1/* Optimize by combining instructions for GNU compiler.
2   Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3   1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 2, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING.  If not, write to the Free
19Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
2002110-1301, USA.  */
21
22/* This module is essentially the "combiner" phase of the U. of Arizona
23   Portable Optimizer, but redone to work on our list-structured
24   representation for RTL instead of their string representation.
25
26   The LOG_LINKS of each insn identify the most recent assignment
27   to each REG used in the insn.  It is a list of previous insns,
28   each of which contains a SET for a REG that is used in this insn
29   and not used or set in between.  LOG_LINKs never cross basic blocks.
30   They were set up by the preceding pass (lifetime analysis).
31
32   We try to combine each pair of insns joined by a logical link.
33   We also try to combine triples of insns A, B and C when
34   C has a link back to B and B has a link back to A.
35
36   LOG_LINKS does not have links for use of the CC0.  They don't
37   need to, because the insn that sets the CC0 is always immediately
38   before the insn that tests it.  So we always regard a branch
39   insn as having a logical link to the preceding insn.  The same is true
40   for an insn explicitly using CC0.
41
42   We check (with use_crosses_set_p) to avoid combining in such a way
43   as to move a computation to a place where its value would be different.
44
45   Combination is done by mathematically substituting the previous
46   insn(s) values for the regs they set into the expressions in
47   the later insns that refer to these regs.  If the result is a valid insn
48   for our target machine, according to the machine description,
49   we install it, delete the earlier insns, and update the data flow
50   information (LOG_LINKS and REG_NOTES) for what we did.
51
52   There are a few exceptions where the dataflow information created by
53   flow.c aren't completely updated:
54
55   - reg_live_length is not updated
56   - reg_n_refs is not adjusted in the rare case when a register is
57     no longer required in a computation
58   - there are extremely rare cases (see distribute_notes) when a
59     REG_DEAD note is lost
60   - a LOG_LINKS entry that refers to an insn with multiple SETs may be
61     removed because there is no way to know which register it was
62     linking
63
64   To simplify substitution, we combine only when the earlier insn(s)
65   consist of only a single assignment.  To simplify updating afterward,
66   we never combine when a subroutine call appears in the middle.
67
68   Since we do not represent assignments to CC0 explicitly except when that
69   is all an insn does, there is no LOG_LINKS entry in an insn that uses
70   the condition code for the insn that set the condition code.
71   Fortunately, these two insns must be consecutive.
72   Therefore, every JUMP_INSN is taken to have an implicit logical link
73   to the preceding insn.  This is not quite right, since non-jumps can
74   also use the condition code; but in practice such insns would not
75   combine anyway.  */
76
77#include "config.h"
78#include "system.h"
79#include "coretypes.h"
80#include "tm.h"
81#include "rtl.h"
82#include "tree.h"
83#include "tm_p.h"
84#include "flags.h"
85#include "regs.h"
86#include "hard-reg-set.h"
87#include "basic-block.h"
88#include "insn-config.h"
89#include "function.h"
90/* Include expr.h after insn-config.h so we get HAVE_conditional_move.  */
91#include "expr.h"
92#include "insn-attr.h"
93#include "recog.h"
94#include "real.h"
95#include "toplev.h"
96#include "target.h"
97#include "optabs.h"
98#include "insn-codes.h"
99#include "rtlhooks-def.h"
100/* Include output.h for dump_file.  */
101#include "output.h"
102#include "params.h"
103#include "timevar.h"
104#include "tree-pass.h"
105
106/* Number of attempts to combine instructions in this function.  */
107
108static int combine_attempts;
109
110/* Number of attempts that got as far as substitution in this function.  */
111
112static int combine_merges;
113
114/* Number of instructions combined with added SETs in this function.  */
115
116static int combine_extras;
117
118/* Number of instructions combined in this function.  */
119
120static int combine_successes;
121
122/* Totals over entire compilation.  */
123
124static int total_attempts, total_merges, total_extras, total_successes;
125
126/* combine_instructions may try to replace the right hand side of the
127   second instruction with the value of an associated REG_EQUAL note
128   before throwing it at try_combine.  That is problematic when there
129   is a REG_DEAD note for a register used in the old right hand side
130   and can cause distribute_notes to do wrong things.  This is the
131   second instruction if it has been so modified, null otherwise.  */
132
133static rtx i2mod;
134
135/* When I2MOD is nonnull, this is a copy of the old right hand side.  */
136
137static rtx i2mod_old_rhs;
138
139/* When I2MOD is nonnull, this is a copy of the new right hand side.  */
140
141static rtx i2mod_new_rhs;
142
143/* Vector mapping INSN_UIDs to cuids.
