREE_CODE_CLASS (code))
316    {
317    case tcc_declaration:  /* A decl node */
318      {
319	switch (code)
320	  {
321	  case FIELD_DECL:
322	    return sizeof (struct tree_field_decl);
323	  case PARM_DECL:
324	    return sizeof (struct tree_parm_decl);
325	  case VAR_DECL:
326	    return sizeof (struct tree_var_decl);
327	  case LABEL_DECL:
328	    return sizeof (struct tree_label_decl);
329	  case RESULT_DECL:
330	    return sizeof (struct tree_result_decl);
331	  case CONST_DECL:
332	    return sizeof (struct tree_const_decl);
333	  case TYPE_DECL:
334	    return sizeof (struct tree_type_decl);
335	  case FUNCTION_DECL:
336	    return sizeof (struct tree_function_decl);
337	  case NAME_MEMORY_TAG:
338	  case SYMBOL_MEMORY_TAG:
339	    return sizeof (struct tree_memory_tag);
340	  case STRUCT_FIELD_TAG:
341	    return sizeof (struct tree_struct_field_tag);
342	  default:
343	    return sizeof (struct tree_decl_non_common);
344	  }
345      }
346
347    case tcc_type:  /* a type node */
348      return sizeof (struct tree_type);
349
350    case tcc_reference:   /* a reference */
351    case tcc_expression:  /* an expression */
352    case tcc_statement:   /* an expression with side effects */
353    case tcc_comparison:  /* a comparison expression */
354    case tcc_unary:       /* a unary arithmetic expression */
355    case tcc_binary:      /* a binary arithmetic expression */
356      return (sizeof (struct tree_exp)
357	      + (TREE_CODE_LENGTH (code) - 1) * sizeof (char *));
358
359    case tcc_constant:  /* a constant */
360      switch (code)
361	{
362	case INTEGER_CST:	return sizeof (struct tree_int_cst);
363	case REAL_CST:		return sizeof (struct tree_real_cst);
364	case COMPLEX_CST:	return sizeof (struct tree_complex);
365	case VECTOR_CST:	return sizeof (struct tree_vector);
366	case STRING_CST:	gcc_unreachable ();
367	default:
368	  return lang_hooks.tree_size (code);
369	}
370
371    case tcc_exceptional:  /* something random, like an identifier.  */
372      switch (code)
373	{
374	case IDENTIFIER_NODE:	return lang_hooks.identifier_size;
375	case TREE_LIST:		return sizeof (struct tree_list);
376
377	case ERROR_MARK:
378	case PLACEHOLDER_EXPR:	return sizeof (struct tree_common);
379
380	case TREE_VEC:
381	case OMP_CLAUSE:
382	case PHI_NODE:		gcc_unreachable ();
383
384	case SSA_NAME:		return sizeof (struct tree_ssa_name);
385
386	case STATEMENT_LIST:	return sizeof (struct tree_statement_list);
387	case BLOCK:		return sizeof (struct tree_block);
388	case VALUE_HANDLE:	return sizeof (struct tree_value_handle);
389	case CONSTRUCTOR:	return sizeof (struct tree_constructor);
390
391	default:
392	  return lang_hooks.tree_size (code);
393	}
394
395    default:
396      gcc_unreachable ();
397    }
398}
399
400/* Compute the number of bytes occupied by NODE.  This routine only
401   looks at TREE_CODE, except for PHI_NODE and TREE_VEC nodes.  */
402size_t
403tree_size (tree node)
404{
405  enum tree_code code = TREE_CODE (node);
406  switch (code)
407    {
408    case PHI_NODE:
409      return (sizeof (struct tree_phi_node)
410	      + (PHI_ARG_CAPACITY (node) - 1) * sizeof (struct phi_arg_d));
411
412    case TREE_BINFO:
413      return (offsetof (struct tree_binfo, base_binfos)
414	      + VEC_embedded_size (tree, BINFO_N_BASE_BINFOS (node)));
415
416    case TREE_VEC:
417      return (sizeof (struct tree_vec)
418	      + (TREE_VEC_LENGTH (node) - 1) * sizeof(char *));
419
420    case STRING_CST:
421      return TREE_STRING_LENGTH (node) + offsetof (struct tree_string, str) + 1;
422
423    case OMP_CLAUSE:
424      return (sizeof (struct tree_omp_clause)
425	      + (omp_clause_num_ops[OMP_CLAUSE_CODE (node)] - 1)
426	        * sizeof (tree));
427
428    default:
429      return tree_code_size (code);
430    }
431}
432
433/* Return a newly allocated node of code CODE.  For decl and type
434   nodes, some other fields are initialized.  The rest of the node is
435   initialized to zero.  This function cannot be used for PHI_NODE,
436   TREE_VEC or OMP_CLAUSE nodes, which is enforced by asserts in
437   tree_code_size.
438
439   Achoo!  I got a code in the node.  */
440
441tree
442make_node_stat (enum tree_code code MEM_STAT_DECL)
443{
444  tree t;
445  enum tree_code_class type = TREE_CODE_CLASS (code);
446  size_t length = tree_code_size (code);
447#ifdef GATHER_STATISTICS
448  tree_node_kind kind;
449
450  switch (type)
451    {
452    case tcc_declaration:  /* A decl node */
453      kind = d_kind;
454      break;
455
456    case tcc_type:  /* a type node */
457      kind = t_kind;
458      break;
459
460    case tcc_statement:  /* an expression with side effects */
461      kind = s_kind;
462      break;
463
464    case tcc_reference:  /* a reference */
465      kind = r_kind;
466      break;
467
468    case tcc_expression:  /* an expression */
469    case tcc_comparison:  /* a comparison expression */
470    case tcc_unary:  /* a unary arithmetic expression */
471    case tcc_binary:  /* a binary arithmetic expression */
472      kind = e_kind;
473      break;
474
475    case tcc_constant:  /* a constant */
476      kind = c_kind;
477      break;
478
479    case tcc_exceptional:  /* something random, like an identifier.  */
480      switch (code)
481	{
482	case IDENTIFIER_NODE:
483	  kind = id_kind;
484	  break;
485
486	case TREE_VEC:
487	  kind = vec_kind;
488	  break;
489
490	case TREE_BINFO:
491	  kind = binfo_kind;
492	  break;
493
494	case PHI_NODE:
495	  kind = phi_kind;
496	  break;
497
498	case SSA_NAME:
499	  kind = ssa_name_kind;
500	  break;
501
502	case BLOCK:
503	  kind = b_kind;
504	  break;
505
506	case CONSTRUCTOR:
507	  kind = constr_kind;
508	  break;
509
510	default:
511	  kind = x_kind;
512	  break;
513	}
514      break;
515
516    default:
517      gcc_unreachable ();
518    }
519
520  tree_node_counts[(int) kind]++;
521  tree_node_sizes[(int) kind] += length;
522#endif
523
524  if (code == IDENTIFIER_NODE)
525    t = ggc_alloc_zone_pass_stat (length, &tree_id_zone);
526  else
527    t = ggc_alloc_zone_pass_stat (length, &tree_zone);
528
529  memset (t, 0, length);
530
531  TREE_SET_CODE (t, code);
532
533  switch (type)
534    {
535    case tcc_statement:
536      TREE_SIDE_EFFECTS (t) = 1;
537      break;
538
539    case tcc_declaration:
540      if (CODE_CONTAINS_STRUCT (code, TS_DECL_WITH_VIS))
541	DECL_IN_SYSTEM_HEADER (t) = in_system_header;
542      if (CODE_CONTAINS_STRUCT (code, TS_DECL_COMMON))
543	{
544	  if (code != FUNCTION_DECL)
545	    DECL_ALIGN (t) = 1;
546	  DECL_USER_ALIGN (t) = 0;
547	  /* We have not yet computed the alias set for this declaration.  */
548	  DECL_POINTER_ALIAS_SET (t) = -1;
549	}
550      DECL_SOURCE_LOCATION (t) = input_location;
551      DECL_UID (t) = next_decl_uid++;
552
553      break;
554
555    case tcc_type:
556      TYPE_UID (t) = next_type_uid++;
557      TYPE_ALIGN (t) = BITS_PER_UNIT;
558      TYPE_USER_ALIGN (t) = 0;
559      TYPE_MAIN_VARIANT (t) = t;
560
561      /* Default to no attributes for type, but let target change that.  */
562      TYPE_ATTRIBUTES (t) = NULL_TREE;
563      targetm.set_default_type_attributes (t);
564
565      /* We have not yet computed the alias set for this type.  */
566      TYPE_ALIAS_SET (t) = -1;
567      break;
568
569    case tcc_constant:
570      TREE_CONSTANT (t) = 1;
571      TREE_INVARIANT (t) = 1;
572      break;
573
574    case tcc_expression:
575      switch (code)
576	{
577	case INIT_EXPR:
578	case MODIFY_EXPR:
579	case VA_ARG_EXPR:
580	case PREDECREMENT_EXPR:
581	case PREINCREMENT_EXPR:
582	case POSTDECREMENT_EXPR:
583	case POSTINCREMENT_EXPR:
584	  /* All of these have side-effects, no matter what their
585	     operands are.  */
586	  TREE_SIDE_EFFECTS (t) = 1;
587	  break;
588
589	default:
590	  break;
591	}
592      break;
593
594    default:
595      /* Other classes need no special treatment.  */
596      break;
597    }
598
599  return t;
600}
601
602/* Return a new node with the same contents as NODE except that its
603   TREE_CHAIN is zero and it has a fresh uid.  */
604
605tree
606copy_node_stat (tree node MEM_STAT_DECL)
607{
608  tree t;
609  enum tree_code code = TREE_CODE (node);
610  size_t length;
611
612  gcc_assert (code != STATEMENT_LIST);
613
614  length = tree_size (node);
615  t = ggc_alloc_zone_pass_stat (length, &tree_zone);
616  memcpy (t, node, length);
617
618  TREE_CHAIN (t) = 0;
619  TREE_ASM_WRITTEN (t) = 0;
620  TREE_VISITED (t) = 0;
621  t->common.ann = 0;
622
623  if (TREE_CODE_CLASS (code) == tcc_declaration)
624    {
625      DECL_UID (t) = next_decl_uid++;
626      if ((TREE_CODE (node) == PARM_DECL || TREE_CODE (node) == VAR_DECL)
627	  && DECL_HAS_VALUE_EXPR_P (node))
628	{
629	  SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (node));
630	  DECL_HAS_VALUE_EXPR_P (t) = 1;
631	}
632      if (TREE_CODE (node) == VAR_DECL && DECL_HAS_INIT_PRIORITY_P (node))
633	{
634	  SET_DECL_INIT_PRIORITY (t, DECL_INIT_PRIORITY (node));
635	  DECL_HAS_INIT_PRIORITY_P (t) = 1;
636	}
637      if (TREE_CODE (node) == VAR_DECL && DECL_BASED_ON_RESTRICT_P (node))
638	{
639	  SET_DECL_RESTRICT_BASE (t, DECL_GET_RESTRICT_BASE (node));
640	  DECL_BASED_ON_RESTRICT_P (t) = 1;
641	}
642    }
643  else if (TREE_CODE_CLASS (code) == tcc_type)
644    {
645      TYPE_UID (t) = next_type_uid++;
646      /* The following is so that the debug code for
647	 the copy is different from the original type.
648	 The two statements usually duplicate each other
649	 (because they clear fields of the same union),
650	 but the optimizer should catch that.  */
651      TYPE_SYMTAB_POINTER (t) = 0;
652      TYPE_SYMTAB_ADDRESS (t) = 0;
653
654      /* Do not copy the values cache.  */
655      if (TYPE_CACHED_VALUES_P(t))
656	{
657	  TYPE_CACHED_VALUES_P (t) = 0;
658	  TYPE_CACHED_VALUES (t) = NULL_TREE;
659	}
660    }
661
662  return t;
663}
664
665/* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
666   For example, this can copy a list made of TREE_LIST nodes.  */
667
668tree
669copy_list (tree list)
670{
671  tree head;
672  tree prev, next;
673
674  if (list == 0)
675    return 0;
676
677  head = prev = copy_node (list);
678  next = TREE_CHAIN (list);
679  while (next)
680    {
681      TREE_CHAIN (prev) = copy_node (next);
682      prev = TREE_CHAIN (prev);
683      next = TREE_CHAIN (next);
684    }
685  return head;
686}
687
688
689/* Create an INT_CST node with a LOW value sign extended.  */
690
691tree
692build_int_cst (tree type, HOST_WIDE_INT low)
693{
694  return build_int_cst_wide (type, low, low < 0 ? -1 : 0);
695}
696
697/* Create an INT_CST node with a LOW value zero extended.  */
698
699tree
700build_int_cstu (tree type, unsigned HOST_WIDE_INT low)
701{
702  return build_int_cst_wide (type, low, 0);
703}
704
705/* Create an INT_CST node with a LOW value in TYPE.  The value is sign extended
706   if it is negative.  This function is similar to build_int_cst, but
707   the extra bits outside of the type precision are cleared.  Constants
708   with these extra bits may confuse the fold so that it detects overflows
709   even in cases when they do not occur, and in general should be avoided.
710   We cannot however make this a default behavior of build_int_cst without
711   more intrusive changes, since there are parts of gcc that rely on the extra
712   precision of the integer constants.  */
713
714tree
715build_int_cst_type (tree type, HOST_WIDE_INT low)
716{
717  unsigned HOST_WIDE_INT val = (unsigned HOST_WIDE_INT) low;
718  unsigned HOST_WIDE_INT hi, mask;
719  unsigned bits;
720  bool signed_p;
721  bool negative;
722
723  if (!type)
724    type = integer_type_node;
725
726  bits = TYPE_PRECISION (type);
727  signed_p = !TYPE_UNSIGNED (type);
728
729  if (bits >= HOST_BITS_PER_WIDE_INT)
730    negative = (low < 0);
731  else
732    {
733      /* If the sign bit is inside precision of LOW, use it to determine
734	 the sign of the constant.  */
735      negative = ((val >> (bits - 1)) & 1) != 0;
736
737      /* Mask out the bits outside of the precision of the constant.  */
738      mask = (((unsigned HOST_WIDE_INT) 2) << (bits - 1)) - 1;
739
740      if (signed_p && negative)
741	val |= ~mask;
742      else
743	val &= mask;
744    }
745
746  /* Determine the high bits.  */
747  hi = (negative ? ~(unsigned HOST_WIDE_INT) 0 : 0);
748
749  /* For unsigned type we need to mask out the bits outside of the type
750     precision.  */
751  if (!signed_p)
752    {
753      if (bits <= HOST_BITS_PER_WIDE_INT)
754	hi = 0;
755      else
756	{
757	  bits -= HOST_BITS_PER_WIDE_INT;
758	  mask = (((unsigned HOST_WIDE_INT) 2) << (bits - 1)) - 1;
759	  hi &= mask;
760	}
761    }
762
763  return build_int_cst_wide (type, val, hi);
764}
765
766/* These are the hash table functions for the hash table of INTEGER_CST
767   nodes of a sizetype.  */
768
769/* Return the hash code code X, an INTEGER_CST.  */
770
771static hashval_t
772int_cst_hash_hash (const void *x)
773{
774  tree t = (tree) x;
775
776  return (TREE_INT_CST_HIGH (t) ^ TREE_INT_CST_LOW (t)
777	  ^ htab_hash_pointer (TREE_TYPE (t)));
778}
779
780/* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
781   is the same as that given by *Y, which is the same.  */
782
783static int
784int_cst_hash_eq (const void *x, const void *y)
785{
786  tree xt = (tree) x;
787  tree yt = (tree) y;
788
789  return (TREE_TYPE (xt) == TREE_TYPE (yt)
790	  && TREE_INT_CST_HIGH (xt) == TREE_INT_CST_HIGH (yt)
791	  && TREE_INT_CST_LOW (xt) == TREE_INT_CST_LOW (yt));
792}
793
794/* Create an INT_CST node of TYPE and value HI:LOW.  If TYPE is NULL,
795   integer_type_node is used.  The returned node is always shared.
796   For small integers we use a per-type vector cache, for larger ones
797   we use a single hash table.  */
798
799tree
800build_int_cst_wide (tree type, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
801{
802  tree t;
803  int ix = -1;
804  int limit = 0;
805
806  if (!type)
807    type = integer_type_node;
808
809  switch (TREE_CODE (type))
810    {
811    case POINTER_TYPE:
812    case REFERENCE_TYPE:
813      /* Cache NULL pointer.  */
814      if (!hi && !low)
815	{
816	  limit = 1;
817	  ix = 0;
818	}
819      break;
820
821    case BOOLEAN_TYPE:
822      /* Cache false or true.  */
823      limit = 2;
824      if (!hi && low < 2)
825	ix = low;
826      break;
827
828    case INTEGER_TYPE:
829    case OFFSET_TYPE:
830      if (TYPE_UNSIGNED (type))
831	{
832	  /* Cache 0..N */
833	  limit = INTEGER_SHARE_LIMIT;
834	  if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
835	    ix = low;
836	}
837      else
838	{
839	  /* Cache -1..N */
840	  limit = INTEGER_SHARE_LIMIT + 1;
841	  if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
842	    ix = low + 1;
843	  else if (hi == -1 && low == -(unsigned HOST_WIDE_INT)1)
844	    ix = 0;
845	}
846      break;
847    default:
848      break;
849    }
850
851  if (ix >= 0)
852    {
853      /* Look for it in the type's vector of small shared ints.  */
854      if (!TYPE_CACHED_VALUES_P (type))
855	{
856	  TYPE_CACHED_VALUES_P (type) = 1;
857	  TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
858	}
859
860      t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix);
861      if (t)
862	{
863	  /* Make sure no one is clobbering the shared constant.  */
864	  gcc_assert (TREE_TYPE (t) == type);
865	  gcc_assert (TREE_INT_CST_LOW (t) == low);
866	  gcc_assert (TREE_INT_CST_HIGH (t) == hi);
867	}
868      else
869	{
870	  /* Create a new shared int.  */
871	  t = make_node (INTEGER_CST);
872
873	  TREE_INT_CST_LOW (t) = low;
874	  TREE_INT_CST_HIGH (t) = hi;
875	  TREE_TYPE (t) = type;
876
877	  TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
878	}
879    }
880  else
881    {
882      /* Use the cache of larger shared ints.  */
883      void **slot;
884
885      TREE_INT_CST_LOW (int_cst_node) = low;
886      TREE_INT_CST_HIGH (int_cst_node) = hi;
887      TREE_TYPE (int_cst_node) = type;
888
889      slot = htab_find_slot (int_cst_hash_table, int_cst_node, INSERT);
890      t = *slot;
891      if (!t)
892	{
893	  /* Insert this one into the hash table.  */
894	  t = int_cst_node;
895	  *slot = t;
896	  /* Make a new node for next time round.  */
897	  int_cst_node = make_node (INTEGER_CST);
898	}
899    }
900
901  return t;
902}
903
904/* Builds an integer constant in TYPE such that lowest BITS bits are ones
905   and the rest are zeros.  */
906
907tree
908build_low_bits_mask (tree type, unsigned bits)
909{
910  unsigned HOST_WIDE_INT low;
911  HOST_WIDE_INT high;
912  unsigned HOST_WIDE_INT all_ones = ~(unsigned HOST_WIDE_INT) 0;
913
914  gcc_assert (bits <= TYPE_PRECISION (type));
915
916  if (bits == TYPE_PRECISION (type)
917      && !TYPE_UNSIGNED (type))
918    {
919      /* Sign extended all-ones mask.  */
920      low = all_ones;
921      high = -1;
922    }
923  else if (bits <= HOST_BITS_PER_WIDE_INT)
924    {
925      low = all_ones >> (HOST_BITS_PER_WIDE_INT - bits);
926      high = 0;
927    }
928  else
929    {
930      bits -= HOST_BITS_PER_WIDE_INT;
931      low = all_ones;
932      high = all_ones >> (HOST_BITS_PER_WIDE_INT - bits);
933    }
934
935  return build_int_cst_wide (type, low, high);
936}
937
938/* Checks that X is integer constant that can be expressed in (unsigned)
939   HOST_WIDE_INT without loss of precision.  */
940
941bool
942cst_and_fits_in_hwi (tree x)
943{
944  if (TREE_CODE (x) != INTEGER_CST)
945    return false;
946
947  if (TYPE_PRECISION (TREE_TYPE (x)) > HOST_BITS_PER_WIDE_INT)
948    return false;
949
950  return (TREE_INT_CST_HIGH (x) == 0
951	  || TREE_INT_CST_HIGH (x) == -1);
952}
953
954/* Return a new VECTOR_CST node whose type is TYPE and whose values
955   are in a list pointed to by VALS.  */
956
957tree
958build_vector (tree type, tree vals)
959{
960  tree v = make_node (VECTOR_CST);
961  int over1 = 0, over2 = 0;
962  tree link;
963
964  TREE_VECTOR_CST_ELTS (v) = vals;
965  TREE_TYPE (v) = type;
966
967  /* Iterate through elements and check for overflow.  */
968  for (link = vals; link; link = TREE_CHAIN (link))
969    {
970      tree value = TREE_VALUE (link);
971
972      /* Don't crash if we get an address constant.  */
973      if (!CONSTANT_CLASS_P (value))
974	continue;
975
976      over1 |= TREE_OVERFLOW (value);
977      over2 |= TREE_CONSTANT_OVERFLOW (value);
978    }
979
980  TREE_OVERFLOW (v) = over1;
981  TREE_CONSTANT_OVERFLOW (v) = over2;
982
983  return v;
984}
985
986/* Return a new VECTOR_CST node whose type is TYPE and whose values
987   are extracted from V, a vector of CONSTRUCTOR_ELT.  */
988
989tree
990build_vector_from_ctor (tree type, VEC(constructor_elt,gc) *v)
991{
992  tree list = NULL_TREE;
993  unsigned HOST_WIDE_INT idx;
994  tree value;
995
996  FOR_EACH_CONSTRUCTOR_VALUE (v, idx, value)
997    list = tree_cons (NULL_TREE, value, list);
998  return build_vector (type, nreverse (list));
999}
1000
1001/* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1002   are in the VEC pointed to by VALS.  */
1003tree
1004build_constructor (tree type, VEC(constructor_elt,gc) *vals)
1005{
1006  tree c = make_node (CONSTRUCTOR);
1007  TREE_TYPE (c) = type;
1008  CONSTRUCTOR_ELTS (c) = vals;
1009  return c;
1010}
1011
1012/* Build a CONSTRUCTOR node made of a single initializer, with the specified
1013   INDEX and VALUE.  */
1014tree
1015build_constructor_single (tree type, tree index, tree value)
1016{
1017  VEC(constructor_elt,gc) *v;
1018  constructor_elt *elt;
1019  tree t;
1020
1021  v = VEC_alloc (constructor_elt, gc, 1);
1022  elt = VEC_quick_push (constructor_elt, v, NULL);
1023  elt->index = index;
1024  elt->value = value;
1025
1026  t = build_constructor (type, v);
1027  TREE_CONSTANT (t) = TREE_CONSTANT (value);
1028  return t;
1029}
1030
1031
1032/* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1033   are in a list pointed to by VALS.  */
1034tree
1035build_constructor_from_list (tree type, tree vals)
1036{
1037  tree t, val;
1038  VEC(constructor_elt,gc) *v = NULL;
1039  bool constant_p = true;
1040
1041  if (vals)
1042    {
1043      v = VEC_alloc (constructor_elt, gc, list_length (vals));
1044      for (t = vals; t; t = TREE_CHAIN (t))
1045	{
1046	  constructor_elt *elt = VEC_quick_push (constructor_elt, v, NULL);
1047	  val = TREE_VALUE (t);
1048	  elt->index = TREE_PURPOSE (t);
1049	  elt->value = val;
1050	  if (!TREE_CONSTANT (val))
1051	    constant_p = false;
1052	}
1053    }
1054
1055  t = build_constructor (type, v);
1056  TREE_CONSTANT (t) = constant_p;
1057  return t;
1058}
1059
1060
1061/* Return a new REAL_CST node whose type is TYPE and value is D.  */
1062
1063tree
1064build_real (tree type, REAL_VALUE_TYPE d)
1065{
1066  tree v;
1067  REAL_VALUE_TYPE *dp;
1068  int overflow = 0;
1069
1070  /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
1071     Consider doing it via real_convert now.  */
1072
1073  v = make_node (REAL_CST);
1074  dp = ggc_alloc (sizeof (REAL_VALUE_TYPE));
1075  memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
1076
1077  TREE_TYPE (v) = type;
1078  TREE_REAL_CST_PTR (v) = dp;
1079  TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
1080  return v;
1081}
1082
1083/* Return a new REAL_CST node whose type is TYPE
1084   and whose value is the integer value of the INTEGER_CST node I.  */
1085
1086REAL_VALUE_TYPE
1087real_value_from_int_cst (tree type, tree i)
1088{
1089  REAL_VALUE_TYPE d;
1090
1091  /* Clear all bits of the real value type so that we can later do
1092     bitwise comparisons to see if two values are the same.  */
1093  memset (&d, 0, sizeof d);
1094
1095  real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode,
1096		     TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
1097		     TYPE_UNSIGNED (TREE_TYPE (i)));
1098  return d;
1099}
1100
1101/* Given a tree representing an integer constant I, return a tree
1102   representing the same value as a floating-point constant of type TYPE.  */
1103
1104tree
1105build_real_from_int_cst (tree type, tree i)
1106{
1107  tree v;
1108  int overflow = TREE_OVERFLOW (i);
1109
1110  v = build_real (type, real_value_from_int_cst (type, i));
1111
1112  TREE_OVERFLOW (v) |= overflow;
1113  TREE_CONSTANT_OVERFLOW (v) |= overflow;
1114  return v;
1115}
1116
1117/* Return a newly constructed STRING_CST node whose value is
1118   the LEN characters at STR.
1119   The TREE_TYPE is not initialized.  */
1120
1121tree
1122build_string (int len, const char *str)
1123{
1124  tree s;
1125  size_t length;
1126
1127  /* Do not waste bytes provided by padding of struct tree_string.  */
1128  length = len + offsetof (struct tree_string, str) + 1;
1129
1130#ifdef GATHER_STATISTICS
1131  tree_node_counts[(int) c_kind]++;
1132  tree_node_sizes[(int) c_kind] += length;
1133#endif
1134
1135  s = ggc_alloc_tree (length);
1136
1137  memset (s, 0, sizeof (struct tree_common));
1138  TREE_SET_CODE (s, STRING_CST);
1139  TREE_CONSTANT (s) = 1;
1140  TREE_INVARIANT (s) = 1;
1141  TREE_STRING_LENGTH (s) = len;
1142  memcpy ((char *) TREE_STRING_POINTER (s), str, len);
1143  ((char *) TREE_STRING_POINTER (s))[len] = '\0';
1144
1145  return s;
1146}
1147
1148/* Return a newly constructed COMPLEX_CST node whose value is
1149   specified by the real and imaginary parts REAL and IMAG.
