1/* Definitions of target machine for GNU compiler, for the HP Spectrum.
2   Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3   2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4   Contributed by Michael Tiemann (tiemann@cygnus.com) of Cygnus Support
5   and Tim Moore (moore@defmacro.cs.utah.edu) of the Center for
6   Software Science at the University of Utah.
7
8This file is part of GCC.
9
10GCC is free software; you can redistribute it and/or modify
11it under the terms of the GNU General Public License as published by
12the Free Software Foundation; either version 2, or (at your option)
13any later version.
14
15GCC is distributed in the hope that it will be useful,
16but WITHOUT ANY WARRANTY; without even the implied warranty of
17MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18GNU General Public License for more details.
19
20You should have received a copy of the GNU General Public License
21along with GCC; see the file COPYING.  If not, write to
22the Free Software Foundation, 51 Franklin Street, Fifth Floor,
23Boston, MA 02110-1301, USA.  */
24
25enum cmp_type				/* comparison type */
26{
27  CMP_SI,				/* compare integers */
28  CMP_SF,				/* compare single precision floats */
29  CMP_DF,				/* compare double precision floats */
30  CMP_MAX				/* max comparison type */
31};
32
33/* For long call handling.  */
34extern unsigned long total_code_bytes;
35
36/* Which processor to schedule for.  */
37
38enum processor_type
39{
40  PROCESSOR_700,
41  PROCESSOR_7100,
42  PROCESSOR_7100LC,
43  PROCESSOR_7200,
44  PROCESSOR_7300,
45  PROCESSOR_8000
46};
47
48/* For -mschedule= option.  */
49extern enum processor_type pa_cpu;
50
51/* For -munix= option.  */
52extern int flag_pa_unix;
53
54#define pa_cpu_attr ((enum attr_cpu)pa_cpu)
55
56/* Print subsidiary information on the compiler version in use.  */
57
58#define TARGET_VERSION fputs (" (hppa)", stderr);
59
60#define TARGET_PA_10 (!TARGET_PA_11 && !TARGET_PA_20)
61
62/* Generate code for the HPPA 2.0 architecture in 64bit mode.  */
63#ifndef TARGET_64BIT
64#define TARGET_64BIT 0
65#endif
66
67/* Generate code for ELF32 ABI.  */
68#ifndef TARGET_ELF32
69#define TARGET_ELF32 0
70#endif
71
72/* Generate code for SOM 32bit ABI.  */
73#ifndef TARGET_SOM
74#define TARGET_SOM 0
75#endif
76
77/* HP-UX UNIX features.  */
78#ifndef TARGET_HPUX
79#define TARGET_HPUX 0
80#endif
81
82/* HP-UX 10.10 UNIX 95 features.  */
83#ifndef TARGET_HPUX_10_10
84#define TARGET_HPUX_10_10 0
85#endif
86
87/* HP-UX 11i multibyte and UNIX 98 extensions.  */
88#ifndef TARGET_HPUX_11_11
89#define TARGET_HPUX_11_11 0
90#endif
91
92/* The following three defines are potential target switches.  The current
93   defines are optimal given the current capabilities of GAS and GNU ld.  */
94
95/* Define to a C expression evaluating to true to use long absolute calls.
96   Currently, only the HP assembler and SOM linker support long absolute
97   calls.  They are used only in non-pic code.  */
98#define TARGET_LONG_ABS_CALL (TARGET_SOM && !TARGET_GAS)
99
100/* Define to a C expression evaluating to true to use long pic symbol
101   difference calls.  This is a call variant similar to the long pic
102   pc-relative call.  Long pic symbol difference calls are only used with
103   the HP SOM linker.  Currently, only the HP assembler supports these
104   calls.  GAS doesn't allow an arbitrary difference of two symbols.  */
105#define TARGET_LONG_PIC_SDIFF_CALL (!TARGET_GAS)
106
107/* Define to a C expression evaluating to true to use long pic
108   pc-relative calls.  Long pic pc-relative calls are only used with
109   GAS.  Currently, they are usable for calls within a module but
110   not for external calls.  */
111#define TARGET_LONG_PIC_PCREL_CALL 0
112
113/* Define to a C expression evaluating to true to use SOM secondary
114   definition symbols for weak support.  Linker support for secondary
115   definition symbols is buggy prior to HP-UX 11.X.  */
116#define TARGET_SOM_SDEF 0
117
118/* Define to a C expression evaluating to true to save the entry value
119   of SP in the current frame marker.  This is normally unnecessary.
120   However, the HP-UX unwind library looks at the SAVE_SP callinfo flag.
121   HP compilers don't use this flag but it is supported by the assembler.
122   We set this flag to indicate that register %r3 has been saved at the
123   start of the frame.  Thus, when the HP unwind library is used, we
124   need to generate additional code to save SP into the frame marker.  */
125#define TARGET_HPUX_UNWIND_LIBRARY 0
126
127#ifndef TARGET_DEFAULT
128#define TARGET_DEFAULT (MASK_GAS | MASK_JUMP_IN_DELAY | MASK_BIG_SWITCH)
129#endif
130
131#ifndef TARGET_CPU_DEFAULT
132#define TARGET_CPU_DEFAULT 0
133#endif
134
135#ifndef TARGET_SCHED_DEFAULT
136#define TARGET_SCHED_DEFAULT PROCESSOR_8000
137#endif
138
139/* Support for a compile-time default CPU, et cetera.  The rules are:
140   --with-schedule is ignored if -mschedule is specified.
141   --with-arch is ignored if -march is specified.  */
142#define OPTION_DEFAULT_SPECS \
143  {"arch", "%{!march=*:-march=%(VALUE)}" }, \
144  {"schedule", "%{!mschedule=*:-mschedule=%(VALUE)}" }
145
146/* Specify the dialect of assembler to use.  New mnemonics is dialect one
147   and the old mnemonics are dialect zero.  */
148#define ASSEMBLER_DIALECT (TARGET_PA_20 ? 1 : 0)
149
150#define OVERRIDE_OPTIONS override_options ()
151
152/* Override some settings from dbxelf.h.  */
153
154/* We do not have to be compatible with dbx, so we enable gdb extensions
155   by default.  */
156#define DEFAULT_GDB_EXTENSIONS 1
157
158/* This used to be zero (no max length), but big enums and such can
159   cause huge strings which killed gas.
160
161   We also have to avoid lossage in dbxout.c -- it does not compute the
162   string size accurately, so we are real conservative here.  */
163#undef DBX_CONTIN_LENGTH
164#define DBX_CONTIN_LENGTH 3000
165
166/* GDB always assumes the current function's frame begins at the value
167   of the stack pointer upon entry to the current function.  Accessing
168   local variables and parameters passed on the stack is done using the
169   base of the frame + an offset provided by GCC.
170
171   For functions which have frame pointers this method works fine;
172   the (frame pointer) == (stack pointer at function entry) and GCC provides
173   an offset relative to the frame pointer.
174
175   This loses for functions without a frame pointer; GCC provides an offset
176   which is relative to the stack pointer after adjusting for the function's
177   frame size.  GDB would prefer the offset to be relative to the value of
178   the stack pointer at the function's entry.  Yuk!  */
179#define DEBUGGER_AUTO_OFFSET(X) \
180  ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) \
181    + (frame_pointer_needed ? 0 : compute_frame_size (get_frame_size (), 0)))
182
183#define DEBUGGER_ARG_OFFSET(OFFSET, X) \
184  ((GET_CODE (X) == PLUS ? OFFSET : 0) \
185    + (frame_pointer_needed ? 0 : compute_frame_size (get_frame_size (), 0)))
186
187#define TARGET_CPU_CPP_BUILTINS()				\
188do {								\
189     builtin_assert("cpu=hppa");				\
190     builtin_assert("machine=hppa");				\
191     builtin_define("__hppa");					\
192     builtin_define("__hppa__");				\
193     if (TARGET_PA_20)						\
194       builtin_define("_PA_RISC2_0");				\
195     else if (TARGET_PA_11)					\
196       builtin_define("_PA_RISC1_1");				\
197     else							\
198       builtin_define("_PA_RISC1_0");				\
199} while (0)
200
201/* An old set of OS defines for various BSD-like systems.  */
202#define TARGET_OS_CPP_BUILTINS()				\
203  do								\
204    {								\
205	builtin_define_std ("REVARGV");				\
206	builtin_define_std ("hp800");				\
207	builtin_define_std ("hp9000");				\
208	builtin_define_std ("hp9k8");				\
209	if (!c_dialect_cxx () && !flag_iso)			\
210	  builtin_define ("hppa");				\
211	builtin_define_std ("spectrum");			\
212	builtin_define_std ("unix");				\
213	builtin_assert ("system=bsd");				\
214	builtin_assert ("system=unix");				\
215    }								\
216  while (0)
217
218#define CC1_SPEC "%{pg:} %{p:}"
219
220#define LINK_SPEC "%{mlinker-opt:-O} %{!shared:-u main} %{shared:-b}"
221
222/* We don't want -lg.  */
223#ifndef LIB_SPEC
224#define LIB_SPEC "%{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p}"
225#endif
226
227/* This macro defines command-line switches that modify the default
228   target name.
229
230   The definition is be an initializer for an array of structures.  Each
231   array element has have three elements: the switch name, one of the
232   enumeration codes ADD or DELETE to indicate whether the string should be
233   inserted or deleted, and the string to be inserted or deleted.  */
234#define MODIFY_TARGET_NAME {{"-32", DELETE, "64"}, {"-64", ADD, "64"}}
235
236/* Make gcc agree with <machine/ansi.h> */
237
238#define SIZE_TYPE "unsigned int"
239#define PTRDIFF_TYPE "int"
240#define WCHAR_TYPE "unsigned int"
241#define WCHAR_TYPE_SIZE 32
242
243/* Show we can debug even without a frame pointer.  */
244#define CAN_DEBUG_WITHOUT_FP
245
246/* target machine storage layout */
247typedef struct machine_function GTY(())
248{
249  /* Flag indicating that a .NSUBSPA directive has been output for
250     this function.  */
251  int in_nsubspa;
252} machine_function;
253
254/* Define this macro if it is advisable to hold scalars in registers
255   in a wider mode than that declared by the program.  In such cases,
256   the value is constrained to be within the bounds of the declared
257   type, but kept valid in the wider mode.  The signedness of the
258   extension may differ from that of the type.  */
259
260#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE)  \
261  if (GET_MODE_CLASS (MODE) == MODE_INT	\
262      && GET_MODE_SIZE (MODE) < UNITS_PER_WORD)  	\
263    (MODE) = word_mode;
264
265/* Define this if most significant bit is lowest numbered
266   in instructions that operate on numbered bit-fields.  */
267#define BITS_BIG_ENDIAN 1
268
269/* Define this if most significant byte of a word is the lowest numbered.  */
270/* That is true on the HP-PA.  */
271#define BYTES_BIG_ENDIAN 1
272
273/* Define this if most significant word of a multiword number is lowest
274   numbered.  */
275#define WORDS_BIG_ENDIAN 1
276
277#define MAX_BITS_PER_WORD 64
278
279/* Width of a word, in units (bytes).  */
280#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
281
282/* Minimum number of units in a word.  If this is undefined, the default
283   is UNITS_PER_WORD.  Otherwise, it is the constant value that is the
284   smallest value that UNITS_PER_WORD can have at run-time.