144   The cuids are like uids but increase monotonically always.
145   Combine always uses cuids so that it can compare them.
146   But actually renumbering the uids, which we used to do,
147   proves to be a bad idea because it makes it hard to compare
148   the dumps produced by earlier passes with those from later passes.  */
149
150static int *uid_cuid;
151static int max_uid_cuid;
152
153/* Get the cuid of an insn.  */
154
155#define INSN_CUID(INSN) \
156(INSN_UID (INSN) > max_uid_cuid ? insn_cuid (INSN) : uid_cuid[INSN_UID (INSN)])
157
158/* Maximum register number, which is the size of the tables below.  */
159
160static unsigned int combine_max_regno;
161
162struct reg_stat {
163  /* Record last point of death of (hard or pseudo) register n.  */
164  rtx				last_death;
165
166  /* Record last point of modification of (hard or pseudo) register n.  */
167  rtx				last_set;
168
169  /* The next group of fields allows the recording of the last value assigned
170     to (hard or pseudo) register n.  We use this information to see if an
171     operation being processed is redundant given a prior operation performed
172     on the register.  For example, an `and' with a constant is redundant if
173     all the zero bits are already known to be turned off.
174
175     We use an approach similar to that used by cse, but change it in the
176     following ways:
177
178     (1) We do not want to reinitialize at each label.
179     (2) It is useful, but not critical, to know the actual value assigned
180	 to a register.  Often just its form is helpful.
181
182     Therefore, we maintain the following fields:
183
184     last_set_value		the last value assigned
185     last_set_label		records the value of label_tick when the
186				register was assigned
187     last_set_table_tick	records the value of label_tick when a
188				value using the register is assigned
189     last_set_invalid		set to nonzero when it is not valid
190				to use the value of this register in some
191				register's value
192
193     To understand the usage of these tables, it is important to understand
194     the distinction between the value in last_set_value being valid and
195     the register being validly contained in some other expression in the
196     table.
197
198     (The next two parameters are out of date).
199
200     reg_stat[i].last_set_value is valid if it is nonzero, and either
201     reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
202
203     Register I may validly appear in any expression returned for the value
204     of another register if reg_n_sets[i] is 1.  It may also appear in the
205     value for register J if reg_stat[j].last_set_invalid is zero, or
206     reg_stat[i].last_set_label < reg_stat[j].last_set_label.
207
208     If an expression is found in the table containing a register which may
209     not validly appear in an expression, the register is replaced by
210     something that won't match, (clobber (const_int 0)).  */
211
212  /* Record last value assigned to (hard or pseudo) register n.  */
213
214  rtx				last_set_value;
215
216  /* Record the value of label_tick when an expression involving register n
217     is placed in last_set_value.  */
218
219  int				last_set_table_tick;
220
221  /* Record the value of label_tick when the value for register n is placed in
222     last_set_value.  */
223
224  int				last_set_label;
225
226  /* These fields are maintained in parallel with last_set_value and are
227     used to store the mode in which the register was last set, the bits
228     that were known to be zero when it was last set, and the number of
229     sign bits copies it was known to have when it was last set.  */
230
231  unsigned HOST_WIDE_INT	last_set_nonzero_bits;
232  char				last_set_sign_bit_copies;
233  ENUM_BITFIELD(machine_mode)	last_set_mode : 8;
234
235  /* Set nonzero if references to register n in expressions should not be
236     used.  last_set_invalid is set nonzero when this register is being
237     assigned to and last_set_table_tick == label_tick.  */
238
239  char				last_set_invalid;
240
241  /* Some registers that are set more than once and used in more than one
242     basic block are nevertheless always set in similar ways.  For example,
243     a QImode register may be loaded from memory in two places on a machine
244     where byte loads zero extend.
245
246     We record in the following fields if a register has some leading bits
247     that are always equal to the sign bit, and what we know about the
248     nonzero bits of a register, specifically which bits are known to be
249     zero.