1150   Both REAL and IMAG should be constant nodes.  TYPE, if specified,
1151   will be the type of the COMPLEX_CST; otherwise a new type will be made.  */
1152
1153tree
1154build_complex (tree type, tree real, tree imag)
1155{
1156  tree t = make_node (COMPLEX_CST);
1157
1158  TREE_REALPART (t) = real;
1159  TREE_IMAGPART (t) = imag;
1160  TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
1161  TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
1162  TREE_CONSTANT_OVERFLOW (t)
1163    = TREE_CONSTANT_OVERFLOW (real) | TREE_CONSTANT_OVERFLOW (imag);
1164  return t;
1165}
1166
1167/* Return a constant of arithmetic type TYPE which is the
1168   multiplicative identity of the set TYPE.  */
1169
1170tree
1171build_one_cst (tree type)
1172{
1173  switch (TREE_CODE (type))
1174    {
1175    case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1176    case POINTER_TYPE: case REFERENCE_TYPE:
1177    case OFFSET_TYPE:
1178      return build_int_cst (type, 1);
1179
1180    case REAL_TYPE:
1181      return build_real (type, dconst1);
1182
1183    case VECTOR_TYPE:
1184      {
1185	tree scalar, cst;
1186	int i;
1187
1188	scalar = build_one_cst (TREE_TYPE (type));
1189
1190	/* Create 'vect_cst_ = {cst,cst,...,cst}'  */
1191	cst = NULL_TREE;
1192	for (i = TYPE_VECTOR_SUBPARTS (type); --i >= 0; )
1193	  cst = tree_cons (NULL_TREE, scalar, cst);
1194
1195	return build_vector (type, cst);
1196      }
1197
1198    case COMPLEX_TYPE:
1199      return build_complex (type,
1200			    build_one_cst (TREE_TYPE (type)),
1201			    fold_convert (TREE_TYPE (type), integer_zero_node));
1202
1203    default:
1204      gcc_unreachable ();
1205    }
1206}
1207
1208/* Build a BINFO with LEN language slots.  */
1209
1210tree
1211make_tree_binfo_stat (unsigned base_binfos MEM_STAT_DECL)
1212{
1213  tree t;
1214  size_t length = (offsetof (struct tree_binfo, base_binfos)
1215		   + VEC_embedded_size (tree, base_binfos));
1216
1217#ifdef GATHER_STATISTICS
1218  tree_node_counts[(int) binfo_kind]++;
1219  tree_node_sizes[(int) binfo_kind] += length;
1220#endif
1221
1222  t = ggc_alloc_zone_pass_stat (length, &tree_zone);
1223
1224  memset (t, 0, offsetof (struct tree_binfo, base_binfos));
1225
1226  TREE_SET_CODE (t, TREE_BINFO);
1227
1228  VEC_embedded_init (tree, BINFO_BASE_BINFOS (t), base_binfos);
1229
1230  return t;
1231}
1232
1233
1234/* Build a newly constructed TREE_VEC node of length LEN.  */
1235
1236tree
1237make_tree_vec_stat (int len MEM_STAT_DECL)
1238{
1239  tree t;
1240  int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
1241
1242#ifdef GATHER_STATISTICS
1243  tree_node_counts[(int) vec_kind]++;
1244  tree_node_sizes[(int) vec_kind] += length;
1245#endif
1246
1247  t = ggc_alloc_zone_pass_stat (length, &tree_zone);
1248
1249  memset (t, 0, length);
1250
1251  TREE_SET_CODE (t, TREE_VEC);
1252  TREE_VEC_LENGTH (t) = len;
1253
1254  return t;
1255}
1256
1257/* Return 1 if EXPR is the integer constant zero or a complex constant
1258   of zero.  */
1259
1260int
1261integer_zerop (tree expr)
1262{
1263  STRIP_NOPS (expr);
1264
1265  return ((TREE_CODE (expr) == INTEGER_CST
1266	   && TREE_INT_CST_LOW (expr) == 0
1267	   && TREE_INT_CST_HIGH (expr) == 0)
1268	  || (TREE_CODE (expr) == COMPLEX_CST
1269	      && integer_zerop (TREE_REALPART (expr))
1270	      && integer_zerop (TREE_IMAGPART (expr))));
1271}
1272
1273/* Return 1 if EXPR is the integer constant one or the corresponding
1274   complex constant.  */
1275
1276int
1277integer_onep (tree expr)
1278{
1279  STRIP_NOPS (expr);
1280
1281  return ((TREE_CODE (expr) == INTEGER_CST
1282	   && TREE_INT_CST_LOW (expr) == 1
1283	   && TREE_INT_CST_HIGH (expr) == 0)
1284	  || (TREE_CODE (expr) == COMPLEX_CST
1285	      && integer_onep (TREE_REALPART (expr))
1286	      && integer_zerop (TREE_IMAGPART (expr))));
1287}
1288
1289/* Return 1 if EXPR is an integer containing all 1's in as much precision as
1290   it contains.  Likewise for the corresponding complex constant.  */
1291
1292int
1293integer_all_onesp (tree expr)
1294{
1295  int prec;
1296  int uns;
1297
1298  STRIP_NOPS (expr);
1299
1300  if (TREE_CODE (expr) == COMPLEX_CST
1301      && integer_all_onesp (TREE_REALPART (expr))
1302      && integer_zerop (TREE_IMAGPART (expr)))
1303    return 1;
1304
1305  else if (TREE_CODE (expr) != INTEGER_CST)
1306    return 0;
1307
1308  uns = TYPE_UNSIGNED (TREE_TYPE (expr));
1309  if (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1310      && TREE_INT_CST_HIGH (expr) == -1)
1311    return 1;
1312  if (!uns)
1313    return 0;
1314
1315  /* Note that using TYPE_PRECISION here is wrong.  We care about the
1316     actual bits, not the (arbitrary) range of the type.  */
1317  prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
1318  if (prec >= HOST_BITS_PER_WIDE_INT)
1319    {
1320      HOST_WIDE_INT high_value;
1321      int shift_amount;
1322
1323      shift_amount = prec - HOST_BITS_PER_WIDE_INT;
1324
1325      /* Can not handle precisions greater than twice the host int size.  */
1326      gcc_assert (shift_amount <= HOST_BITS_PER_WIDE_INT);
1327      if (shift_amount == HOST_BITS_PER_WIDE_INT)
1328	/* Shifting by the host word size is undefined according to the ANSI
1329	   standard, so we must handle this as a special case.  */
1330	high_value = -1;
1331      else
1332	high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
1333
1334      return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1335	      && TREE_INT_CST_HIGH (expr) == high_value);
1336    }
1337  else
1338    return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
1339}
1340
1341/* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
1342   one bit on).  */
1343
1344int
1345integer_pow2p (tree expr)
1346{
1347  int prec;
1348  HOST_WIDE_INT high, low;
1349
1350  STRIP_NOPS (expr);
1351
1352  if (TREE_CODE (expr) == COMPLEX_CST
1353      && integer_pow2p (TREE_REALPART (expr))
1354      && integer_zerop (TREE_IMAGPART (expr)))
1355    return 1;
1356
1357  if (TREE_CODE (expr) != INTEGER_CST)
1358    return 0;
1359
1360  prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1361	  ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1362  high = TREE_INT_CST_HIGH (expr);
1363  low = TREE_INT_CST_LOW (expr);
1364
1365  /* First clear all bits that are beyond the type's precision in case
1366     we've been sign extended.  */
1367
1368  if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1369    ;
1370  else if (prec > HOST_BITS_PER_WIDE_INT)
1371    high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1372  else
1373    {
1374      high = 0;
1375      if (prec < HOST_BITS_PER_WIDE_INT)
1376	low &= ~((HOST_WIDE_INT) (-1) << prec);
1377    }
1378
1379  if (high == 0 && low == 0)
1380    return 0;
1381
1382  return ((high == 0 && (low & (low - 1)) == 0)
1383	  || (low == 0 && (high & (high - 1)) == 0));
1384}
1385
1386/* Return 1 if EXPR is an integer constant other than zero or a
1387   complex constant other than zero.  */
1388
1389int
1390integer_nonzerop (tree expr)
1391{
1392  STRIP_NOPS (expr);
1393
1394  return ((TREE_CODE (expr) == INTEGER_CST
1395	   && (TREE_INT_CST_LOW (expr) != 0
1396	       || TREE_INT_CST_HIGH (expr) != 0))
1397	  || (TREE_CODE (expr) == COMPLEX_CST
1398	      && (integer_nonzerop (TREE_REALPART (expr))
1399		  || integer_nonzerop (TREE_IMAGPART (expr)))));
1400}
1401
1402/* Return the power of two represented by a tree node known to be a
1403   power of two.  */
1404
1405int
1406tree_log2 (tree expr)
1407{
1408  int prec;
1409  HOST_WIDE_INT high, low;
1410
1411  STRIP_NOPS (expr);
1412
1413  if (TREE_CODE (expr) == COMPLEX_CST)
1414    return tree_log2 (TREE_REALPART (expr));
1415
1416  prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1417	  ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1418
1419  high = TREE_INT_CST_HIGH (expr);
1420  low = TREE_INT_CST_LOW (expr);
1421
1422  /* First clear all bits that are beyond the type's precision in case
1423     we've been sign extended.  */
1424
1425  if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1426    ;
1427  else if (prec > HOST_BITS_PER_WIDE_INT)
1428    high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1429  else
1430    {
1431      high = 0;
1432      if (prec < HOST_BITS_PER_WIDE_INT)
1433	low &= ~((HOST_WIDE_INT) (-1) << prec);
1434    }
1435
1436  return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
1437	  : exact_log2 (low));
1438}
1439
1440/* Similar, but return the largest integer Y such that 2 ** Y is less
1441   than or equal to EXPR.  */
1442
1443int
1444tree_floor_log2 (tree expr)
1445{
1446  int prec;
1447  HOST_WIDE_INT high, low;
1448
1449  STRIP_NOPS (expr);
1450
1451  if (TREE_CODE (expr) == COMPLEX_CST)
1452    return tree_log2 (TREE_REALPART (expr));
1453
1454  prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1455	  ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1456
1457  high = TREE_INT_CST_HIGH (expr);
1458  low = TREE_INT_CST_LOW (expr);
1459
1460  /* First clear all bits that are beyond the type's precision in case
1461     we've been sign extended.  Ignore if type's precision hasn't been set
1462     since what we are doing is setting it.  */
1463
1464  if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
1465    ;
1466  else if (prec > HOST_BITS_PER_WIDE_INT)
1467    high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1468  else
1469    {
1470      high = 0;
1471      if (prec < HOST_BITS_PER_WIDE_INT)
1472	low &= ~((HOST_WIDE_INT) (-1) << prec);
1473    }
1474
1475  return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
1476	  : floor_log2 (low));
1477}
1478
1479/* Return 1 if EXPR is the real constant zero.  */
1480
1481int
1482real_zerop (tree expr)
1483{
1484  STRIP_NOPS (expr);
1485
1486  return ((TREE_CODE (expr) == REAL_CST
1487	   && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0))
1488	  || (TREE_CODE (expr) == COMPLEX_CST
1489	      && real_zerop (TREE_REALPART (expr))
1490	      && real_zerop (TREE_IMAGPART (expr))));
1491}
1492
1493/* Return 1 if EXPR is the real constant one in real or complex form.  */
1494
1495int
1496real_onep (tree expr)
1497{
1498  STRIP_NOPS (expr);
1499
1500  return ((TREE_CODE (expr) == REAL_CST
1501	   && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1))
1502	  || (TREE_CODE (expr) == COMPLEX_CST
1503	      && real_onep (TREE_REALPART (expr))
1504	      && real_zerop (TREE_IMAGPART (expr))));
1505}
1506
1507/* Return 1 if EXPR is the real constant two.  */
1508
1509int
1510real_twop (tree expr)
1511{
1512  STRIP_NOPS (expr);
1513
1514  return ((TREE_CODE (expr) == REAL_CST
1515	   && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2))
1516	  || (TREE_CODE (expr) == COMPLEX_CST
1517	      && real_twop (TREE_REALPART (expr))
1518	      && real_zerop (TREE_IMAGPART (expr))));
1519}
1520
1521/* Return 1 if EXPR is the real constant minus one.  */
1522
1523int
1524real_minus_onep (tree expr)
1525{
1526  STRIP_NOPS (expr);
1527
1528  return ((TREE_CODE (expr) == REAL_CST
1529	   && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1))
1530	  || (TREE_CODE (expr) == COMPLEX_CST
1531	      && real_minus_onep (TREE_REALPART (expr))
1532	      && real_zerop (TREE_IMAGPART (expr))));
1533}
1534
1535/* Nonzero if EXP is a constant or a cast of a constant.  */
1536
1537int
1538really_constant_p (tree exp)
1539{
1540  /* This is not quite the same as STRIP_NOPS.  It does more.  */
1541  while (TREE_CODE (exp) == NOP_EXPR
1542	 || TREE_CODE (exp) == CONVERT_EXPR
1543	 || TREE_CODE (exp) == NON_LVALUE_EXPR)
1544    exp = TREE_OPERAND (exp, 0);
1545  return TREE_CONSTANT (exp);
1546}
1547
1548/* Return first list element whose TREE_VALUE is ELEM.
1549   Return 0 if ELEM is not in LIST.  */
1550
1551tree
1552value_member (tree elem, tree list)
1553{
1554  while (list)
1555    {
1556      if (elem == TREE_VALUE (list))
1557	return list;
1558      list = TREE_CHAIN (list);
1559    }
1560  return NULL_TREE;
1561}
1562
1563/* Return first list element whose TREE_PURPOSE is ELEM.
1564   Return 0 if ELEM is not in LIST.  */
1565
1566tree
1567purpose_member (tree elem, tree list)
1568{
1569  while (list)
1570    {
1571      if (elem == TREE_PURPOSE (list))
1572	return list;
1573      list = TREE_CHAIN (list);
1574    }
1575  return NULL_TREE;
1576}
1577
1578/* Return nonzero if ELEM is part of the chain CHAIN.  */
1579
1580int
1581chain_member (tree elem, tree chain)
1582{
1583  while (chain)
1584    {
1585      if (elem == chain)
1586	return 1;
1587      chain = TREE_CHAIN (chain);
1588    }
1589
1590  return 0;
1591}
1592
1593/* Return the length of a chain of nodes chained through TREE_CHAIN.
1594   We expect a null pointer to mark the end of the chain.
1595   This is the Lisp primitive `length'.  */
1596
1597int
1598list_length (tree t)
1599{
1600  tree p = t;
1601#ifdef ENABLE_TREE_CHECKING
1602  tree q = t;
1603#endif
1604  int len = 0;
1605
1606  while (p)
1607    {
1608      p = TREE_CHAIN (p);
1609#ifdef ENABLE_TREE_CHECKING
1610      if (len % 2)
1611	q = TREE_CHAIN (q);
1612      gcc_assert (p != q);
1613#endif
1614      len++;
1615    }
1616
1617  return len;
1618}
1619
1620/* Returns the number of FIELD_DECLs in TYPE.  */
1621
1622int
1623fields_length (tree type)
1624{
1625  tree t = TYPE_FIELDS (type);
1626  int count = 0;
1627
1628  for (; t; t = TREE_CHAIN (t))
1629    if (TREE_CODE (t) == FIELD_DECL)
1630      ++count;
1631
1632  return count;
1633}
1634
1635/* Concatenate two chains of nodes (chained through TREE_CHAIN)
1636   by modifying the last node in chain 1 to point to chain 2.
1637   This is the Lisp primitive `nconc'.  */
1638
1639tree
1640chainon (tree op1, tree op2)
1641{
1642  tree t1;
1643
1644  if (!op1)
1645    return op2;
1646  if (!op2)
1647    return op1;
1648
1649  for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
1650    continue;
1651  TREE_CHAIN (t1) = op2;
1652
1653#ifdef ENABLE_TREE_CHECKING
1654  {
1655    tree t2;
1656    for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
1657      gcc_assert (t2 != t1);
1658  }
1659#endif
1660
1661  return op1;
1662}
1663
1664/* Return the last node in a chain of nodes (chained through TREE_CHAIN).  */
1665
1666tree
1667tree_last (tree chain)
1668{
1669  tree next;
1670  if (chain)
1671    while ((next = TREE_CHAIN (chain)))
1672      chain = next;
1673  return chain;
1674}
1675
1676/* Reverse the order of elements in the chain T,
1677   and return the new head of the chain (old last element).  */
1678
1679tree
1680nreverse (tree t)
1681{
1682  tree prev = 0, decl, next;
1683  for (decl = t; decl; decl = next)
1684    {
1685      next = TREE_CHAIN (decl);
1686      TREE_CHAIN (decl) = prev;
1687      prev = decl;
1688    }
1689  return prev;
1690}
1691
1692/* Return a newly created TREE_LIST node whose
1693   purpose and value fields are PARM and VALUE.  */
1694
1695tree
1696build_tree_list_stat (tree parm, tree value MEM_STAT_DECL)
1697{
1698  tree t = make_node_stat (TREE_LIST PASS_MEM_STAT);
1699  TREE_PURPOSE (t) = parm;
1700  TREE_VALUE (t) = value;
1701  return t;
1702}
1703
1704/* Return a newly created TREE_LIST node whose
1705   purpose and value fields are PURPOSE and VALUE
1706   and whose TREE_CHAIN is CHAIN.  */
1707
1708tree
1709tree_cons_stat (tree purpose, tree value, tree chain MEM_STAT_DECL)
1710{
1711  tree node;
1712
1713  node = ggc_alloc_zone_pass_stat (sizeof (struct tree_list), &tree_zone);
1714
1715  memset (node, 0, sizeof (struct tree_common));
1716
1717#ifdef GATHER_STATISTICS
1718  tree_node_counts[(int) x_kind]++;
1719  tree_node_sizes[(int) x_kind] += sizeof (struct tree_list);
1720#endif
1721
1722  TREE_SET_CODE (node, TREE_LIST);
1723  TREE_CHAIN (node) = chain;
1724  TREE_PURPOSE (node) = purpose;
1725  TREE_VALUE (node) = value;
1726  return node;
1727}
1728
1729
1730/* Return the size nominally occupied by an object of type TYPE
1731   when it resides in memory.  The value is measured in units of bytes,
1732   and its data type is that normally used for type sizes
1733   (which is the first type created by make_signed_type or
1734   make_unsigned_type).  */
1735
1736tree
1737size_in_bytes (tree type)
1738{
1739  tree t;
1740
1741  if (type == error_mark_node)
1742    return integer_zero_node;
1743
1744  type = TYPE_MAIN_VARIANT (type);
1745  t = TYPE_SIZE_UNIT (type);
1746
1747  if (t == 0)
1748    {
1749      lang_hooks.types.incomplete_type_error (NULL_TREE, type);
1750      return size_zero_node;
1751    }
1752
1753  if (TREE_CODE (t) == INTEGER_CST)
1754    t = force_fit_type (t, 0, false, false);
1755
1756  return t;
1757}
1758
1759/* Return the size of TYPE (in bytes) as a wide integer
1760   or return -1 if the size can vary or is larger than an integer.  */
1761
1762HOST_WIDE_INT
1763int_size_in_bytes (tree type)
1764{
1765  tree t;
1766
1767  if (type == error_mark_node)
1768    return 0;
1769
1770  type = TYPE_MAIN_VARIANT (type);
1771  t = TYPE_SIZE_UNIT (type);
1772  if (t == 0
1773      || TREE_CODE (t) != INTEGER_CST
1774      || TREE_INT_CST_HIGH (t) != 0
1775      /* If the result would appear negative, it's too big to represent.  */
1776      || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
1777    return -1;
1778
1779  return TREE_INT_CST_LOW (t);
1780}
1781
1782/* Return the maximum size of TYPE (in bytes) as a wide integer
1783   or return -1 if the size can vary or is larger than an integer.  */
1784
1785HOST_WIDE_INT
1786max_int_size_in_bytes (tree type)
1787{
1788  HOST_WIDE_INT size = -1;
1789  tree size_tree;
1790
1791  /* If this is an array type, check for a possible MAX_SIZE attached.  */
1792
1793  if (TREE_CODE (type) == ARRAY_TYPE)
1794    {
1795      size_tree = TYPE_ARRAY_MAX_SIZE (type);
1796
1797      if (size_tree && host_integerp (size_tree, 1))
1798	size = tree_low_cst (size_tree, 1);
1799    }
1800
1801  /* If we still haven't been able to get a size, see if the language
1802     can compute a maximum size.  */
1803
1804  if (size == -1)
1805    {
1806      size_tree = lang_hooks.types.max_size (type);
1807
1808      if (size_tree && host_integerp (size_tree, 1))
1809	size = tree_low_cst (size_tree, 1);
1810    }
1811
1812  return size;
1813}
1814
1815/* Return the bit position of FIELD, in bits from the start of the record.
1816   This is a tree of type bitsizetype.  */
1817
1818tree
1819bit_position (tree field)
1820{
1821  return bit_from_pos (DECL_FIELD_OFFSET (field),
1822		       DECL_FIELD_BIT_OFFSET (field));
1823}
1824
1825/* Likewise, but return as an integer.  It must be representable in
1826   that way (since it could be a signed value, we don't have the
1827   option of returning -1 like int_size_in_byte can.  */
1828
1829HOST_WIDE_INT
1830int_bit_position (tree field)
1831{
1832  return tree_low_cst (bit_position (field), 0);
1833}
1834
1835/* Return the byte position of FIELD, in bytes from the start of the record.
1836   This is a tree of type sizetype.  */
1837
1838tree
1839byte_position (tree field)
1840{
1841  return byte_from_pos (DECL_FIELD_OFFSET (field),
1842			DECL_FIELD_BIT_OFFSET (field));
1843}
1844
1845/* Likewise, but return as an integer.  It must be representable in
1846   that way (since it could be a signed value, we don't have the
1847   option of returning -1 like int_size_in_byte can.  */
1848
1849HOST_WIDE_INT
1850int_byte_position (tree field)
1851{
1852  return tree_low_cst (byte_position (field), 0);
1853}
1854
1855/* Return the strictest alignment, in bits, that T is known to have.  */
1856
1857unsigned int
1858expr_align (tree t)
1859{
1860  unsigned int align0, align1;
1861
1862  switch (TREE_CODE (t))
1863    {
1864    case NOP_EXPR:  case CONVERT_EXPR:  case NON_LVALUE_EXPR:
1865      /* If we have conversions, we know that the alignment of the
1866	 object must meet each of the alignments of the types.  */
1867      align0 = expr_align (TREE_OPERAND (t, 0));
1868      align1 = TYPE_ALIGN (TREE_TYPE (t));
1869      return MAX (align0, align1);
1870
1871    case SAVE_EXPR:         case COMPOUND_EXPR:       case MODIFY_EXPR:
1872    case INIT_EXPR:         case TARGET_EXPR:         case WITH_CLEANUP_EXPR:
1873    case CLEANUP_POINT_EXPR:
1874      /* These don't change the alignment of an object.  */
1875      return expr_align (TREE_OPERAND (t, 0));
1876
1877    case COND_EXPR:
1878      /* The best we can do is say that the alignment is the least aligned
1879	 of the two arms.  */
1880      align0 = expr_align (TREE_OPERAND (t, 1));
1881      align1 = expr_align (TREE_OPERAND (t, 2));
1882      return MIN (align0, align1);
1883
1884    case LABEL_DECL:     case CONST_DECL:
1885    case VAR_DECL:       case PARM_DECL:   case RESULT_DECL:
1886      if (DECL_ALIGN (t) != 0)
1887	return DECL_ALIGN (t);
1888      break;
1889
1890    case FUNCTION_DECL:
1891      return FUNCTION_BOUNDARY;
1892
1893    default:
1894      break;
1895    }
1896
1897  /* Otherwise take the alignment from that of the type.  */
1898  return TYPE_ALIGN (TREE_TYPE (t));
1899}
1900
1901/* Return, as a tree node, the number of elements for TYPE (which is an
1902   ARRAY_TYPE) minus one. This counts only elements of the top array.  */
1903
1904tree
1905array_type_nelts (tree type)
1906{
1907  tree index_type, min, max;
1908
1909  /* If they did it with unspecified bounds, then we should have already
1910     given an error about it before we got here.  */
1911  if (! TYPE_DOMAIN (type))
1912    return error_mark_node;
1913
1914  index_type = TYPE_DOMAIN (type);
1915  min = TYPE_MIN_VALUE (index_type);
1916  max = TYPE_MAX_VALUE (index_type);
1917
1918  return (integer_zerop (min)
1919	  ? max
1920	  : fold_build2 (MINUS_EXPR, TREE_TYPE (max), max, min));
1921}
1922
1923/* If arg is static -- a reference to an object in static storage -- then
1924   return the object.  This is not the same as the C meaning of `static'.
1925   If arg isn't static, return NULL.  */
1926
1927tree
1928staticp (tree arg)
1929{
1930  switch (TREE_CODE (arg))
1931    {
1932    case FUNCTION_DECL:
1933      /* Nested functions are static, even though taking their address will
1934	 involve a trampoline as we unnest the nested function and create
1935	 the trampoline on the tree level.  */
1936      return arg;
1937
1938    case VAR_DECL:
1939      return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
1940	      && ! DECL_THREAD_LOCAL_P (arg)
1941	      && ! DECL_DLLIMPORT_P (arg)
1942	      ? arg : NULL);
1943
1944    case CONST_DECL:
1945      return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
1946	      ? arg : NULL);
1947
1948    case CONSTRUCTOR:
1949      return TREE_STATIC (arg) ? arg : NULL;
1950
1951    case LABEL_DECL:
1952    case STRING_CST:
1953      return arg;
1954
1955    case COMPONENT_REF:
1956      /* If the thing being referenced is not a field, then it is
1957	 something language specific.  */
1958      if (TREE_CODE (TREE_OPERAND (arg, 1)) != FIELD_DECL)
1959	return (*lang_hooks.staticp) (arg);
1960
1961      /* If we are referencing a bitfield, we can't evaluate an
1962	 ADDR_EXPR at compile time and so it isn't a constant.  */
1963      if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
1964	return NULL;
1965
1966      return staticp (TREE_OPERAND (arg, 0));
1967
1968    case BIT_FIELD_REF:
1969      return NULL;
1970
1971    case MISALIGNED_INDIRECT_REF:
1972    case ALIGN_INDIRECT_REF:
1973    case INDIRECT_REF:
1974      return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
1975
1976    case ARRAY_REF:
1977    case ARRAY_RANGE_REF:
1978      if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
1979	  && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
1980	return staticp (TREE_OPERAND (arg, 0));
1981      else
1982	return false;
1983
1984    default:
1985      if ((unsigned int) TREE_CODE (arg)
1986	  >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
1987	return lang_hooks.staticp (arg);
1988      else
1989	return NULL;
1990    }
1991}
1992
1993/* Wrap a SAVE_EXPR around EXPR, if appropriate.
1994   Do this to any expression which may be used in more than one place,
1995   but must be evaluated only once.
1996
1997   Normally, expand_expr would reevaluate the expression each time.
1998   Calling save_expr produces something that is evaluated and recorded
1999   the first time expand_expr is called on it.  Subsequent calls to
2000   expand_expr just reuse the recorded value.
2001
2002   The call to expand_expr that generates code that actually computes
2003   the value is the first call *at compile time*.  Subsequent calls
2004   *at compile time* generate code to use the saved value.
2005   This produces correct result provided that *at run time* control
2006   always flows through the insns made by the first expand_expr
2007   before reaching the other places where the save_expr was evaluated.
2008   You, the caller of save_expr, must make sure this is so.
2009
2010   Constants, and certain read-only nodes, are returned with no
2011   SAVE_EXPR because that is safe.  Expressions containing placeholders
2012   are not touched; see tree.def for an explanation of what these
2013   are used for.  */
2014
2015tree
2016save_expr (tree expr)
2017{
2018  tree t = fold (expr);
2019  tree inner;
2020
2021  /* If the tree evaluates to a constant, then we don't want to hide that
2022     fact (i.e. this allows further folding, and direct checks for constants).
2023     However, a read-only object that has side effects cannot be bypassed.
2024     Since it is no problem to reevaluate literals, we just return the
2025     literal node.  */
2026  inner = skip_simple_arithmetic (t);
2027
2028  if (TREE_INVARIANT (inner)
2029      || (TREE_READONLY (inner) && ! TREE_SIDE_EFFECTS (inner))
2030      || TREE_CODE (inner) == SAVE_EXPR
2031      || TREE_CODE (inner) == ERROR_MARK)
2032    return t;
2033
2034  /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
2035     it means that the size or offset of some field of an object depends on
2036     the value within another field.
2037
2038     Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
2039     and some variable since it would then need to be both evaluated once and
2040     evaluated more than once.  Front-ends must assure this case cannot
2041     happen by surrounding any such subexpressions in their own SAVE_EXPR
2042     and forcing evaluation at the proper time.  */
2043  if (contains_placeholder_p (inner))
2044    return t;
2045
2046  t = build1 (SAVE_EXPR, TREE_TYPE (expr), t);
2047
2048  /* This expression might be placed ahead of a jump to ensure that the
2049     value was computed on both sides of the jump.  So make sure it isn't
2050     eliminated as dead.  */
2051  TREE_SIDE_EFFECTS (t) = 1;
2052  TREE_INVARIANT (t) = 1;
2053  return t;
2054}
2055
2056/* Look inside EXPR and into any simple arithmetic operations.  Return
2057   the innermost non-arithmetic node.  */
2058
2059tree
2060skip_simple_arithmetic (tree expr)
2061{
2062  tree inner;
2063
2064  /* We don't care about whether this can be used as an lvalue in this
2065     context.  */
2066  while (TREE_CODE (expr) == NON_LVALUE_EXPR)
2067    expr = TREE_OPERAND (expr, 0);
2068
2069  /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
2070     a constant, it will be more efficient to not make another SAVE_EXPR since
2071     it will allow better simplification and GCSE will be able to merge the
2072     computations if they actually occur.  */
2073  inner = expr;
2074  while (1)
2075    {
2076      if (UNARY_CLASS_P (inner))
2077	inner = TREE_OPERAND (inner, 0);
2078      else if (BINARY_CLASS_P (inner))
2079	{
2080	  if (TREE_INVARIANT (TREE_OPERAND (inner, 1)))
2081	    inner = TREE_OPERAND (inner, 0);
2082	  else if (TREE_INVARIANT (TREE_OPERAND (inner, 0)))
2083	    inner = TREE_OPERAND (inner, 1);
2084	  else
2085	    break;
2086	}
2087      else
2088	break;
2089    }
2090
2091  return inner;
2092}
2093
2094/* Return which tree structure is used by T.  */
2095
2096enum tree_node_structure_enum
2097tree_node_structure (tree t)
2098{
2099  enum tree_code code = TREE_CODE (t);
2100
2101  switch (TREE_CODE_CLASS (code))
2102    {
2103    case tcc_declaration:
2104      {
2105	switch (code)
2106	  {
2107	  case FIELD_DECL:
2108	    return TS_FIELD_DECL;
2109	  case PARM_DECL:
2110	    return TS_PARM_DECL;
2111	  case VAR_DECL:
2112	    return TS_VAR_DECL;
2113	  case LABEL_DECL:
2114	    return TS_LABEL_DECL;
2115	  case RESULT_DECL:
2116	    return TS_RESULT_DECL;
2117	  case CONST_DECL:
2118	    return TS_CONST_DECL;
2119	  case TYPE_DECL:
2120	    return TS_TYPE_DECL;
2121	  case FUNCTION_DECL:
2122	    return TS_FUNCTION_DECL;
2123	  case SYMBOL_MEMORY_TAG:
2124	  case NAME_MEMORY_TAG:
2125	  case STRUCT_FIELD_TAG:
2126	    return TS_MEMORY_TAG;
2127	  default:
2128	    return TS_DECL_NON_COMMON;
2129	  }
2130      }
2131    case tcc_type:
2132      return TS_TYPE;
2133    case tcc_reference:
2134    case tcc_comparison:
2135    case tcc_unary:
2136    case tcc_binary:
2137    case tcc_expression:
2138    case tcc_statement:
2139      return TS_EXP;
2140    default:  /* tcc_constant and tcc_exceptional */
2141      break;
2142    }
2143  switch (code)
2144    {
2145      /* tcc_constant cases.  */
2146    case INTEGER_CST:		return TS_INT_CST;
2147    case REAL_CST:		return TS_REAL_CST;
2148    case COMPLEX_CST:		return TS_COMPLEX;
2149    case VECTOR_CST:		return TS_VECTOR;
2150    case STRING_CST:		return TS_STRING;
2151      /* tcc_exceptional cases.  */
2152    case ERROR_MARK:		return TS_COMMON;
2153    case IDENTIFIER_NODE:	return TS_IDENTIFIER;
2154    case TREE_LIST:		return TS_LIST;
2155    case TREE_VEC:		return TS_VEC;
2156    case PHI_NODE:		return TS_PHI_NODE;
2157    case SSA_NAME:		return TS_SSA_NAME;
2158    case PLACEHOLDER_EXPR:	return TS_COMMON;
2159    case STATEMENT_LIST:	return TS_STATEMENT_LIST;
2160    case BLOCK:			return TS_BLOCK;
2161    case CONSTRUCTOR:		return TS_CONSTRUCTOR;
2162    case TREE_BINFO:		return TS_BINFO;
2163    case VALUE_HANDLE:		return TS_VALUE_HANDLE;
2164    case OMP_CLAUSE:		return TS_OMP_CLAUSE;
2165
2166    default:
2167      gcc_unreachable ();
2168    }
2169}
2170
2171/* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
2172   or offset that depends on a field within a record.  */
2173
2174bool
2175contains_placeholder_p (tree exp)
2176{
2177  enum tree_code code;
2178
2179  if (!exp)
2180    return 0;
2181
2182  code = TREE_CODE (exp);
2183  if (code == PLACEHOLDER_EXPR)
2184    return 1;
2185
2186  switch (TREE_CODE_CLASS (code))
2187    {
2188    case tcc_reference:
2189      /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
2190	 position computations since they will be converted into a
2191	 WITH_RECORD_EXPR involving the reference, which will assume
2192	 here will be valid.  */
2193      return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2194
2195    case tcc_exceptional:
2196      if (code == TREE_LIST)
2197	return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
2198		|| CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
2199      break;
2200
2201    case tcc_unary:
2202    case tcc_binary:
2203    case tcc_comparison:
2204    case tcc_expression:
2205      switch (code)
2206	{
2207	case COMPOUND_EXPR:
2208	  /* Ignoring the first operand isn't quite right, but works best.  */
2209	  return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
2210
2211	case COND_EXPR:
2212	  return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2213		  || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
2214		  || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
2215
2216	case CALL_EXPR:
2217	  return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
2218
2219	default:
2220	  break;
2221	}
2222
2223      switch (TREE_CODE_LENGTH (code))
2224	{
2225	case 1:
2226	  return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2227	case 2:
2228	  return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2229		  || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
2230	default:
2231	  return 0;
2232	}
2233
2234    default:
2235      return 0;
2236    }
2237  return 0;
2238}
2239
2240/* Return true if any part of the computation of TYPE involves a
2241   PLACEHOLDER_EXPR.  This includes size, bounds, qualifiers
2242   (for QUAL_UNION_TYPE) and field positions.  */
2243
2244static bool
2245type_contains_placeholder_1 (tree type)
2246{
2247  /* If the size contains a placeholder or the parent type (component type in
2248     the case of arrays) type involves a placeholder, this type does.  */
2249  if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
2250      || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
2251      || (TREE_TYPE (type) != 0
2252	  && type_contains_placeholder_p (TREE_TYPE (type))))
2253    return true;
2254
2255  /* Now do type-specific checks.  Note that the last part of the check above
2256     greatly limits what we have to do below.  */
2257  switch (TREE_CODE (type))
2258    {
2259    case VOID_TYPE:
2260    case COMPLEX_TYPE:
2261    case ENUMERAL_TYPE:
2262    case BOOLEAN_TYPE:
2263    case POINTER_TYPE:
2264    case OFFSET_TYPE:
2265    case REFERENCE_TYPE:
2266    case METHOD_TYPE:
2267    case FUNCTION_TYPE:
2268    case VECTOR_TYPE:
2269      return false;
2270
2271    case INTEGER_TYPE:
2272    case REAL_TYPE:
2273      /* Here we just check the bounds.  */
2274      return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
2275	      || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
2276
2277    case ARRAY_TYPE:
2278      /* We're already checked the component type (TREE_TYPE), so just check
2279	 the index type.  */
2280      return type_contains_placeholder_p (TYPE_DOMAIN (type));
2281
2282    case RECORD_TYPE:
2283    case UNION_TYPE:
2284    case QUAL_UNION_TYPE:
2285      {
2286	tree field;
2287
2288	for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
2289	  if (TREE_CODE (field) == FIELD_DECL
2290	      && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
2291		  || (TREE_CODE (type) == QUAL_UNION_TYPE
2292		      && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
2293		  || type_contains_placeholder_p (TREE_TYPE (field))))
2294	    return true;
2295
2296	return false;
2297      }
2298
2299    default:
2300      gcc_unreachable ();
2301    }
2302}
2303
2304bool
2305type_contains_placeholder_p (tree type)
2306{
2307  bool result;
2308
2309  /* If the contains_placeholder_bits field has been initialized,
2310     then we know the answer.  */
2311  if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
2312    return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
2313
2314  /* Indicate that we've seen this type node, and the answer is false.