285
286   FIXME: This needs to be 4 when TARGET_64BIT is true to suppress the
287   building of various TImode routines in libgcc.  The HP runtime
288   specification doesn't provide the alignment requirements and calling
289   conventions for TImode variables.  */
290#define MIN_UNITS_PER_WORD 4
291
292/* The widest floating point format supported by the hardware.  Note that
293   setting this influences some Ada floating point type sizes, currently
294   required for GNAT to operate properly.  */
295#define WIDEST_HARDWARE_FP_SIZE 64
296
297/* Allocation boundary (in *bits*) for storing arguments in argument list.  */
298#define PARM_BOUNDARY BITS_PER_WORD
299
300/* Largest alignment required for any stack parameter, in bits.
301   Don't define this if it is equal to PARM_BOUNDARY */
302#define MAX_PARM_BOUNDARY BIGGEST_ALIGNMENT
303
304/* Boundary (in *bits*) on which stack pointer is always aligned;
305   certain optimizations in combine depend on this.
306
307   The HP-UX runtime documents mandate 64-byte and 16-byte alignment for
308   the stack on the 32 and 64-bit ports, respectively.  However, we
309   are only guaranteed that the stack is aligned to BIGGEST_ALIGNMENT
310   in main.  Thus, we treat the former as the preferred alignment.  */
311#define STACK_BOUNDARY BIGGEST_ALIGNMENT
312#define PREFERRED_STACK_BOUNDARY (TARGET_64BIT ? 128 : 512)
313
314/* Allocation boundary (in *bits*) for the code of a function.  */
315#define FUNCTION_BOUNDARY BITS_PER_WORD
316
317/* Alignment of field after `int : 0' in a structure.  */
318#define EMPTY_FIELD_BOUNDARY 32
319
320/* Every structure's size must be a multiple of this.  */
321#define STRUCTURE_SIZE_BOUNDARY 8
322
323/* A bit-field declared as `int' forces `int' alignment for the struct.  */
324#define PCC_BITFIELD_TYPE_MATTERS 1
325
326/* No data type wants to be aligned rounder than this.  */
327#define BIGGEST_ALIGNMENT (2 * BITS_PER_WORD)
328
329/* Get around hp-ux assembler bug, and make strcpy of constants fast.  */
330#define CONSTANT_ALIGNMENT(CODE, TYPEALIGN) \
331  ((TYPEALIGN) < 32 ? 32 : (TYPEALIGN))
332
333/* Make arrays of chars word-aligned for the same reasons.  */
334#define DATA_ALIGNMENT(TYPE, ALIGN)		\
335  (TREE_CODE (TYPE) == ARRAY_TYPE		\
336   && TYPE_MODE (TREE_TYPE (TYPE)) == QImode	\
337   && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
338
339/* Make local arrays of chars word-aligned for the same reasons.  */
340#define LOCAL_ALIGNMENT(TYPE, ALIGN) DATA_ALIGNMENT (TYPE, ALIGN)
341
342/* Set this nonzero if move instructions will actually fail to work
343   when given unaligned data.  */
344#define STRICT_ALIGNMENT 1
345
346/* Value is 1 if it is a good idea to tie two pseudo registers
347   when one has mode MODE1 and one has mode MODE2.
348   If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
349   for any hard reg, then this must be 0 for correct output.  */
350#define MODES_TIEABLE_P(MODE1, MODE2) \
351  (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2))
352
353/* Specify the registers used for certain standard purposes.
354   The values of these macros are register numbers.  */
355
356/* The HP-PA pc isn't overloaded on a register that the compiler knows about.  */
357/* #define PC_REGNUM  */
358
359/* Register to use for pushing function arguments.  */
360#define STACK_POINTER_REGNUM 30
361
362/* Base register for access to local variables of the function.  */
363#define FRAME_POINTER_REGNUM 3
364
365/* Value should be nonzero if functions must have frame pointers.  */
366#define FRAME_POINTER_REQUIRED \
367  (current_function_calls_alloca)
368
369/* Don't allow hard registers to be renamed into r2 unless r2
370   is already live or already being saved (due to eh).  */
371
372#define HARD_REGNO_RENAME_OK(OLD_REG, NEW_REG) \
373  ((NEW_REG) != 2 || regs_ever_live[2] || current_function_calls_eh_return)
374
375/* C statement to store the difference between the frame pointer
376   and the stack pointer values immediately after the function prologue.
377
378   Note, we always pretend that this is a leaf function because if
379   it's not, there's no point in trying to eliminate the
380   frame pointer.  If it is a leaf function, we guessed right!  */
381#define INITIAL_FRAME_POINTER_OFFSET(VAR) \
382  do {(VAR) = - compute_frame_size (get_frame_size (), 0);} while (0)
383
384/* Base register for access to arguments of the function.  */
385#define ARG_POINTER_REGNUM (TARGET_64BIT ? 29 : 3)
386
387/* Register in which static-chain is passed to a function.  */
388#define STATIC_CHAIN_REGNUM (TARGET_64BIT ? 31 : 29)
389
390/* Register used to address the offset table for position-independent
391   data references.  */
392#define PIC_OFFSET_TABLE_REGNUM \
393  (flag_pic ? (TARGET_64BIT ? 27 : 19) : INVALID_REGNUM)
394
395#define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED 1
396
397/* Function to return the rtx used to save the pic offset table register
398   across function calls.  */
399extern struct rtx_def *hppa_pic_save_rtx (void);
400
401#define DEFAULT_PCC_STRUCT_RETURN 0
402
403/* Register in which address to store a structure value
404   is passed to a function.  */
405#define PA_STRUCT_VALUE_REGNUM 28
406
407/* Describe how we implement __builtin_eh_return.  */
408#define EH_RETURN_DATA_REGNO(N)	\
409  ((N) < 3 ? (N) + 20 : (N) == 3 ? 31 : INVALID_REGNUM)
410#define EH_RETURN_STACKADJ_RTX	gen_rtx_REG (Pmode, 29)
411#define EH_RETURN_HANDLER_RTX \
412  gen_rtx_MEM (word_mode,						\
413	       gen_rtx_PLUS (word_mode, frame_pointer_rtx,		\
414			     TARGET_64BIT ? GEN_INT (-16) : GEN_INT (-20)))
415
416/* Offset from the frame pointer register value to the top of stack.  */
417#define FRAME_POINTER_CFA_OFFSET(FNDECL) 0
418
419/* A C expression whose value is RTL representing the location of the
420   incoming return address at the beginning of any function, before the
421   prologue.  You only need to define this macro if you want to support
422   call frame debugging information like that provided by DWARF 2.  */
423#define INCOMING_RETURN_ADDR_RTX (gen_rtx_REG (word_mode, 2))
424#define DWARF_FRAME_RETURN_COLUMN (DWARF_FRAME_REGNUM (2))
425
426/* A C expression whose value is an integer giving a DWARF 2 column
427   number that may be used as an alternate return column.  This should
428   be defined only if DWARF_FRAME_RETURN_COLUMN is set to a general
429   register, but an alternate column needs to be used for signal frames.
430
431   Column 0 is not used but unfortunately its register size is set to
432   4 bytes (sizeof CCmode) so it can't be used on 64-bit targets.  */
433#define DWARF_ALT_FRAME_RETURN_COLUMN FIRST_PSEUDO_REGISTER
434
435/* This macro chooses the encoding of pointers embedded in the exception
436   handling sections.  If at all possible, this should be defined such
437   that the exception handling section will not require dynamic relocations,
438   and so may be read-only.
439
440   Because the HP assembler auto aligns, it is necessary to use
441   DW_EH_PE_aligned.  It's not possible to make the data read-only
442   on the HP-UX SOM port since the linker requires fixups for label
443   differences in different sections to be word aligned.  However,
444   the SOM linker can do unaligned fixups for absolute pointers.
445   We also need aligned pointers for global and function pointers.
446
447   Although the HP-UX 64-bit ELF linker can handle unaligned pc-relative
448   fixups, the runtime doesn't have a consistent relationship between
449   text and data for dynamically loaded objects.  Thus, it's not possible
450   to use pc-relative encoding for pointers on this target.  It may be
451   possible to use segment relative encodings but GAS doesn't currently
452   have a mechanism to generate these encodings.  For other targets, we
453   use pc-relative encoding for pointers.  If the pointer might require
454   dynamic relocation, we make it indirect.  */
455#define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL)			\
456  (TARGET_GAS && !TARGET_HPUX						\
457   ? (DW_EH_PE_pcrel							\
458      | ((GLOBAL) || (CODE) == 2 ? DW_EH_PE_indirect : 0)		\
459      | (TARGET_64BIT ? DW_EH_PE_sdata8 : DW_EH_PE_sdata4))		\
460   : (!TARGET_GAS || (GLOBAL) || (CODE) == 2				\
461      ? DW_EH_PE_aligned : DW_EH_PE_absptr))
462
463/* Handle special EH pointer encodings.  Absolute, pc-relative, and
464   indirect are handled automatically.  We output pc-relative, and
465   indirect pc-relative ourself since we need some special magic to
466   generate pc-relative relocations, and to handle indirect function
467   pointers.  */
468#define ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX(FILE, ENCODING, SIZE, ADDR, DONE) \
469  do {									\
470    if (((ENCODING) & 0x70) == DW_EH_PE_pcrel)				\
471      {									\
472	fputs (integer_asm_op (SIZE, FALSE), FILE);			\
473	if ((ENCODING) & DW_EH_PE_indirect)				\
474	  output_addr_const (FILE, get_deferred_plabel (ADDR));		\
475	else								\
476	  assemble_name (FILE, XSTR ((ADDR), 0));			\
477	fputs ("+8-$PIC_pcrel$0", FILE);				\
478	goto DONE;							\
479      }									\
480    } while (0)
481
482/* The letters I, J, K, L and M in a register constraint string
483   can be used to stand for particular ranges of immediate operands.
484   This macro defines what the ranges are.
485   C is the letter, and VALUE is a constant value.
486   Return 1 if VALUE is in the range specified by C.
487
488   `I' is used for the 11 bit constants.
489   `J' is used for the 14 bit constants.
490   `K' is used for values that can be moved with a zdepi insn.
491   `L' is used for the 5 bit constants.
492   `M' is used for 0.
493   `N' is used for values with the least significant 11 bits equal to zero
494	                  and when sign extended from 32 to 64 bits the
495			  value does not change.
496   `O' is used for numbers n such that n+1 is a power of 2.
497   */
498
499#define CONST_OK_FOR_LETTER_P(VALUE, C)  \
500  ((C) == 'I' ? VAL_11_BITS_P (VALUE)					\
501   : (C) == 'J' ? VAL_14_BITS_P (VALUE)					\
502   : (C) == 'K' ? zdepi_cint_p (VALUE)					\
503   : (C) == 'L' ? VAL_5_BITS_P (VALUE)					\
504   : (C) == 'M' ? (VALUE) == 0						\
505   : (C) == 'N' ? (((VALUE) & (((HOST_WIDE_INT) -1 << 31) | 0x7ff)) == 0 \
506		   || (((VALUE) & (((HOST_WIDE_INT) -1 << 31) | 0x7ff))	\
507		       == (HOST_WIDE_INT) -1 << 31))			\
508   : (C) == 'O' ? (((VALUE) & ((VALUE) + 1)) == 0)			\
509   : (C) == 'P' ? and_mask_p (VALUE)					\
510   : 0)
511
512/* Similar, but for floating or large integer constants, and defining letters
513   G and H.   Here VALUE is the CONST_DOUBLE rtx itself.
514
515   For PA, `G' is the floating-point constant zero.  `H' is undefined.  */
516
517#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C)  			\
518  ((C) == 'G' ? (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT	\
519		 && (VALUE) == CONST0_RTX (GET_MODE (VALUE)))		\
520   : 0)
521
522/* The class value for index registers, and the one for base regs.  */
523#define INDEX_REG_CLASS GENERAL_REGS
524#define BASE_REG_CLASS GENERAL_REGS
525
526#define FP_REG_CLASS_P(CLASS) \
527  ((CLASS) == FP_REGS || (CLASS) == FPUPPER_REGS)
528
529/* True if register is floating-point.  */
530#define FP_REGNO_P(N) ((N) >= FP_REG_FIRST && (N) <= FP_REG_LAST)
531
532/* Given an rtx X being reloaded into a reg required to be
533   in class CLASS, return the class of reg to actually use.
534   In general this is just CLASS; but on some machines
535   in some cases it is preferable to use a more restrictive class.  */
536#define PREFERRED_RELOAD_CLASS(X,CLASS) (CLASS)
537
538#define MAYBE_FP_REG_CLASS_P(CLASS) \
539  reg_classes_intersect_p ((CLASS), FP_REGS)
540
541/* On the PA it is not possible to directly move data between
542   GENERAL_REGS and FP_REGS.  On the 32-bit port, we use the
543   location at SP-16.  We don't expose this location in the RTL to
544   avoid scheduling related problems.  For example, the store and
545   load could be separated by a call to a pure or const function
546   which has no frame and uses SP-16.  */
547#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE)			\
548  (TARGET_64BIT								\
549   && (MAYBE_FP_REG_CLASS_P (CLASS1) != FP_REG_CLASS_P (CLASS2)		\
550       || MAYBE_FP_REG_CLASS_P (CLASS2) != FP_REG_CLASS_P (CLASS1)))
551
552
553/* Stack layout; function entry, exit and calling.  */
554
555/* Define this if pushing a word on the stack
556   makes the stack pointer a smaller address.  */
557/* #define STACK_GROWS_DOWNWARD */
558
559/* Believe it or not.  */
560#define ARGS_GROW_DOWNWARD
561
562/* Define this to nonzero if the nominal address of the stack frame
563   is at the high-address end of the local variables;
564   that is, each additional local variable allocated
565   goes at a more negative offset in the frame.  */
566#define FRAME_GROWS_DOWNWARD 0
567
568/* Offset within stack frame to start allocating local variables at.
569   If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
570   first local allocated.  Otherwise, it is the offset to the BEGINNING
571   of the first local allocated.
572
573   On the 32-bit ports, we reserve one slot for the previous frame
574   pointer and one fill slot.  The fill slot is for compatibility
575   with HP compiled programs.  On the 64-bit ports, we reserve one
576   slot for the previous frame pointer.  */
577#define STARTING_FRAME_OFFSET 8
578
579/* Define STACK_ALIGNMENT_NEEDED to zero to disable final alignment
580   of the stack.  The default is to align it to STACK_BOUNDARY.  */
581#define STACK_ALIGNMENT_NEEDED 0
582
583/* If we generate an insn to push BYTES bytes,
584   this says how many the stack pointer really advances by.
585   On the HP-PA, don't define this because there are no push insns.  */
586/*  #define PUSH_ROUNDING(BYTES) */
587
588/* Offset of first parameter from the argument pointer register value.
589   This value will be negated because the arguments grow down.
590   Also note that on STACK_GROWS_UPWARD machines (such as this one)
591   this is the distance from the frame pointer to the end of the first
592   argument, not it's beginning.  To get the real offset of the first
593   argument, the size of the argument must be added.  */
594
595#define FIRST_PARM_OFFSET(FNDECL) (TARGET_64BIT ? -64 : -32)
596
597/* When a parameter is passed in a register, stack space is still
598   allocated for it.  */
599#define REG_PARM_STACK_SPACE(DECL) (TARGET_64BIT ? 64 : 16)
600
601/* Define this if the above stack space is to be considered part of the
602   space allocated by the caller.  */
603#define OUTGOING_REG_PARM_STACK_SPACE
604
605/* Keep the stack pointer constant throughout the function.
606   This is both an optimization and a necessity: longjmp
607   doesn't behave itself when the stack pointer moves within
608   the function!  */
609#define ACCUMULATE_OUTGOING_ARGS 1
610
611/* The weird HPPA calling conventions require a minimum of 48 bytes on
612   the stack: 16 bytes for register saves, and 32 bytes for magic.
613   This is the difference between the logical top of stack and the
614   actual sp.
615
616   On the 64-bit port, the HP C compiler allocates a 48-byte frame
617   marker, although the runtime documentation only describes a 16
618   byte marker.  For compatibility, we allocate 48 bytes.  */
619#define STACK_POINTER_OFFSET \
620  (TARGET_64BIT ? -(current_function_outgoing_args_size + 48): -32)
621
622#define STACK_DYNAMIC_OFFSET(FNDECL)	\
623  (TARGET_64BIT				\
624   ? (STACK_POINTER_OFFSET)		\
625   : ((STACK_POINTER_OFFSET) - current_function_outgoing_args_size))
626
627/* Value is 1 if returning from a function call automatically
628   pops the arguments described by the number-of-args field in the call.
629   FUNDECL is the declaration node of the function (as a tree),
630   FUNTYPE is the data type of the function (as a tree),
631   or for a library call it is an identifier node for the subroutine name.  */
632
633#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
634
635/* Define how to find the value returned by a function.
636   VALTYPE is the data type of the value (as a tree).
637   If the precise function being called is known, FUNC is its FUNCTION_DECL;
638   otherwise, FUNC is 0.  */
639
640#define FUNCTION_VALUE(VALTYPE, FUNC) function_value (VALTYPE, FUNC)
641
642/* Define how to find the value returned by a library function
643   assuming the value has mode MODE.  */
644
645#define LIBCALL_VALUE(MODE)	\
646  gen_rtx_REG (MODE,							\
647	       (! TARGET_SOFT_FLOAT					\
648		&& ((MODE) == SFmode || (MODE) == DFmode) ? 32 : 28))
649
650/* 1 if N is a possible register number for a function value
651   as seen by the caller.  */
652
653#define FUNCTION_VALUE_REGNO_P(N) \
654  ((N) == 28 || (! TARGET_SOFT_FLOAT && (N) == 32))
655
656
657/* Define a data type for recording info about an argument list
658   during the scan of that argument list.  This data type should
659   hold all necessary information about the function itself
660   and about the args processed so far, enough to enable macros
661   such as FUNCTION_ARG to determine where the next arg should go.
662
663   On the HP-PA, the WORDS field holds the number of words
664   of arguments scanned so far (including the invisible argument,
665   if any, which holds the structure-value-address).  Thus, 4 or
666   more means all following args should go on the stack.
667
668   The INCOMING field tracks whether this is an "incoming" or
669   "outgoing" argument.
670
671   The INDIRECT field indicates whether this is is an indirect
672   call or not.
673
674   The NARGS_PROTOTYPE field indicates that an argument does not
675   have a prototype when it less than or equal to 0.  */
676
677struct hppa_args {int words, nargs_prototype, incoming, indirect; };
678
679#define CUMULATIVE_ARGS struct hppa_args
680
681/* Initialize a variable CUM of type CUMULATIVE_ARGS
682   for a call to a function whose data type is FNTYPE.
683   For a library call, FNTYPE is 0.  */
684
685#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
686  (CUM).words = 0, 							\
687  (CUM).incoming = 0,							\
688  (CUM).indirect = (FNTYPE) && !(FNDECL),				\
689  (CUM).nargs_prototype = (FNTYPE && TYPE_ARG_TYPES (FNTYPE)		\
690			   ? (list_length (TYPE_ARG_TYPES (FNTYPE)) - 1	\
691			      + (TYPE_MODE (TREE_TYPE (FNTYPE)) == BLKmode \
692				 || pa_return_in_memory (TREE_TYPE (FNTYPE), 0))) \
693			   : 0)
694
695
696
697/* Similar, but when scanning the definition of a procedure.  We always
698   set NARGS_PROTOTYPE large so we never return a PARALLEL.  */
699
700#define INIT_CUMULATIVE_INCOMING_ARGS(CUM,FNTYPE,IGNORE) \
701  (CUM).words = 0,				\
702  (CUM).incoming = 1,				\
703  (CUM).indirect = 0,				\
704  (CUM).nargs_prototype = 1000
705
706/* Figure out the size in words of the function argument.  The size
707   returned by this macro should always be greater than zero because
708   we pass variable and zero sized objects by reference.  */
709
710#define FUNCTION_ARG_SIZE(MODE, TYPE)	\
711  ((((MODE) != BLKmode \
712     ? (HOST_WIDE_INT) GET_MODE_SIZE (MODE) \
713     : int_size_in_bytes (TYPE)) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
714
715/* Update the data in CUM to advance over an argument
716   of mode MODE and data type TYPE.
717   (TYPE is null for libcalls where that information may not be available.)  */
718
719#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED)			\
720{ (CUM).nargs_prototype--;						\
721  (CUM).words += FUNCTION_ARG_SIZE(MODE, TYPE)	 			\
722    + (((CUM).words & 01) && (TYPE) != 0				\
723	&& FUNCTION_ARG_SIZE(MODE, TYPE) > 1);				\
724}
725
726/* Determine where to put an argument to a function.
727   Value is zero to push the argument on the stack,
728   or a hard register in which to store the argument.
729
730   MODE is the argument's machine mode.
731   TYPE is the data type of the argument (as a tree).
732    This is null for libcalls where that information may
733    not be available.
734   CUM is a variable of type CUMULATIVE_ARGS which gives info about
735    the preceding args and about the function being called.
736   NAMED is nonzero if this argument is a named parameter
737    (otherwise it is an extra parameter matching an ellipsis).
738
739   On the HP-PA the first four words of args are normally in registers
740   and the rest are pushed.  But any arg that won't entirely fit in regs
741   is pushed.
742
743   Arguments passed in registers are either 1 or 2 words long.
744
745   The caller must make a distinction between calls to explicitly named
746   functions and calls through pointers to functions -- the conventions
747   are different!  Calls through pointers to functions only use general
748   registers for the first four argument words.
749
750   Of course all this is different for the portable runtime model
751   HP wants everyone to use for ELF.  Ugh.  Here's a quick description
752   of how it's supposed to work.
753
754   1) callee side remains unchanged.  It expects integer args to be
755   in the integer registers, float args in the float registers and
756   unnamed args in integer registers.
757
758   2) caller side now depends on if the function being called has
759   a prototype in scope (rather than if it's being called indirectly).
760
761      2a) If there is a prototype in scope, then arguments are passed
762      according to their type (ints in integer registers, floats in float
763      registers, unnamed args in integer registers.
764
765      2b) If there is no prototype in scope, then floating point arguments
766      are passed in both integer and float registers.  egad.
767
768  FYI: The portable parameter passing conventions are almost exactly like
769  the standard parameter passing conventions on the RS6000.  That's why
770  you'll see lots of similar code in rs6000.h.  */
771
772/* If defined, a C expression which determines whether, and in which
773   direction, to pad out an argument with extra space.  */
774#define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding ((MODE), (TYPE))
775
776/* Specify padding for the last element of a block move between registers
777   and memory.
778
779   The 64-bit runtime specifies that objects need to be left justified
780   (i.e., the normal justification for a big endian target).  The 32-bit
781   runtime specifies right justification for objects smaller than 64 bits.