2315     This is what we want to return if we run into recursion via fields.  */
2316  TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
2317
2318  /* Compute the real value.  */
2319  result = type_contains_placeholder_1 (type);
2320
2321  /* Store the real value.  */
2322  TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
2323
2324  return result;
2325}
2326
2327/* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
2328   return a tree with all occurrences of references to F in a
2329   PLACEHOLDER_EXPR replaced by R.   Note that we assume here that EXP
2330   contains only arithmetic expressions or a CALL_EXPR with a
2331   PLACEHOLDER_EXPR occurring only in its arglist.  */
2332
2333tree
2334substitute_in_expr (tree exp, tree f, tree r)
2335{
2336  enum tree_code code = TREE_CODE (exp);
2337  tree op0, op1, op2, op3;
2338  tree new;
2339  tree inner;
2340
2341  /* We handle TREE_LIST and COMPONENT_REF separately.  */
2342  if (code == TREE_LIST)
2343    {
2344      op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
2345      op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
2346      if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
2347	return exp;
2348
2349      return tree_cons (TREE_PURPOSE (exp), op1, op0);
2350    }
2351  else if (code == COMPONENT_REF)
2352   {
2353     /* If this expression is getting a value from a PLACEHOLDER_EXPR
2354	and it is the right field, replace it with R.  */
2355     for (inner = TREE_OPERAND (exp, 0);
2356	  REFERENCE_CLASS_P (inner);
2357	  inner = TREE_OPERAND (inner, 0))
2358       ;
2359     if (TREE_CODE (inner) == PLACEHOLDER_EXPR
2360	 && TREE_OPERAND (exp, 1) == f)
2361       return r;
2362
2363     /* If this expression hasn't been completed let, leave it alone.  */
2364     if (TREE_CODE (inner) == PLACEHOLDER_EXPR && TREE_TYPE (inner) == 0)
2365       return exp;
2366
2367     op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2368     if (op0 == TREE_OPERAND (exp, 0))
2369       return exp;
2370
2371     new = fold_build3 (COMPONENT_REF, TREE_TYPE (exp),
2372			op0, TREE_OPERAND (exp, 1), NULL_TREE);
2373   }
2374  else
2375    switch (TREE_CODE_CLASS (code))
2376      {
2377      case tcc_constant:
2378      case tcc_declaration:
2379	return exp;
2380
2381      case tcc_exceptional:
2382      case tcc_unary:
2383      case tcc_binary:
2384      case tcc_comparison:
2385      case tcc_expression:
2386      case tcc_reference:
2387	switch (TREE_CODE_LENGTH (code))
2388	  {
2389	  case 0:
2390	    return exp;
2391
2392	  case 1:
2393	    op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2394	    if (op0 == TREE_OPERAND (exp, 0))
2395	      return exp;
2396
2397	    new = fold_build1 (code, TREE_TYPE (exp), op0);
2398	    break;
2399
2400	  case 2:
2401	    op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2402	    op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
2403
2404	    if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
2405	      return exp;
2406
2407	    new = fold_build2 (code, TREE_TYPE (exp), op0, op1);
2408	    break;
2409
2410	  case 3:
2411	    op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2412	    op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
2413	    op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
2414
2415	    if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2416		&& op2 == TREE_OPERAND (exp, 2))
2417	      return exp;
2418
2419	    new = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
2420	    break;
2421
2422	  case 4:
2423	    op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2424	    op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
2425	    op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
2426	    op3 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 3), f, r);
2427
2428	    if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2429		&& op2 == TREE_OPERAND (exp, 2)
2430		&& op3 == TREE_OPERAND (exp, 3))
2431	      return exp;
2432
2433	    new = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
2434	    break;
2435
2436	  default:
2437	    gcc_unreachable ();
2438	  }
2439	break;
2440
2441      default:
2442	gcc_unreachable ();
2443      }
2444
2445  TREE_READONLY (new) = TREE_READONLY (exp);
2446  return new;
2447}
2448
2449/* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
2450   for it within OBJ, a tree that is an object or a chain of references.  */
2451
2452tree
2453substitute_placeholder_in_expr (tree exp, tree obj)
2454{
2455  enum tree_code code = TREE_CODE (exp);
2456  tree op0, op1, op2, op3;
2457
2458  /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
2459     in the chain of OBJ.  */
2460  if (code == PLACEHOLDER_EXPR)
2461    {
2462      tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
2463      tree elt;
2464
2465      for (elt = obj; elt != 0;
2466	   elt = ((TREE_CODE (elt) == COMPOUND_EXPR
2467		   || TREE_CODE (elt) == COND_EXPR)
2468		  ? TREE_OPERAND (elt, 1)
2469		  : (REFERENCE_CLASS_P (elt)
2470		     || UNARY_CLASS_P (elt)
2471		     || BINARY_CLASS_P (elt)
2472		     || EXPRESSION_CLASS_P (elt))
2473		  ? TREE_OPERAND (elt, 0) : 0))
2474	if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
2475	  return elt;
2476
2477      for (elt = obj; elt != 0;
2478	   elt = ((TREE_CODE (elt) == COMPOUND_EXPR
2479		   || TREE_CODE (elt) == COND_EXPR)
2480		  ? TREE_OPERAND (elt, 1)
2481		  : (REFERENCE_CLASS_P (elt)
2482		     || UNARY_CLASS_P (elt)
2483		     || BINARY_CLASS_P (elt)
2484		     || EXPRESSION_CLASS_P (elt))
2485		  ? TREE_OPERAND (elt, 0) : 0))
2486	if (POINTER_TYPE_P (TREE_TYPE (elt))
2487	    && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
2488		== need_type))
2489	  return fold_build1 (INDIRECT_REF, need_type, elt);
2490
2491      /* If we didn't find it, return the original PLACEHOLDER_EXPR.  If it
2492	 survives until RTL generation, there will be an error.  */
2493      return exp;
2494    }
2495
2496  /* TREE_LIST is special because we need to look at TREE_VALUE
2497     and TREE_CHAIN, not TREE_OPERANDS.  */
2498  else if (code == TREE_LIST)
2499    {
2500      op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
2501      op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
2502      if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
2503	return exp;
2504
2505      return tree_cons (TREE_PURPOSE (exp), op1, op0);
2506    }
2507  else
2508    switch (TREE_CODE_CLASS (code))
2509      {
2510      case tcc_constant:
2511      case tcc_declaration:
2512	return exp;
2513
2514      case tcc_exceptional:
2515      case tcc_unary:
2516      case tcc_binary:
2517      case tcc_comparison:
2518      case tcc_expression:
2519      case tcc_reference:
2520      case tcc_statement:
2521	switch (TREE_CODE_LENGTH (code))
2522	  {
2523	  case 0:
2524	    return exp;
2525
2526	  case 1:
2527	    op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2528	    if (op0 == TREE_OPERAND (exp, 0))
2529	      return exp;
2530	    else
2531	      return fold_build1 (code, TREE_TYPE (exp), op0);
2532
2533	  case 2:
2534	    op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2535	    op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2536
2537	    if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
2538	      return exp;
2539	    else
2540	      return fold_build2 (code, TREE_TYPE (exp), op0, op1);
2541
2542	  case 3:
2543	    op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2544	    op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2545	    op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
2546
2547	    if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2548		&& op2 == TREE_OPERAND (exp, 2))
2549	      return exp;
2550	    else
2551	      return fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
2552
2553	  case 4:
2554	    op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2555	    op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2556	    op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
2557	    op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
2558
2559	    if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2560		&& op2 == TREE_OPERAND (exp, 2)
2561		&& op3 == TREE_OPERAND (exp, 3))
2562	      return exp;
2563	    else
2564	      return fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
2565
2566	  default:
2567	    gcc_unreachable ();
2568	  }
2569	break;
2570
2571      default:
2572	gcc_unreachable ();
2573      }
2574}
2575
2576/* Stabilize a reference so that we can use it any number of times
2577   without causing its operands to be evaluated more than once.
2578   Returns the stabilized reference.  This works by means of save_expr,
2579   so see the caveats in the comments about save_expr.
2580
2581   Also allows conversion expressions whose operands are references.
2582   Any other kind of expression is returned unchanged.  */
2583
2584tree
2585stabilize_reference (tree ref)
2586{
2587  tree result;
2588  enum tree_code code = TREE_CODE (ref);
2589
2590  switch (code)
2591    {
2592    case VAR_DECL:
2593    case PARM_DECL:
2594    case RESULT_DECL:
2595      /* No action is needed in this case.  */
2596      return ref;
2597
2598    case NOP_EXPR:
2599    case CONVERT_EXPR:
2600    case FLOAT_EXPR:
2601    case FIX_TRUNC_EXPR:
2602    case FIX_FLOOR_EXPR:
2603    case FIX_ROUND_EXPR:
2604    case FIX_CEIL_EXPR:
2605      result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
2606      break;
2607
2608    case INDIRECT_REF:
2609      result = build_nt (INDIRECT_REF,
2610			 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
2611      break;
2612
2613    case COMPONENT_REF:
2614      result = build_nt (COMPONENT_REF,
2615			 stabilize_reference (TREE_OPERAND (ref, 0)),
2616			 TREE_OPERAND (ref, 1), NULL_TREE);
2617      break;
2618
2619    case BIT_FIELD_REF:
2620      result = build_nt (BIT_FIELD_REF,
2621			 stabilize_reference (TREE_OPERAND (ref, 0)),
2622			 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2623			 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
2624      break;
2625
2626    case ARRAY_REF:
2627      result = build_nt (ARRAY_REF,
2628			 stabilize_reference (TREE_OPERAND (ref, 0)),
2629			 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2630			 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
2631      break;
2632
2633    case ARRAY_RANGE_REF:
2634      result = build_nt (ARRAY_RANGE_REF,
2635			 stabilize_reference (TREE_OPERAND (ref, 0)),
2636			 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2637			 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
2638      break;
2639
2640    case COMPOUND_EXPR:
2641      /* We cannot wrap the first expression in a SAVE_EXPR, as then
2642	 it wouldn't be ignored.  This matters when dealing with
2643	 volatiles.  */
2644      return stabilize_reference_1 (ref);
2645
2646      /* If arg isn't a kind of lvalue we recognize, make no change.
2647	 Caller should recognize the error for an invalid lvalue.  */
2648    default:
2649      return ref;
2650
2651    case ERROR_MARK:
2652      return error_mark_node;
2653    }
2654
2655  TREE_TYPE (result) = TREE_TYPE (ref);
2656  TREE_READONLY (result) = TREE_READONLY (ref);
2657  TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
2658  TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
2659
2660  return result;
2661}
2662
2663/* Subroutine of stabilize_reference; this is called for subtrees of
2664   references.  Any expression with side-effects must be put in a SAVE_EXPR
2665   to ensure that it is only evaluated once.
2666
2667   We don't put SAVE_EXPR nodes around everything, because assigning very
2668   simple expressions to temporaries causes us to miss good opportunities
2669   for optimizations.  Among other things, the opportunity to fold in the
2670   addition of a constant into an addressing mode often gets lost, e.g.
2671   "y[i+1] += x;".  In general, we take the approach that we should not make
2672   an assignment unless we are forced into it - i.e., that any non-side effect
2673   operator should be allowed, and that cse should take care of coalescing
2674   multiple utterances of the same expression should that prove fruitful.  */
2675
2676tree
2677stabilize_reference_1 (tree e)
2678{
2679  tree result;
2680  enum tree_code code = TREE_CODE (e);
2681
2682  /* We cannot ignore const expressions because it might be a reference
2683     to a const array but whose index contains side-effects.  But we can
2684     ignore things that are actual constant or that already have been
2685     handled by this function.  */
2686
2687  if (TREE_INVARIANT (e))
2688    return e;
2689
2690  switch (TREE_CODE_CLASS (code))
2691    {
2692    case tcc_exceptional:
2693    case tcc_type:
2694    case tcc_declaration:
2695    case tcc_comparison:
2696    case tcc_statement:
2697    case tcc_expression:
2698    case tcc_reference:
2699      /* If the expression has side-effects, then encase it in a SAVE_EXPR
2700	 so that it will only be evaluated once.  */
2701      /* The reference (r) and comparison (<) classes could be handled as
2702	 below, but it is generally faster to only evaluate them once.  */
2703      if (TREE_SIDE_EFFECTS (e))
2704	return save_expr (e);
2705      return e;
2706
2707    case tcc_constant:
2708      /* Constants need no processing.  In fact, we should never reach
2709	 here.  */
2710      return e;
2711
2712    case tcc_binary:
2713      /* Division is slow and tends to be compiled with jumps,
2714	 especially the division by powers of 2 that is often
2715	 found inside of an array reference.  So do it just once.  */
2716      if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
2717	  || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
2718	  || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
2719	  || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
2720	return save_expr (e);
2721      /* Recursively stabilize each operand.  */
2722      result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
2723			 stabilize_reference_1 (TREE_OPERAND (e, 1)));
2724      break;
2725
2726    case tcc_unary:
2727      /* Recursively stabilize each operand.  */
2728      result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
2729      break;
2730
2731    default:
2732      gcc_unreachable ();
2733    }
2734
2735  TREE_TYPE (result) = TREE_TYPE (e);
2736  TREE_READONLY (result) = TREE_READONLY (e);
2737  TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
2738  TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
2739  TREE_INVARIANT (result) = 1;
2740
2741  return result;
2742}
2743
2744/* Low-level constructors for expressions.  */
2745
2746/* A helper function for build1 and constant folders.  Set TREE_CONSTANT,
2747   TREE_INVARIANT, and TREE_SIDE_EFFECTS for an ADDR_EXPR.  */
2748
2749void
2750recompute_tree_invariant_for_addr_expr (tree t)
2751{
2752  tree node;
2753  bool tc = true, ti = true, se = false;
2754
2755  /* We started out assuming this address is both invariant and constant, but
2756     does not have side effects.  Now go down any handled components and see if
2757     any of them involve offsets that are either non-constant or non-invariant.
2758     Also check for side-effects.
2759
2760     ??? Note that this code makes no attempt to deal with the case where
2761     taking the address of something causes a copy due to misalignment.  */
2762
2763#define UPDATE_TITCSE(NODE)  \
2764do { tree _node = (NODE); \
2765     if (_node && !TREE_INVARIANT (_node)) ti = false; \
2766     if (_node && !TREE_CONSTANT (_node)) tc = false; \
2767     if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
2768
2769  for (node = TREE_OPERAND (t, 0); handled_component_p (node);
2770       node = TREE_OPERAND (node, 0))
2771    {
2772      /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
2773	 array reference (probably made temporarily by the G++ front end),
2774	 so ignore all the operands.  */
2775      if ((TREE_CODE (node) == ARRAY_REF
2776	   || TREE_CODE (node) == ARRAY_RANGE_REF)
2777	  && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
2778	{
2779	  UPDATE_TITCSE (TREE_OPERAND (node, 1));
2780	  if (TREE_OPERAND (node, 2))
2781	    UPDATE_TITCSE (TREE_OPERAND (node, 2));
2782	  if (TREE_OPERAND (node, 3))
2783	    UPDATE_TITCSE (TREE_OPERAND (node, 3));
2784	}
2785      /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
2786	 FIELD_DECL, apparently.  The G++ front end can put something else
2787	 there, at least temporarily.  */
2788      else if (TREE_CODE (node) == COMPONENT_REF
2789	       && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
2790	{
2791	  if (TREE_OPERAND (node, 2))
2792	    UPDATE_TITCSE (TREE_OPERAND (node, 2));
2793	}
2794      else if (TREE_CODE (node) == BIT_FIELD_REF)
2795	UPDATE_TITCSE (TREE_OPERAND (node, 2));
2796    }
2797
2798  node = lang_hooks.expr_to_decl (node, &tc, &ti, &se);
2799
2800  /* Now see what's inside.  If it's an INDIRECT_REF, copy our properties from
2801     the address, since &(*a)->b is a form of addition.  If it's a decl, it's
2802     invariant and constant if the decl is static.  It's also invariant if it's
2803     a decl in the current function.  Taking the address of a volatile variable
2804     is not volatile.  If it's a constant, the address is both invariant and
2805     constant.  Otherwise it's neither.  */
2806  if (TREE_CODE (node) == INDIRECT_REF)
2807    UPDATE_TITCSE (TREE_OPERAND (node, 0));
2808  else if (DECL_P (node))
2809    {
2810      if (staticp (node))
2811	;
2812      else if (decl_function_context (node) == current_function_decl
2813	       /* Addresses of thread-local variables are invariant.  */
2814	       || (TREE_CODE (node) == VAR_DECL
2815		   && DECL_THREAD_LOCAL_P (node)))
2816	tc = false;
2817      else
2818	ti = tc = false;
2819    }
2820  else if (CONSTANT_CLASS_P (node))
2821    ;
2822  else
2823    {
2824      ti = tc = false;
2825      se |= TREE_SIDE_EFFECTS (node);
2826    }
2827
2828  TREE_CONSTANT (t) = tc;
2829  TREE_INVARIANT (t) = ti;
2830  TREE_SIDE_EFFECTS (t) = se;
2831#undef UPDATE_TITCSE
2832}
2833
2834/* Build an expression of code CODE, data type TYPE, and operands as
2835   specified.  Expressions and reference nodes can be created this way.
2836   Constants, decls, types and misc nodes cannot be.
2837
2838   We define 5 non-variadic functions, from 0 to 4 arguments.  This is
2839   enough for all extant tree codes.  */
2840
2841tree
2842build0_stat (enum tree_code code, tree tt MEM_STAT_DECL)
2843{
2844  tree t;
2845
2846  gcc_assert (TREE_CODE_LENGTH (code) == 0);
2847
2848  t = make_node_stat (code PASS_MEM_STAT);
2849  TREE_TYPE (t) = tt;
2850
2851  return t;
2852}
2853
2854tree
2855build1_stat (enum tree_code code, tree type, tree node MEM_STAT_DECL)
2856{
2857  int length = sizeof (struct tree_exp);
2858#ifdef GATHER_STATISTICS
2859  tree_node_kind kind;
2860#endif
2861  tree t;
2862
2863#ifdef GATHER_STATISTICS
2864  switch (TREE_CODE_CLASS (code))
2865    {
2866    case tcc_statement:  /* an expression with side effects */
2867      kind = s_kind;
2868      break;
2869    case tcc_reference:  /* a reference */
2870      kind = r_kind;
2871      break;
2872    default:
2873      kind = e_kind;
2874      break;
2875    }
2876
2877  tree_node_counts[(int) kind]++;
2878  tree_node_sizes[(int) kind] += length;
2879#endif
2880
2881  gcc_assert (TREE_CODE_LENGTH (code) == 1);
2882
2883  t = ggc_alloc_zone_pass_stat (length, &tree_zone);
2884
2885  memset (t, 0, sizeof (struct tree_common));
2886
2887  TREE_SET_CODE (t, code);
2888
2889  TREE_TYPE (t) = type;
2890#ifdef USE_MAPPED_LOCATION
2891  SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
2892#else
2893  SET_EXPR_LOCUS (t, NULL);
2894#endif
2895  TREE_COMPLEXITY (t) = 0;
2896  TREE_OPERAND (t, 0) = node;
2897  TREE_BLOCK (t) = NULL_TREE;
2898  if (node && !TYPE_P (node))
2899    {
2900      TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
2901      TREE_READONLY (t) = TREE_READONLY (node);
2902    }
2903
2904  if (TREE_CODE_CLASS (code) == tcc_statement)
2905    TREE_SIDE_EFFECTS (t) = 1;
2906  else switch (code)
2907    {
2908    case VA_ARG_EXPR:
2909      /* All of these have side-effects, no matter what their
2910	 operands are.  */
2911      TREE_SIDE_EFFECTS (t) = 1;
2912      TREE_READONLY (t) = 0;
2913      break;
2914
2915    case MISALIGNED_INDIRECT_REF:
2916    case ALIGN_INDIRECT_REF:
2917    case INDIRECT_REF:
2918      /* Whether a dereference is readonly has nothing to do with whether
2919	 its operand is readonly.  */
2920      TREE_READONLY (t) = 0;
2921      break;
2922
2923    case ADDR_EXPR:
2924      if (node)
2925	recompute_tree_invariant_for_addr_expr (t);
2926      break;
2927
2928    default:
2929      if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
2930	  && node && !TYPE_P (node)
2931	  && TREE_CONSTANT (node))
2932	TREE_CONSTANT (t) = 1;
2933      if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
2934	  && node && TREE_INVARIANT (node))
2935	TREE_INVARIANT (t) = 1;
2936      if (TREE_CODE_CLASS (code) == tcc_reference
2937	  && node && TREE_THIS_VOLATILE (node))
2938	TREE_THIS_VOLATILE (t) = 1;
2939      break;
2940    }
2941
2942  return t;
2943}
2944
2945#define PROCESS_ARG(N)			\
2946  do {					\
2947    TREE_OPERAND (t, N) = arg##N;	\
2948    if (arg##N &&!TYPE_P (arg##N))	\
2949      {					\
2950        if (TREE_SIDE_EFFECTS (arg##N))	\
2951	  side_effects = 1;		\
2952        if (!TREE_READONLY (arg##N))	\
2953	  read_only = 0;		\
2954        if (!TREE_CONSTANT (arg##N))	\
2955	  constant = 0;			\
2956	if (!TREE_INVARIANT (arg##N))	\
2957	  invariant = 0;		\
2958      }					\
2959  } while (0)
2960
2961tree
2962build2_stat (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
2963{
2964  bool constant, read_only, side_effects, invariant;
2965  tree t;
2966
2967  gcc_assert (TREE_CODE_LENGTH (code) == 2);
2968
2969  t = make_node_stat (code PASS_MEM_STAT);
2970  TREE_TYPE (t) = tt;
2971
2972  /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
2973     result based on those same flags for the arguments.  But if the
2974     arguments aren't really even `tree' expressions, we shouldn't be trying
2975     to do this.  */
2976
2977  /* Expressions without side effects may be constant if their
2978     arguments are as well.  */
2979  constant = (TREE_CODE_CLASS (code) == tcc_comparison
2980	      || TREE_CODE_CLASS (code) == tcc_binary);
2981  read_only = 1;
2982  side_effects = TREE_SIDE_EFFECTS (t);
2983  invariant = constant;
2984
2985  PROCESS_ARG(0);
2986  PROCESS_ARG(1);
2987
2988  TREE_READONLY (t) = read_only;
2989  TREE_CONSTANT (t) = constant;
2990  TREE_INVARIANT (t) = invariant;
2991  TREE_SIDE_EFFECTS (t) = side_effects;
2992  TREE_THIS_VOLATILE (t)
2993    = (TREE_CODE_CLASS (code) == tcc_reference
2994       && arg0 && TREE_THIS_VOLATILE (arg0));
2995
2996  return t;
2997}
2998
2999tree
3000build3_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3001	     tree arg2 MEM_STAT_DECL)
3002{
3003  bool constant, read_only, side_effects, invariant;
3004  tree t;
3005
3006  gcc_assert (TREE_CODE_LENGTH (code) == 3);
3007
3008  t = make_node_stat (code PASS_MEM_STAT);
3009  TREE_TYPE (t) = tt;
3010
3011  side_effects = TREE_SIDE_EFFECTS (t);
3012
3013  PROCESS_ARG(0);
3014  PROCESS_ARG(1);
3015  PROCESS_ARG(2);
3016
3017  if (code == CALL_EXPR && !side_effects)
3018    {
3019      tree node;
3020      int i;
3021
3022      /* Calls have side-effects, except those to const or
3023	 pure functions.  */
3024      i = call_expr_flags (t);
3025      if (!(i & (ECF_CONST | ECF_PURE)))
3026	side_effects = 1;
3027
3028      /* And even those have side-effects if their arguments do.  */
3029      else for (node = arg1; node; node = TREE_CHAIN (node))
3030	if (TREE_SIDE_EFFECTS (TREE_VALUE (node)))
3031	  {
3032	    side_effects = 1;
3033	    break;
3034	  }
3035    }
3036
3037  TREE_SIDE_EFFECTS (t) = side_effects;
3038  TREE_THIS_VOLATILE (t)
3039    = (TREE_CODE_CLASS (code) == tcc_reference
3040       && arg0 && TREE_THIS_VOLATILE (arg0));
3041
3042  return t;
3043}
3044
3045tree
3046build4_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3047	     tree arg2, tree arg3 MEM_STAT_DECL)
3048{
3049  bool constant, read_only, side_effects, invariant;
3050  tree t;
3051
3052  gcc_assert (TREE_CODE_LENGTH (code) == 4);
3053
3054  t = make_node_stat (code PASS_MEM_STAT);
3055  TREE_TYPE (t) = tt;
3056
3057  side_effects = TREE_SIDE_EFFECTS (t);
3058
3059  PROCESS_ARG(0);
3060  PROCESS_ARG(1);
3061  PROCESS_ARG(2);
3062  PROCESS_ARG(3);
3063
3064  TREE_SIDE_EFFECTS (t) = side_effects;
3065  TREE_THIS_VOLATILE (t)
3066    = (TREE_CODE_CLASS (code) == tcc_reference
3067       && arg0 && TREE_THIS_VOLATILE (arg0));
3068
3069  return t;
3070}
3071
3072tree
3073build5_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3074	     tree arg2, tree arg3, tree arg4 MEM_STAT_DECL)
3075{
3076  bool constant, read_only, side_effects, invariant;
3077  tree t;
3078
3079  gcc_assert (TREE_CODE_LENGTH (code) == 5);
3080
3081  t = make_node_stat (code PASS_MEM_STAT);
3082  TREE_TYPE (t) = tt;
3083
3084  side_effects = TREE_SIDE_EFFECTS (t);
3085
3086  PROCESS_ARG(0);
3087  PROCESS_ARG(1);
3088  PROCESS_ARG(2);
3089  PROCESS_ARG(3);
3090  PROCESS_ARG(4);
3091
3092  TREE_SIDE_EFFECTS (t) = side_effects;
3093  TREE_THIS_VOLATILE (t)
3094    = (TREE_CODE_CLASS (code) == tcc_reference
3095       && arg0 && TREE_THIS_VOLATILE (arg0));
3096
3097  return t;
3098}
3099
3100tree
3101build7_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3102	     tree arg2, tree arg3, tree arg4, tree arg5,
3103	     tree arg6 MEM_STAT_DECL)
3104{
3105  bool constant, read_only, side_effects, invariant;
3106  tree t;
3107
3108  gcc_assert (code == TARGET_MEM_REF);
3109
3110  t = make_node_stat (code PASS_MEM_STAT);
3111  TREE_TYPE (t) = tt;
3112
3113  side_effects = TREE_SIDE_EFFECTS (t);
3114
3115  PROCESS_ARG(0);
3116  PROCESS_ARG(1);
3117  PROCESS_ARG(2);
3118  PROCESS_ARG(3);
3119  PROCESS_ARG(4);
3120  PROCESS_ARG(5);
3121  PROCESS_ARG(6);
3122
3123  TREE_SIDE_EFFECTS (t) = side_effects;
3124  TREE_THIS_VOLATILE (t) = 0;
3125
3126  return t;
3127}
3128
3129/* Similar except don't specify the TREE_TYPE
3130   and leave the TREE_SIDE_EFFECTS as 0.
3131   It is permissible for arguments to be null,
3132   or even garbage if their values do not matter.  */
3133
3134tree
3135build_nt (enum tree_code code, ...)
3136{
3137  tree t;
3138  int length;
3139  int i;
3140  va_list p;
3141
3142  va_start (p, code);
3143
3144  t = make_node (code);
3145  length = TREE_CODE_LENGTH (code);
3146
3147  for (i = 0; i < length; i++)
3148    TREE_OPERAND (t, i) = va_arg (p, tree);
3149
3150  va_end (p);
3151  return t;
3152}
3153
3154/* Create a DECL_... node of code CODE, name NAME and data type TYPE.
3155   We do NOT enter this node in any sort of symbol table.
3156
3157   layout_decl is used to set up the decl's storage layout.