782   We use a DImode register in the parallel for 5 to 7 byte structures
783   so that there is only one element.  This allows the object to be
784   correctly padded.  */
785#define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
786  function_arg_padding ((MODE), (TYPE))
787
788/* Do not expect to understand this without reading it several times.  I'm
789   tempted to try and simply it, but I worry about breaking something.  */
790
791#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
792  function_arg (&CUM, MODE, TYPE, NAMED)
793
794/* If defined, a C expression that gives the alignment boundary, in
795   bits, of an argument with the specified mode and type.  If it is
796   not defined,  `PARM_BOUNDARY' is used for all arguments.  */
797
798/* Arguments larger than one word are double word aligned.  */
799
800#define FUNCTION_ARG_BOUNDARY(MODE, TYPE)				\
801  (((TYPE)								\
802    ? (integer_zerop (TYPE_SIZE (TYPE))					\
803       || !TREE_CONSTANT (TYPE_SIZE (TYPE))				\
804       || int_size_in_bytes (TYPE) <= UNITS_PER_WORD)			\
805    : GET_MODE_SIZE(MODE) <= UNITS_PER_WORD)				\
806   ? PARM_BOUNDARY : MAX_PARM_BOUNDARY)
807
808
809extern GTY(()) rtx hppa_compare_op0;
810extern GTY(()) rtx hppa_compare_op1;
811extern enum cmp_type hppa_branch_type;
812
813/* On HPPA, we emit profiling code as rtl via PROFILE_HOOK rather than
814   as assembly via FUNCTION_PROFILER.  Just output a local label.
815   We can't use the function label because the GAS SOM target can't
816   handle the difference of a global symbol and a local symbol.  */
817
818#ifndef FUNC_BEGIN_PROLOG_LABEL
819#define FUNC_BEGIN_PROLOG_LABEL        "LFBP"
820#endif
821
822#define FUNCTION_PROFILER(FILE, LABEL) \
823  (*targetm.asm_out.internal_label) (FILE, FUNC_BEGIN_PROLOG_LABEL, LABEL)
824
825#define PROFILE_HOOK(label_no) hppa_profile_hook (label_no)
826void hppa_profile_hook (int label_no);
827
828/* The profile counter if emitted must come before the prologue.  */
829#define PROFILE_BEFORE_PROLOGUE 1
830
831/* We never want final.c to emit profile counters.  When profile
832   counters are required, we have to defer emitting them to the end
833   of the current file.  */
834#define NO_PROFILE_COUNTERS 1
835
836/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
837   the stack pointer does not matter.  The value is tested only in
838   functions that have frame pointers.
839   No definition is equivalent to always zero.  */
840
841extern int may_call_alloca;
842
843#define EXIT_IGNORE_STACK	\
844 (get_frame_size () != 0	\
845  || current_function_calls_alloca || current_function_outgoing_args_size)
846
847/* Output assembler code for a block containing the constant parts
848   of a trampoline, leaving space for the variable parts.\
849
850   The trampoline sets the static chain pointer to STATIC_CHAIN_REGNUM
851   and then branches to the specified routine.
852
853   This code template is copied from text segment to stack location
854   and then patched with INITIALIZE_TRAMPOLINE to contain
855   valid values, and then entered as a subroutine.
856
857   It is best to keep this as small as possible to avoid having to
858   flush multiple lines in the cache.  */
859
860#define TRAMPOLINE_TEMPLATE(FILE) 					\
861  {									\
862    if (!TARGET_64BIT)							\
863      {									\
864	fputs ("\tldw	36(%r22),%r21\n", FILE);			\
865	fputs ("\tbb,>=,n	%r21,30,.+16\n", FILE);			\
866	if (ASSEMBLER_DIALECT == 0)					\
867	  fputs ("\tdepi	0,31,2,%r21\n", FILE);			\
868	else								\
869	  fputs ("\tdepwi	0,31,2,%r21\n", FILE);			\
870	fputs ("\tldw	4(%r21),%r19\n", FILE);				\
871	fputs ("\tldw	0(%r21),%r21\n", FILE);				\
872	if (TARGET_PA_20)						\
873	  {								\
874	    fputs ("\tbve	(%r21)\n", FILE);			\
875	    fputs ("\tldw	40(%r22),%r29\n", FILE);		\
876	    fputs ("\t.word	0\n", FILE);				\
877	    fputs ("\t.word	0\n", FILE);				\
878	  }								\
879	else								\
880	  {								\
881	    fputs ("\tldsid	(%r21),%r1\n", FILE);			\
882	    fputs ("\tmtsp	%r1,%sr0\n", FILE);			\
883	    fputs ("\tbe	0(%sr0,%r21)\n", FILE);			\
884	    fputs ("\tldw	40(%r22),%r29\n", FILE);		\
885	  }								\
886	fputs ("\t.word	0\n", FILE);					\
887	fputs ("\t.word	0\n", FILE);					\
888	fputs ("\t.word	0\n", FILE);					\
889	fputs ("\t.word	0\n", FILE);					\
890      }									\
891    else								\
892      {									\
893	fputs ("\t.dword 0\n", FILE);					\
894	fputs ("\t.dword 0\n", FILE);					\
895	fputs ("\t.dword 0\n", FILE);					\
896	fputs ("\t.dword 0\n", FILE);					\
897	fputs ("\tmfia	%r31\n", FILE);					\
898	fputs ("\tldd	24(%r31),%r1\n", FILE);				\
899	fputs ("\tldd	24(%r1),%r27\n", FILE);				\
900	fputs ("\tldd	16(%r1),%r1\n", FILE);				\
901	fputs ("\tbve	(%r1)\n", FILE);				\
902	fputs ("\tldd	32(%r31),%r31\n", FILE);			\
903	fputs ("\t.dword 0  ; fptr\n", FILE);				\
904	fputs ("\t.dword 0  ; static link\n", FILE);			\
905      }									\
906  }
907
908/* Length in units of the trampoline for entering a nested function.  */
909
910#define TRAMPOLINE_SIZE (TARGET_64BIT ? 72 : 52)
911
912/* Length in units of the trampoline instruction code.  */
913
914#define TRAMPOLINE_CODE_SIZE (TARGET_64BIT ? 24 : (TARGET_PA_20 ? 32 : 40))
915
916/* Minimum length of a cache line.  A length of 16 will work on all
917   PA-RISC processors.  All PA 1.1 processors have a cache line of
918   32 bytes.  Most but not all PA 2.0 processors have a cache line
919   of 64 bytes.  As cache flushes are expensive and we don't support
920   PA 1.0, we use a minimum length of 32.  */
921
922#define MIN_CACHELINE_SIZE 32
923
924/* Emit RTL insns to initialize the variable parts of a trampoline.
925   FNADDR is an RTX for the address of the function's pure code.
926   CXT is an RTX for the static chain value for the function.
927
928   Move the function address to the trampoline template at offset 36.
929   Move the static chain value to trampoline template at offset 40.
930   Move the trampoline address to trampoline template at offset 44.
931   Move r19 to trampoline template at offset 48.  The latter two
932   words create a plabel for the indirect call to the trampoline.
933
934   A similar sequence is used for the 64-bit port but the plabel is
935   at the beginning of the trampoline.
936
937   Finally, the cache entries for the trampoline code are flushed.
938   This is necessary to ensure that the trampoline instruction sequence
939   is written to memory prior to any attempts at prefetching the code
940   sequence.  */
941
942#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) 			\
943{									\
944  rtx start_addr = gen_reg_rtx (Pmode);					\
945  rtx end_addr = gen_reg_rtx (Pmode);					\
946  rtx line_length = gen_reg_rtx (Pmode);				\
947  rtx tmp;								\
948									\
949  if (!TARGET_64BIT)							\
950    {									\
951      tmp = memory_address (Pmode, plus_constant ((TRAMP), 36));	\
952      emit_move_insn (gen_rtx_MEM (Pmode, tmp), (FNADDR));		\
953      tmp = memory_address (Pmode, plus_constant ((TRAMP), 40));	\
954      emit_move_insn (gen_rtx_MEM (Pmode, tmp), (CXT));			\
955									\
956      /* Create a fat pointer for the trampoline.  */			\
957      tmp = memory_address (Pmode, plus_constant ((TRAMP), 44));	\
958      emit_move_insn (gen_rtx_MEM (Pmode, tmp), (TRAMP));		\
959      tmp = memory_address (Pmode, plus_constant ((TRAMP), 48));	\
960      emit_move_insn (gen_rtx_MEM (Pmode, tmp),				\
961		      gen_rtx_REG (Pmode, 19));				\
962									\
963      /* fdc and fic only use registers for the address to flush,	\
964	 they do not accept integer displacements.  We align the	\
965	 start and end addresses to the beginning of their respective	\
966	 cache lines to minimize the number of lines flushed.  */	\
967      tmp = force_reg (Pmode, (TRAMP));					\
968      emit_insn (gen_andsi3 (start_addr, tmp,				\
969			     GEN_INT (-MIN_CACHELINE_SIZE)));		\
970      tmp = force_reg (Pmode,						\
971		       plus_constant (tmp, TRAMPOLINE_CODE_SIZE - 1));	\
972      emit_insn (gen_andsi3 (end_addr, tmp,				\
973			     GEN_INT (-MIN_CACHELINE_SIZE)));		\
974      emit_move_insn (line_length, GEN_INT (MIN_CACHELINE_SIZE));	\
975      emit_insn (gen_dcacheflush (start_addr, end_addr, line_length));	\
976      emit_insn (gen_icacheflush (start_addr, end_addr, line_length,	\
977				  gen_reg_rtx (Pmode),			\
978				  gen_reg_rtx (Pmode)));		\
979    }									\
980  else									\
981    {									\
982      tmp = memory_address (Pmode, plus_constant ((TRAMP), 56));	\
983      emit_move_insn (gen_rtx_MEM (Pmode, tmp), (FNADDR));		\
984      tmp = memory_address (Pmode, plus_constant ((TRAMP), 64));	\
985      emit_move_insn (gen_rtx_MEM (Pmode, tmp), (CXT));			\
986									\
987      /* Create a fat pointer for the trampoline.  */			\
988      tmp = memory_address (Pmode, plus_constant ((TRAMP), 16));	\
989      emit_move_insn (gen_rtx_MEM (Pmode, tmp),				\
990		      force_reg (Pmode, plus_constant ((TRAMP), 32)));	\
991      tmp = memory_address (Pmode, plus_constant ((TRAMP), 24));	\
992      emit_move_insn (gen_rtx_MEM (Pmode, tmp),				\
993		      gen_rtx_REG (Pmode, 27));				\
994									\
995      /* fdc and fic only use registers for the address to flush,	\
996	 they do not accept integer displacements.  We align the	\
997	 start and end addresses to the beginning of their respective	\
998	 cache lines to minimize the number of lines flushed.  */	\
999      tmp = force_reg (Pmode, plus_constant ((TRAMP), 32));		\
1000      emit_insn (gen_anddi3 (start_addr, tmp,				\
1001			     GEN_INT (-MIN_CACHELINE_SIZE)));		\
1002      tmp = force_reg (Pmode,						\
1003		       plus_constant (tmp, TRAMPOLINE_CODE_SIZE - 1));	\
1004      emit_insn (gen_anddi3 (end_addr, tmp,				\
1005			     GEN_INT (-MIN_CACHELINE_SIZE)));		\
1006      emit_move_insn (line_length, GEN_INT (MIN_CACHELINE_SIZE));	\
1007      emit_insn (gen_dcacheflush (start_addr, end_addr, line_length));	\
1008      emit_insn (gen_icacheflush (start_addr, end_addr, line_length,	\
1009				  gen_reg_rtx (Pmode),			\
1010				  gen_reg_rtx (Pmode)));		\
1011    }									\
1012}
1013
1014/* Perform any machine-specific adjustment in the address of the trampoline.