3158   Other slots are initialized to 0 or null pointers.  */
3159
3160tree
3161build_decl_stat (enum tree_code code, tree name, tree type MEM_STAT_DECL)
3162{
3163  tree t;
3164
3165  t = make_node_stat (code PASS_MEM_STAT);
3166
3167/*  if (type == error_mark_node)
3168    type = integer_type_node; */
3169/* That is not done, deliberately, so that having error_mark_node
3170   as the type can suppress useless errors in the use of this variable.  */
3171
3172  DECL_NAME (t) = name;
3173  TREE_TYPE (t) = type;
3174
3175  if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
3176    layout_decl (t, 0);
3177  else if (code == FUNCTION_DECL)
3178    DECL_MODE (t) = FUNCTION_MODE;
3179
3180  return t;
3181}
3182
3183/* Builds and returns function declaration with NAME and TYPE.  */
3184
3185tree
3186build_fn_decl (const char *name, tree type)
3187{
3188  tree id = get_identifier (name);
3189  tree decl = build_decl (FUNCTION_DECL, id, type);
3190
3191  DECL_EXTERNAL (decl) = 1;
3192  TREE_PUBLIC (decl) = 1;
3193  DECL_ARTIFICIAL (decl) = 1;
3194  TREE_NOTHROW (decl) = 1;
3195
3196  return decl;
3197}
3198
3199
3200/* BLOCK nodes are used to represent the structure of binding contours
3201   and declarations, once those contours have been exited and their contents
3202   compiled.  This information is used for outputting debugging info.  */
3203
3204tree
3205build_block (tree vars, tree subblocks, tree supercontext, tree chain)
3206{
3207  tree block = make_node (BLOCK);
3208
3209  BLOCK_VARS (block) = vars;
3210  BLOCK_SUBBLOCKS (block) = subblocks;
3211  BLOCK_SUPERCONTEXT (block) = supercontext;
3212  BLOCK_CHAIN (block) = chain;
3213  return block;
3214}
3215
3216#if 1 /* ! defined(USE_MAPPED_LOCATION) */
3217/* ??? gengtype doesn't handle conditionals */
3218static GTY(()) source_locus last_annotated_node;
3219#endif
3220
3221#ifdef USE_MAPPED_LOCATION
3222
3223expanded_location
3224expand_location (source_location loc)
3225{
3226  expanded_location xloc;
3227  if (loc == 0) { xloc.file = NULL; xloc.line = 0;  xloc.column = 0; }
3228  else
3229    {
3230      const struct line_map *map = linemap_lookup (&line_table, loc);
3231      xloc.file = map->to_file;
3232      xloc.line = SOURCE_LINE (map, loc);
3233      xloc.column = SOURCE_COLUMN (map, loc);
3234    };
3235  return xloc;
3236}
3237
3238#else
3239
3240/* Record the exact location where an expression or an identifier were
3241   encountered.  */
3242
3243void
3244annotate_with_file_line (tree node, const char *file, int line)
3245{
3246  /* Roughly one percent of the calls to this function are to annotate
3247     a node with the same information already attached to that node!
3248     Just return instead of wasting memory.  */
3249  if (EXPR_LOCUS (node)
3250      && EXPR_LINENO (node) == line
3251      && (EXPR_FILENAME (node) == file
3252	  || !strcmp (EXPR_FILENAME (node), file)))
3253    {
3254      last_annotated_node = EXPR_LOCUS (node);
3255      return;
3256    }
3257
3258  /* In heavily macroized code (such as GCC itself) this single
3259     entry cache can reduce the number of allocations by more
3260     than half.  */
3261  if (last_annotated_node
3262      && last_annotated_node->line == line
3263      && (last_annotated_node->file == file
3264	  || !strcmp (last_annotated_node->file, file)))
3265    {
3266      SET_EXPR_LOCUS (node, last_annotated_node);
3267      return;
3268    }
3269
3270  SET_EXPR_LOCUS (node, ggc_alloc (sizeof (location_t)));
3271  EXPR_LINENO (node) = line;
3272  EXPR_FILENAME (node) = file;
3273  last_annotated_node = EXPR_LOCUS (node);
3274}
3275
3276void
3277annotate_with_locus (tree node, location_t locus)
3278{
3279  annotate_with_file_line (node, locus.file, locus.line);
3280}
3281#endif
3282
3283/* Return a declaration like DDECL except that its DECL_ATTRIBUTES
3284   is ATTRIBUTE.  */
3285
3286tree
3287build_decl_attribute_variant (tree ddecl, tree attribute)
3288{
3289  DECL_ATTRIBUTES (ddecl) = attribute;
3290  return ddecl;
3291}
3292
3293/* Borrowed from hashtab.c iterative_hash implementation.  */
3294#define mix(a,b,c) \
3295{ \
3296  a -= b; a -= c; a ^= (c>>13); \
3297  b -= c; b -= a; b ^= (a<< 8); \
3298  c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
3299  a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
3300  b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
3301  c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
3302  a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
3303  b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
3304  c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
3305}
3306
3307
3308/* Produce good hash value combining VAL and VAL2.  */
3309static inline hashval_t
3310iterative_hash_hashval_t (hashval_t val, hashval_t val2)
3311{
3312  /* the golden ratio; an arbitrary value.  */
3313  hashval_t a = 0x9e3779b9;
3314
3315  mix (a, val, val2);
3316  return val2;
3317}
3318
3319/* Produce good hash value combining PTR and VAL2.  */
3320static inline hashval_t
3321iterative_hash_pointer (void *ptr, hashval_t val2)
3322{
3323  if (sizeof (ptr) == sizeof (hashval_t))
3324    return iterative_hash_hashval_t ((size_t) ptr, val2);
3325  else
3326    {
3327      hashval_t a = (hashval_t) (size_t) ptr;
3328      /* Avoid warnings about shifting of more than the width of the type on
3329         hosts that won't execute this path.  */
3330      int zero = 0;
3331      hashval_t b = (hashval_t) ((size_t) ptr >> (sizeof (hashval_t) * 8 + zero));
3332      mix (a, b, val2);
3333      return val2;
3334    }
3335}
3336
3337/* Produce good hash value combining VAL and VAL2.  */
3338static inline hashval_t
3339iterative_hash_host_wide_int (HOST_WIDE_INT val, hashval_t val2)
3340{
3341  if (sizeof (HOST_WIDE_INT) == sizeof (hashval_t))
3342    return iterative_hash_hashval_t (val, val2);
3343  else
3344    {
3345      hashval_t a = (hashval_t) val;
3346      /* Avoid warnings about shifting of more than the width of the type on
3347         hosts that won't execute this path.  */
3348      int zero = 0;
3349      hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 8 + zero));
3350      mix (a, b, val2);
3351      if (sizeof (HOST_WIDE_INT) > 2 * sizeof (hashval_t))
3352	{
3353	  hashval_t a = (hashval_t) (val >> (sizeof (hashval_t) * 16 + zero));
3354	  hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 24 + zero));
3355	  mix (a, b, val2);
3356	}
3357      return val2;
3358    }
3359}
3360
3361/* Return a type like TTYPE except that its TYPE_ATTRIBUTE
3362   is ATTRIBUTE and its qualifiers are QUALS.
3363
3364   Record such modified types already made so we don't make duplicates.  */
3365
3366static tree
3367build_type_attribute_qual_variant (tree ttype, tree attribute, int quals)
3368{
3369  if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
3370    {
3371      hashval_t hashcode = 0;
3372      tree ntype;
3373      enum tree_code code = TREE_CODE (ttype);
3374
3375      ntype = copy_node (ttype);
3376
3377      TYPE_POINTER_TO (ntype) = 0;
3378      TYPE_REFERENCE_TO (ntype) = 0;
3379      TYPE_ATTRIBUTES (ntype) = attribute;
3380
3381      /* Create a new main variant of TYPE.  */
3382      TYPE_MAIN_VARIANT (ntype) = ntype;
3383      TYPE_NEXT_VARIANT (ntype) = 0;
3384      set_type_quals (ntype, TYPE_UNQUALIFIED);
3385
3386      hashcode = iterative_hash_object (code, hashcode);
3387      if (TREE_TYPE (ntype))
3388	hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (ntype)),
3389					  hashcode);
3390      hashcode = attribute_hash_list (attribute, hashcode);
3391
3392      switch (TREE_CODE (ntype))
3393	{
3394	case FUNCTION_TYPE:
3395	  hashcode = type_hash_list (TYPE_ARG_TYPES (ntype), hashcode);
3396	  break;
3397	case ARRAY_TYPE:
3398	  hashcode = iterative_hash_object (TYPE_HASH (TYPE_DOMAIN (ntype)),
3399					    hashcode);
3400	  break;
3401	case INTEGER_TYPE:
3402	  hashcode = iterative_hash_object
3403	    (TREE_INT_CST_LOW (TYPE_MAX_VALUE (ntype)), hashcode);
3404	  hashcode = iterative_hash_object
3405	    (TREE_INT_CST_HIGH (TYPE_MAX_VALUE (ntype)), hashcode);
3406	  break;
3407	case REAL_TYPE:
3408	  {
3409	    unsigned int precision = TYPE_PRECISION (ntype);
3410	    hashcode = iterative_hash_object (precision, hashcode);
3411	  }
3412	  break;
3413	default:
3414	  break;
3415	}
3416
3417      ntype = type_hash_canon (hashcode, ntype);
3418      ttype = build_qualified_type (ntype, quals);
3419    }
3420
3421  return ttype;
3422}
3423
3424
3425/* Return a type like TTYPE except that its TYPE_ATTRIBUTE
3426   is ATTRIBUTE.
3427
3428   Record such modified types already made so we don't make duplicates.  */
3429
3430tree
3431build_type_attribute_variant (tree ttype, tree attribute)
3432{
3433  return build_type_attribute_qual_variant (ttype, attribute,
3434					    TYPE_QUALS (ttype));
3435}
3436
3437/* Return nonzero if IDENT is a valid name for attribute ATTR,
3438   or zero if not.
3439
3440   We try both `text' and `__text__', ATTR may be either one.  */
3441/* ??? It might be a reasonable simplification to require ATTR to be only
3442   `text'.  One might then also require attribute lists to be stored in
3443   their canonicalized form.  */
3444
3445static int
3446is_attribute_with_length_p (const char *attr, int attr_len, tree ident)
3447{
3448  int ident_len;
3449  const char *p;
3450
3451  if (TREE_CODE (ident) != IDENTIFIER_NODE)
3452    return 0;
3453
3454  p = IDENTIFIER_POINTER (ident);
3455  ident_len = IDENTIFIER_LENGTH (ident);
3456
3457  if (ident_len == attr_len
3458      && strcmp (attr, p) == 0)
3459    return 1;
3460
3461  /* If ATTR is `__text__', IDENT must be `text'; and vice versa.  */
3462  if (attr[0] == '_')
3463    {
3464      gcc_assert (attr[1] == '_');
3465      gcc_assert (attr[attr_len - 2] == '_');
3466      gcc_assert (attr[attr_len - 1] == '_');
3467      if (ident_len == attr_len - 4
3468	  && strncmp (attr + 2, p, attr_len - 4) == 0)
3469	return 1;
3470    }
3471  else
3472    {
3473      if (ident_len == attr_len + 4
3474	  && p[0] == '_' && p[1] == '_'
3475	  && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
3476	  && strncmp (attr, p + 2, attr_len) == 0)
3477	return 1;
3478    }
3479
3480  return 0;
3481}
3482
3483/* Return nonzero if IDENT is a valid name for attribute ATTR,
3484   or zero if not.
3485
3486   We try both `text' and `__text__', ATTR may be either one.  */
3487
3488int
3489is_attribute_p (const char *attr, tree ident)
3490{
3491  return is_attribute_with_length_p (attr, strlen (attr), ident);
3492}
3493
3494/* Given an attribute name and a list of attributes, return a pointer to the
3495   attribute's list element if the attribute is part of the list, or NULL_TREE
3496   if not found.  If the attribute appears more than once, this only
3497   returns the first occurrence; the TREE_CHAIN of the return value should
3498   be passed back in if further occurrences are wanted.  */
3499
3500tree
3501lookup_attribute (const char *attr_name, tree list)
3502{
3503  tree l;
3504  size_t attr_len = strlen (attr_name);
3505
3506  for (l = list; l; l = TREE_CHAIN (l))
3507    {
3508      gcc_assert (TREE_CODE (TREE_PURPOSE (l)) == IDENTIFIER_NODE);
3509      if (is_attribute_with_length_p (attr_name, attr_len, TREE_PURPOSE (l)))
3510	return l;
3511    }
3512
3513  return NULL_TREE;
3514}
3515
3516/* Remove any instances of attribute ATTR_NAME in LIST and return the
3517   modified list.  */
3518
3519tree
3520remove_attribute (const char *attr_name, tree list)
3521{
3522  tree *p;
3523  size_t attr_len = strlen (attr_name);
3524
3525  for (p = &list; *p; )
3526    {
3527      tree l = *p;
3528      gcc_assert (TREE_CODE (TREE_PURPOSE (l)) == IDENTIFIER_NODE);
3529      if (is_attribute_with_length_p (attr_name, attr_len, TREE_PURPOSE (l)))
3530	*p = TREE_CHAIN (l);
3531      else
3532	p = &TREE_CHAIN (l);
3533    }
3534
3535  return list;
3536}
3537
3538/* Return an attribute list that is the union of a1 and a2.  */
3539
3540tree
3541merge_attributes (tree a1, tree a2)
3542{
3543  tree attributes;
3544
3545  /* Either one unset?  Take the set one.  */
3546
3547  if ((attributes = a1) == 0)
3548    attributes = a2;
3549
3550  /* One that completely contains the other?  Take it.  */
3551
3552  else if (a2 != 0 && ! attribute_list_contained (a1, a2))
3553    {
3554      if (attribute_list_contained (a2, a1))
3555	attributes = a2;
3556      else
3557	{
3558	  /* Pick the longest list, and hang on the other list.  */
3559
3560	  if (list_length (a1) < list_length (a2))
3561	    attributes = a2, a2 = a1;
3562
3563	  for (; a2 != 0; a2 = TREE_CHAIN (a2))
3564	    {
3565	      tree a;
3566	      for (a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
3567					 attributes);
3568		   a != NULL_TREE;
3569		   a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
3570					 TREE_CHAIN (a)))
3571		{
3572		  if (TREE_VALUE (a) != NULL
3573		      && TREE_CODE (TREE_VALUE (a)) == TREE_LIST
3574		      && TREE_VALUE (a2) != NULL
3575		      && TREE_CODE (TREE_VALUE (a2)) == TREE_LIST)
3576		    {
3577		      if (simple_cst_list_equal (TREE_VALUE (a),
3578						 TREE_VALUE (a2)) == 1)
3579			break;
3580		    }
3581		  else if (simple_cst_equal (TREE_VALUE (a),
3582					     TREE_VALUE (a2)) == 1)
3583		    break;
3584		}
3585	      if (a == NULL_TREE)
3586		{
3587		  a1 = copy_node (a2);
3588		  TREE_CHAIN (a1) = attributes;
3589		  attributes = a1;
3590		}
3591	    }
3592	}
3593    }
3594  return attributes;
3595}
3596
3597/* Given types T1 and T2, merge their attributes and return
3598  the result.  */
3599
3600tree
3601merge_type_attributes (tree t1, tree t2)
3602{
3603  return merge_attributes (TYPE_ATTRIBUTES (t1),
3604			   TYPE_ATTRIBUTES (t2));
3605}
3606
3607/* Given decls OLDDECL and NEWDECL, merge their attributes and return
3608   the result.  */
3609
3610tree
3611merge_decl_attributes (tree olddecl, tree newdecl)
3612{
3613  return merge_attributes (DECL_ATTRIBUTES (olddecl),
3614			   DECL_ATTRIBUTES (newdecl));
3615}
3616
3617#if TARGET_DLLIMPORT_DECL_ATTRIBUTES
3618
3619/* Specialization of merge_decl_attributes for various Windows targets.
3620
3621   This handles the following situation:
3622
3623     __declspec (dllimport) int foo;
3624     int foo;
3625
3626   The second instance of `foo' nullifies the dllimport.  */
3627
3628tree
3629merge_dllimport_decl_attributes (tree old, tree new)
3630{
3631  tree a;
3632  int delete_dllimport_p = 1;
3633
3634  /* What we need to do here is remove from `old' dllimport if it doesn't
3635     appear in `new'.  dllimport behaves like extern: if a declaration is
3636     marked dllimport and a definition appears later, then the object
3637     is not dllimport'd.  We also remove a `new' dllimport if the old list
3638     contains dllexport:  dllexport always overrides dllimport, regardless
3639     of the order of declaration.  */
3640  if (!VAR_OR_FUNCTION_DECL_P (new))
3641    delete_dllimport_p = 0;
3642  else if (DECL_DLLIMPORT_P (new)
3643     	   && lookup_attribute ("dllexport", DECL_ATTRIBUTES (old)))
3644    {
3645      DECL_DLLIMPORT_P (new) = 0;
3646      warning (OPT_Wattributes, "%q+D already declared with dllexport attribute: "
3647	      "dllimport ignored", new);
3648    }
3649  else if (DECL_DLLIMPORT_P (old) && !DECL_DLLIMPORT_P (new))
3650    {
3651      /* Warn about overriding a symbol that has already been used. eg:
3652           extern int __attribute__ ((dllimport)) foo;
3653	   int* bar () {return &foo;}
3654	   int foo;
3655      */
3656      if (TREE_USED (old))
3657	{
3658	  warning (0, "%q+D redeclared without dllimport attribute "
3659		   "after being referenced with dll linkage", new);
3660	  /* If we have used a variable's address with dllimport linkage,
3661	      keep the old DECL_DLLIMPORT_P flag: the ADDR_EXPR using the
3662	      decl may already have had TREE_INVARIANT and TREE_CONSTANT
3663	      computed.
3664	      We still remove the attribute so that assembler code refers
3665	      to '&foo rather than '_imp__foo'.  */
3666	  if (TREE_CODE (old) == VAR_DECL && TREE_ADDRESSABLE (old))
3667	    DECL_DLLIMPORT_P (new) = 1;
3668	}
3669
3670      /* Let an inline definition silently override the external reference,
3671	 but otherwise warn about attribute inconsistency.  */
3672      else if (TREE_CODE (new) == VAR_DECL
3673	       || !DECL_DECLARED_INLINE_P (new))
3674	warning (OPT_Wattributes, "%q+D redeclared without dllimport attribute: "
3675		  "previous dllimport ignored", new);
3676    }
3677  else
3678    delete_dllimport_p = 0;
3679
3680  a = merge_attributes (DECL_ATTRIBUTES (old), DECL_ATTRIBUTES (new));
3681
3682  if (delete_dllimport_p)
3683    {
3684      tree prev, t;
3685      const size_t attr_len = strlen ("dllimport");
3686
3687      /* Scan the list for dllimport and delete it.  */
3688      for (prev = NULL_TREE, t = a; t; prev = t, t = TREE_CHAIN (t))
3689	{
3690	  if (is_attribute_with_length_p ("dllimport", attr_len,
3691					  TREE_PURPOSE (t)))
3692	    {
3693	      if (prev == NULL_TREE)
3694		a = TREE_CHAIN (a);
3695	      else
3696		TREE_CHAIN (prev) = TREE_CHAIN (t);
3697	      break;
3698	    }
3699	}
3700    }
3701
3702  return a;
3703}
3704
3705/* Handle a "dllimport" or "dllexport" attribute; arguments as in
3706   struct attribute_spec.handler.  */
3707
3708tree
3709handle_dll_attribute (tree * pnode, tree name, tree args, int flags,
3710		      bool *no_add_attrs)
3711{
3712  tree node = *pnode;
3713
3714  /* These attributes may apply to structure and union types being created,
3715     but otherwise should pass to the declaration involved.  */
3716  if (!DECL_P (node))
3717    {
3718      if (flags & ((int) ATTR_FLAG_DECL_NEXT | (int) ATTR_FLAG_FUNCTION_NEXT
3719		   | (int) ATTR_FLAG_ARRAY_NEXT))
3720	{
3721	  *no_add_attrs = true;
3722	  return tree_cons (name, args, NULL_TREE);
3723	}
3724      if (TREE_CODE (node) != RECORD_TYPE && TREE_CODE (node) != UNION_TYPE)
3725	{
3726	  warning (OPT_Wattributes, "%qs attribute ignored",
3727		   IDENTIFIER_POINTER (name));
3728	  *no_add_attrs = true;
3729	}
3730
3731      return NULL_TREE;
3732    }
3733
3734  if (TREE_CODE (node) != FUNCTION_DECL
3735      && TREE_CODE (node) != VAR_DECL)
3736    {
3737      *no_add_attrs = true;
3738      warning (OPT_Wattributes, "%qs attribute ignored",
3739	       IDENTIFIER_POINTER (name));
3740      return NULL_TREE;
3741    }
3742
3743  /* Report error on dllimport ambiguities seen now before they cause
3744     any damage.  */
3745  else if (is_attribute_p ("dllimport", name))
3746    {
3747      /* Honor any target-specific overrides. */
3748      if (!targetm.valid_dllimport_attribute_p (node))
3749	*no_add_attrs = true;
3750
3751     else if (TREE_CODE (node) == FUNCTION_DECL
3752	        && DECL_DECLARED_INLINE_P (node))
3753	{
3754	  warning (OPT_Wattributes, "inline function %q+D declared as "
3755		  " dllimport: attribute ignored", node);
3756	  *no_add_attrs = true;
3757	}
3758      /* Like MS, treat definition of dllimported variables and
3759	 non-inlined functions on declaration as syntax errors. */
3760     else if (TREE_CODE (node) == FUNCTION_DECL && DECL_INITIAL (node))
3761	{
3762	  error ("function %q+D definition is marked dllimport", node);
3763	  *no_add_attrs = true;
3764	}
3765
3766     else if (TREE_CODE (node) == VAR_DECL)
3767	{
3768	  if (DECL_INITIAL (node))
3769	    {
3770	      error ("variable %q+D definition is marked dllimport",
3771		     node);
3772	      *no_add_attrs = true;
3773	    }
3774
3775	  /* `extern' needn't be specified with dllimport.
3776	     Specify `extern' now and hope for the best.  Sigh.  */
3777	  DECL_EXTERNAL (node) = 1;
3778	  /* Also, implicitly give dllimport'd variables declared within
3779	     a function global scope, unless declared static.  */
3780	  if (current_function_decl != NULL_TREE && !TREE_STATIC (node))
3781	    TREE_PUBLIC (node) = 1;
3782	}
3783
3784      if (*no_add_attrs == false)
3785        DECL_DLLIMPORT_P (node) = 1;
3786    }
3787
3788  /*  Report error if symbol is not accessible at global scope.  */
3789  if (!TREE_PUBLIC (node)
3790      && (TREE_CODE (node) == VAR_DECL
3791	  || TREE_CODE (node) == FUNCTION_DECL))
3792    {
3793      error ("external linkage required for symbol %q+D because of "
3794	     "%qs attribute", node, IDENTIFIER_POINTER (name));
3795      *no_add_attrs = true;
3796    }
3797
3798  return NULL_TREE;
3799}
3800
3801#endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES  */
3802
3803/* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
3804   of the various TYPE_QUAL values.  */
3805
3806static void
3807set_type_quals (tree type, int type_quals)
3808{
3809  TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
3810  TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
3811  TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
3812}
3813
3814/* Returns true iff cand is equivalent to base with type_quals.  */
3815
3816bool
3817check_qualified_type (tree cand, tree base, int type_quals)
3818{
3819  return (TYPE_QUALS (cand) == type_quals
3820	  && TYPE_NAME (cand) == TYPE_NAME (base)
3821	  /* Apparently this is needed for Objective-C.  */
3822	  && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
3823	  && attribute_list_equal (TYPE_ATTRIBUTES (cand),
3824				   TYPE_ATTRIBUTES (base)));
3825}
3826
3827/* Return a version of the TYPE, qualified as indicated by the
3828   TYPE_QUALS, if one exists.  If no qualified version exists yet,
3829   return NULL_TREE.  */
3830
3831tree
3832get_qualified_type (tree type, int type_quals)
3833{
3834  tree t;
3835
3836  if (TYPE_QUALS (type) == type_quals)
3837    return type;
3838
3839  /* Search the chain of variants to see if there is already one there just
3840     like the one we need to have.  If so, use that existing one.  We must
3841     preserve the TYPE_NAME, since there is code that depends on this.  */
3842  for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
3843    if (check_qualified_type (t, type, type_quals))
3844      return t;
3845
3846  return NULL_TREE;
3847}
3848
3849/* Like get_qualified_type, but creates the type if it does not
3850   exist.  This function never returns NULL_TREE.  */
3851
3852tree
3853build_qualified_type (tree type, int type_quals)
3854{
3855  tree t;
3856
3857  /* See if we already have the appropriate qualified variant.  */
3858  t = get_qualified_type (type, type_quals);
3859
3860  /* If not, build it.  */
3861  if (!t)
3862    {
3863      t = build_variant_type_copy (type);
3864      set_type_quals (t, type_quals);
3865    }
3866
3867  return t;
3868}
3869
3870/* Create a new distinct copy of TYPE.  The new type is made its own
3871   MAIN_VARIANT.  */
3872
3873tree
3874build_distinct_type_copy (tree type)
3875{
3876  tree t = copy_node (type);
3877
3878  TYPE_POINTER_TO (t) = 0;
3879  TYPE_REFERENCE_TO (t) = 0;
3880
3881  /* Make it its own variant.  */
3882  TYPE_MAIN_VARIANT (t) = t;
3883  TYPE_NEXT_VARIANT (t) = 0;
3884
3885  /* Note that it is now possible for TYPE_MIN_VALUE to be a value
3886     whose TREE_TYPE is not t.  This can also happen in the Ada
3887     frontend when using subtypes.  */
3888
3889  return t;
3890}
3891
3892/* Create a new variant of TYPE, equivalent but distinct.
3893   This is so the caller can modify it.  */
3894
3895tree
3896build_variant_type_copy (tree type)
3897{
3898  tree t, m = TYPE_MAIN_VARIANT (type);
3899
3900  t = build_distinct_type_copy (type);
3901
3902  /* Add the new type to the chain of variants of TYPE.  */
3903  TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
3904  TYPE_NEXT_VARIANT (m) = t;
3905  TYPE_MAIN_VARIANT (t) = m;
3906
3907  return t;
3908}
3909
3910/* Return true if the from tree in both tree maps are equal.  */
3911
3912int
3913tree_map_eq (const void *va, const void *vb)
3914{
3915  const struct tree_map  *a = va, *b = vb;
3916  return (a->from == b->from);
3917}
3918
3919/* Hash a from tree in a tree_map.  */
3920
3921unsigned int
3922tree_map_hash (const void *item)
3923{
3924  return (((const struct tree_map *) item)->hash);
3925}
3926
3927/* Return true if this tree map structure is marked for garbage collection
3928   purposes.  We simply return true if the from tree is marked, so that this
3929   structure goes away when the from tree goes away.  */
3930
3931int
3932tree_map_marked_p (const void *p)
3933{
3934  tree from = ((struct tree_map *) p)->from;
3935
3936  return ggc_marked_p (from);
3937}
3938
3939/* Return true if the trees in the tree_int_map *'s VA and VB are equal.  */
3940
3941static int
3942tree_int_map_eq (const void *va, const void *vb)
3943{
3944  const struct tree_int_map  *a = va, *b = vb;
3945  return (a->from == b->from);
3946}
3947
3948/* Hash a from tree in the tree_int_map * ITEM.  */
3949
3950static unsigned int
3951tree_int_map_hash (const void *item)
3952{
3953  return htab_hash_pointer (((const struct tree_int_map *)item)->from);
3954}
3955
3956/* Return true if this tree int map structure is marked for garbage collection
3957   purposes.  We simply return true if the from tree_int_map *P's from tree is marked, so that this
3958   structure goes away when the from tree goes away.  */
3959
3960static int
3961tree_int_map_marked_p (const void *p)
3962{
3963  tree from = ((struct tree_int_map *) p)->from;
3964
3965  return ggc_marked_p (from);
3966}
3967/* Lookup an init priority for FROM, and return it if we find one.  */
3968
3969unsigned short
3970decl_init_priority_lookup (tree from)
3971{
3972  struct tree_int_map *h, in;
3973  in.from = from;
3974
3975  h = htab_find_with_hash (init_priority_for_decl,
3976			   &in, htab_hash_pointer (from));
3977  if (h)
3978    return h->to;
3979  return 0;
3980}
3981
3982/* Insert a mapping FROM->TO in the init priority hashtable.  */
3983
3984void
3985decl_init_priority_insert (tree from, unsigned short to)
3986{
3987  struct tree_int_map *h;
3988  void **loc;
3989
3990  h = ggc_alloc (sizeof (struct tree_int_map));
3991  h->from = from;
3992  h->to = to;
3993  loc = htab_find_slot_with_hash (init_priority_for_decl, h,
3994				  htab_hash_pointer (from), INSERT);
3995  *(struct tree_int_map **) loc = h;
3996}
3997
3998/* Look up a restrict qualified base decl for FROM.  */
3999
4000tree
4001decl_restrict_base_lookup (tree from)
4002{
4003  struct tree_map *h;
4004  struct tree_map in;
4005
4006  in.from = from;
4007  h = htab_find_with_hash (restrict_base_for_decl, &in,
4008			   htab_hash_pointer (from));
4009  return h ? h->to : NULL_TREE;
4010}
4011
4012/* Record the restrict qualified base TO for FROM.  */
4013
4014void
4015decl_restrict_base_insert (tree from, tree to)
4016{
4017  struct tree_map *h;
4018  void **loc;
4019
4020  h = ggc_alloc (sizeof (struct tree_map));
4021  h->hash = htab_hash_pointer (from);
4022  h->from = from;
4023  h->to = to;
4024  loc = htab_find_slot_with_hash (restrict_base_for_decl, h, h->hash, INSERT);
4025  *(struct tree_map **) loc = h;
4026}
4027
4028/* Print out the statistics for the DECL_DEBUG_EXPR hash table.  */
4029
4030static void
4031print_debug_expr_statistics (void)
4032{
4033  fprintf (stderr, "DECL_DEBUG_EXPR  hash: size %ld, %ld elements, %f collisions\n",
4034	   (long) htab_size (debug_expr_for_decl),
4035	   (long) htab_elements (debug_expr_for_decl),
4036	   htab_collisions (debug_expr_for_decl));
4037}
4038
4039/* Print out the statistics for the DECL_VALUE_EXPR hash table.  */
4040
4041static void
4042print_value_expr_statistics (void)
4043{
4044  fprintf (stderr, "DECL_VALUE_EXPR  hash: size %ld, %ld elements, %f collisions\n",
4045	   (long) htab_size (value_expr_for_decl),
4046	   (long) htab_elements (value_expr_for_decl),
4047	   htab_collisions (value_expr_for_decl));
4048}
4049
4050/* Print out statistics for the RESTRICT_BASE_FOR_DECL hash table, but
4051   don't print anything if the table is empty.  */
4052
4053static void
4054print_restrict_base_statistics (void)
4055{
4056  if (htab_elements (restrict_base_for_decl) != 0)
4057    fprintf (stderr,
4058	     "RESTRICT_BASE    hash: size %ld, %ld elements, %f collisions\n",
4059	     (long) htab_size (restrict_base_for_decl),
4060	     (long) htab_elements (restrict_base_for_decl),
4061	     htab_collisions (restrict_base_for_decl));
4062}
4063
4064/* Lookup a debug expression for FROM, and return it if we find one.  */
4065
4066tree
4067decl_debug_expr_lookup (tree from)
4068{
4069  struct tree_map *h, in;
4070  in.from = from;
4071
4072  h = htab_find_with_hash (debug_expr_for_decl, &in, htab_hash_pointer (from));
4073  if (h)
4074    return h->to;
4075  return NULL_TREE;
4076}
4077
4078/* Insert a mapping FROM->TO in the debug expression hashtable.  */
4079
4080void
4081decl_debug_expr_insert (tree from, tree to)
4082{
4083  struct tree_map *h;
4084  void **loc;
4085
4086  h = ggc_alloc (sizeof (struct tree_map));
4087  h->hash = htab_hash_pointer (from);
4088  h->from = from;
4089  h->to = to;
4090  loc = htab_find_slot_with_hash (debug_expr_for_decl, h, h->hash, INSERT);
4091  *(struct tree_map **) loc = h;
4092}
4093
4094/* Lookup a value expression for FROM, and return it if we find one.  */
4095
4096tree
4097decl_value_expr_lookup (tree from)
4098{
4099  struct tree_map *h, in;
4100  in.from = from;
4101
4102  h = htab_find_with_hash (value_expr_for_decl, &in, htab_hash_pointer (from));
4103  if (h)
4104    return h->to;
4105  return NULL_TREE;
4106}
4107
4108/* Insert a mapping FROM->TO in the value expression hashtable.  */
4109
4110void
4111decl_value_expr_insert (tree from, tree to)
4112{
4113  struct tree_map *h;
4114  void **loc;
4115
4116  h = ggc_alloc (sizeof (struct tree_map));
4117  h->hash = htab_hash_pointer (from);
4118  h->from = from;
4119  h->to = to;
4120  loc = htab_find_slot_with_hash (value_expr_for_decl, h, h->hash, INSERT);
4121  *(struct tree_map **) loc = h;
4122}
4123
4124/* Hashing of types so that we don't make duplicates.