1015   ADDR contains the address that was passed to INITIALIZE_TRAMPOLINE.
1016   Adjust the trampoline address to point to the plabel at offset 44.  */
1017
1018#define TRAMPOLINE_ADJUST_ADDRESS(ADDR) \
1019  if (!TARGET_64BIT) (ADDR) = memory_address (Pmode, plus_constant ((ADDR), 46))
1020
1021/* Implement `va_start' for varargs and stdarg.  */
1022
1023#define EXPAND_BUILTIN_VA_START(valist, nextarg) \
1024  hppa_va_start (valist, nextarg)
1025
1026/* Addressing modes, and classification of registers for them.
1027
1028   Using autoincrement addressing modes on PA8000 class machines is
1029   not profitable.  */
1030
1031#define HAVE_POST_INCREMENT (pa_cpu < PROCESSOR_8000)
1032#define HAVE_POST_DECREMENT (pa_cpu < PROCESSOR_8000)
1033
1034#define HAVE_PRE_DECREMENT (pa_cpu < PROCESSOR_8000)
1035#define HAVE_PRE_INCREMENT (pa_cpu < PROCESSOR_8000)
1036
1037/* Macros to check register numbers against specific register classes.  */
1038
1039/* The following macros assume that X is a hard or pseudo reg number.
1040   They give nonzero only if X is a hard reg of the suitable class
1041   or a pseudo reg currently allocated to a suitable hard reg.
1042   Since they use reg_renumber, they are safe only once reg_renumber
1043   has been allocated, which happens in local-alloc.c.  */
1044
1045#define REGNO_OK_FOR_INDEX_P(X) \
1046  ((X) && ((X) < 32							\
1047   || (X >= FIRST_PSEUDO_REGISTER					\
1048       && reg_renumber							\
1049       && (unsigned) reg_renumber[X] < 32)))
1050#define REGNO_OK_FOR_BASE_P(X) \
1051  ((X) && ((X) < 32							\
1052   || (X >= FIRST_PSEUDO_REGISTER					\
1053       && reg_renumber							\
1054       && (unsigned) reg_renumber[X] < 32)))
1055#define REGNO_OK_FOR_FP_P(X) \
1056  (FP_REGNO_P (X)							\
1057   || (X >= FIRST_PSEUDO_REGISTER					\
1058       && reg_renumber							\
1059       && FP_REGNO_P (reg_renumber[X])))
1060
1061/* Now macros that check whether X is a register and also,
1062   strictly, whether it is in a specified class.
1063
1064   These macros are specific to the HP-PA, and may be used only
1065   in code for printing assembler insns and in conditions for
1066   define_optimization.  */
1067
1068/* 1 if X is an fp register.  */
1069
1070#define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
1071
1072/* Maximum number of registers that can appear in a valid memory address.  */
1073
1074#define MAX_REGS_PER_ADDRESS 2
1075
1076/* Non-TLS symbolic references.  */
1077#define PA_SYMBOL_REF_TLS_P(RTX) \
1078  (GET_CODE (RTX) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (RTX) != 0)
1079
1080/* Recognize any constant value that is a valid address except
1081   for symbolic addresses.  We get better CSE by rejecting them
1082   here and allowing hppa_legitimize_address to break them up.  We
1083   use most of the constants accepted by CONSTANT_P, except CONST_DOUBLE.  */
1084
1085#define CONSTANT_ADDRESS_P(X) \
1086  ((GET_CODE (X) == LABEL_REF 						\
1087   || (GET_CODE (X) == SYMBOL_REF && !SYMBOL_REF_TLS_MODEL (X))		\
1088   || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST		\
1089   || GET_CODE (X) == HIGH) 						\
1090   && (reload_in_progress || reload_completed || ! symbolic_expression_p (X)))
1091
1092/* A C expression that is nonzero if we are using the new HP assembler.  */
1093
1094#ifndef NEW_HP_ASSEMBLER
1095#define NEW_HP_ASSEMBLER 0
1096#endif
1097
1098/* The macros below define the immediate range for CONST_INTS on
1099   the 64-bit port.  Constants in this range can be loaded in three
1100   instructions using a ldil/ldo/depdi sequence.  Constants outside
1101   this range are forced to the constant pool prior to reload.  */
1102
1103#define MAX_LEGIT_64BIT_CONST_INT ((HOST_WIDE_INT) 32 << 31)
1104#define MIN_LEGIT_64BIT_CONST_INT ((HOST_WIDE_INT) -32 << 31)
1105#define LEGITIMATE_64BIT_CONST_INT_P(X) \
1106  ((X) >= MIN_LEGIT_64BIT_CONST_INT && (X) < MAX_LEGIT_64BIT_CONST_INT)
1107
1108/* A C expression that is nonzero if X is a legitimate constant for an
1109   immediate operand.
1110
1111   We include all constant integers and constant doubles, but not
1112   floating-point, except for floating-point zero.  We reject LABEL_REFs
1113   if we're not using gas or the new HP assembler.
1114
1115   In 64-bit mode, we reject CONST_DOUBLES.  We also reject CONST_INTS
1116   that need more than three instructions to load prior to reload.  This
1117   limit is somewhat arbitrary.  It takes three instructions to load a
1118   CONST_INT from memory but two are memory accesses.  It may be better
1119   to increase the allowed range for CONST_INTS.  We may also be able
1120   to handle CONST_DOUBLES.  */
1121
1122#define LEGITIMATE_CONSTANT_P(X)				\
1123  ((GET_MODE_CLASS (GET_MODE (X)) != MODE_FLOAT			\
1124    || (X) == CONST0_RTX (GET_MODE (X)))			\
1125   && (NEW_HP_ASSEMBLER || TARGET_GAS || GET_CODE (X) != LABEL_REF)	\
1126   && !(TARGET_64BIT && GET_CODE (X) == CONST_DOUBLE)		\
1127   && !(TARGET_64BIT && GET_CODE (X) == CONST_INT		\
1128	&& !(HOST_BITS_PER_WIDE_INT <= 32			\
1129	     || (reload_in_progress || reload_completed)	\
1130	     || LEGITIMATE_64BIT_CONST_INT_P (INTVAL (X))	\
1131	     || cint_ok_for_move (INTVAL (X))))			\
1132   && !function_label_operand (X, VOIDmode))
1133
1134/* Target flags set on a symbol_ref.  */
1135
1136/* Set by ASM_OUTPUT_SYMBOL_REF when a symbol_ref is output.  */
1137#define SYMBOL_FLAG_REFERENCED (1 << SYMBOL_FLAG_MACH_DEP_SHIFT)
1138#define SYMBOL_REF_REFERENCED_P(RTX) \
1139  ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_REFERENCED) != 0)
1140
1141/* Subroutines for EXTRA_CONSTRAINT.
1142
1143   Return 1 iff OP is a pseudo which did not get a hard register and
1144   we are running the reload pass.  */
1145#define IS_RELOADING_PSEUDO_P(OP) \
1146  ((reload_in_progress					\
1147    && GET_CODE (OP) == REG				\
1148    && REGNO (OP) >= FIRST_PSEUDO_REGISTER		\
1149    && reg_renumber [REGNO (OP)] < 0))
1150
1151/* Return 1 iff OP is a scaled or unscaled index address.  */
1152#define IS_INDEX_ADDR_P(OP) \
1153  (GET_CODE (OP) == PLUS				\
1154   && GET_MODE (OP) == Pmode				\
1155   && (GET_CODE (XEXP (OP, 0)) == MULT			\
1156       || GET_CODE (XEXP (OP, 1)) == MULT		\
1157       || (REG_P (XEXP (OP, 0))				\
1158	   && REG_P (XEXP (OP, 1)))))
1159
1160/* Return 1 iff OP is a LO_SUM DLT address.  */
1161#define IS_LO_SUM_DLT_ADDR_P(OP) \
1162  (GET_CODE (OP) == LO_SUM				\
1163   && GET_MODE (OP) == Pmode				\
1164   && REG_P (XEXP (OP, 0))				\
1165   && REG_OK_FOR_BASE_P (XEXP (OP, 0))			\
1166   && GET_CODE (XEXP (OP, 1)) == UNSPEC)
1167
1168/* Optional extra constraints for this machine. Borrowed from sparc.h.
1169
1170   `A' is a LO_SUM DLT memory operand.
1171
1172   `Q' is any memory operand that isn't a symbolic, indexed or lo_sum
1173       memory operand.  Note that an unassigned pseudo register is such a
1174       memory operand.  Needed because reload will generate these things
1175       and then not re-recognize the insn, causing constrain_operands to
1176       fail.
1177
1178   `R' is a scaled/unscaled indexed memory operand.
1179
1180   `S' is the constant 31.
1181
1182   `T' is for floating-point loads and stores.
1183
1184   `U' is the constant 63.
1185
1186   `W' is a register indirect memory operand.  We could allow short
1187       displacements but GO_IF_LEGITIMATE_ADDRESS can't tell when a
1188       long displacement is valid.  This is only used for prefetch
1189       instructions with the `sl' completer.  */
1190
1191#define EXTRA_CONSTRAINT(OP, C) \
1192  ((C) == 'Q' ?								\
1193   (IS_RELOADING_PSEUDO_P (OP)						\
1194    || (GET_CODE (OP) == MEM						\
1195	&& (reload_in_progress						\
1196	    || memory_address_p (GET_MODE (OP), XEXP (OP, 0)))		\
1197	&& !symbolic_memory_operand (OP, VOIDmode)			\
1198	&& !IS_LO_SUM_DLT_ADDR_P (XEXP (OP, 0))				\
1199	&& !IS_INDEX_ADDR_P (XEXP (OP, 0))))				\
1200   : ((C) == 'W' ?							\
1201      (GET_CODE (OP) == MEM						\
1202       && REG_P (XEXP (OP, 0))						\
1203       && REG_OK_FOR_BASE_P (XEXP (OP, 0)))				\
1204   : ((C) == 'A' ?							\
1205      (GET_CODE (OP) == MEM						\
1206       && IS_LO_SUM_DLT_ADDR_P (XEXP (OP, 0)))				\
1207   : ((C) == 'R' ?							\
1208      (GET_CODE (OP) == MEM						\
1209       && IS_INDEX_ADDR_P (XEXP (OP, 0)))				\
1210   : ((C) == 'T' ? 							\
1211      (GET_CODE (OP) == MEM						\
1212       && !IS_LO_SUM_DLT_ADDR_P (XEXP (OP, 0))				\
1213       && !IS_INDEX_ADDR_P (XEXP (OP, 0))				\
1214       /* Floating-point loads and stores are used to load		\
1215	  integer values as well as floating-point values.		\
1216	  They don't have the same set of REG+D address modes		\
1217	  as integer loads and stores.  PA 1.x supports only		\
1218	  short displacements.  PA 2.0 supports long displacements	\
1219	  but the base register needs to be aligned.			\
1220									\
1221	  The checks in GO_IF_LEGITIMATE_ADDRESS for SFmode and		\
1222	  DFmode test the validity of an address for use in a		\
1223	  floating point load or store.  So, we use SFmode/DFmode	\
1224	  to see if the address is valid for a floating-point		\
1225	  load/store operation.  */					\
1226       && memory_address_p ((GET_MODE_SIZE (GET_MODE (OP)) == 4		\
1227			     ? SFmode					\
1228			     : DFmode),					\
1229			    XEXP (OP, 0)))				\
1230   : ((C) == 'S' ?							\
1231      (GET_CODE (OP) == CONST_INT && INTVAL (OP) == 31)			\
1232   : ((C) == 'U' ?							\
1233      (GET_CODE (OP) == CONST_INT && INTVAL (OP) == 63) : 0)))))))
1234
1235
1236/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1237   and check its validity for a certain class.
1238   We have two alternate definitions for each of them.
1239   The usual definition accepts all pseudo regs; the other rejects
1240   them unless they have been allocated suitable hard regs.
1241   The symbol REG_OK_STRICT causes the latter definition to be used.
1242
1243   Most source files want to accept pseudo regs in the hope that
1244   they will get allocated to the class that the insn wants them to be in.
1245   Source files for reload pass need to be strict.
1246   After reload, it makes no difference, since pseudo regs have
1247   been eliminated by then.  */
1248
1249#ifndef REG_OK_STRICT
1250
1251/* Nonzero if X is a hard reg that can be used as an index
1252   or if it is a pseudo reg.  */
1253#define REG_OK_FOR_INDEX_P(X) \
1254(REGNO (X) && (REGNO (X) < 32 || REGNO (X) >= FIRST_PSEUDO_REGISTER))
1255/* Nonzero if X is a hard reg that can be used as a base reg
1256   or if it is a pseudo reg.  */
1257#define REG_OK_FOR_BASE_P(X) \
1258(REGNO (X) && (REGNO (X) < 32 || REGNO (X) >= FIRST_PSEUDO_REGISTER))
1259
1260#else
1261
1262/* Nonzero if X is a hard reg that can be used as an index.  */
1263#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1264/* Nonzero if X is a hard reg that can be used as a base reg.  */
1265#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1266
1267#endif
1268
1269/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression that is a
1270   valid memory address for an instruction.  The MODE argument is the
1271   machine mode for the MEM expression that wants to use this address.
1272
1273   On HP PA-RISC, the legitimate address forms are REG+SMALLINT,
1274   REG+REG, and REG+(REG*SCALE).  The indexed address forms are only
1275   available with floating point loads and stores, and integer loads.
1276   We get better code by allowing indexed addresses in the initial
1277   RTL generation.
1278
1279   The acceptance of indexed addresses as legitimate implies that we
1280   must provide patterns for doing indexed integer stores, or the move
1281   expanders must force the address of an indexed store to a register.
1282   We have adopted the latter approach.
1283
1284   Another function of GO_IF_LEGITIMATE_ADDRESS is to ensure that
1285   the base register is a valid pointer for indexed instructions.
1286   On targets that have non-equivalent space registers, we have to
1287   know at the time of assembler output which register in a REG+REG
1288   pair is the base register.  The REG_POINTER flag is sometimes lost
1289   in reload and the following passes, so it can't be relied on during
1290   code generation.  Thus, we either have to canonicalize the order
1291   of the registers in REG+REG indexed addresses, or treat REG+REG
1292   addresses separately and provide patterns for both permutations.
1293
1294   The latter approach requires several hundred additional lines of
1295   code in pa.md.  The downside to canonicalizing is that a PLUS
1296   in the wrong order can't combine to form to make a scaled indexed
1297   memory operand.  As we won't need to canonicalize the operands if
1298   the REG_POINTER lossage can be fixed, it seems better canonicalize.
1299
1300   We initially break out scaled indexed addresses in canonical order
1301   in emit_move_sequence.  LEGITIMIZE_ADDRESS also canonicalizes
1302   scaled indexed addresses during RTL generation.  However, fold_rtx
1303   has its own opinion on how the operands of a PLUS should be ordered.
1304   If one of the operands is equivalent to a constant, it will make
1305   that operand the second operand.  As the base register is likely to
1306   be equivalent to a SYMBOL_REF, we have made it the second operand.
1307
1308   GO_IF_LEGITIMATE_ADDRESS accepts REG+REG as legitimate when the
1309   operands are in the order INDEX+BASE on targets with non-equivalent
1310   space registers, and in any order on targets with equivalent space
1311   registers.  It accepts both MULT+BASE and BASE+MULT for scaled indexing.
1312
1313   We treat a SYMBOL_REF as legitimate if it is part of the current
1314   function's constant-pool, because such addresses can actually be
1315   output as REG+SMALLINT.
1316
1317   Note we only allow 5 bit immediates for access to a constant address;
1318   doing so avoids losing for loading/storing a FP register at an address
1319   which will not fit in 5 bits.  */
1320
1321#define VAL_5_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x10 < 0x20)
1322#define INT_5_BITS(X) VAL_5_BITS_P (INTVAL (X))
1323
1324#define VAL_U5_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) < 0x20)
1325#define INT_U5_BITS(X) VAL_U5_BITS_P (INTVAL (X))
1326
1327#define VAL_11_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x400 < 0x800)
1328#define INT_11_BITS(X) VAL_11_BITS_P (INTVAL (X))
1329
1330#define VAL_14_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x2000 < 0x4000)
1331#define INT_14_BITS(X) VAL_14_BITS_P (INTVAL (X))
1332
1333#if HOST_BITS_PER_WIDE_INT > 32
1334#define VAL_32_BITS_P(X) \
1335  ((unsigned HOST_WIDE_INT)(X) + ((unsigned HOST_WIDE_INT) 1 << 31)    \
1336   < (unsigned HOST_WIDE_INT) 2 << 31)
1337#else
1338#define VAL_32_BITS_P(X) 1
1339#endif
1340#define INT_32_BITS(X) VAL_32_BITS_P (INTVAL (X))
1341
1342/* These are the modes that we allow for scaled indexing.  */
1343#define MODE_OK_FOR_SCALED_INDEXING_P(MODE) \
1344  ((TARGET_64BIT && (MODE) == DImode)					\
1345   || (MODE) == SImode							\
1346   || (MODE) == HImode							\
1347   || (!TARGET_SOFT_FLOAT && ((MODE) == DFmode || (MODE) == SFmode)))
1348
1349/* These are the modes that we allow for unscaled indexing.  */
1350#define MODE_OK_FOR_UNSCALED_INDEXING_P(MODE) \
1351  ((TARGET_64BIT && (MODE) == DImode)					\
1352   || (MODE) == SImode							\
1353   || (MODE) == HImode							\
1354   || (MODE) == QImode							\
1355   || (!TARGET_SOFT_FLOAT && ((MODE) == DFmode || (MODE) == SFmode)))
1356
1357#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1358{									\
1359  if ((REG_P (X) && REG_OK_FOR_BASE_P (X))				\
1360      || ((GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_DEC		\
1361	   || GET_CODE (X) == PRE_INC || GET_CODE (X) == POST_INC)	\
1362	  && REG_P (XEXP (X, 0))					\
1363	  && REG_OK_FOR_BASE_P (XEXP (X, 0))))				\
1364    goto ADDR;								\
1365  else if (GET_CODE (X) == PLUS)					\
1366    {									\
1367      rtx base = 0, index = 0;						\
1368      if (REG_P (XEXP (X, 1))						\
1369	  && REG_OK_FOR_BASE_P (XEXP (X, 1)))				\
1370	base = XEXP (X, 1), index = XEXP (X, 0);			\
1371      else if (REG_P (XEXP (X, 0))					\
1372	       && REG_OK_FOR_BASE_P (XEXP (X, 0)))			\
1373	base = XEXP (X, 0), index = XEXP (X, 1);			\
1374      if (base								\
1375	  && GET_CODE (index) == CONST_INT				\
1376	  && ((INT_14_BITS (index)					\
1377	       && (((MODE) != DImode					\
1378		    && (MODE) != SFmode					\
1379		    && (MODE) != DFmode)				\
1380		   /* The base register for DImode loads and stores	\
1381		      with long displacements must be aligned because	\
1382		      the lower three bits in the displacement are	\
1383		      assumed to be zero.  */				\
1384		   || ((MODE) == DImode					\
1385		       && (!TARGET_64BIT				\
1386			   || (INTVAL (index) % 8) == 0))		\
1387		   /* Similarly, the base register for SFmode/DFmode	\
1388		      loads and stores with long displacements must	\
1389		      be aligned.					\
1390									\
1391		      FIXME: the ELF32 linker clobbers the LSB of	\
1392		      the FP register number in PA 2.0 floating-point	\
1393		      insns with long displacements.  This is because	\
1394		      R_PARISC_DPREL14WR and other relocations like	\
1395		      it are not supported.  For now, we reject long	\
1396		      displacements on this target.  */			\
1397		   || (((MODE) == SFmode || (MODE) == DFmode)		\
1398		       && (TARGET_SOFT_FLOAT				\
1399			   || (TARGET_PA_20				\
1400			       && !TARGET_ELF32				\
1401			       && (INTVAL (index)			\
1402				   % GET_MODE_SIZE (MODE)) == 0)))))	\
1403	       || INT_5_BITS (index)))					\
1404	goto ADDR;							\
1405      if (!TARGET_DISABLE_INDEXING					\
1406	  /* Only accept the "canonical" INDEX+BASE operand order	\
1407	     on targets with non-equivalent space registers.  */	\
1408	  && (TARGET_NO_SPACE_REGS					\
1409	      ? (base && REG_P (index))					\
1410	      : (base == XEXP (X, 1) && REG_P (index)			\
1411		 && (reload_completed					\
1412		     || (reload_in_progress && HARD_REGISTER_P (base))	\
1413		     || REG_POINTER (base))				\
1414		 && (reload_completed					\
1415		     || (reload_in_progress && HARD_REGISTER_P (index))	\
1416		     || !REG_POINTER (index))))				\
1417	  && MODE_OK_FOR_UNSCALED_INDEXING_P (MODE)			\
1418	  && REG_OK_FOR_INDEX_P (index)					\
1419	  && borx_reg_operand (base, Pmode)				\
1420	  && borx_reg_operand (index, Pmode))				\
1421	goto ADDR;							\
1422      if (!TARGET_DISABLE_INDEXING					\
1423	  && base							\
1424	  && GET_CODE (index) == MULT					\
1425	  && MODE_OK_FOR_SCALED_INDEXING_P (MODE)			\
1426	  && REG_P (XEXP (index, 0))					\
1427	  && GET_MODE (XEXP (index, 0)) == Pmode			\
1428	  && REG_OK_FOR_INDEX_P (XEXP (index, 0))			\
1429	  && GET_CODE (XEXP (index, 1)) == CONST_INT			\
1430	  && INTVAL (XEXP (index, 1))					\
1431	     == (HOST_WIDE_INT) GET_MODE_SIZE (MODE)			\
1432	  && borx_reg_operand (base, Pmode))				\
1433	goto ADDR;							\
1434    }									\
1435  else if (GET_CODE (X) == LO_SUM					\
1436	   && GET_CODE (XEXP (X, 0)) == REG				\
1437	   && REG_OK_FOR_BASE_P (XEXP (X, 0))				\
1438	   && CONSTANT_P (XEXP (X, 1))					\
1439	   && (TARGET_SOFT_FLOAT					\
1440	       /* We can allow symbolic LO_SUM addresses for PA2.0.  */	\
1441	       || (TARGET_PA_20						\
1442		   && !TARGET_ELF32					\
1443	           && GET_CODE (XEXP (X, 1)) != CONST_INT)		\
1444	       || ((MODE) != SFmode					\
1445		   && (MODE) != DFmode)))				\
1446    goto ADDR;								\
1447  else if (GET_CODE (X) == LO_SUM					\
1448	   && GET_CODE (XEXP (X, 0)) == SUBREG				\
1449	   && GET_CODE (SUBREG_REG (XEXP (X, 0))) == REG		\
1450	   && REG_OK_FOR_BASE_P (SUBREG_REG (XEXP (X, 0)))		\
1451	   && CONSTANT_P (XEXP (X, 1))					\
1452	   && (TARGET_SOFT_FLOAT					\
1453	       /* We can allow symbolic LO_SUM addresses for PA2.0.  */	\
1454	       || (TARGET_PA_20						\
1455		   && !TARGET_ELF32					\
1456	           && GET_CODE (XEXP (X, 1)) != CONST_INT)		\
1457	       || ((MODE) != SFmode					\
1458		   && (MODE) != DFmode)))				\
1459    goto ADDR;								\
1460  else if (GET_CODE (X) == LABEL_REF					\
1461	   || (GET_CODE (X) == CONST_INT				\
1462	       && INT_5_BITS (X)))					\
1463    goto ADDR;								\
1464  /* Needed for -fPIC */						\
1465  else if (GET_CODE (X) == LO_SUM					\
1466	   && GET_CODE (XEXP (X, 0)) == REG             		\
1467	   && REG_OK_FOR_BASE_P (XEXP (X, 0))				\
1468	   && GET_CODE (XEXP (X, 1)) == UNSPEC				\
1469	   && (TARGET_SOFT_FLOAT					\
1470	       || (TARGET_PA_20	&& !TARGET_ELF32)			\
1471	       || ((MODE) != SFmode					\
1472		   && (MODE) != DFmode)))				\
1473    goto ADDR;								\
1474}
1475
1476/* Look for machine dependent ways to make the invalid address AD a
1477   valid address.