4125   The entry point is `type_hash_canon'.  */
4126
4127/* Compute a hash code for a list of types (chain of TREE_LIST nodes
4128   with types in the TREE_VALUE slots), by adding the hash codes
4129   of the individual types.  */
4130
4131unsigned int
4132type_hash_list (tree list, hashval_t hashcode)
4133{
4134  tree tail;
4135
4136  for (tail = list; tail; tail = TREE_CHAIN (tail))
4137    if (TREE_VALUE (tail) != error_mark_node)
4138      hashcode = iterative_hash_object (TYPE_HASH (TREE_VALUE (tail)),
4139					hashcode);
4140
4141  return hashcode;
4142}
4143
4144/* These are the Hashtable callback functions.  */
4145
4146/* Returns true iff the types are equivalent.  */
4147
4148static int
4149type_hash_eq (const void *va, const void *vb)
4150{
4151  const struct type_hash *a = va, *b = vb;
4152
4153  /* First test the things that are the same for all types.  */
4154  if (a->hash != b->hash
4155      || TREE_CODE (a->type) != TREE_CODE (b->type)
4156      || TREE_TYPE (a->type) != TREE_TYPE (b->type)
4157      || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
4158				 TYPE_ATTRIBUTES (b->type))
4159      || TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
4160      || TYPE_MODE (a->type) != TYPE_MODE (b->type))
4161    return 0;
4162
4163  switch (TREE_CODE (a->type))
4164    {
4165    case VOID_TYPE:
4166    case COMPLEX_TYPE:
4167    case POINTER_TYPE:
4168    case REFERENCE_TYPE:
4169      return 1;
4170
4171    case VECTOR_TYPE:
4172      return TYPE_VECTOR_SUBPARTS (a->type) == TYPE_VECTOR_SUBPARTS (b->type);
4173
4174    case ENUMERAL_TYPE:
4175      if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
4176	  && !(TYPE_VALUES (a->type)
4177	       && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
4178	       && TYPE_VALUES (b->type)
4179	       && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
4180	       && type_list_equal (TYPE_VALUES (a->type),
4181				   TYPE_VALUES (b->type))))
4182	return 0;
4183
4184      /* ... fall through ... */
4185
4186    case INTEGER_TYPE:
4187    case REAL_TYPE:
4188    case BOOLEAN_TYPE:
4189      return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
4190	       || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
4191				      TYPE_MAX_VALUE (b->type)))
4192	      && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
4193		  || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
4194					 TYPE_MIN_VALUE (b->type))));
4195
4196    case OFFSET_TYPE:
4197      return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
4198
4199    case METHOD_TYPE:
4200      return (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
4201	      && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
4202		  || (TYPE_ARG_TYPES (a->type)
4203		      && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
4204		      && TYPE_ARG_TYPES (b->type)
4205		      && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
4206		      && type_list_equal (TYPE_ARG_TYPES (a->type),
4207					  TYPE_ARG_TYPES (b->type)))));
4208
4209    case ARRAY_TYPE:
4210      return TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type);
4211
4212    case RECORD_TYPE:
4213    case UNION_TYPE:
4214    case QUAL_UNION_TYPE:
4215      return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
4216	      || (TYPE_FIELDS (a->type)
4217		  && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
4218		  && TYPE_FIELDS (b->type)
4219		  && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
4220		  && type_list_equal (TYPE_FIELDS (a->type),
4221				      TYPE_FIELDS (b->type))));
4222
4223    case FUNCTION_TYPE:
4224      return (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
4225	      || (TYPE_ARG_TYPES (a->type)
4226		  && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
4227		  && TYPE_ARG_TYPES (b->type)
4228		  && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
4229		  && type_list_equal (TYPE_ARG_TYPES (a->type),
4230				      TYPE_ARG_TYPES (b->type))));
4231
4232    default:
4233      return 0;
4234    }
4235}
4236
4237/* Return the cached hash value.  */
4238
4239static hashval_t
4240type_hash_hash (const void *item)
4241{
4242  return ((const struct type_hash *) item)->hash;
4243}
4244
4245/* Look in the type hash table for a type isomorphic to TYPE.
4246   If one is found, return it.  Otherwise return 0.  */
4247
4248tree
4249type_hash_lookup (hashval_t hashcode, tree type)
4250{
4251  struct type_hash *h, in;
4252
4253  /* The TYPE_ALIGN field of a type is set by layout_type(), so we
4254     must call that routine before comparing TYPE_ALIGNs.  */
4255  layout_type (type);
4256
4257  in.hash = hashcode;
4258  in.type = type;
4259
4260  h = htab_find_with_hash (type_hash_table, &in, hashcode);
4261  if (h)
4262    return h->type;
4263  return NULL_TREE;
4264}
4265
4266/* Add an entry to the type-hash-table
4267   for a type TYPE whose hash code is HASHCODE.  */
4268
4269void
4270type_hash_add (hashval_t hashcode, tree type)
4271{
4272  struct type_hash *h;
4273  void **loc;
4274
4275  h = ggc_alloc (sizeof (struct type_hash));
4276  h->hash = hashcode;
4277  h->type = type;
4278  loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
4279  *(struct type_hash **) loc = h;
4280}
4281
4282/* Given TYPE, and HASHCODE its hash code, return the canonical
4283   object for an identical type if one already exists.
4284   Otherwise, return TYPE, and record it as the canonical object.
4285
4286   To use this function, first create a type of the sort you want.
4287   Then compute its hash code from the fields of the type that
4288   make it different from other similar types.
4289   Then call this function and use the value.  */
4290
4291tree
4292type_hash_canon (unsigned int hashcode, tree type)
4293{
4294  tree t1;
4295
4296  /* The hash table only contains main variants, so ensure that's what we're
4297     being passed.  */
4298  gcc_assert (TYPE_MAIN_VARIANT (type) == type);
4299
4300  if (!lang_hooks.types.hash_types)
4301    return type;
4302
4303  /* See if the type is in the hash table already.  If so, return it.
4304     Otherwise, add the type.  */
4305  t1 = type_hash_lookup (hashcode, type);
4306  if (t1 != 0)
4307    {
4308#ifdef GATHER_STATISTICS
4309      tree_node_counts[(int) t_kind]--;
4310      tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type);
4311#endif
4312      return t1;
4313    }
4314  else
4315    {
4316      type_hash_add (hashcode, type);
4317      return type;
4318    }
4319}
4320
4321/* See if the data pointed to by the type hash table is marked.  We consider
4322   it marked if the type is marked or if a debug type number or symbol
4323   table entry has been made for the type.  This reduces the amount of
4324   debugging output and eliminates that dependency of the debug output on
4325   the number of garbage collections.  */
4326
4327static int
4328type_hash_marked_p (const void *p)
4329{
4330  tree type = ((struct type_hash *) p)->type;
4331
4332  return ggc_marked_p (type) || TYPE_SYMTAB_POINTER (type);
4333}
4334
4335static void
4336print_type_hash_statistics (void)
4337{
4338  fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
4339	   (long) htab_size (type_hash_table),
4340	   (long) htab_elements (type_hash_table),
4341	   htab_collisions (type_hash_table));
4342}
4343
4344/* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
4345   with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
4346   by adding the hash codes of the individual attributes.  */
4347
4348unsigned int
4349attribute_hash_list (tree list, hashval_t hashcode)
4350{
4351  tree tail;
4352
4353  for (tail = list; tail; tail = TREE_CHAIN (tail))
4354    /* ??? Do we want to add in TREE_VALUE too? */
4355    hashcode = iterative_hash_object
4356      (IDENTIFIER_HASH_VALUE (TREE_PURPOSE (tail)), hashcode);
4357  return hashcode;
4358}
4359
4360/* Given two lists of attributes, return true if list l2 is
4361   equivalent to l1.  */
4362
4363int
4364attribute_list_equal (tree l1, tree l2)
4365{
4366  return attribute_list_contained (l1, l2)
4367	 && attribute_list_contained (l2, l1);
4368}
4369
4370/* Given two lists of attributes, return true if list L2 is
4371   completely contained within L1.  */
4372/* ??? This would be faster if attribute names were stored in a canonicalized
4373   form.  Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
4374   must be used to show these elements are equivalent (which they are).  */
4375/* ??? It's not clear that attributes with arguments will always be handled
4376   correctly.  */
4377
4378int
4379attribute_list_contained (tree l1, tree l2)
4380{
4381  tree t1, t2;
4382
4383  /* First check the obvious, maybe the lists are identical.  */
4384  if (l1 == l2)
4385    return 1;
4386
4387  /* Maybe the lists are similar.  */
4388  for (t1 = l1, t2 = l2;
4389       t1 != 0 && t2 != 0
4390        && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
4391        && TREE_VALUE (t1) == TREE_VALUE (t2);
4392       t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
4393
4394  /* Maybe the lists are equal.  */
4395  if (t1 == 0 && t2 == 0)
4396    return 1;
4397
4398  for (; t2 != 0; t2 = TREE_CHAIN (t2))
4399    {
4400      tree attr;
4401      for (attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)), l1);
4402	   attr != NULL_TREE;
4403	   attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
4404				    TREE_CHAIN (attr)))
4405	{
4406	  if (TREE_VALUE (t2) != NULL
4407	      && TREE_CODE (TREE_VALUE (t2)) == TREE_LIST
4408	      && TREE_VALUE (attr) != NULL
4409	      && TREE_CODE (TREE_VALUE (attr)) == TREE_LIST)
4410	    {
4411	      if (simple_cst_list_equal (TREE_VALUE (t2),
4412					 TREE_VALUE (attr)) == 1)
4413		break;
4414	    }
4415	  else if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) == 1)
4416	    break;
4417	}
4418
4419      if (attr == 0)
4420	return 0;
4421    }
4422
4423  return 1;
4424}
4425
4426/* Given two lists of types
4427   (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
4428   return 1 if the lists contain the same types in the same order.
4429   Also, the TREE_PURPOSEs must match.  */
4430
4431int
4432type_list_equal (tree l1, tree l2)
4433{
4434  tree t1, t2;
4435
4436  for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
4437    if (TREE_VALUE (t1) != TREE_VALUE (t2)
4438	|| (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
4439	    && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
4440		  && (TREE_TYPE (TREE_PURPOSE (t1))
4441		      == TREE_TYPE (TREE_PURPOSE (t2))))))
4442      return 0;
4443
4444  return t1 == t2;
4445}
4446
4447/* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
4448   given by TYPE.  If the argument list accepts variable arguments,
4449   then this function counts only the ordinary arguments.  */
4450
4451int
4452type_num_arguments (tree type)
4453{
4454  int i = 0;
4455  tree t;
4456
4457  for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
4458    /* If the function does not take a variable number of arguments,
4459       the last element in the list will have type `void'.  */
4460    if (VOID_TYPE_P (TREE_VALUE (t)))
4461      break;
4462    else
4463      ++i;
4464
4465  return i;
4466}
4467
4468/* Nonzero if integer constants T1 and T2
4469   represent the same constant value.  */
4470
4471int
4472tree_int_cst_equal (tree t1, tree t2)
4473{
4474  if (t1 == t2)
4475    return 1;
4476
4477  if (t1 == 0 || t2 == 0)
4478    return 0;
4479
4480  if (TREE_CODE (t1) == INTEGER_CST
4481      && TREE_CODE (t2) == INTEGER_CST
4482      && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
4483      && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
4484    return 1;
4485
4486  return 0;
4487}
4488
4489/* Nonzero if integer constants T1 and T2 represent values that satisfy <.
4490   The precise way of comparison depends on their data type.  */
4491
4492int
4493tree_int_cst_lt (tree t1, tree t2)
4494{
4495  if (t1 == t2)
4496    return 0;
4497
4498  if (TYPE_UNSIGNED (TREE_TYPE (t1)) != TYPE_UNSIGNED (TREE_TYPE (t2)))
4499    {
4500      int t1_sgn = tree_int_cst_sgn (t1);
4501      int t2_sgn = tree_int_cst_sgn (t2);
4502
4503      if (t1_sgn < t2_sgn)
4504	return 1;
4505      else if (t1_sgn > t2_sgn)
4506	return 0;
4507      /* Otherwise, both are non-negative, so we compare them as
4508	 unsigned just in case one of them would overflow a signed
4509	 type.  */
4510    }
4511  else if (!TYPE_UNSIGNED (TREE_TYPE (t1)))
4512    return INT_CST_LT (t1, t2);
4513
4514  return INT_CST_LT_UNSIGNED (t1, t2);
4515}
4516
4517/* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2.  */
4518
4519int
4520tree_int_cst_compare (tree t1, tree t2)
4521{
4522  if (tree_int_cst_lt (t1, t2))
4523    return -1;
4524  else if (tree_int_cst_lt (t2, t1))
4525    return 1;
4526  else
4527    return 0;
4528}
4529
4530/* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
4531   the host.  If POS is zero, the value can be represented in a single
4532   HOST_WIDE_INT.  If POS is nonzero, the value must be non-negative and can
4533   be represented in a single unsigned HOST_WIDE_INT.  */
4534
4535int
4536host_integerp (tree t, int pos)
4537{
4538  return (TREE_CODE (t) == INTEGER_CST
4539	  && ((TREE_INT_CST_HIGH (t) == 0
4540	       && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
4541	      || (! pos && TREE_INT_CST_HIGH (t) == -1
4542		  && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
4543		  && !TYPE_UNSIGNED (TREE_TYPE (t)))
4544	      || (pos && TREE_INT_CST_HIGH (t) == 0)));
4545}
4546
4547/* Return the HOST_WIDE_INT least significant bits of T if it is an
4548   INTEGER_CST and there is no overflow.  POS is nonzero if the result must
4549   be non-negative.  We must be able to satisfy the above conditions.  */
4550
4551HOST_WIDE_INT
4552tree_low_cst (tree t, int pos)
4553{
4554  gcc_assert (host_integerp (t, pos));
4555  return TREE_INT_CST_LOW (t);
4556}
4557
4558/* Return the most significant bit of the integer constant T.  */
4559
4560int
4561tree_int_cst_msb (tree t)
4562{
4563  int prec;
4564  HOST_WIDE_INT h;
4565  unsigned HOST_WIDE_INT l;
4566
4567  /* Note that using TYPE_PRECISION here is wrong.  We care about the
4568     actual bits, not the (arbitrary) range of the type.  */
4569  prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))) - 1;
4570  rshift_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t), prec,
4571		 2 * HOST_BITS_PER_WIDE_INT, &l, &h, 0);
4572  return (l & 1) == 1;
4573}
4574
4575/* Return an indication of the sign of the integer constant T.
4576   The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
4577   Note that -1 will never be returned if T's type is unsigned.  */
4578
4579int
4580tree_int_cst_sgn (tree t)
4581{
4582  if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
4583    return 0;
4584  else if (TYPE_UNSIGNED (TREE_TYPE (t)))
4585    return 1;
4586  else if (TREE_INT_CST_HIGH (t) < 0)
4587    return -1;
4588  else
4589    return 1;
4590}
4591
4592/* Compare two constructor-element-type constants.  Return 1 if the lists
4593   are known to be equal; otherwise return 0.  */
4594
4595int
4596simple_cst_list_equal (tree l1, tree l2)
4597{
4598  while (l1 != NULL_TREE && l2 != NULL_TREE)
4599    {
4600      if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
4601	return 0;
4602
4603      l1 = TREE_CHAIN (l1);
4604      l2 = TREE_CHAIN (l2);
4605    }
4606
4607  return l1 == l2;
4608}
4609
4610/* Return truthvalue of whether T1 is the same tree structure as T2.
4611   Return 1 if they are the same.
4612   Return 0 if they are understandably different.
4613   Return -1 if either contains tree structure not understood by
4614   this function.  */
4615
4616int
4617simple_cst_equal (tree t1, tree t2)
4618{
4619  enum tree_code code1, code2;
4620  int cmp;
4621  int i;
4622
4623  if (t1 == t2)
4624    return 1;
4625  if (t1 == 0 || t2 == 0)
4626    return 0;
4627
4628  code1 = TREE_CODE (t1);
4629  code2 = TREE_CODE (t2);
4630
4631  if (code1 == NOP_EXPR || code1 == CONVERT_EXPR || code1 == NON_LVALUE_EXPR)
4632    {
4633      if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
4634	  || code2 == NON_LVALUE_EXPR)
4635	return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4636      else
4637	return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
4638    }
4639
4640  else if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
4641	   || code2 == NON_LVALUE_EXPR)
4642    return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
4643
4644  if (code1 != code2)
4645    return 0;
4646
4647  switch (code1)
4648    {
4649    case INTEGER_CST:
4650      return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
4651	      && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
4652
4653    case REAL_CST:
4654      return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
4655
4656    case STRING_CST:
4657      return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
4658	      && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
4659			 TREE_STRING_LENGTH (t1)));
4660
4661    case CONSTRUCTOR:
4662      {
4663	unsigned HOST_WIDE_INT idx;
4664	VEC(constructor_elt, gc) *v1 = CONSTRUCTOR_ELTS (t1);
4665	VEC(constructor_elt, gc) *v2 = CONSTRUCTOR_ELTS (t2);
4666
4667	if (VEC_length (constructor_elt, v1) != VEC_length (constructor_elt, v2))
4668	  return false;
4669
4670        for (idx = 0; idx < VEC_length (constructor_elt, v1); ++idx)
4671	  /* ??? Should we handle also fields here? */
4672	  if (!simple_cst_equal (VEC_index (constructor_elt, v1, idx)->value,
4673				 VEC_index (constructor_elt, v2, idx)->value))
4674	    return false;
4675	return true;
4676      }
4677
4678    case SAVE_EXPR:
4679      return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4680
4681    case CALL_EXPR:
4682      cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4683      if (cmp <= 0)
4684	return cmp;
4685      return
4686	simple_cst_list_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
4687
4688    case TARGET_EXPR:
4689      /* Special case: if either target is an unallocated VAR_DECL,
4690	 it means that it's going to be unified with whatever the
4691	 TARGET_EXPR is really supposed to initialize, so treat it
4692	 as being equivalent to anything.  */
4693      if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
4694	   && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
4695	   && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
4696	  || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
4697	      && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
4698	      && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
4699	cmp = 1;
4700      else
4701	cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4702
4703      if (cmp <= 0)
4704	return cmp;
4705
4706      return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
4707
4708    case WITH_CLEANUP_EXPR:
4709      cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4710      if (cmp <= 0)
4711	return cmp;
4712
4713      return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
4714
4715    case COMPONENT_REF:
4716      if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
4717	return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4718
4719      return 0;
4720
4721    case VAR_DECL:
4722    case PARM_DECL:
4723    case CONST_DECL:
4724    case FUNCTION_DECL:
4725      return 0;
4726
4727    default:
4728      break;
4729    }
4730
4731  /* This general rule works for most tree codes.  All exceptions should be
4732     handled above.  If this is a language-specific tree code, we can't
4733     trust what might be in the operand, so say we don't know
4734     the situation.  */
4735  if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
4736    return -1;
4737
4738  switch (TREE_CODE_CLASS (code1))
4739    {
4740    case tcc_unary:
4741    case tcc_binary:
4742    case tcc_comparison:
4743    case tcc_expression:
4744    case tcc_reference:
4745    case tcc_statement:
4746      cmp = 1;
4747      for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
4748	{
4749	  cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
4750	  if (cmp <= 0)
4751	    return cmp;
4752	}
4753
4754      return cmp;
4755
4756    default:
4757      return -1;
4758    }
4759}
4760
4761/* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
4762   Return -1, 0, or 1 if the value of T is less than, equal to, or greater
4763   than U, respectively.  */
4764
4765int
4766compare_tree_int (tree t, unsigned HOST_WIDE_INT u)
4767{
4768  if (tree_int_cst_sgn (t) < 0)
4769    return -1;
4770  else if (TREE_INT_CST_HIGH (t) != 0)
4771    return 1;
4772  else if (TREE_INT_CST_LOW (t) == u)
4773    return 0;
4774  else if (TREE_INT_CST_LOW (t) < u)
4775    return -1;
4776  else
4777    return 1;
4778}
4779
4780/* Return true if CODE represents an associative tree code.  Otherwise
4781   return false.  */
4782bool
4783associative_tree_code (enum tree_code code)
4784{
4785  switch (code)
4786    {
4787    case BIT_IOR_EXPR:
4788    case BIT_AND_EXPR:
4789    case BIT_XOR_EXPR:
4790    case PLUS_EXPR:
4791    case MULT_EXPR:
4792    case MIN_EXPR:
4793    case MAX_EXPR:
4794      return true;
4795
4796    default:
4797      break;
4798    }
4799  return false;
4800}
4801
4802/* Return true if CODE represents a commutative tree code.  Otherwise
4803   return false.  */
4804bool
4805commutative_tree_code (enum tree_code code)
4806{
4807  switch (code)
4808    {
4809    case PLUS_EXPR:
4810    case MULT_EXPR:
4811    case MIN_EXPR:
4812    case MAX_EXPR:
4813    case BIT_IOR_EXPR:
4814    case BIT_XOR_EXPR:
4815    case BIT_AND_EXPR:
4816    case NE_EXPR:
4817    case EQ_EXPR:
4818    case UNORDERED_EXPR:
4819    case ORDERED_EXPR:
4820    case UNEQ_EXPR:
4821    case LTGT_EXPR:
4822    case TRUTH_AND_EXPR:
4823    case TRUTH_XOR_EXPR:
4824    case TRUTH_OR_EXPR:
4825      return true;
4826
4827    default:
4828      break;
4829    }
4830  return false;
4831}
4832
4833/* Generate a hash value for an expression.  This can be used iteratively
4834   by passing a previous result as the "val" argument.
4835
4836   This function is intended to produce the same hash for expressions which
4837   would compare equal using operand_equal_p.  */
4838
4839hashval_t
4840iterative_hash_expr (tree t, hashval_t val)
4841{
4842  int i;
4843  enum tree_code code;
4844  char class;
4845
4846  if (t == NULL_TREE)
4847    return iterative_hash_pointer (t, val);
4848
4849  code = TREE_CODE (t);
4850
4851  switch (code)
4852    {
4853    /* Alas, constants aren't shared, so we can't rely on pointer
4854       identity.  */
4855    case INTEGER_CST:
4856      val = iterative_hash_host_wide_int (TREE_INT_CST_LOW (t), val);
4857      return iterative_hash_host_wide_int (TREE_INT_CST_HIGH (t), val);
4858    case REAL_CST:
4859      {
4860	unsigned int val2 = real_hash (TREE_REAL_CST_PTR (t));
4861
4862	return iterative_hash_hashval_t (val2, val);
4863      }
4864    case STRING_CST:
4865      return iterative_hash (TREE_STRING_POINTER (t),
4866			     TREE_STRING_LENGTH (t), val);
4867    case COMPLEX_CST:
4868      val = iterative_hash_expr (TREE_REALPART (t), val);
4869      return iterative_hash_expr (TREE_IMAGPART (t), val);
4870    case VECTOR_CST:
4871      return iterative_hash_expr (TREE_VECTOR_CST_ELTS (t), val);
4872
4873    case SSA_NAME:
4874    case VALUE_HANDLE:
4875      /* we can just compare by pointer.  */
4876      return iterative_hash_pointer (t, val);
4877
4878    case TREE_LIST:
4879      /* A list of expressions, for a CALL_EXPR or as the elements of a
4880	 VECTOR_CST.  */
4881      for (; t; t = TREE_CHAIN (t))
4882	val = iterative_hash_expr (TREE_VALUE (t), val);
4883      return val;
4884    case CONSTRUCTOR:
4885      {
4886	unsigned HOST_WIDE_INT idx;
4887	tree field, value;
4888	FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t), idx, field, value)
4889	  {
4890	    val = iterative_hash_expr (field, val);
4891	    val = iterative_hash_expr (value, val);
4892	  }
4893	return val;
4894      }
4895    case FUNCTION_DECL:
4896      /* When referring to a built-in FUNCTION_DECL, use the
4897	 __builtin__ form.  Otherwise nodes that compare equal
4898	 according to operand_equal_p might get different
4899	 hash codes.  */
4900      if (DECL_BUILT_IN (t))
4901	{
4902	  val = iterative_hash_pointer (built_in_decls[DECL_FUNCTION_CODE (t)],
4903				      val);
4904	  return val;
4905	}
4906      /* else FALL THROUGH */
4907    default:
4908      class = TREE_CODE_CLASS (code);
4909
4910      if (class == tcc_declaration)
4911	{
4912	  /* DECL's have a unique ID */
4913	  val = iterative_hash_host_wide_int (DECL_UID (t), val);
4914	}
4915      else
4916	{
4917	  gcc_assert (IS_EXPR_CODE_CLASS (class));
4918
4919	  val = iterative_hash_object (code, val);
4920
4921	  /* Don't hash the type, that can lead to having nodes which
4922	     compare equal according to operand_equal_p, but which
4923	     have different hash codes.  */
4924	  if (code == NOP_EXPR
4925	      || code == CONVERT_EXPR
4926	      || code == NON_LVALUE_EXPR)
4927	    {
4928	      /* Make sure to include signness in the hash computation.  */
4929	      val += TYPE_UNSIGNED (TREE_TYPE (t));
4930	      val = iterative_hash_expr (TREE_OPERAND (t, 0), val);
4931	    }
4932
4933	  else if (commutative_tree_code (code))
4934	    {
4935	      /* It's a commutative expression.  We want to hash it the same
4936		 however it appears.  We do this by first hashing both operands
4937		 and then rehashing based on the order of their independent
4938		 hashes.  */
4939	      hashval_t one = iterative_hash_expr (TREE_OPERAND (t, 0), 0);
4940	      hashval_t two = iterative_hash_expr (TREE_OPERAND (t, 1), 0);
4941	      hashval_t t;
4942
4943	      if (one > two)
4944		t = one, one = two, two = t;
4945
4946	      val = iterative_hash_hashval_t (one, val);
4947	      val = iterative_hash_hashval_t (two, val);
4948	    }
4949	  else
4950	    for (i = TREE_CODE_LENGTH (code) - 1; i >= 0; --i)
4951	      val = iterative_hash_expr (TREE_OPERAND (t, i), val);
4952	}
4953      return val;
4954      break;
4955    }
4956}
4957
4958/* Constructors for pointer, array and function types.
4959   (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
4960   constructed by language-dependent code, not here.)  */
4961
4962/* Construct, lay out and return the type of pointers to TO_TYPE with
4963   mode MODE.  If CAN_ALIAS_ALL is TRUE, indicate this type can
4964   reference all of memory. If such a type has already been
4965   constructed, reuse it.  */
4966
4967tree
4968build_pointer_type_for_mode (tree to_type, enum machine_mode mode,
4969			     bool can_alias_all)
4970{
4971  tree t;
4972
4973  if (to_type == error_mark_node)
4974    return error_mark_node;
4975
4976  /* In some cases, languages will have things that aren't a POINTER_TYPE
4977     (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
4978     In that case, return that type without regard to the rest of our
4979     operands.
4980
4981     ??? This is a kludge, but consistent with the way this function has
4982     always operated and there doesn't seem to be a good way to avoid this
4983     at the moment.  */
4984  if (TYPE_POINTER_TO (to_type) != 0
4985      && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
4986    return TYPE_POINTER_TO (to_type);
4987
4988  /* First, if we already have a type for pointers to TO_TYPE and it's
4989     the proper mode, use it.  */
4990  for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
4991    if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
4992      return t;
4993
4994  t = make_node (POINTER_TYPE);
4995
4996  TREE_TYPE (t) = to_type;
4997  TYPE_MODE (t) = mode;
4998  TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
4999  TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
5000  TYPE_POINTER_TO (to_type) = t;
5001
5002  /* Lay out the type.  This function has many callers that are concerned
5003     with expression-construction, and this simplifies them all.  */
5004  layout_type (t);
5005
5006  return t;
5007}
5008
5009/* By default build pointers in ptr_mode.  */
5010
5011tree
5012build_pointer_type (tree to_type)
5013{
5014  return build_pointer_type_for_mode (to_type, ptr_mode, false);
5015}
5016
5017/* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE.  */
5018
5019tree
5020build_reference_type_for_mode (tree to_type, enum machine_mode mode,
5021			       bool can_alias_all)
5022{
5023  tree t;
5024
5025  /* In some cases, languages will have things that aren't a REFERENCE_TYPE
5026     (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
5027     In that case, return that type without regard to the rest of our
5028     operands.
5029
5030     ??? This is a kludge, but consistent with the way this function has
5031     always operated and there doesn't seem to be a good way to avoid this
5032     at the moment.  */
5033  if (TYPE_REFERENCE_TO (to_type) != 0
5034      && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
5035    return TYPE_REFERENCE_TO (to_type);
5036
5037  /* First, if we already have a type for pointers to TO_TYPE and it's
5038     the proper mode, use it.  */
5039  for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
5040    if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
5041      return t;
5042
5043  t = make_node (REFERENCE_TYPE);
5044
5045  TREE_TYPE (t) = to_type;
5046  TYPE_MODE (t) = mode;
5047  TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
5048  TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
5049  TYPE_REFERENCE_TO (to_type) = t;
5050
5051  layout_type (t);
5052
5053  return t;
5054}
5055
5056
5057/* Build the node for the type of references-to-TO_TYPE by default
5058   in ptr_mode.  */
5059
5060tree
5061build_reference_type (tree to_type)
5062{
5063  return build_reference_type_for_mode (to_type, ptr_mode, false);
5064}
5065
5066/* Build a type that is compatible with t but has no cv quals anywhere
5067   in its type, thus
5068
5069   const char *const *const *  ->  char ***.  */
5070
5071tree
5072build_type_no_quals (tree t)
5073{
5074  switch (TREE_CODE (t))
5075    {
5076    case POINTER_TYPE:
5077      return build_pointer_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
5078					  TYPE_MODE (t),
5079					  TYPE_REF_CAN_ALIAS_ALL (t));
5080    case REFERENCE_TYPE:
5081      return
5082	build_reference_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
5083				       TYPE_MODE (t),
5084				       TYPE_REF_CAN_ALIAS_ALL (t));
5085    default:
5086      return TYPE_MAIN_VARIANT (t);
5087    }
5088}
5089
5090/* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
5091   MAXVAL should be the maximum value in the domain
5092   (one less than the length of the array).