1478
1479   For the PA, transform:
1480
1481        memory(X + <large int>)
1482
1483   into:
1484
1485        if (<large int> & mask) >= 16
1486          Y = (<large int> & ~mask) + mask + 1  Round up.
1487        else
1488          Y = (<large int> & ~mask)             Round down.
1489        Z = X + Y
1490        memory (Z + (<large int> - Y));
1491
1492   This makes reload inheritance and reload_cse work better since Z
1493   can be reused.
1494
1495   There may be more opportunities to improve code with this hook.  */
1496#define LEGITIMIZE_RELOAD_ADDRESS(AD, MODE, OPNUM, TYPE, IND, WIN) 	\
1497do { 									\
1498  long offset, newoffset, mask;						\
1499  rtx new, temp = NULL_RTX;						\
1500									\
1501  mask = (GET_MODE_CLASS (MODE) == MODE_FLOAT				\
1502	  ? (TARGET_PA_20 && !TARGET_ELF32 ? 0x3fff : 0x1f) : 0x3fff);	\
1503									\
1504  if (optimize && GET_CODE (AD) == PLUS)				\
1505    temp = simplify_binary_operation (PLUS, Pmode,			\
1506				      XEXP (AD, 0), XEXP (AD, 1));	\
1507									\
1508  new = temp ? temp : AD;						\
1509									\
1510  if (optimize								\
1511      && GET_CODE (new) == PLUS						\
1512      && GET_CODE (XEXP (new, 0)) == REG				\
1513      && GET_CODE (XEXP (new, 1)) == CONST_INT)				\
1514    {									\
1515      offset = INTVAL (XEXP ((new), 1));				\
1516									\
1517      /* Choose rounding direction.  Round up if we are >= halfway.  */	\
1518      if ((offset & mask) >= ((mask + 1) / 2))				\
1519	newoffset = (offset & ~mask) + mask + 1;			\
1520      else								\
1521	newoffset = offset & ~mask;					\
1522									\
1523      /* Ensure that long displacements are aligned.  */		\
1524      if (!VAL_5_BITS_P (newoffset)					\
1525	  && GET_MODE_CLASS (MODE) == MODE_FLOAT)			\
1526	newoffset &= ~(GET_MODE_SIZE (MODE) -1);			\
1527									\
1528      if (newoffset != 0 && VAL_14_BITS_P (newoffset))			\
1529	{								\
1530	  temp = gen_rtx_PLUS (Pmode, XEXP (new, 0),			\
1531			       GEN_INT (newoffset));			\
1532	  AD = gen_rtx_PLUS (Pmode, temp, GEN_INT (offset - newoffset));\
1533	  push_reload (XEXP (AD, 0), 0, &XEXP (AD, 0), 0,		\
1534		       BASE_REG_CLASS, Pmode, VOIDmode, 0, 0,		\
1535		       (OPNUM), (TYPE));				\
1536	  goto WIN;							\
1537	}								\
1538    }									\
1539} while (0)
1540
1541
1542
1543
1544/* Try machine-dependent ways of modifying an illegitimate address
1545   to be legitimate.  If we find one, return the new, valid address.
1546   This macro is used in only one place: `memory_address' in explow.c.
1547
1548   OLDX is the address as it was before break_out_memory_refs was called.
1549   In some cases it is useful to look at this to decide what needs to be done.
1550
1551   MODE and WIN are passed so that this macro can use
1552   GO_IF_LEGITIMATE_ADDRESS.
1553
1554   It is always safe for this macro to do nothing.  It exists to recognize
1555   opportunities to optimize the output.  */
1556
1557#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN)	\
1558{ rtx orig_x = (X);				\
1559  (X) = hppa_legitimize_address (X, OLDX, MODE);	\
1560  if ((X) != orig_x && memory_address_p (MODE, X)) \
1561    goto WIN; }
1562
1563/* Go to LABEL if ADDR (a legitimate address expression)
1564   has an effect that depends on the machine mode it is used for.  */
1565
1566#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)	\
1567  if (GET_CODE (ADDR) == PRE_DEC	\
1568      || GET_CODE (ADDR) == POST_DEC	\
1569      || GET_CODE (ADDR) == PRE_INC	\
1570      || GET_CODE (ADDR) == POST_INC)	\
1571    goto LABEL
1572
1573#define TARGET_ASM_SELECT_SECTION  pa_select_section
1574
1575/* Return a nonzero value if DECL has a section attribute.  */
1576#define IN_NAMED_SECTION_P(DECL) \
1577  ((TREE_CODE (DECL) == FUNCTION_DECL || TREE_CODE (DECL) == VAR_DECL) \
1578   && DECL_SECTION_NAME (DECL) != NULL_TREE)
1579
1580/* Define this macro if references to a symbol must be treated
1581   differently depending on something about the variable or
1582   function named by the symbol (such as what section it is in).
1583
1584   The macro definition, if any, is executed immediately after the
1585   rtl for DECL or other node is created.
1586   The value of the rtl will be a `mem' whose address is a
1587   `symbol_ref'.
1588
1589   The usual thing for this macro to do is to a flag in the
1590   `symbol_ref' (such as `SYMBOL_REF_FLAG') or to store a modified
1591   name string in the `symbol_ref' (if one bit is not enough
1592   information).
1593
1594   On the HP-PA we use this to indicate if a symbol is in text or
1595   data space.  Also, function labels need special treatment.  */
1596
1597#define TEXT_SPACE_P(DECL)\
1598  (TREE_CODE (DECL) == FUNCTION_DECL					\
1599   || (TREE_CODE (DECL) == VAR_DECL					\
1600       && TREE_READONLY (DECL) && ! TREE_SIDE_EFFECTS (DECL)		\
1601       && (! DECL_INITIAL (DECL) || ! reloc_needed (DECL_INITIAL (DECL))) \
1602       && !flag_pic)							\
1603   || CONSTANT_CLASS_P (DECL))
1604
1605#define FUNCTION_NAME_P(NAME)  (*(NAME) == '@')
1606
1607/* Specify the machine mode that this machine uses for the index in the
1608   tablejump instruction.  For small tables, an element consists of a
1609   ia-relative branch and its delay slot.  When -mbig-switch is specified,
1610   we use a 32-bit absolute address for non-pic code, and a 32-bit offset
1611   for both 32 and 64-bit pic code.  */
1612#define CASE_VECTOR_MODE (TARGET_BIG_SWITCH ? SImode : DImode)
1613
1614/* Jump tables must be 32-bit aligned, no matter the size of the element.  */
1615#define ADDR_VEC_ALIGN(ADDR_VEC) 2
1616
1617/* Define this as 1 if `char' should by default be signed; else as 0.  */
1618#define DEFAULT_SIGNED_CHAR 1
1619
1620/* Max number of bytes we can move from memory to memory
1621   in one reasonably fast instruction.  */
1622#define MOVE_MAX 8
1623
1624/* Higher than the default as we prefer to use simple move insns
1625   (better scheduling and delay slot filling) and because our
1626   built-in block move is really a 2X unrolled loop.
1627
1628   Believe it or not, this has to be big enough to allow for copying all
1629   arguments passed in registers to avoid infinite recursion during argument
1630   setup for a function call.  Why?  Consider how we copy the stack slots
1631   reserved for parameters when they may be trashed by a call.  */
1632#define MOVE_RATIO (TARGET_64BIT ? 8 : 4)
1633
1634/* Define if operations between registers always perform the operation
1635   on the full register even if a narrower mode is specified.  */
1636#define WORD_REGISTER_OPERATIONS
1637
1638/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1639   will either zero-extend or sign-extend.  The value of this macro should
1640   be the code that says which one of the two operations is implicitly
1641   done, UNKNOWN if none.  */
1642#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1643
1644/* Nonzero if access to memory by bytes is slow and undesirable.  */
1645#define SLOW_BYTE_ACCESS 1
1646
1647/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1648   is done just by pretending it is already truncated.  */
1649#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1650
1651/* Specify the machine mode that pointers have.
1652   After generation of rtl, the compiler makes no further distinction
1653   between pointers and any other objects of this machine mode.  */
1654#define Pmode word_mode
1655
1656/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1657   return the mode to be used for the comparison.  For floating-point, CCFPmode
1658   should be used.  CC_NOOVmode should be used when the first operand is a
1659   PLUS, MINUS, or NEG.  CCmode should be used when no special processing is
1660   needed.  */
1661#define SELECT_CC_MODE(OP,X,Y) \
1662  (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode : CCmode)    \
1663
1664/* A function address in a call instruction
1665   is a byte address (for indexing purposes)
1666   so give the MEM rtx a byte's mode.  */
1667#define FUNCTION_MODE SImode
1668
1669/* Define this if addresses of constant functions
1670   shouldn't be put through pseudo regs where they can be cse'd.
1671   Desirable on machines where ordinary constants are expensive
1672   but a CALL with constant address is cheap.  */
1673#define NO_FUNCTION_CSE
1674
1675/* Define this to be nonzero if shift instructions ignore all but the low-order
1676   few bits.  */
1677#define SHIFT_COUNT_TRUNCATED 1
1678
1679/* Compute extra cost of moving data between one register class
1680   and another.
1681
1682   Make moves from SAR so expensive they should never happen.  We used to
1683   have 0xffff here, but that generates overflow in rare cases.
1684
1685   Copies involving a FP register and a non-FP register are relatively
1686   expensive because they must go through memory.
1687
1688   Other copies are reasonably cheap.  */
1689#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
1690 (CLASS1 == SHIFT_REGS ? 0x100					\
1691  : FP_REG_CLASS_P (CLASS1) && ! FP_REG_CLASS_P (CLASS2) ? 16	\
1692  : FP_REG_CLASS_P (CLASS2) && ! FP_REG_CLASS_P (CLASS1) ? 16	\
1693  : 2)
1694
1695/* Adjust the cost of branches.  */
1696#define BRANCH_COST (pa_cpu == PROCESSOR_8000 ? 2 : 1)
1697
1698/* Handling the special cases is going to get too complicated for a macro,
1699   just call `pa_adjust_insn_length' to do the real work.  */
1700#define ADJUST_INSN_LENGTH(INSN, LENGTH)	\
1701  LENGTH += pa_adjust_insn_length (INSN, LENGTH);
1702
1703/* Millicode insns are actually function calls with some special
1704   constraints on arguments and register usage.
1705
1706   Millicode calls always expect their arguments in the integer argument
1707   registers, and always return their result in %r29 (ret1).  They
1708   are expected to clobber their arguments, %r1, %r29, and the return
1709   pointer which is %r31 on 32-bit and %r2 on 64-bit, and nothing else.
1710
1711   This macro tells reorg that the references to arguments and
1712   millicode calls do not appear to happen until after the millicode call.
1713   This allows reorg to put insns which set the argument registers into the
1714   delay slot of the millicode call -- thus they act more like traditional
1715   CALL_INSNs.
1716
1717   Note we cannot consider side effects of the insn to be delayed because
1718   the branch and link insn will clobber the return pointer.  If we happened
1719   to use the return pointer in the delay slot of the call, then we lose.
1720
1721   get_attr_type will try to recognize the given insn, so make sure to
1722   filter out things it will not accept -- SEQUENCE, USE and CLOBBER insns
1723   in particular.  */
1724#define INSN_REFERENCES_ARE_DELAYED(X) (insn_refs_are_delayed (X))
1725
1726
1727/* Control the assembler format that we output.  */
1728
1729/* A C string constant describing how to begin a comment in the target
1730   assembler language.  The compiler assumes that the comment will end at
1731   the end of the line.  */
1732
1733#define ASM_COMMENT_START ";"
1734
1735/* Output to assembler file text saying following lines
1736   may contain character constants, extra white space, comments, etc.  */
1737
1738#define ASM_APP_ON ""
1739
1740/* Output to assembler file text saying following lines
1741   no longer contain unusual constructs.  */
1742
1743#define ASM_APP_OFF ""
1744
1745/* This is how to output the definition of a user-level label named NAME,
1746   such as the label on a static function or variable NAME.  */
1747
1748#define ASM_OUTPUT_LABEL(FILE,NAME) \
1749  do {							\
1750    assemble_name ((FILE), (NAME));			\
1751    if (TARGET_GAS)					\
1752      fputs (":\n", (FILE));				\
1753    else						\
1754      fputc ('\n', (FILE));				\
1755  } while (0)
1756
1757/* This is how to output a reference to a user-level label named NAME.
1758   `assemble_name' uses this.  */
1759
1760#define ASM_OUTPUT_LABELREF(FILE,NAME)	\
1761  do {					\
1762    const char *xname = (NAME);		\
1763    if (FUNCTION_NAME_P (NAME))		\
1764      xname += 1;			\
1765    if (xname[0] == '*')		\
1766      xname += 1;			\
1767    else				\
1768      fputs (user_label_prefix, FILE);	\
1769    fputs (xname, FILE);		\
1770  } while (0)
1771
1772/* This how we output the symbol_ref X.  */
1773
1774#define ASM_OUTPUT_SYMBOL_REF(FILE,X) \
1775  do {                                                 \
1776    SYMBOL_REF_FLAGS (X) |= SYMBOL_FLAG_REFERENCED;    \
1777    assemble_name (FILE, XSTR (X, 0));                 \
1778  } while (0)
1779
1780/* This is how to store into the string LABEL
1781   the symbol_ref name of an internal numbered label where
1782   PREFIX is the class of label and NUM is the number within the class.
1783   This is suitable for output with `assemble_name'.  */
1784
1785#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM)	\
1786  sprintf (LABEL, "*%c$%s%04ld", (PREFIX)[0], (PREFIX) + 1, (long)(NUM))
1787
1788/* Output the definition of a compiler-generated label named NAME.  */
1789
1790#define ASM_OUTPUT_INTERNAL_LABEL(FILE,NAME) \
1791  do {							\
1792    assemble_name_raw ((FILE), (NAME));			\
1793    if (TARGET_GAS)					\
1794      fputs (":\n", (FILE));				\
1795    else						\
1796      fputc ('\n', (FILE));				\
1797  } while (0)
1798
1799#define TARGET_ASM_GLOBALIZE_LABEL pa_globalize_label
1800
1801#define ASM_OUTPUT_ASCII(FILE, P, SIZE)  \
1802  output_ascii ((FILE), (P), (SIZE))
1803
1804/* Jump tables are always placed in the text section.  Technically, it
1805   is possible to put them in the readonly data section when -mbig-switch
1806   is specified.  This has the benefit of getting the table out of .text
1807   and reducing branch lengths as a result.  The downside is that an
1808   additional insn (addil) is needed to access the table when generating
1809   PIC code.  The address difference table also has to use 32-bit
1810   pc-relative relocations.  Currently, GAS does not support these
1811   relocations, although it is easily modified to do this operation.
1812   The table entries need to look like "$L1+(.+8-$L0)-$PIC_pcrel$0"
1813   when using ELF GAS.  A simple difference can be used when using
1814   SOM GAS or the HP assembler.  The final downside is GDB complains
1815   about the nesting of the label for the table when debugging.  */
1816
1817#define JUMP_TABLES_IN_TEXT_SECTION 1
1818
1819/* This is how to output an element of a case-vector that is absolute.  */
1820
1821#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)  \
1822  if (TARGET_BIG_SWITCH)						\
1823    fprintf (FILE, "\t.word L$%04d\n", VALUE);				\
1824  else									\
1825    fprintf (FILE, "\tb L$%04d\n\tnop\n", VALUE)
1826
1827/* This is how to output an element of a case-vector that is relative.
1828   Since we always place jump tables in the text section, the difference
1829   is absolute and requires no relocation.  */
1830
1831#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL)  \
1832  if (TARGET_BIG_SWITCH)						\
1833    fprintf (FILE, "\t.word L$%04d-L$%04d\n", VALUE, REL);		\
1834  else									\
1835    fprintf (FILE, "\tb L$%04d\n\tnop\n", VALUE)
1836
1837/* This is how to output an assembler line that says to advance the
1838   location counter to a multiple of 2**LOG bytes.  */
1839
1840#define ASM_OUTPUT_ALIGN(FILE,LOG)	\
1841    fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
1842
1843#define ASM_OUTPUT_SKIP(FILE,SIZE)  \
1844  fprintf (FILE, "\t.blockz "HOST_WIDE_INT_PRINT_UNSIGNED"\n",		\
1845	   (unsigned HOST_WIDE_INT)(SIZE))
1846
1847/* This says how to output an assembler line to define an uninitialized
1848   global variable with size SIZE (in bytes) and alignment ALIGN (in bits).
1849   This macro exists to properly support languages like C++ which do not
1850   have common data.  */
1851
1852#define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN)		\
1853  pa_asm_output_aligned_bss (FILE, NAME, SIZE, ALIGN)
1854
1855/* This says how to output an assembler line to define a global common symbol
1856   with size SIZE (in bytes) and alignment ALIGN (in bits).  */
1857
1858#define ASM_OUTPUT_ALIGNED_COMMON(FILE, NAME, SIZE, ALIGN)  		\
1859  pa_asm_output_aligned_common (FILE, NAME, SIZE, ALIGN)
1860
1861/* This says how to output an assembler line to define a local common symbol
1862   with size SIZE (in bytes) and alignment ALIGN (in bits).  This macro
1863   controls how the assembler definitions of uninitialized static variables
1864   are output.  */
1865
1866#define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGN)		\
1867  pa_asm_output_aligned_local (FILE, NAME, SIZE, ALIGN)
1868
1869
1870#define ASM_PN_FORMAT "%s___%lu"
1871
1872/* All HP assemblers use "!" to separate logical lines.  */
1873#define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == '!')
1874
1875#define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
1876  ((CHAR) == '@' || (CHAR) == '#' || (CHAR) == '*' || (CHAR) == '^')
1877
1878/* Print operand X (an rtx) in assembler syntax to file FILE.
1879   CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1880   For `%' followed by punctuation, CODE is the punctuation and X is null.
1881
1882   On the HP-PA, the CODE can be `r', meaning this is a register-only operand
1883   and an immediate zero should be represented as `r0'.
1884
1885   Several % codes are defined:
1886   O an operation
1887   C compare conditions
1888   N extract conditions
1889   M modifier to handle preincrement addressing for memory refs.
1890   F modifier to handle preincrement addressing for fp memory refs */
1891
1892#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1893
1894
1895/* Print a memory address as an operand to reference that memory location.  */
1896
1897#define PRINT_OPERAND_ADDRESS(FILE, ADDR)  \
1898{ rtx addr = ADDR;							\
1899  switch (GET_CODE (addr))						\
1900    {									\
1901    case REG:								\
1902      fprintf (FILE, "0(%s)", reg_names [REGNO (addr)]);		\
1903      break;								\
1904    case PLUS:								\
1905      gcc_assert (GET_CODE (XEXP (addr, 1)) == CONST_INT);		\
1906      fprintf (FILE, "%d(%s)", (int)INTVAL (XEXP (addr, 1)),		\
1907	       reg_names [REGNO (XEXP (addr, 0))]);			\
1908      break;								\
1909    case LO_SUM:							\
1910      if (!symbolic_operand (XEXP (addr, 1), VOIDmode))			\
1911	fputs ("R'", FILE);						\
1912      else if (flag_pic == 0)						\
1913	fputs ("RR'", FILE);						\
1914      else								\
1915	fputs ("RT'", FILE);						\
1916      output_global_address (FILE, XEXP (addr, 1), 0);			\
1917      fputs ("(", FILE);						\
1918      output_operand (XEXP (addr, 0), 0);				\
1919      fputs (")", FILE);						\
1920      break;								\
1921    case CONST_INT:							\
1922      fprintf (FILE, HOST_WIDE_INT_PRINT_DEC "(%%r0)", INTVAL (addr));	\
1923      break;								\
1924    default:								\
1925      output_addr_const (FILE, addr);					\
1926    }}
1927
1928
1929/* Find the return address associated with the frame given by
1930   FRAMEADDR.  */
1931#define RETURN_ADDR_RTX(COUNT, FRAMEADDR)				 \
1932  (return_addr_rtx (COUNT, FRAMEADDR))
1933
1934/* Used to mask out junk bits from the return address, such as
1935   processor state, interrupt status, condition codes and the like.  */
1936#define MASK_RETURN_ADDR						\
1937  /* The privilege level is in the two low order bits, mask em out	\
1938     of the return address.  */						\
1939  (GEN_INT (-4))
1940
1941/* The number of Pmode words for the setjmp buffer.  */
1942#define JMP_BUF_SIZE 50
1943
1944/* We need a libcall to canonicalize function pointers on TARGET_ELF32.  */
1945#define CANONICALIZE_FUNCPTR_FOR_COMPARE_LIBCALL \
1946  "__canonicalize_funcptr_for_compare"
1947
1948#ifdef HAVE_AS_TLS
1949#undef TARGET_HAVE_TLS
1950#define TARGET_HAVE_TLS true
1951#endif
1952