5093
5094   The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
5095   We don't enforce this limit, that is up to caller (e.g. language front end).
5096   The limit exists because the result is a signed type and we don't handle
5097   sizes that use more than one HOST_WIDE_INT.  */
5098
5099tree
5100build_index_type (tree maxval)
5101{
5102  tree itype = make_node (INTEGER_TYPE);
5103
5104  TREE_TYPE (itype) = sizetype;
5105  TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
5106  TYPE_MIN_VALUE (itype) = size_zero_node;
5107  TYPE_MAX_VALUE (itype) = fold_convert (sizetype, maxval);
5108  TYPE_MODE (itype) = TYPE_MODE (sizetype);
5109  TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
5110  TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (sizetype);
5111  TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
5112  TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (sizetype);
5113
5114  if (host_integerp (maxval, 1))
5115    return type_hash_canon (tree_low_cst (maxval, 1), itype);
5116  else
5117    return itype;
5118}
5119
5120/* Builds a signed or unsigned integer type of precision PRECISION.
5121   Used for C bitfields whose precision does not match that of
5122   built-in target types.  */
5123tree
5124build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
5125				int unsignedp)
5126{
5127  tree itype = make_node (INTEGER_TYPE);
5128
5129  TYPE_PRECISION (itype) = precision;
5130
5131  if (unsignedp)
5132    fixup_unsigned_type (itype);
5133  else
5134    fixup_signed_type (itype);
5135
5136  if (host_integerp (TYPE_MAX_VALUE (itype), 1))
5137    return type_hash_canon (tree_low_cst (TYPE_MAX_VALUE (itype), 1), itype);
5138
5139  return itype;
5140}
5141
5142/* Create a range of some discrete type TYPE (an INTEGER_TYPE,
5143   ENUMERAL_TYPE or BOOLEAN_TYPE), with low bound LOWVAL and
5144   high bound HIGHVAL.  If TYPE is NULL, sizetype is used.  */
5145
5146tree
5147build_range_type (tree type, tree lowval, tree highval)
5148{
5149  tree itype = make_node (INTEGER_TYPE);
5150
5151  TREE_TYPE (itype) = type;
5152  if (type == NULL_TREE)
5153    type = sizetype;
5154
5155  TYPE_MIN_VALUE (itype) = fold_convert (type, lowval);
5156  TYPE_MAX_VALUE (itype) = highval ? fold_convert (type, highval) : NULL;
5157
5158  TYPE_PRECISION (itype) = TYPE_PRECISION (type);
5159  TYPE_MODE (itype) = TYPE_MODE (type);
5160  TYPE_SIZE (itype) = TYPE_SIZE (type);
5161  TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
5162  TYPE_ALIGN (itype) = TYPE_ALIGN (type);
5163  TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
5164
5165  if (host_integerp (lowval, 0) && highval != 0 && host_integerp (highval, 0))
5166    return type_hash_canon (tree_low_cst (highval, 0)
5167			    - tree_low_cst (lowval, 0),
5168			    itype);
5169  else
5170    return itype;
5171}
5172
5173/* Just like build_index_type, but takes lowval and highval instead
5174   of just highval (maxval).  */
5175
5176tree
5177build_index_2_type (tree lowval, tree highval)
5178{
5179  return build_range_type (sizetype, lowval, highval);
5180}
5181
5182/* Construct, lay out and return the type of arrays of elements with ELT_TYPE
5183   and number of elements specified by the range of values of INDEX_TYPE.
5184   If such a type has already been constructed, reuse it.  */
5185
5186tree
5187build_array_type (tree elt_type, tree index_type)
5188{
5189  tree t;
5190  hashval_t hashcode = 0;
5191
5192  if (TREE_CODE (elt_type) == FUNCTION_TYPE)
5193    {
5194      error ("arrays of functions are not meaningful");
5195      elt_type = integer_type_node;
5196    }
5197
5198  t = make_node (ARRAY_TYPE);
5199  TREE_TYPE (t) = elt_type;
5200  TYPE_DOMAIN (t) = index_type;
5201
5202  if (index_type == 0)
5203    {
5204      tree save = t;
5205      hashcode = iterative_hash_object (TYPE_HASH (elt_type), hashcode);
5206      t = type_hash_canon (hashcode, t);
5207      if (save == t)
5208	layout_type (t);
5209      return t;
5210    }
5211
5212  hashcode = iterative_hash_object (TYPE_HASH (elt_type), hashcode);
5213  hashcode = iterative_hash_object (TYPE_HASH (index_type), hashcode);
5214  t = type_hash_canon (hashcode, t);
5215
5216  if (!COMPLETE_TYPE_P (t))
5217    layout_type (t);
5218  return t;
5219}
5220
5221/* Return the TYPE of the elements comprising
5222   the innermost dimension of ARRAY.  */
5223
5224tree
5225get_inner_array_type (tree array)
5226{
5227  tree type = TREE_TYPE (array);
5228
5229  while (TREE_CODE (type) == ARRAY_TYPE)
5230    type = TREE_TYPE (type);
5231
5232  return type;
5233}
5234
5235/* Construct, lay out and return
5236   the type of functions returning type VALUE_TYPE
5237   given arguments of types ARG_TYPES.
5238   ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
5239   are data type nodes for the arguments of the function.
5240   If such a type has already been constructed, reuse it.  */
5241
5242tree
5243build_function_type (tree value_type, tree arg_types)
5244{
5245  tree t;
5246  hashval_t hashcode = 0;
5247
5248  if (TREE_CODE (value_type) == FUNCTION_TYPE)
5249    {
5250      error ("function return type cannot be function");
5251      value_type = integer_type_node;
5252    }
5253
5254  /* Make a node of the sort we want.  */
5255  t = make_node (FUNCTION_TYPE);
5256  TREE_TYPE (t) = value_type;
5257  TYPE_ARG_TYPES (t) = arg_types;
5258
5259  /* If we already have such a type, use the old one.  */
5260  hashcode = iterative_hash_object (TYPE_HASH (value_type), hashcode);
5261  hashcode = type_hash_list (arg_types, hashcode);
5262  t = type_hash_canon (hashcode, t);
5263
5264  if (!COMPLETE_TYPE_P (t))
5265    layout_type (t);
5266  return t;
5267}
5268
5269/* Build a function type.  The RETURN_TYPE is the type returned by the
5270   function.  If additional arguments are provided, they are
5271   additional argument types.  The list of argument types must always
5272   be terminated by NULL_TREE.  */
5273
5274tree
5275build_function_type_list (tree return_type, ...)
5276{
5277  tree t, args, last;
5278  va_list p;
5279
5280  va_start (p, return_type);
5281
5282  t = va_arg (p, tree);
5283  for (args = NULL_TREE; t != NULL_TREE; t = va_arg (p, tree))
5284    args = tree_cons (NULL_TREE, t, args);
5285
5286  if (args == NULL_TREE)
5287    args = void_list_node;
5288  else
5289    {
5290      last = args;
5291      args = nreverse (args);
5292      TREE_CHAIN (last) = void_list_node;
5293    }
5294  args = build_function_type (return_type, args);
5295
5296  va_end (p);
5297  return args;
5298}
5299
5300/* Build a METHOD_TYPE for a member of BASETYPE.  The RETTYPE (a TYPE)
5301   and ARGTYPES (a TREE_LIST) are the return type and arguments types
5302   for the method.  An implicit additional parameter (of type
5303   pointer-to-BASETYPE) is added to the ARGTYPES.  */
5304
5305tree
5306build_method_type_directly (tree basetype,
5307			    tree rettype,
5308			    tree argtypes)
5309{
5310  tree t;
5311  tree ptype;
5312  int hashcode = 0;
5313
5314  /* Make a node of the sort we want.  */
5315  t = make_node (METHOD_TYPE);
5316
5317  TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
5318  TREE_TYPE (t) = rettype;
5319  ptype = build_pointer_type (basetype);
5320
5321  /* The actual arglist for this function includes a "hidden" argument
5322     which is "this".  Put it into the list of argument types.  */
5323  argtypes = tree_cons (NULL_TREE, ptype, argtypes);
5324  TYPE_ARG_TYPES (t) = argtypes;
5325
5326  /* If we already have such a type, use the old one.  */
5327  hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
5328  hashcode = iterative_hash_object (TYPE_HASH (rettype), hashcode);
5329  hashcode = type_hash_list (argtypes, hashcode);
5330  t = type_hash_canon (hashcode, t);
5331
5332  if (!COMPLETE_TYPE_P (t))
5333    layout_type (t);
5334
5335  return t;
5336}
5337
5338/* Construct, lay out and return the type of methods belonging to class
5339   BASETYPE and whose arguments and values are described by TYPE.
5340   If that type exists already, reuse it.
5341   TYPE must be a FUNCTION_TYPE node.  */
5342
5343tree
5344build_method_type (tree basetype, tree type)
5345{
5346  gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
5347
5348  return build_method_type_directly (basetype,
5349				     TREE_TYPE (type),
5350				     TYPE_ARG_TYPES (type));
5351}
5352
5353/* Construct, lay out and return the type of offsets to a value
5354   of type TYPE, within an object of type BASETYPE.
5355   If a suitable offset type exists already, reuse it.  */
5356
5357tree
5358build_offset_type (tree basetype, tree type)
5359{
5360  tree t;
5361  hashval_t hashcode = 0;
5362
5363  /* Make a node of the sort we want.  */
5364  t = make_node (OFFSET_TYPE);
5365
5366  TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
5367  TREE_TYPE (t) = type;
5368
5369  /* If we already have such a type, use the old one.  */
5370  hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
5371  hashcode = iterative_hash_object (TYPE_HASH (type), hashcode);
5372  t = type_hash_canon (hashcode, t);
5373
5374  if (!COMPLETE_TYPE_P (t))
5375    layout_type (t);
5376
5377  return t;
5378}
5379
5380/* Create a complex type whose components are COMPONENT_TYPE.  */
5381
5382tree
5383build_complex_type (tree component_type)
5384{
5385  tree t;
5386  hashval_t hashcode;
5387
5388  /* Make a node of the sort we want.  */
5389  t = make_node (COMPLEX_TYPE);
5390
5391  TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
5392
5393  /* If we already have such a type, use the old one.  */
5394  hashcode = iterative_hash_object (TYPE_HASH (component_type), 0);
5395  t = type_hash_canon (hashcode, t);
5396
5397  if (!COMPLETE_TYPE_P (t))
5398    layout_type (t);
5399
5400  /* If we are writing Dwarf2 output we need to create a name,
5401     since complex is a fundamental type.  */
5402  if ((write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
5403      && ! TYPE_NAME (t))
5404    {
5405      const char *name;
5406      if (component_type == char_type_node)
5407	name = "complex char";
5408      else if (component_type == signed_char_type_node)
5409	name = "complex signed char";
5410      else if (component_type == unsigned_char_type_node)
5411	name = "complex unsigned char";
5412      else if (component_type == short_integer_type_node)
5413	name = "complex short int";
5414      else if (component_type == short_unsigned_type_node)
5415	name = "complex short unsigned int";
5416      else if (component_type == integer_type_node)
5417	name = "complex int";
5418      else if (component_type == unsigned_type_node)
5419	name = "complex unsigned int";
5420      else if (component_type == long_integer_type_node)
5421	name = "complex long int";
5422      else if (component_type == long_unsigned_type_node)
5423	name = "complex long unsigned int";
5424      else if (component_type == long_long_integer_type_node)
5425	name = "complex long long int";
5426      else if (component_type == long_long_unsigned_type_node)
5427	name = "complex long long unsigned int";
5428      else
5429	name = 0;
5430
5431      if (name != 0)
5432	TYPE_NAME (t) = get_identifier (name);
5433    }
5434
5435  return build_qualified_type (t, TYPE_QUALS (component_type));
5436}
5437
5438/* Return OP, stripped of any conversions to wider types as much as is safe.
5439   Converting the value back to OP's type makes a value equivalent to OP.
5440
5441   If FOR_TYPE is nonzero, we return a value which, if converted to
5442   type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
5443
5444   If FOR_TYPE is nonzero, unaligned bit-field references may be changed to the
5445   narrowest type that can hold the value, even if they don't exactly fit.
5446   Otherwise, bit-field references are changed to a narrower type
5447   only if they can be fetched directly from memory in that type.
5448
5449   OP must have integer, real or enumeral type.  Pointers are not allowed!
5450
5451   There are some cases where the obvious value we could return
5452   would regenerate to OP if converted to OP's type,
5453   but would not extend like OP to wider types.
5454   If FOR_TYPE indicates such extension is contemplated, we eschew such values.
5455   For example, if OP is (unsigned short)(signed char)-1,
5456   we avoid returning (signed char)-1 if FOR_TYPE is int,
5457   even though extending that to an unsigned short would regenerate OP,
5458   since the result of extending (signed char)-1 to (int)
5459   is different from (int) OP.  */
5460
5461tree
5462get_unwidened (tree op, tree for_type)
5463{
5464  /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension.  */
5465  tree type = TREE_TYPE (op);
5466  unsigned final_prec
5467    = TYPE_PRECISION (for_type != 0 ? for_type : type);
5468  int uns
5469    = (for_type != 0 && for_type != type
5470       && final_prec > TYPE_PRECISION (type)
5471       && TYPE_UNSIGNED (type));
5472  tree win = op;
5473
5474  while (TREE_CODE (op) == NOP_EXPR
5475	 || TREE_CODE (op) == CONVERT_EXPR)
5476    {
5477      int bitschange;
5478
5479      /* TYPE_PRECISION on vector types has different meaning
5480	 (TYPE_VECTOR_SUBPARTS) and casts from vectors are view conversions,
5481	 so avoid them here.  */
5482      if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == VECTOR_TYPE)
5483	break;
5484
5485      bitschange = TYPE_PRECISION (TREE_TYPE (op))
5486		   - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
5487
5488      /* Truncations are many-one so cannot be removed.
5489	 Unless we are later going to truncate down even farther.  */
5490      if (bitschange < 0
5491	  && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
5492	break;
5493
5494      /* See what's inside this conversion.  If we decide to strip it,
5495	 we will set WIN.  */
5496      op = TREE_OPERAND (op, 0);
5497
5498      /* If we have not stripped any zero-extensions (uns is 0),
5499	 we can strip any kind of extension.
5500	 If we have previously stripped a zero-extension,
5501	 only zero-extensions can safely be stripped.
5502	 Any extension can be stripped if the bits it would produce
5503	 are all going to be discarded later by truncating to FOR_TYPE.  */
5504
5505      if (bitschange > 0)
5506	{
5507	  if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
5508	    win = op;
5509	  /* TYPE_UNSIGNED says whether this is a zero-extension.
5510	     Let's avoid computing it if it does not affect WIN
5511	     and if UNS will not be needed again.  */
5512	  if ((uns
5513	       || TREE_CODE (op) == NOP_EXPR
5514	       || TREE_CODE (op) == CONVERT_EXPR)
5515	      && TYPE_UNSIGNED (TREE_TYPE (op)))
5516	    {
5517	      uns = 1;
5518	      win = op;
5519	    }
5520	}
5521    }
5522
5523  if (TREE_CODE (op) == COMPONENT_REF
5524      /* Since type_for_size always gives an integer type.  */
5525      && TREE_CODE (type) != REAL_TYPE
5526      /* Don't crash if field not laid out yet.  */
5527      && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
5528      && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
5529    {
5530      unsigned int innerprec
5531	= tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
5532      int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
5533		       || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
5534      type = lang_hooks.types.type_for_size (innerprec, unsignedp);
5535
5536      /* We can get this structure field in the narrowest type it fits in.
5537	 If FOR_TYPE is 0, do this only for a field that matches the
5538	 narrower type exactly and is aligned for it
5539	 The resulting extension to its nominal type (a fullword type)
5540	 must fit the same conditions as for other extensions.  */
5541
5542      if (type != 0
5543	  && INT_CST_LT_UNSIGNED (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (op)))
5544	  && (for_type || ! DECL_BIT_FIELD (TREE_OPERAND (op, 1)))
5545	  && (! uns || final_prec <= innerprec || unsignedp))
5546	{
5547	  win = build3 (COMPONENT_REF, type, TREE_OPERAND (op, 0),
5548			TREE_OPERAND (op, 1), NULL_TREE);
5549	  TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
5550	  TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
5551	}
5552    }
5553
5554  return win;
5555}
5556
5557/* Return OP or a simpler expression for a narrower value
5558   which can be sign-extended or zero-extended to give back OP.
5559   Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
5560   or 0 if the value should be sign-extended.  */
5561
5562tree
5563get_narrower (tree op, int *unsignedp_ptr)
5564{
5565  int uns = 0;
5566  int first = 1;
5567  tree win = op;
5568  bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
5569
5570  while (TREE_CODE (op) == NOP_EXPR)
5571    {
5572      int bitschange
5573	= (TYPE_PRECISION (TREE_TYPE (op))
5574	   - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
5575
5576      /* Truncations are many-one so cannot be removed.  */
5577      if (bitschange < 0)
5578	break;
5579
5580      /* See what's inside this conversion.  If we decide to strip it,
5581	 we will set WIN.  */
5582
5583      if (bitschange > 0)
5584	{
5585	  op = TREE_OPERAND (op, 0);
5586	  /* An extension: the outermost one can be stripped,
5587	     but remember whether it is zero or sign extension.  */
5588	  if (first)
5589	    uns = TYPE_UNSIGNED (TREE_TYPE (op));
5590	  /* Otherwise, if a sign extension has been stripped,
5591	     only sign extensions can now be stripped;
5592	     if a zero extension has been stripped, only zero-extensions.  */
5593	  else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
5594	    break;
5595	  first = 0;
5596	}
5597      else /* bitschange == 0 */
5598	{
5599	  /* A change in nominal type can always be stripped, but we must
5600	     preserve the unsignedness.  */
5601	  if (first)
5602	    uns = TYPE_UNSIGNED (TREE_TYPE (op));
5603	  first = 0;
5604	  op = TREE_OPERAND (op, 0);
5605	  /* Keep trying to narrow, but don't assign op to win if it
5606	     would turn an integral type into something else.  */
5607	  if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
5608	    continue;
5609	}
5610
5611      win = op;
5612    }
5613
5614  if (TREE_CODE (op) == COMPONENT_REF
5615      /* Since type_for_size always gives an integer type.  */
5616      && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
5617      /* Ensure field is laid out already.  */
5618      && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
5619      && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
5620    {
5621      unsigned HOST_WIDE_INT innerprec
5622	= tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
5623      int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
5624		       || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
5625      tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
5626
5627      /* We can get this structure field in a narrower type that fits it,
5628	 but the resulting extension to its nominal type (a fullword type)
5629	 must satisfy the same conditions as for other extensions.
5630
5631	 Do this only for fields that are aligned (not bit-fields),
5632	 because when bit-field insns will be used there is no
5633	 advantage in doing this.  */
5634
5635      if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
5636	  && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
5637	  && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
5638	  && type != 0)
5639	{
5640	  if (first)
5641	    uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
5642	  win = fold_convert (type, op);
5643	}
5644    }
5645
5646  *unsignedp_ptr = uns;
5647  return win;
5648}
5649
5650/* Nonzero if integer constant C has a value that is permissible
5651   for type TYPE (an INTEGER_TYPE).  */
5652
5653int
5654int_fits_type_p (tree c, tree type)
5655{
5656  tree type_low_bound = TYPE_MIN_VALUE (type);
5657  tree type_high_bound = TYPE_MAX_VALUE (type);
5658  bool ok_for_low_bound, ok_for_high_bound;
5659  tree tmp;
5660
5661  /* If at least one bound of the type is a constant integer, we can check
5662     ourselves and maybe make a decision. If no such decision is possible, but
5663     this type is a subtype, try checking against that.  Otherwise, use
5664     force_fit_type, which checks against the precision.
5665
5666     Compute the status for each possibly constant bound, and return if we see
5667     one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
5668     for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
5669     for "constant known to fit".  */
5670
5671  /* Check if C >= type_low_bound.  */
5672  if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
5673    {
5674      if (tree_int_cst_lt (c, type_low_bound))
5675	return 0;
5676      ok_for_low_bound = true;
5677    }
5678  else
5679    ok_for_low_bound = false;
5680
5681  /* Check if c <= type_high_bound.  */
5682  if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
5683    {
5684      if (tree_int_cst_lt (type_high_bound, c))
5685	return 0;
5686      ok_for_high_bound = true;
5687    }
5688  else
5689    ok_for_high_bound = false;
5690
5691  /* If the constant fits both bounds, the result is known.  */
5692  if (ok_for_low_bound && ok_for_high_bound)
5693    return 1;
5694
5695  /* Perform some generic filtering which may allow making a decision
5696     even if the bounds are not constant.  First, negative integers
5697     never fit in unsigned types, */
5698  if (TYPE_UNSIGNED (type) && tree_int_cst_sgn (c) < 0)
5699    return 0;
5700
5701  /* Second, narrower types always fit in wider ones.  */
5702  if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c)))
5703    return 1;
5704
5705  /* Third, unsigned integers with top bit set never fit signed types.  */
5706  if (! TYPE_UNSIGNED (type)
5707      && TYPE_UNSIGNED (TREE_TYPE (c))
5708      && tree_int_cst_msb (c))
5709    return 0;
5710
5711  /* If we haven't been able to decide at this point, there nothing more we
5712     can check ourselves here.  Look at the base type if we have one and it
5713     has the same precision.  */
5714  if (TREE_CODE (type) == INTEGER_TYPE
5715      && TREE_TYPE (type) != 0
5716      && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (type)))
5717    return int_fits_type_p (c, TREE_TYPE (type));
5718
5719  /* Or to force_fit_type, if nothing else.  */
5720  tmp = copy_node (c);
5721  TREE_TYPE (tmp) = type;
5722  tmp = force_fit_type (tmp, -1, false, false);
5723  return TREE_INT_CST_HIGH (tmp) == TREE_INT_CST_HIGH (c)
5724         && TREE_INT_CST_LOW (tmp) == TREE_INT_CST_LOW (c);
5725}
5726
5727/* Subprogram of following function.  Called by walk_tree.
5728
5729   Return *TP if it is an automatic variable or parameter of the
5730   function passed in as DATA.  */
5731
5732static tree
5733find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
5734{
5735  tree fn = (tree) data;
5736
5737  if (TYPE_P (*tp))
5738    *walk_subtrees = 0;
5739
5740  else if (DECL_P (*tp)
5741	   && lang_hooks.tree_inlining.auto_var_in_fn_p (*tp, fn))
5742    return *tp;
5743
5744  return NULL_TREE;
5745}
5746
5747/* Returns true if T is, contains, or refers to a type with variable
5748   size.  For METHOD_TYPEs and FUNCTION_TYPEs we exclude the
5749   arguments, but not the return type.  If FN is nonzero, only return
5750   true if a modifier of the type or position of FN is a variable or
5751   parameter inside FN.
5752
5753   This concept is more general than that of C99 'variably modified types':
5754   in C99, a struct type is never variably modified because a VLA may not
5755   appear as a structure member.  However, in GNU C code like:
5756
5757     struct S { int i[f()]; };
5758
5759   is valid, and other languages may define similar constructs.  */
5760
5761bool
5762variably_modified_type_p (tree type, tree fn)
5763{
5764  tree t;
5765
5766/* Test if T is either variable (if FN is zero) or an expression containing
5767   a variable in FN.  */
5768#define RETURN_TRUE_IF_VAR(T)						\
5769  do { tree _t = (T);							\
5770    if (_t && _t != error_mark_node && TREE_CODE (_t) != INTEGER_CST	\
5771        && (!fn || walk_tree (&_t, find_var_from_fn, fn, NULL)))	\
5772      return true;  } while (0)
5773
5774  if (type == error_mark_node)
5775    return false;
5776
5777  /* If TYPE itself has variable size, it is variably modified.  */
5778  RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
5779  RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (type));
5780
5781  switch (TREE_CODE (type))
5782    {
5783    case POINTER_TYPE:
5784    case REFERENCE_TYPE:
5785    case VECTOR_TYPE:
5786      if (variably_modified_type_p (TREE_TYPE (type), fn))
5787	return true;
5788      break;
5789
5790    case FUNCTION_TYPE:
5791    case METHOD_TYPE:
5792      /* If TYPE is a function type, it is variably modified if the
5793	 return type is variably modified.  */
5794      if (variably_modified_type_p (TREE_TYPE (type), fn))
5795	  return true;
5796      break;
5797
5798    case INTEGER_TYPE:
5799    case REAL_TYPE:
5800    case ENUMERAL_TYPE:
5801    case BOOLEAN_TYPE:
5802      /* Scalar types are variably modified if their end points
5803	 aren't constant.  */
5804      RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
5805      RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
5806      break;
5807
5808    case RECORD_TYPE:
5809    case UNION_TYPE:
5810    case QUAL_UNION_TYPE:
5811      /* We can't see if any of the fields are variably-modified by the
5812	 definition we normally use, since that would produce infinite
5813	 recursion via pointers.  */
5814      /* This is variably modified if some field's type is.  */
5815      for (t = TYPE_FIELDS (type); t; t = TREE_CHAIN (t))
5816	if (TREE_CODE (t) == FIELD_DECL)
5817	  {
5818	    RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
5819	    RETURN_TRUE_IF_VAR (DECL_SIZE (t));
5820	    RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
5821
5822	    if (TREE_CODE (type) == QUAL_UNION_TYPE)
5823	      RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
5824	  }
5825	break;
5826
5827    case ARRAY_TYPE:
5828      /* Do not call ourselves to avoid infinite recursion.  This is
5829	 variably modified if the element type is.  */
5830      RETURN_TRUE_IF_VAR (TYPE_SIZE (TREE_TYPE (type)));
5831      RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (TREE_TYPE (type)));
5832      break;
5833
5834    default:
5835      break;
5836    }
5837
5838  /* The current language may have other cases to check, but in general,
5839     all other types are not variably modified.  */
5840  return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
5841
5842#undef RETURN_TRUE_IF_VAR
5843}
5844
5845/* Given a DECL or TYPE, return the scope in which it was declared, or
5846   NULL_TREE if there is no containing scope.  */
5847
5848tree
5849get_containing_scope (tree t)
5850{
5851  return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
5852}
5853
5854/* Return the innermost context enclosing DECL that is
5855   a FUNCTION_DECL, or zero if none.  */
5856
5857tree
5858decl_function_context (tree decl)
5859{
5860  tree context;
5861
5862  if (TREE_CODE (decl) == ERROR_MARK)
5863    return 0;
5864
5865  /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
5866     where we look up the function at runtime.  Such functions always take
5867     a first argument of type 'pointer to real context'.
5868
5869     C++ should really be fixed to use DECL_CONTEXT for the real context,
5870     and use something else for the "virtual context".  */
5871  else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
5872    context
5873      = TYPE_MAIN_VARIANT
5874	(TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
5875  else
5876    context = DECL_CONTEXT (decl);
5877
5878  while (context && TREE_CODE (context) != FUNCTION_DECL)
5879    {
5880      if (TREE_CODE (context) == BLOCK)
5881	context = BLOCK_SUPERCONTEXT (context);
5882      else
5883	context = get_containing_scope (context);
5884    }
5885
5886  return context;
5887}
5888
5889/* Return the innermost context enclosing DECL that is
5890   a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
5891   TYPE_DECLs and FUNCTION_DECLs are transparent to this function.  */
5892
5893tree
5894decl_type_context (tree decl)
5895{
5896  tree context = DECL_CONTEXT (decl);
5897
5898  while (context)
5899    switch (TREE_CODE (context))
5900      {
5901      case NAMESPACE_DECL:
5902      case TRANSLATION_UNIT_DECL:
5903	return NULL_TREE;
5904
5905      case RECORD_TYPE:
5906      case UNION_TYPE:
5907      case QUAL_UNION_TYPE:
5908	return context;
5909
5910      case TYPE_DECL:
5911      case FUNCTION_DECL:
5912	context = DECL_CONTEXT (context);
5913	break;
5914
5915      case BLOCK:
5916	context = BLOCK_SUPERCONTEXT (context);
5917	break;
5918
5919      default:
5920	gcc_unreachable ();
5921      }
5922
5923  return NULL_TREE;
5924}
5925
5926/* CALL is a CALL_EXPR.  Return the declaration for the function
5927   called, or NULL_TREE if the called function cannot be
5928   determined.  */
5929
5930tree
5931get_callee_fndecl (tree call)
5932{
5933  tree addr;
5934
5935  if (call == error_mark_node)
5936    return call;
5937
5938  /* It's invalid to call this function with anything but a
5939     CALL_EXPR.  */
5940  gcc_assert (TREE_CODE (call) == CALL_EXPR);
5941
5942  /* The first operand to the CALL is the address of the function
5943     called.  */
5944  addr = TREE_OPERAND (call, 0);
5945
5946  STRIP_NOPS (addr);
5947
5948  /* If this is a readonly function pointer, extract its initial value.  */
5949  if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
5950      && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
5951      && DECL_INITIAL (addr))
5952    addr = DECL_INITIAL (addr);
5953
5954  /* If the address is just `&f' for some function `f', then we know
5955     that `f' is being called.  */
5956  if (TREE_CODE (addr) == ADDR_EXPR
5957      && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
5958    return TREE_OPERAND (addr, 0);
5959
5960  /* We couldn't figure out what was being called.  Maybe the front
5961     end has some idea.  */
5962  return lang_hooks.lang_get_callee_fndecl (call);
5963}
5964
5965/* Print debugging information about tree nodes generated during the compile,
5966   and any language-specific information.  */
5967
5968void
5969dump_tree_statistics (void)
5970{
5971#ifdef GATHER_STATISTICS
5972  int i;
5973  int total_nodes, total_bytes;
5974#endif
5975
5976  fprintf (stderr, "\n??? tree nodes created\n\n");
5977#ifdef GATHER_STATISTICS
5978  fprintf (stderr, "Kind                   Nodes      Bytes\n");
5979  fprintf (stderr, "---------------------------------------\n");
5980  total_nodes = total_bytes = 0;
5981  for (i = 0; i < (int) all_kinds; i++)
5982    {
5983      fprintf (stderr, "%-20s %7d %10d\n", tree_node_kind_names[i],
5984	       tree_node_counts[i], tree_node_sizes[i]);
5985      total_nodes += tree_node_counts[i];
5986      total_bytes += tree_node_sizes[i];
5987    }
5988  fprintf (stderr, "---------------------------------------\n");
5989  fprintf (stderr, "%-20s %7d %10d\n", "Total", total_nodes, total_bytes);
5990  fprintf (stderr, "---------------------------------------\n");
5991  ssanames_print_statistics ();
5992  phinodes_print_statistics ();
5993#else
5994  fprintf (stderr, "(No per-node statistics)\n");
5995#endif
5996  print_type_hash_statistics ();
5997  print_debug_expr_statistics ();
5998  print_value_expr_statistics ();
5999  print_restrict_base_statistics ();
6000  lang_hooks.print_statistics ();
6001}
6002
6003#define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
6004
6005/* Generate a crc32 of a string.  */
6006
6007unsigned
6008crc32_string (unsigned chksum, const char *string)
6009{
6010  do
6011    {
6012      unsigned value = *string << 24;
6013      unsigned ix;
6014
6015      for (ix = 8; ix--; value <<= 1)
6016  	{
6017  	  unsigned feedback;
6018
6019  	  feedback = (value ^ chksum) & 0x80000000 ? 0x04c11db7 : 0;
6020 	  chksum <<= 1;
6021 	  chksum ^= feedback;
6022  	}
6023    }
6024  while (*string++);
6025  return chksum;
6026}
6027
6028/* P is a string that will be used in a symbol.  Mask out any characters
6029   that are not valid in that context.  */
6030
6031void
6032clean_symbol_name (char *p)
6033{
6034  for (; *p; p++)
6035    if (! (ISALNUM (*p)
6036#ifndef NO_DOLLAR_IN_LABEL	/* this for `$'; unlikely, but... -- kr */
6037	    || *p == '$'
6038#endif
6039#ifndef NO_DOT_IN_LABEL		/* this for `.'; unlikely, but...  */
6040	    || *p == '.'
6041#endif
6042	   ))
6043      *p = '_';
6044}
6045
6046/* Generate a name for a function unique to this translation unit.
6047   TYPE is some string to identify the purpose of this function to the
6048   linker or collect2.  */
6049
6050tree
6051get_file_function_name_long (const char *type)
6052{
6053  char *buf;
6054  const char *p;
6055  char *q;
6056
6057  if (first_global_object_name)
6058    {
6059      p = first_global_object_name;
6060
6061      /* For type 'F', the generated name must be unique not only to this
6062	 translation unit but also to any given link.  Since global names
6063	 can be overloaded, we concatenate the first global object name
6064	 with a string derived from the file name of this object.  */
6065      if (!strcmp (type, "F"))
6066	{
6067	  const char *file = main_input_filename;
6068
6069	  if (! file)
6070	    file = input_filename;
6071
6072	  q = alloca (strlen (p) + 10);
6073	  sprintf (q, "%s_%08X", p, crc32_string (0, file));
6074
6075	  p = q;
6076	}
6077    }
6078  else
6079    {
6080      /* We don't have anything that we know to be unique to this translation
6081	 unit, so use what we do have and throw in some randomness.  */
6082      unsigned len;
6083      const char *name = weak_global_object_name;
6084      const char *file = main_input_filename;
6085
6086      if (! name)
6087	name = "";
6088      if (! file)
6089	file = input_filename;
6090
6091      len = strlen (file);
6092      q = alloca (9 * 2 + len + 1);
6093      memcpy (q, file, len + 1);
6094      clean_symbol_name (q);
6095
6096      sprintf (q + len, "_%08X_%08X", crc32_string (0, name),
6097	       crc32_string (0, flag_random_seed));
6098
6099      p = q;
6100    }
6101
6102  buf = alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p) + strlen (type));
6103
6104  /* Set up the name of the file-level functions we may need.
6105     Use a global object (which is already required to be unique over
6106     the program) rather than the file name (which imposes extra
6107     constraints).  */
6108  sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
6109
6110  return get_identifier (buf);
6111}
6112
6113/* If KIND=='I', return a suitable global initializer (constructor) name.
6114   If KIND=='D', return a suitable global clean-up (destructor) name.  */
6115
6116tree
6117get_file_function_name (int kind)
6118{
6119  char p[2];
6120
6121  p[0] = kind;
6122  p[1] = 0;
6123
6124  return get_file_function_name_long (p);
6125}
6126
6127#if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
6128
6129/* Complain that the tree code of NODE does not match the expected 0
6130   terminated list of trailing codes. The trailing code list can be
6131   empty, for a more vague error message.  FILE, LINE, and FUNCTION
6132   are of the caller.  */
6133
6134void
6135tree_check_failed (const tree node, const char *file,
6136		   int line, const char *function, ...)
6137{
6138  va_list args;
6139  char *buffer;
6140  unsigned length = 0;
6141  int code;
6142
6143  va_start (args, function);
6144  while ((code = va_arg (args, int)))
6145    length += 4 + strlen (tree_code_name[code]);
6146  va_end (args);
6147  if (length)
6148    {
6149      va_start (args, function);
6150      length += strlen ("expected ");
6151      buffer = alloca (length);
6152      length = 0;
6153      while ((code = va_arg (args, int)))
6154	{
6155	  const char *prefix = length ? " or " : "expected ";
6156
6157	  strcpy (buffer + length, prefix);
6158	  length += strlen (prefix);
6159	  strcpy (buffer + length, tree_code_name[code]);
6160	  length += strlen (tree_code_name[code]);
6161	}
6162      va_end (args);
6163    }
6164  else
6165    buffer = (char *)"unexpected node";
6166
6167  internal_error ("tree check: %s, have %s in %s, at %s:%d",
6168		  buffer, tree_code_name[TREE_CODE (node)],
6169		  function, trim_filename (file), line);
6170}
6171
6172/* Complain that the tree code of NODE does match the expected 0
6173   terminated list of trailing codes. FILE, LINE, and FUNCTION are of
6174   the caller.  */
6175
6176void
6177tree_not_check_failed (const tree node, const char *file,
6178		       int line, const char *function, ...)
6179{
6180  va_list args;
6181  char *buffer;
6182  unsigned length = 0;
6183  int code;
6184
6185  va_start (args, function);
6186  while ((code = va_arg (args, int)))
6187    length += 4 + strlen (tree_code_name[code]);
6188  va_end (args);
6189  va_start (args, function);
6190  buffer = alloca (length);
6191  length = 0;
6192  while ((code = va_arg (args, int)))
6193    {
6194      if (length)
6195	{
6196	  strcpy (buffer + length, " or ");
6197	  length += 4;
6198	}
6199      strcpy (buffer + length, tree_code_name[code]);
6200      length += strlen (tree_code_name[code]);
6201    }
6202  va_end (args);
6203
6204  internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
6205		  buffer, tree_code_name[TREE_CODE (node)],
6206		  function, trim_filename (file), line);
6207}
6208
6209/* Similar to tree_check_failed, except that we check for a class of tree
6210   code, given in CL.  */
6211
6212void
6213tree_class_check_failed (const tree node, const enum tree_code_class cl,
6214			 const char *file, int line, const char *function)
6215{
6216  internal_error
6217    ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
6218     TREE_CODE_CLASS_STRING (cl),
6219     TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
6220     tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
6221}
6222
6223/* Similar to tree_check_failed, except that instead of specifying a
6224   dozen codes, use the knowledge that they're all sequential.  */
6225
6226void
6227tree_range_check_failed (const tree node, const char *file, int line,
6228			 const char *function, enum tree_code c1,
6229			 enum tree_code c2)
6230{
6231  char *buffer;
6232  unsigned length = 0;
6233  enum tree_code c;
6234
6235  for (c = c1; c <= c2; ++c)
6236    length += 4 + strlen (tree_code_name[c]);
6237
6238  length += strlen ("expected ");
6239  buffer = alloca (length);
6240  length = 0;
6241
6242  for (c = c1; c <= c2; ++c)
6243    {
6244      const char *prefix = length ? " or " : "expected ";
6245
6246      strcpy (buffer + length, prefix);
6247      length += strlen (prefix);
6248      strcpy (buffer + length, tree_code_name[c]);
6249      length += strlen (tree_code_name[c]);
6250    }
6251
6252  internal_error ("tree check: %s, have %s in %s, at %s:%d",
6253		  buffer, tree_code_name[TREE_CODE (node)],
6254		  function, trim_filename (file), line);
6255}
6256
6257
6258/* Similar to tree_check_failed, except that we check that a tree does
6259   not have the specified code, given in CL.  */
6260
6261void
6262tree_not_class_check_failed (const tree node, const enum tree_code_class cl,
6263			     const char *file, int line, const char *function)
6264{
6265  internal_error
6266    ("tree check: did not expect class %qs, have %qs (%s) in %s, at %s:%d",
6267     TREE_CODE_CLASS_STRING (cl),
6268     TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
6269     tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
6270}
6271
6272
6273/* Similar to tree_check_failed but applied to OMP_CLAUSE codes.  */
6274
6275void
6276omp_clause_check_failed (const tree node, const char *file, int line,
6277                         const char *function, enum omp_clause_code code)
6278{
6279  internal_error ("tree check: expected omp_clause %s, have %s in %s, at %s:%d",
6280		  omp_clause_code_name[code], tree_code_name[TREE_CODE (node)],
6281		  function, trim_filename (file), line);
6282}
6283
6284
6285/* Similar to tree_range_check_failed but applied to OMP_CLAUSE codes.  */
6286
6287void
6288omp_clause_range_check_failed (const tree node, const char *file, int line,
6289			       const char *function, enum omp_clause_code c1,
6290			       enum omp_clause_code c2)
6291{
6292  char *buffer;
6293  unsigned length = 0;
6294  enum omp_clause_code c;
6295
6296  for (c = c1; c <= c2; ++c)
6297    length += 4 + strlen (omp_clause_code_name[c]);
6298
6299  length += strlen ("expected ");
6300  buffer = alloca (length);
6301  length = 0;
6302
6303  for (c = c1; c <= c2; ++c)
6304    {
6305      const char *prefix = length ? " or " : "expected ";
6306
6307      strcpy (buffer + length, prefix);
6308      length += strlen (prefix);
6309      strcpy (buffer + length, omp_clause_code_name[c]);
6310      length += strlen (omp_clause_code_name[c]);
6311    }
6312
6313  internal_error ("tree check: %s, have %s in %s, at %s:%d",
6314		  buffer, omp_clause_code_name[TREE_CODE (node)],
6315		  function, trim_filename (file), line);
6316}
6317
6318
6319#undef DEFTREESTRUCT
6320#define DEFTREESTRUCT(VAL, NAME) NAME,
6321
6322static const char *ts_enum_names[] = {
6323#include "treestruct.def"
6324};
6325#undef DEFTREESTRUCT
6326
6327#define TS_ENUM_NAME(EN) (ts_enum_names[(EN)])
6328
6329/* Similar to tree_class_check_failed, except that we check for
6330   whether CODE contains the tree structure identified by EN.  */
6331
6332void
6333tree_contains_struct_check_failed (const tree node,
6334				   const enum tree_node_structure_enum en,
6335				   const char *file, int line,
6336				   const char *function)
6337{
6338  internal_error
6339    ("tree check: expected tree that contains %qs structure, have %qs  in %s, at %s:%d",
6340     TS_ENUM_NAME(en),
6341     tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
6342}
6343
6344
6345/* Similar to above, except that the check is for the bounds of a TREE_VEC's
6346   (dynamically sized) vector.  */
6347
6348void
6349tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
6350			   const char *function)
6351{
6352  internal_error
6353    ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
6354     idx + 1, len, function, trim_filename (file), line);
6355}
6356
6357/* Similar to above, except that the check is for the bounds of a PHI_NODE's
6358   (dynamically sized) vector.  */
6359
6360void
6361phi_node_elt_check_failed (int idx, int len, const char *file, int line,
6362			    const char *function)
6363{
6364  internal_error
6365    ("tree check: accessed elt %d of phi_node with %d elts in %s, at %s:%d",
6366     idx + 1, len, function, trim_filename (file), line);
6367}
6368
6369/* Similar to above, except that the check is for the bounds of the operand
6370   vector of an expression node.  */
6371
6372void
6373tree_operand_check_failed (int idx, enum tree_code code, const char *file,
6374			   int line, const char *function)
6375{
6376  internal_error
6377    ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
6378     idx + 1, tree_code_name[code], TREE_CODE_LENGTH (code),
6379     function, trim_filename (file), line);
6380}
6381
6382/* Similar to above, except that the check is for the number of
6383   operands of an OMP_CLAUSE node.  */
6384
6385void
6386omp_clause_operand_check_failed (int idx, tree t, const char *file,
6387			         int line, const char *function)
6388{
6389  internal_error
6390    ("tree check: accessed operand %d of omp_clause %s with %d operands "
6391     "in %s, at %s:%d", idx + 1, omp_clause_code_name[OMP_CLAUSE_CODE (t)],
6392     omp_clause_num_ops [OMP_CLAUSE_CODE (t)], function,
6393     trim_filename (file), line);
6394}
6395#endif /* ENABLE_TREE_CHECKING */
6396
6397/* Create a new vector type node holding SUBPARTS units of type INNERTYPE,
6398   and mapped to the machine mode MODE.  Initialize its fields and build
6399   the information necessary for debugging output.  */
6400
6401static tree
6402make_vector_type (tree innertype, int nunits, enum machine_mode mode)
6403{
6404  tree t;
6405  hashval_t hashcode = 0;
6406
6407  /* Build a main variant, based on the main variant of the inner type, then
6408     use it to build the variant we return.  */
6409  if ((TYPE_ATTRIBUTES (innertype) || TYPE_QUALS (innertype))
6410      && TYPE_MAIN_VARIANT (innertype) != innertype)
6411    return build_type_attribute_qual_variant (
6412	    make_vector_type (TYPE_MAIN_VARIANT (innertype), nunits, mode),
6413	    TYPE_ATTRIBUTES (innertype),
6414	    TYPE_QUALS (innertype));
6415
6416  t = make_node (VECTOR_TYPE);
6417  TREE_TYPE (t) = TYPE_MAIN_VARIANT (innertype);
6418  SET_TYPE_VECTOR_SUBPARTS (t, nunits);
6419  TYPE_MODE (t) = mode;
6420  TYPE_READONLY (t) = TYPE_READONLY (innertype);
6421  TYPE_VOLATILE (t) = TYPE_VOLATILE (innertype);
6422
6423  layout_type (t);
6424
6425  {
6426    tree index = build_int_cst (NULL_TREE, nunits - 1);
6427    tree array = build_array_type (innertype, build_index_type (index));
6428    tree rt = make_node (RECORD_TYPE);
6429
6430    TYPE_FIELDS (rt) = build_decl (FIELD_DECL, get_identifier ("f"), array);
6431    DECL_CONTEXT (TYPE_FIELDS (rt)) = rt;
6432    layout_type (rt);
6433    TYPE_DEBUG_REPRESENTATION_TYPE (t) = rt;
6434    /* In dwarfout.c, type lookup uses TYPE_UID numbers.  We want to output
6435       the representation type, and we want to find that die when looking up
6436       the vector type.  This is most easily achieved by making the TYPE_UID
6437       numbers equal.  */
6438    TYPE_UID (rt) = TYPE_UID (t);
6439  }
6440
6441  hashcode = iterative_hash_host_wide_int (VECTOR_TYPE, hashcode);
6442  hashcode = iterative_hash_host_wide_int (mode, hashcode);
6443  hashcode = iterative_hash_object (TYPE_HASH (innertype), hashcode);
6444  return type_hash_canon (hashcode, t);
6445}
6446
6447static tree
6448make_or_reuse_type (unsigned size, int unsignedp)
6449{
6450  if (size == INT_TYPE_SIZE)
6451    return unsignedp ? unsigned_type_node : integer_type_node;
6452  if (size == CHAR_TYPE_SIZE)
6453    return unsignedp ? unsigned_char_type_node : signed_char_type_node;
6454  if (size == SHORT_TYPE_SIZE)
6455    return unsignedp ? short_unsigned_type_node : short_integer_type_node;
6456  if (size == LONG_TYPE_SIZE)
6457    return unsignedp ? long_unsigned_type_node : long_integer_type_node;
6458  if (size == LONG_LONG_TYPE_SIZE)
6459    return (unsignedp ? long_long_unsigned_type_node
6460            : long_long_integer_type_node);
6461
6462  if (unsignedp)
6463    return make_unsigned_type (size);
6464  else
6465    return make_signed_type (size);
6466}
6467
6468/* Create nodes for all integer types (and error_mark_node) using the sizes
6469   of C datatypes.  The caller should call set_sizetype soon after calling
6470   this function to select one of the types as sizetype.  */
6471
6472void
6473build_common_tree_nodes (bool signed_char, bool signed_sizetype)
6474{
6475  error_mark_node = make_node (ERROR_MARK);
6476  TREE_TYPE (error_mark_node) = error_mark_node;
6477
6478  initialize_sizetypes (signed_sizetype);
6479
6480  /* Define both `signed char' and `unsigned char'.  */
6481  signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
6482  TYPE_STRING_FLAG (signed_char_type_node) = 1;
6483  unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
6484  TYPE_STRING_FLAG (unsigned_char_type_node) = 1;
6485
6486  /* Define `char', which is like either `signed char' or `unsigned char'
6487     but not the same as either.  */
6488  char_type_node
6489    = (signed_char
6490       ? make_signed_type (CHAR_TYPE_SIZE)
6491       : make_unsigned_type (CHAR_TYPE_SIZE));
6492  TYPE_STRING_FLAG (char_type_node) = 1;
6493
6494  short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
6495  short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
6496  integer_type_node = make_signed_type (INT_TYPE_SIZE);
6497  unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
6498  long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
6499  long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
6500  long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
6501  long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
6502
6503  /* Define a boolean type.  This type only represents boolean values but
6504     may be larger than char depending on the value of BOOL_TYPE_SIZE.
6505     Front ends which want to override this size (i.e. Java) can redefine
6506     boolean_type_node before calling build_common_tree_nodes_2.  */
6507  boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
6508  TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
6509  TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
6510  TYPE_PRECISION (boolean_type_node) = 1;
6511
6512  /* Fill in the rest of the sized types.  Reuse existing type nodes
6513     when possible.  */
6514  intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
6515  intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
6516  intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
6517  intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
6518  intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
6519
6520  unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
6521  unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
6522  unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
6523  unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
6524  unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
6525
6526  access_public_node = get_identifier ("public");
6527  access_protected_node = get_identifier ("protected");
6528  access_private_node = get_identifier ("private");
6529}
6530
6531/* Call this function after calling build_common_tree_nodes and set_sizetype.
6532   It will create several other common tree nodes.  */
6533
6534void
6535build_common_tree_nodes_2 (int short_double)
6536{
6537  /* Define these next since types below may used them.  */
6538  integer_zero_node = build_int_cst (NULL_TREE, 0);
6539  integer_one_node = build_int_cst (NULL_TREE, 1);
6540  integer_minus_one_node = build_int_cst (NULL_TREE, -1);
6541
6542  size_zero_node = size_int (0);
6543  size_one_node = size_int (1);
6544  bitsize_zero_node = bitsize_int (0);
6545  bitsize_one_node = bitsize_int (1);
6546  bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
6547
6548  boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
6549  boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
6550
6551  void_type_node = make_node (VOID_TYPE);
6552  layout_type (void_type_node);
6553
6554  /* We are not going to have real types in C with less than byte alignment,
6555     so we might as well not have any types that claim to have it.  */
6556  TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
6557  TYPE_USER_ALIGN (void_type_node) = 0;
6558
6559  null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
6560  layout_type (TREE_TYPE (null_pointer_node));
6561
6562  ptr_type_node = build_pointer_type (void_type_node);
6563  const_ptr_type_node
6564    = build_pointer_type (build_type_variant (void_type_node, 1, 0));
6565  fileptr_type_node = ptr_type_node;
6566
6567  float_type_node = make_node (REAL_TYPE);
6568  TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
6569  layout_type (float_type_node);
6570
6571  double_type_node = make_node (REAL_TYPE);
6572  if (short_double)
6573    TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
6574  else
6575    TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
6576  layout_type (double_type_node);
6577
6578  long_double_type_node = make_node (REAL_TYPE);
6579  TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
6580  layout_type (long_double_type_node);
6581
6582  float_ptr_type_node = build_pointer_type (float_type_node);
6583  double_ptr_type_node = build_pointer_type (double_type_node);
6584  long_double_ptr_type_node = build_pointer_type (long_double_type_node);
6585  integer_ptr_type_node = build_pointer_type (integer_type_node);
6586
6587  /* Decimal float types. */
6588  dfloat32_type_node = make_node (REAL_TYPE);
6589  TYPE_PRECISION (dfloat32_type_node) = DECIMAL32_TYPE_SIZE;
6590  layout_type (dfloat32_type_node);
6591  TYPE_MODE (dfloat32_type_node) = SDmode;
6592  dfloat32_ptr_type_node = build_pointer_type (dfloat32_type_node);
6593
6594  dfloat64_type_node = make_node (REAL_TYPE);
6595  TYPE_PRECISION (dfloat64_type_node) = DECIMAL64_TYPE_SIZE;
6596  layout_type (dfloat64_type_node);
6597  TYPE_MODE (dfloat64_type_node) = DDmode;
6598  dfloat64_ptr_type_node = build_pointer_type (dfloat64_type_node);
6599
6600  dfloat128_type_node = make_node (REAL_TYPE);
6601  TYPE_PRECISION (dfloat128_type_node) = DECIMAL128_TYPE_SIZE;
6602  layout_type (dfloat128_type_node);
6603  TYPE_MODE (dfloat128_type_node) = TDmode;
6604  dfloat128_ptr_type_node = build_pointer_type (dfloat128_type_node);
6605
6606  complex_integer_type_node = make_node (COMPLEX_TYPE);
6607  TREE_TYPE (complex_integer_type_node) = integer_type_node;
6608  layout_type (complex_integer_type_node);
6609
6610  complex_float_type_node = make_node (COMPLEX_TYPE);
6611  TREE_TYPE (complex_float_type_node) = float_type_node;
6612  layout_type (complex_float_type_node);
6613
6614  complex_double_type_node = make_node (COMPLEX_TYPE);
6615  TREE_TYPE (complex_double_type_node) = double_type_node;
6616  layout_type (complex_double_type_node);
6617
6618  complex_long_double_type_node = make_node (COMPLEX_TYPE);
6619  TREE_TYPE (complex_long_double_type_node) = long_double_type_node;
6620  layout_type (complex_long_double_type_node);
6621
6622  {
6623    tree t = targetm.build_builtin_va_list ();
6624
6625    /* Many back-ends define record types without setting TYPE_NAME.
6626       If we copied the record type here, we'd keep the original
6627       record type without a name.  This breaks name mangling.  So,
6628       don't copy record types and let c_common_nodes_and_builtins()
6629       declare the type to be __builtin_va_list.  */
6630    if (TREE_CODE (t) != RECORD_TYPE)
6631      t = build_variant_type_copy (t);
6632
6633    va_list_type_node = t;
6634  }
6635}
6636
6637/* A subroutine of build_common_builtin_nodes.  Define a builtin function.  */
6638
6639static void
6640local_define_builtin (const char *name, tree type, enum built_in_function code,
6641                      const char *library_name, int ecf_flags)
6642{
6643  tree decl;
6644
6645  decl = lang_hooks.builtin_function (name, type, code, BUILT_IN_NORMAL,
6646				      library_name, NULL_TREE);
6647  if (ecf_flags & ECF_CONST)
6648    TREE_READONLY (decl) = 1;
6649  if (ecf_flags & ECF_PURE)
6650    DECL_IS_PURE (decl) = 1;
6651  if (ecf_flags & ECF_NORETURN)
6652    TREE_THIS_VOLATILE (decl) = 1;
6653  if (ecf_flags & ECF_NOTHROW)
6654    TREE_NOTHROW (decl) = 1;
6655  if (ecf_flags & ECF_MALLOC)
6656    DECL_IS_MALLOC (decl) = 1;
6657
6658  built_in_decls[code] = decl;
6659  implicit_built_in_decls[code] = decl;
6660}
6661
6662/* Call this function after instantiating all builtins that the language
6663   front end cares about.  This will build the rest of the builtins that
6664   are relied upon by the tree optimizers and the middle-end.  */
6665
6666void
6667build_common_builtin_nodes (void)
6668{
6669  tree tmp, ftype;
6670
6671  if (built_in_decls[BUILT_IN_MEMCPY] == NULL
6672      || built_in_decls[BUILT_IN_MEMMOVE] == NULL)
6673    {
6674      tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
6675      tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
6676      tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
6677      ftype = build_function_type (ptr_type_node, tmp);
6678
6679      if (built_in_decls[BUILT_IN_MEMCPY] == NULL)
6680	local_define_builtin ("__builtin_memcpy", ftype, BUILT_IN_MEMCPY,
6681			      "memcpy", ECF_NOTHROW);
6682      if (built_in_decls[BUILT_IN_MEMMOVE] == NULL)
6683	local_define_builtin ("__builtin_memmove", ftype, BUILT_IN_MEMMOVE,
6684			      "memmove", ECF_NOTHROW);
6685    }
6686
6687  if (built_in_decls[BUILT_IN_MEMCMP] == NULL)
6688    {
6689      tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
6690      tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
6691      tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
6692      ftype = build_function_type (integer_type_node, tmp);
6693      local_define_builtin ("__builtin_memcmp", ftype, BUILT_IN_MEMCMP,
6694			    "memcmp", ECF_PURE | ECF_NOTHROW);
6695    }
6696
6697  if (built_in_decls[BUILT_IN_MEMSET] == NULL)
6698    {
6699      tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
6700      tmp = tree_cons (NULL_TREE, integer_type_node, tmp);
6701      tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
6702      ftype = build_function_type (ptr_type_node, tmp);
6703      local_define_builtin ("__builtin_memset", ftype, BUILT_IN_MEMSET,
6704			    "memset", ECF_NOTHROW);
6705    }
6706
6707  if (built_in_decls[BUILT_IN_ALLOCA] == NULL)
6708    {
6709      tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
6710      ftype = build_function_type (ptr_type_node, tmp);
6711      local_define_builtin ("__builtin_alloca", ftype, BUILT_IN_ALLOCA,
6712			    "alloca", ECF_NOTHROW | ECF_MALLOC);
6713    }
6714
6715  tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
6716  tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
6717  tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
6718  ftype = build_function_type (void_type_node, tmp);
6719  local_define_builtin ("__builtin_init_trampoline", ftype,
6720			BUILT_IN_INIT_TRAMPOLINE,
6721			"__builtin_init_trampoline", ECF_NOTHROW);
6722
6723  tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
6724  ftype = build_function_type (ptr_type_node, tmp);
6725  local_define_builtin ("__builtin_adjust_trampoline", ftype,
6726			BUILT_IN_ADJUST_TRAMPOLINE,
6727			"__builtin_adjust_trampoline",
6728			ECF_CONST | ECF_NOTHROW);
6729
6730  tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
6731  tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
6732  ftype = build_function_type (void_type_node, tmp);
6733  local_define_builtin ("__builtin_nonlocal_goto", ftype,
6734			BUILT_IN_NONLOCAL_GOTO,
6735			"__builtin_nonlocal_goto",
6736			ECF_NORETURN | ECF_NOTHROW);
6737
6738  tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
6739  tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
6740  ftype = build_function_type (void_type_node, tmp);
6741  local_define_builtin ("__builtin_setjmp_setup", ftype,
6742			BUILT_IN_SETJMP_SETUP,
6743			"__builtin_setjmp_setup", ECF_NOTHROW);
6744
6745  tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
6746  ftype = build_function_type (ptr_type_node, tmp);
6747  local_define_builtin ("__builtin_setjmp_dispatcher", ftype,
6748			BUILT_IN_SETJMP_DISPATCHER,
6749			"__builtin_setjmp_dispatcher",
6750			ECF_PURE | ECF_NOTHROW);
6751
6752  tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
6753  ftype = build_function_type (void_type_node, tmp);
6754  local_define_builtin ("__builtin_setjmp_receiver", ftype,
6755			BUILT_IN_SETJMP_RECEIVER,
6756			"__builtin_setjmp_receiver", ECF_NOTHROW);
6757
6758  ftype = build_function_type (ptr_type_node, void_list_node);
6759  local_define_builtin ("__builtin_stack_save", ftype, BUILT_IN_STACK_SAVE,
6760			"__builtin_stack_save", ECF_NOTHROW);
6761
6762  tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
6763  ftype = build_function_type (void_type_node, tmp);
6764  local_define_builtin ("__builtin_stack_restore", ftype,
6765			BUILT_IN_STACK_RESTORE,
6766			"__builtin_stack_restore", ECF_NOTHROW);
6767
6768  ftype = build_function_type (void_type_node, void_list_node);
6769  local_define_builtin ("__builtin_profile_func_enter", ftype,
6770			BUILT_IN_PROFILE_FUNC_ENTER, "profile_func_enter", 0);
6771  local_define_builtin ("__builtin_profile_func_exit", ftype,
6772			BUILT_IN_PROFILE_FUNC_EXIT, "profile_func_exit", 0);
6773
6774  /* Complex multiplication and division.  These are handled as builtins
6775     rather than optabs because emit_library_call_value doesn't support
6776     complex.  Further, we can do slightly better with folding these
6777     beasties if the real and complex parts of the arguments are separate.  */
6778  {
6779    enum machine_mode mode;
6780
6781    for (mode = MIN_MODE_COMPLEX_FLOAT; mode <= MAX_MODE_COMPLEX_FLOAT; ++mode)
6782      {
6783	char mode_name_buf[4], *q;
6784	const char *p;
6785	enum built_in_function mcode, dcode;
6786	tree type, inner_type;
6787
6788	type = lang_hooks.types.type_for_mode (mode, 0);
6789	if (type == NULL)
6790	  continue;
6791	inner_type = TREE_TYPE (type);
6792
6793	tmp = tree_cons (NULL_TREE, inner_type, void_list_node);
6794	tmp = tree_cons (NULL_TREE, inner_type, tmp);
6795	tmp = tree_cons (NULL_TREE, inner_type, tmp);
6796	tmp = tree_cons (NULL_TREE, inner_type, tmp);
6797	ftype = build_function_type (type, tmp);
6798
6799        mcode = BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT;
6800        dcode = BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT;
6801
6802        for (p = GET_MODE_NAME (mode), q = mode_name_buf; *p; p++, q++)
6803	  *q = TOLOWER (*p);
6804	*q = '\0';
6805
6806	built_in_names[mcode] = concat ("__mul", mode_name_buf, "3", NULL);
6807        local_define_builtin (built_in_names[mcode], ftype, mcode,
6808			      built_in_names[mcode], ECF_CONST | ECF_NOTHROW);
6809
6810	built_in_names[dcode] = concat ("__div", mode_name_buf, "3", NULL);
6811        local_define_builtin (built_in_names[dcode], ftype, dcode,
6812			      built_in_names[dcode], ECF_CONST | ECF_NOTHROW);
6813      }
6814  }
6815}
6816
6817/* HACK.  GROSS.  This is absolutely disgusting.  I wish there was a
6818   better way.
6819
6820   If we requested a pointer to a vector, build up the pointers that
6821   we stripped off while looking for the inner type.  Similarly for
6822   return values from functions.
6823
6824   The argument TYPE is the top of the chain, and BOTTOM is the
6825   new type which we will point to.  */
6826
6827tree
6828reconstruct_complex_type (tree type, tree bottom)
6829{
6830  tree inner, outer;
6831
6832  if (POINTER_TYPE_P (type))
6833    {
6834      inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
6835      outer = build_pointer_type (inner);
6836    }
6837  else if (TREE_CODE (type) == ARRAY_TYPE)
6838    {
6839      inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
6840      outer = build_array_type (inner, TYPE_DOMAIN (type));
6841    }
6842  else if (TREE_CODE (type) == FUNCTION_TYPE)
6843    {
6844      inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
6845      outer = build_function_type (inner, TYPE_ARG_TYPES (type));
6846    }
6847  else if (TREE_CODE (type) == METHOD_TYPE)
6848    {
6849      tree argtypes;
6850      inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
6851      /* The build_method_type_directly() routine prepends 'this' to argument list,
6852         so we must compensate by getting rid of it.  */
6853      argtypes = TYPE_ARG_TYPES (type);
6854      outer = build_method_type_directly (TYPE_METHOD_BASETYPE (type),
6855					  inner,
6856					  TYPE_ARG_TYPES (type));
6857      TYPE_ARG_TYPES (outer) = argtypes;
6858    }
6859  else
6860    return bottom;
6861
6862  TYPE_READONLY (outer) = TYPE_READONLY (type);
6863  TYPE_VOLATILE (outer) = TYPE_VOLATILE (type);
6864
6865  return outer;
6866}
6867
6868/* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
6869   the inner type.  */
6870tree
6871build_vector_type_for_mode (tree innertype, enum machine_mode mode)
6872{
6873  int nunits;
6874
6875  switch (GET_MODE_CLASS (mode))
6876    {
6877    case MODE_VECTOR_INT:
6878    case MODE_VECTOR_FLOAT:
6879      nunits = GET_MODE_NUNITS (mode);
6880      break;
6881
6882    case MODE_INT:
6883      /* Check that there are no leftover bits.  */
6884      gcc_assert (GET_MODE_BITSIZE (mode)
6885		  % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
6886
6887      nunits = GET_MODE_BITSIZE (mode)
6888	       / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
6889      break;
6890
6891    default:
6892      gcc_unreachable ();
6893    }
6894
6895  return make_vector_type (innertype, nunits, mode);
6896}
6897
6898/* Similarly, but takes the inner type and number of units, which must be
6899   a power of two.  */
6900
6901tree
6902build_vector_type (tree innertype, int nunits)
6903{
6904  return make_vector_type (innertype, nunits, VOIDmode);
6905}
6906
6907
6908/* Build RESX_EXPR with given REGION_NUMBER.  */
6909tree
6910build_resx (int region_number)
6911{
6912  tree t;
6913  t = build1 (RESX_EXPR, void_type_node,
6914	      build_int_cst (NULL_TREE, region_number));
6915  return t;
6916}
6917
6918/* Given an initializer INIT, return TRUE if INIT is zero or some
6919   aggregate of zeros.  Otherwise return FALSE.  */
6920bool
6921initializer_zerop (tree init)
6922{
6923  tree elt;
6924
6925  STRIP_NOPS (init);
6926
6927  switch (TREE_CODE (init))
6928    {
6929    case INTEGER_CST:
6930      return integer_zerop (init);
6931
6932    case REAL_CST:
6933      /* ??? Note that this is not correct for C4X float formats.  There,
6934	 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
6935	 negative exponent.  */
6936      return real_zerop (init)
6937	&& ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
6938
6939    case COMPLEX_CST:
6940      return integer_zerop (init)
6941	|| (real_zerop (init)
6942	    && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
6943	    && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
6944
6945    case VECTOR_CST:
6946      for (elt = TREE_VECTOR_CST_ELTS (init); elt; elt = TREE_CHAIN (elt))
6947	if (!initializer_zerop (TREE_VALUE (elt)))
6948	  return false;
6949      return true;
6950
6951    case CONSTRUCTOR:
6952      {
6953	unsigned HOST_WIDE_INT idx;
6954
6955	FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
6956	  if (!initializer_zerop (elt))
6957	    return false;
6958	return true;
6959      }
6960
6961    default:
6962      return false;
6963    }
6964}
6965
6966/* Build an empty statement.  */
6967
6968tree
6969build_empty_stmt (void)
6970{
6971  return build1 (NOP_EXPR, void_type_node, size_zero_node);
6972}
6973
6974
6975/* Build an OpenMP clause with code CODE.  */
6976
6977tree
6978build_omp_clause (enum omp_clause_code code)
6979{
6980  tree t;
6981  int size, length;
6982
6983  length = omp_clause_num_ops[code];
6984  size = (sizeof (struct tree_omp_clause) + (length - 1) * sizeof (tree));
6985
6986  t = ggc_alloc (size);
6987  memset (t, 0, size);
6988  TREE_SET_CODE (t, OMP_CLAUSE);
6989  OMP_CLAUSE_SET_CODE (t, code);
6990
6991#ifdef GATHER_STATISTICS
6992  tree_node_counts[(int) omp_clause_kind]++;
6993  tree_node_sizes[(int) omp_clause_kind] += size;
6994#endif
6995
6996  return t;
6997}
6998
6999
7000/* Returns true if it is possible to prove that the index of
7001   an array access REF (an ARRAY_REF expression) falls into the
7002   array bounds.  */
7003
7004bool
7005in_array_bounds_p (tree ref)
7006{
7007  tree idx = TREE_OPERAND (ref, 1);
7008  tree min, max;
7009
7010  if (TREE_CODE (idx) != INTEGER_CST)
7011    return false;
7012
7013  min = array_ref_low_bound (ref);
7014  max = array_ref_up_bound (ref);
7015  if (!min
7016      || !max
7017      || TREE_CODE (min) != INTEGER_CST
7018      || TREE_CODE (max) != INTEGER_CST)
7019    return false;
7020
7021  if (tree_int_cst_lt (idx, min)
7022      || tree_int_cst_lt (max, idx))
7023    return false;
7024
7025  return true;
7026}
7027
7028/* Returns true if it is possible to prove that the range of
7029   an array access REF (an ARRAY_RANGE_REF expression) falls
7030   into the array bounds.  */
7031
7032bool
7033range_in_array_bounds_p (tree ref)
7034{
7035  tree domain_type = TYPE_DOMAIN (TREE_TYPE (ref));
7036  tree range_min, range_max, min, max;
7037
7038  range_min = TYPE_MIN_VALUE (domain_type);
7039  range_max = TYPE_MAX_VALUE (domain_type);
7040  if (!range_min
7041      || !range_max
7042      || TREE_CODE (range_min) != INTEGER_CST
7043      || TREE_CODE (range_max) != INTEGER_CST)
7044    return false;
7045
7046  min = array_ref_low_bound (ref);
7047  max = array_ref_up_bound (ref);
7048  if (!min
7049      || !max
7050      || TREE_CODE (min) != INTEGER_CST
7051      || TREE_CODE (max) != INTEGER_CST)
7052    return false;
7053
7054  if (tree_int_cst_lt (range_min, min)
7055      || tree_int_cst_lt (max, range_max))
7056    return false;
7057
7058  return true;
7059}
7060
7061/* Return true if T (assumed to be a DECL) is a global variable.  */
7062
7063bool
7064is_global_var (tree t)
7065{
7066  if (MTAG_P (t))
7067    return (TREE_STATIC (t) || MTAG_GLOBAL (t));
7068  else
7069    return (TREE_STATIC (t) || DECL_EXTERNAL (t));
7070}
7071
7072/* Return true if T (assumed to be a DECL) must be assigned a memory
7073   location.  */
7074
7075bool
7076needs_to_live_in_memory (tree t)
7077{
7078  return (TREE_ADDRESSABLE (t)
7079	  || is_global_var (t)
7080	  || (TREE_CODE (t) == RESULT_DECL
7081	      && aggregate_value_p (t, current_function_decl)));
7082}
7083
7084/* There are situations in which a language considers record types
7085   compatible which have different field lists.  Decide if two fields
7086   are compatible.  It is assumed that the parent records are compatible.  */
7087
7088bool
7089fields_compatible_p (tree f1, tree f2)
7090{
7091  if (!operand_equal_p (DECL_FIELD_BIT_OFFSET (f1),
7092			DECL_FIELD_BIT_OFFSET (f2), OEP_ONLY_CONST))
7093    return false;
7094
7095  if (!operand_equal_p (DECL_FIELD_OFFSET (f1),
7096                        DECL_FIELD_OFFSET (f2), OEP_ONLY_CONST))
7097    return false;
7098
7099  if (!lang_hooks.types_compatible_p (TREE_TYPE (f1), TREE_TYPE (f2)))
7100    return false;
7101
7102  return true;
7103}
7104
7105/* Locate within RECORD a field that is compatible with ORIG_FIELD.  */
7106
7107tree
7108find_compatible_field (tree record, tree orig_field)
7109{
7110  tree f;
7111
7112  for (f = TYPE_FIELDS (record); f ; f = TREE_CHAIN (f))
7113    if (TREE_CODE (f) == FIELD_DECL
7114	&& fields_compatible_p (f, orig_field))
7115      return f;
7116
7117  /* ??? Why isn't this on the main fields list?  */
7118  f = TYPE_VFIELD (record);
7119  if (f && TREE_CODE (f) == FIELD_DECL
7120      && fields_compatible_p (f, orig_field))
7121    return f;
7122
7123  /* ??? We should abort here, but Java appears to do Bad Things
7124     with inherited fields.  */
7125  return orig_field;
7126}
7127
7128/* Return value of a constant X.  */
7129
7130HOST_WIDE_INT
7131int_cst_value (tree x)
7132{
7133  unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
7134  unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
7135  bool negative = ((val >> (bits - 1)) & 1) != 0;
7136
7137  gcc_assert (bits <= HOST_BITS_PER_WIDE_INT);
7138
7139  if (negative)
7140    val |= (~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1;
7141  else
7142    val &= ~((~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1);
7143
7144  return val;
7145}
7146
7147/* Returns the greatest common divisor of A and B, which must be
7148   INTEGER_CSTs.  */
7149
7150tree
7151tree_fold_gcd (tree a, tree b)
7152{
7153  tree a_mod_b;
7154  tree type = TREE_TYPE (a);
7155
7156  gcc_assert (TREE_CODE (a) == INTEGER_CST);
7157  gcc_assert (TREE_CODE (b) == INTEGER_CST);
7158
7159  if (integer_zerop (a))
7160    return b;
7161
7162  if (integer_zerop (b))
7163    return a;
7164
7165  if (tree_int_cst_sgn (a) == -1)
7166    a = fold_build2 (MULT_EXPR, type, a,
7167		     build_int_cst (type, -1));
7168
7169  if (tree_int_cst_sgn (b) == -1)
7170    b = fold_build2 (MULT_EXPR, type, b,
7171		     build_int_cst (type, -1));
7172
7173  while (1)
7174    {
7175      a_mod_b = fold_build2 (FLOOR_MOD_EXPR, type, a, b);
7176
7177      if (!TREE_INT_CST_LOW (a_mod_b)
7178	  && !TREE_INT_CST_HIGH (a_mod_b))
7179	return b;
7180
7181      a = b;
7182      b = a_mod_b;
7183    }
7184}
7185
7186/* Returns unsigned variant of TYPE.  */
7187
7188tree
7189unsigned_type_for (tree type)
7190{
7191  if (POINTER_TYPE_P (type))
7192    return lang_hooks.types.unsigned_type (size_type_node);
7193  return lang_hooks.types.unsigned_type (type);
7194}
7195
7196/* Returns signed variant of TYPE.  */
7197
7198tree
7199signed_type_for (tree type)
7200{
7201  if (POINTER_TYPE_P (type))
7202    return lang_hooks.types.signed_type (size_type_node);
7203  return lang_hooks.types.signed_type (type);
7204}
7205
7206/* Returns the largest value obtainable by casting something in INNER type to
7207   OUTER type.  */
7208
7209tree
7210upper_bound_in_type (tree outer, tree inner)
7211{
7212  unsigned HOST_WIDE_INT lo, hi;
7213  unsigned int det = 0;
7214  unsigned oprec = TYPE_PRECISION (outer);
7215  unsigned iprec = TYPE_PRECISION (inner);
7216  unsigned prec;
7217
7218  /* Compute a unique number for every combination.  */
7219  det |= (oprec > iprec) ? 4 : 0;
7220  det |= TYPE_UNSIGNED (outer) ? 2 : 0;
7221  det |= TYPE_UNSIGNED (inner) ? 1 : 0;
7222
7223  /* Determine the exponent to use.  */
7224  switch (det)
7225    {
7226    case 0:
7227    case 1:
7228      /* oprec <= iprec, outer: signed, inner: don't care.  */
7229      prec = oprec - 1;
7230      break;
7231    case 2:
7232    case 3:
7233      /* oprec <= iprec, outer: unsigned, inner: don't care.  */
7234      prec = oprec;
7235      break;
7236    case 4:
7237      /* oprec > iprec, outer: signed, inner: signed.  */
7238      prec = iprec - 1;
7239      break;
7240    case 5:
7241      /* oprec > iprec, outer: signed, inner: unsigned.  */
7242      prec = iprec;
7243      break;
7244    case 6:
7245      /* oprec > iprec, outer: unsigned, inner: signed.  */
7246      prec = oprec;
7247      break;
7248    case 7:
7249      /* oprec > iprec, outer: unsigned, inner: unsigned.  */
7250      prec = iprec;
7251      break;
7252    default:
7253      gcc_unreachable ();
7254    }
7255
7256  /* Compute 2^^prec - 1.  */
7257  if (prec <= HOST_BITS_PER_WIDE_INT)
7258    {
7259      hi = 0;
7260      lo = ((~(unsigned HOST_WIDE_INT) 0)
7261	    >> (HOST_BITS_PER_WIDE_INT - prec));
7262    }
7263  else
7264    {
7265      hi = ((~(unsigned HOST_WIDE_INT) 0)
7266	    >> (2 * HOST_BITS_PER_WIDE_INT - prec));
7267      lo = ~(unsigned HOST_WIDE_INT) 0;
7268    }
7269
7270  return build_int_cst_wide (outer, lo, hi);
7271}
7272
7273/* Returns the smallest value obtainable by casting something in INNER type to
7274   OUTER type.  */
7275
7276tree
7277lower_bound_in_type (tree outer, tree inner)
7278{
7279  unsigned HOST_WIDE_INT lo, hi;
7280  unsigned oprec = TYPE_PRECISION (outer);
7281  unsigned iprec = TYPE_PRECISION (inner);
7282
7283  /* If OUTER type is unsigned, we can definitely cast 0 to OUTER type
7284     and obtain 0.  */
7285  if (TYPE_UNSIGNED (outer)
7286      /* If we are widening something of an unsigned type, OUTER type
7287	 contains all values of INNER type.  In particular, both INNER
7288	 and OUTER types have zero in common.  */
7289      || (oprec > iprec && TYPE_UNSIGNED (inner)))
7290    lo = hi = 0;
7291  else
7292    {
7293      /* If we are widening a signed type to another signed type, we
7294	 want to obtain -2^^(iprec-1).  If we are keeping the
7295	 precision or narrowing to a signed type, we want to obtain
7296	 -2^(oprec-1).  */
7297      unsigned prec = oprec > iprec ? iprec : oprec;
7298
7299      if (prec <= HOST_BITS_PER_WIDE_INT)
7300	{
7301	  hi = ~(unsigned HOST_WIDE_INT) 0;
7302	  lo = (~(unsigned HOST_WIDE_INT) 0) << (prec - 1);
7303	}
7304      else
7305	{
7306	  hi = ((~(unsigned HOST_WIDE_INT) 0)
7307		<< (prec - HOST_BITS_PER_WIDE_INT - 1));
7308	  lo = 0;
7309	}
7310    }
7311
7312  return build_int_cst_wide (outer, lo, hi);
7313}
7314
7315/* Return nonzero if two operands that are suitable for PHI nodes are
7316   necessarily equal.  Specifically, both ARG0 and ARG1 must be either
7317   SSA_NAME or invariant.  Note that this is strictly an optimization.
7318   That is, callers of this function can directly call operand_equal_p
7319   and get the same result, only slower.  */
7320
7321int
7322operand_equal_for_phi_arg_p (tree arg0, tree arg1)
7323{
7324  if (arg0 == arg1)
7325    return 1;
7326  if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME)
7327    return 0;
7328  return operand_equal_p (arg0, arg1, 0);
7329}
7330
7331/* Returns number of zeros at the end of binary representation of X.
7332
7333   ??? Use ffs if available?  */
7334
7335tree
7336num_ending_zeros (tree x)
7337{
7338  unsigned HOST_WIDE_INT fr, nfr;
7339  unsigned num, abits;
7340  tree type = TREE_TYPE (x);
7341
7342  if (TREE_INT_CST_LOW (x) == 0)
7343    {
7344      num = HOST_BITS_PER_WIDE_INT;
7345      fr = TREE_INT_CST_HIGH (x);
7346    }
7347  else
7348    {
7349      num = 0;
7350      fr = TREE_INT_CST_LOW (x);
7351    }
7352
7353  for (abits = HOST_BITS_PER_WIDE_INT / 2; abits; abits /= 2)
7354    {
7355      nfr = fr >> abits;
7356      if (nfr << abits == fr)
7357	{
7358	  num += abits;
7359	  fr = nfr;
7360	}
7361    }
7362
7363  if (num > TYPE_PRECISION (type))
7364    num = TYPE_PRECISION (type);
7365
7366  return build_int_cst_type (type, num);
7367}
7368
7369
7370#define WALK_SUBTREE(NODE)				\
7371  do							\
7372    {							\
7373      result = walk_tree (&(NODE), func, data, pset);	\
7374      if (result)					\
7375	return result;					\
7376    }							\
7377  while (0)
7378
7379/* This is a subroutine of walk_tree that walks field of TYPE that are to
7380   be walked whenever a type is seen in the tree.  Rest of operands and return
7381   value are as for walk_tree.  */
7382
7383static tree
7384walk_type_fields (tree type, walk_tree_fn func, void *data,
7385		  struct pointer_set_t *pset)
7386{
7387  tree result = NULL_TREE;
7388
7389  switch (TREE_CODE (type))
7390    {
7391    case POINTER_TYPE:
7392    case REFERENCE_TYPE:
7393      /* We have to worry about mutually recursive pointers.  These can't
7394	 be written in C.  They can in Ada.  It's pathological, but
7395	 there's an ACATS test (c38102a) that checks it.  Deal with this
7396	 by checking if we're pointing to another pointer, that one
7397	 points to another pointer, that one does too, and we have no htab.
7398	 If so, get a hash table.  We check three levels deep to avoid
7399	 the cost of the hash table if we don't need one.  */
7400      if (POINTER_TYPE_P (TREE_TYPE (type))
7401	  && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (type)))
7402	  && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (TREE_TYPE (type))))
7403	  && !pset)
7404	{
7405	  result = walk_tree_without_duplicates (&TREE_TYPE (type),
7406						 func, data);
7407	  if (result)
7408	    return result;
7409
7410	  break;
7411	}
7412
7413      /* ... fall through ... */
7414
7415    case COMPLEX_TYPE:
7416      WALK_SUBTREE (TREE_TYPE (type));
7417      break;
7418
7419    case METHOD_TYPE:
7420      WALK_SUBTREE (TYPE_METHOD_BASETYPE (type));
7421
7422      /* Fall through.  */
7423
7424    case FUNCTION_TYPE:
7425      WALK_SUBTREE (TREE_TYPE (type));
7426      {
7427	tree arg;
7428
7429	/* We never want to walk into default arguments.  */
7430	for (arg = TYPE_ARG_TYPES (type); arg; arg = TREE_CHAIN (arg))
7431	  WALK_SUBTREE (TREE_VALUE (arg));
7432      }
7433      break;
7434
7435    case ARRAY_TYPE:
7436      /* Don't follow this nodes's type if a pointer for fear that
7437	 we'll have infinite recursion.  If we have a PSET, then we
7438	 need not fear.  */
7439      if (pset
7440	  || (!POINTER_TYPE_P (TREE_TYPE (type))
7441	      && TREE_CODE (TREE_TYPE (type)) != OFFSET_TYPE))
7442	WALK_SUBTREE (TREE_TYPE (type));
7443      WALK_SUBTREE (TYPE_DOMAIN (type));
7444      break;
7445
7446    case BOOLEAN_TYPE:
7447    case ENUMERAL_TYPE:
7448    case INTEGER_TYPE:
7449    case REAL_TYPE:
7450      WALK_SUBTREE (TYPE_MIN_VALUE (type));
7451      WALK_SUBTREE (TYPE_MAX_VALUE (type));
7452      break;
7453
7454    case OFFSET_TYPE:
7455      WALK_SUBTREE (TREE_TYPE (type));
7456      WALK_SUBTREE (TYPE_OFFSET_BASETYPE (type));
7457      break;
7458
7459    default:
7460      break;
7461    }
7462
7463  return NULL_TREE;
7464}
7465
7466/* Apply FUNC to all the sub-trees of TP in a pre-order traversal.  FUNC is
7467   called with the DATA and the address of each sub-tree.  If FUNC returns a
7468   non-NULL value, the traversal is stopped, and the value returned by FUNC
7469   is returned.  If PSET is non-NULL it is used to record the nodes visited,
7470   and to avoid visiting a node more than once.  */
7471
7472tree
7473walk_tree (tree *tp, walk_tree_fn func, void *data, struct pointer_set_t *pset)
7474{
7475  enum tree_code code;
7476  int walk_subtrees;
7477  tree result;
7478
7479#define WALK_SUBTREE_TAIL(NODE)				\
7480  do							\
7481    {							\
7482       tp = & (NODE);					\
7483       goto tail_recurse;				\
7484    }							\
7485  while (0)
7486
7487 tail_recurse:
7488  /* Skip empty subtrees.  */
7489  if (!*tp)
7490    return NULL_TREE;
7491
7492  /* Don't walk the same tree twice, if the user has requested
7493     that we avoid doing so.  */
7494  if (pset && pointer_set_insert (pset, *tp))
7495    return NULL_TREE;
7496
7497  /* Call the function.  */
7498  walk_subtrees = 1;
7499  result = (*func) (tp, &walk_subtrees, data);
7500
7501  /* If we found something, return it.  */
7502  if (result)
7503    return result;
7504
7505  code = TREE_CODE (*tp);
7506
7507  /* Even if we didn't, FUNC may have decided that there was nothing
7508     interesting below this point in the tree.  */
7509  if (!walk_subtrees)
7510    {
7511      /* But we still need to check our siblings.  */
7512      if (code == TREE_LIST)
7513	WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
7514      else if (code == OMP_CLAUSE)
7515	WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
7516      else
7517	return NULL_TREE;
7518    }
7519
7520  result = lang_hooks.tree_inlining.walk_subtrees (tp, &walk_subtrees, func,
7521						   data, pset);
7522  if (result || ! walk_subtrees)
7523    return result;
7524
7525  switch (code)
7526    {
7527    case ERROR_MARK:
7528    case IDENTIFIER_NODE:
7529    case INTEGER_CST:
7530    case REAL_CST:
7531    case VECTOR_CST:
7532    case STRING_CST:
7533    case BLOCK:
7534    case PLACEHOLDER_EXPR:
7535    case SSA_NAME:
7536    case FIELD_DECL:
7537    case RESULT_DECL:
7538      /* None of these have subtrees other than those already walked
7539	 above.  */
7540      break;
7541
7542    case TREE_LIST:
7543      WALK_SUBTREE (TREE_VALUE (*tp));
7544      WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
7545      break;
7546
7547    case TREE_VEC:
7548      {
7549	int len = TREE_VEC_LENGTH (*tp);
7550
7551	if (len == 0)
7552	  break;
7553
7554	/* Walk all elements but the first.  */
7555	while (--len)
7556	  WALK_SUBTREE (TREE_VEC_ELT (*tp, len));
7557
7558	/* Now walk the first one as a tail call.  */
7559	WALK_SUBTREE_TAIL (TREE_VEC_ELT (*tp, 0));
7560      }
7561
7562    case COMPLEX_CST:
7563      WALK_SUBTREE (TREE_REALPART (*tp));
7564      WALK_SUBTREE_TAIL (TREE_IMAGPART (*tp));
7565
7566    case CONSTRUCTOR:
7567      {
7568	unsigned HOST_WIDE_INT idx;
7569	constructor_elt *ce;
7570
7571	for (idx = 0;
7572	     VEC_iterate(constructor_elt, CONSTRUCTOR_ELTS (*tp), idx, ce);
7573	     idx++)
7574	  WALK_SUBTREE (ce->value);
7575      }
7576      break;
7577
7578    case SAVE_EXPR:
7579      WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, 0));
7580
7581    case BIND_EXPR:
7582      {
7583	tree decl;
7584	for (decl = BIND_EXPR_VARS (*tp); decl; decl = TREE_CHAIN (decl))
7585	  {
7586	    /* Walk the DECL_INITIAL and DECL_SIZE.  We don't want to walk
7587	       into declarations that are just mentioned, rather than
7588	       declared; they don't really belong to this part of the tree.
7589	       And, we can see cycles: the initializer for a declaration
7590	       can refer to the declaration itself.  */
7591	    WALK_SUBTREE (DECL_INITIAL (decl));
7592	    WALK_SUBTREE (DECL_SIZE (decl));
7593	    WALK_SUBTREE (DECL_SIZE_UNIT (decl));
7594	  }
7595	WALK_SUBTREE_TAIL (BIND_EXPR_BODY (*tp));
7596      }
7597
7598    case STATEMENT_LIST:
7599      {
7600	tree_stmt_iterator i;
7601	for (i = tsi_start (*tp); !tsi_end_p (i); tsi_next (&i))
7602	  WALK_SUBTREE (*tsi_stmt_ptr (i));
7603      }
7604      break;
7605
7606    case OMP_CLAUSE:
7607      switch (OMP_CLAUSE_CODE (*tp))
7608	{
7609	case OMP_CLAUSE_PRIVATE:
7610	case OMP_CLAUSE_SHARED:
7611	case OMP_CLAUSE_FIRSTPRIVATE:
7612	case OMP_CLAUSE_LASTPRIVATE:
7613	case OMP_CLAUSE_COPYIN:
7614	case OMP_CLAUSE_COPYPRIVATE:
7615	case OMP_CLAUSE_IF:
7616	case OMP_CLAUSE_NUM_THREADS:
7617	case OMP_CLAUSE_SCHEDULE:
7618	  WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 0));
7619	  /* FALLTHRU */
7620
7621	case OMP_CLAUSE_NOWAIT:
7622	case OMP_CLAUSE_ORDERED:
7623	case OMP_CLAUSE_DEFAULT:
7624	  WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
7625
7626	case OMP_CLAUSE_REDUCTION:
7627	  {
7628	    int i;
7629	    for (i = 0; i < 4; i++)
7630	      WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
7631	    WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
7632	  }
7633
7634	default:
7635	  gcc_unreachable ();
7636	}
7637      break;
7638
7639    case TARGET_EXPR:
7640      {
7641	int i, len;
7642
7643	/* TARGET_EXPRs are peculiar: operands 1 and 3 can be the same.
7644	   But, we only want to walk once.  */
7645	len = (TREE_OPERAND (*tp, 3) == TREE_OPERAND (*tp, 1)) ? 2 : 3;
7646	for (i = 0; i < len; ++i)
7647	  WALK_SUBTREE (TREE_OPERAND (*tp, i));
7648	WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len));
7649      }
7650
7651    case DECL_EXPR:
7652      /* Walk into various fields of the type that it's defining.  We only
7653	 want to walk into these fields of a type in this case.  Note that
7654	 decls get walked as part of the processing of a BIND_EXPR.
7655
7656	 ??? Precisely which fields of types that we are supposed to walk in
7657	 this case vs. the normal case aren't well defined.  */
7658      if (TREE_CODE (DECL_EXPR_DECL (*tp)) == TYPE_DECL
7659	  && TREE_CODE (TREE_TYPE (DECL_EXPR_DECL (*tp))) != ERROR_MARK)
7660	{
7661	  tree *type_p = &TREE_TYPE (DECL_EXPR_DECL (*tp));
7662
7663	  /* Call the function for the type.  See if it returns anything or
7664	     doesn't want us to continue.  If we are to continue, walk both
7665	     the normal fields and those for the declaration case.  */
7666	  result = (*func) (type_p, &walk_subtrees, data);
7667	  if (result || !walk_subtrees)
7668	    return NULL_TREE;
7669
7670	  result = walk_type_fields (*type_p, func, data, pset);
7671	  if (result)
7672	    return result;
7673
7674	  /* If this is a record type, also walk the fields.  */
7675	  if (TREE_CODE (*type_p) == RECORD_TYPE
7676	      || TREE_CODE (*type_p) == UNION_TYPE
7677	      || TREE_CODE (*type_p) == QUAL_UNION_TYPE)
7678	    {
7679	      tree field;
7680
7681	      for (field = TYPE_FIELDS (*type_p); field;
7682		   field = TREE_CHAIN (field))
7683		{
7684		  /* We'd like to look at the type of the field, but we can
7685		     easily get infinite recursion.  So assume it's pointed
7686		     to elsewhere in the tree.  Also, ignore things that
7687		     aren't fields.  */
7688		  if (TREE_CODE (field) != FIELD_DECL)
7689		    continue;
7690
7691		  WALK_SUBTREE (DECL_FIELD_OFFSET (field));
7692		  WALK_SUBTREE (DECL_SIZE (field));
7693		  WALK_SUBTREE (DECL_SIZE_UNIT (field));
7694		  if (TREE_CODE (*type_p) == QUAL_UNION_TYPE)
7695		    WALK_SUBTREE (DECL_QUALIFIER (field));
7696		}
7697	    }
7698
7699	  WALK_SUBTREE (TYPE_SIZE (*type_p));
7700	  WALK_SUBTREE_TAIL (TYPE_SIZE_UNIT (*type_p));
7701	}
7702      /* FALLTHRU */
7703
7704    default:
7705      if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
7706	{
7707	  int i, len;
7708
7709	  /* Walk over all the sub-trees of this operand.  */
7710	  len = TREE_CODE_LENGTH (code);
7711
7712	  /* Go through the subtrees.  We need to do this in forward order so
7713	     that the scope of a FOR_EXPR is handled properly.  */
7714	  if (len)
7715	    {
7716	      for (i = 0; i < len - 1; ++i)
7717		WALK_SUBTREE (TREE_OPERAND (*tp, i));
7718	      WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len - 1));
7719	    }
7720	}
7721
7722      /* If this is a type, walk the needed fields in the type.  */
7723      else if (TYPE_P (*tp))
7724	return walk_type_fields (*tp, func, data, pset);
7725      break;
7726    }
7727
7728  /* We didn't find what we were looking for.  */
7729  return NULL_TREE;
7730
7731#undef WALK_SUBTREE_TAIL
7732}
7733#undef WALK_SUBTREE
7734
7735/* Like walk_tree, but does not walk duplicate nodes more than once.  */
7736
7737tree
7738walk_tree_without_duplicates (tree *tp, walk_tree_fn func, void *data)
7739{
7740  tree result;
7741  struct pointer_set_t *pset;
7742
7743  pset = pointer_set_create ();
7744  result = walk_tree (tp, func, data, pset);
7745  pointer_set_destroy (pset);
7746  return result;
7747}
7748
7749
7750/* Return true if STMT is an empty statement or contains nothing but
7751   empty statements.  */
7752
7753bool
7754empty_body_p (tree stmt)
7755{
7756  tree_stmt_iterator i;
7757  tree body;
7758
7759  if (IS_EMPTY_STMT (stmt))
7760    return true;
7761  else if (TREE_CODE (stmt) == BIND_EXPR)
7762    body = BIND_EXPR_BODY (stmt);
7763  else if (TREE_CODE (stmt) == STATEMENT_LIST)
7764    body = stmt;
7765  else
7766    return false;
7767
7768  for (i = tsi_start (body); !tsi_end_p (i); tsi_next (&i))
7769    if (!empty_body_p (tsi_stmt (i)))
7770      return false;
7771
7772  return true;
7773}
7774
7775#include "gt-tree.h"
7776