250
251     If an entry is zero, it means that we don't know anything special.  */
252
253  unsigned char			sign_bit_copies;
254
255  unsigned HOST_WIDE_INT	nonzero_bits;
256
257  /* Record the value of the label_tick when the last truncation
258     happened.  The field truncated_to_mode is only valid if
259     truncation_label == label_tick.  */
260
261  int				truncation_label;
262
263  /* Record the last truncation seen for this register.  If truncation
264     is not a nop to this mode we might be able to save an explicit
265     truncation if we know that value already contains a truncated
266     value.  */
267
268  ENUM_BITFIELD(machine_mode)	truncated_to_mode : 8;
269};
270
271static struct reg_stat *reg_stat;
272
273/* Record the cuid of the last insn that invalidated memory
274   (anything that writes memory, and subroutine calls, but not pushes).  */
275
276static int mem_last_set;
277
278/* Record the cuid of the last CALL_INSN
279   so we can tell whether a potential combination crosses any calls.  */
280
281static int last_call_cuid;
282
283/* When `subst' is called, this is the insn that is being modified
284   (by combining in a previous insn).  The PATTERN of this insn
285   is still the old pattern partially modified and it should not be
286   looked at, but this may be used to examine the successors of the insn
287   to judge whether a simplification is valid.  */
288
289static rtx subst_insn;
290
291/* This is the lowest CUID that `subst' is currently dealing with.
292   get_last_value will not return a value if the register was set at or
293   after this CUID.  If not for this mechanism, we could get confused if
294   I2 or I1 in try_combine were an insn that used the old value of a register
295   to obtain a new value.  In that case, we might erroneously get the
296   new value of the register when we wanted the old one.  */
297
298static int subst_low_cuid;
299
300/* This contains any hard registers that are used in newpat; reg_dead_at_p
301   must consider all these registers to be always live.  */
302
303static HARD_REG_SET newpat_used_regs;
304
305/* This is an insn to which a LOG_LINKS entry has been added.  If this
306   insn is the earlier than I2 or I3, combine should rescan starting at
307   that location.  */
308
309static rtx added_links_insn;
310
311/* Basic block in which we are performing combines.  */
312static basic_block this_basic_block;
313
314/* A bitmap indicating which blocks had registers go dead at entry.
315   After combine, we'll need to re-do global life analysis with
316   those blocks as starting points.  */
317static sbitmap refresh_blocks;
318
319/* The following array records the insn_rtx_cost for every insn
320   in the instruction stream.  */
321
322static int *uid_insn_cost;
323
324/* Length of the currently allocated uid_insn_cost array.  */
325
326static int last_insn_cost;
327
328/* Incremented for each label.  */
329
330static int label_tick;
331
332/* Mode used to compute significance in reg_stat[].nonzero_bits.  It is the
333   largest integer mode that can fit in HOST_BITS_PER_WIDE_INT.  */
334
335static enum machine_mode nonzero_bits_mode;
336
337/* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
338   be safely used.  It is zero while computing them and after combine has
339   completed.  This former test prevents propagating values based on
340   previously set values, which can be incorrect if a variable is modified
341   in a loop.  */
342
343static int nonzero_sign_valid;
344
345
346/* Record one modification to rtl structure
347   to be undone by storing old_contents into *where.  */
348
349struct undo
350{
351  struct undo *next;
352  enum { UNDO_RTX, UNDO_INT, UNDO_MODE } kind;
353  union { rtx r; int i; enum machine_mode m; } old_contents;
354  union { rtx *r; int *i; } where;
355};
356
357/* Record a bunch of changes to be undone, up to MAX_UNDO of them.
358   num_undo says how many are currently recorded.
359
360   other_insn is nonzero if we have modified some other insn in the process
361   of working on subst_insn.  It must be verified too.  */
362
363struct undobuf
364{
365  struct undo *undos;
366  struct undo *frees;
367  rtx other_insn;
368};
369
370static struct undobuf undobuf;
371
372/* Number of times the pseudo being substituted for
373   was found and replaced.  */
374
375static int n_occurrences;
376
377static rtx reg_nonzero_bits_for_combine (rtx, enum machine_mode, rtx,
378					 enum machine_mode,
379					 unsigned HOST_WIDE_INT,
380					 unsigned HOST_WIDE_INT *);
381static rtx reg_num_sign_bit_copies_for_combine (rtx, enum machine_mode, rtx,
382						enum machine_mode,
383						unsigned int, unsigned int *);
384static void do_SUBST (rtx *, rtx);
385static void do_SUBST_INT (int *, int);
386static void init_reg_last (void);
387static void setup_incoming_promotions (void);
388static void set_nonzero_bits_and_sign_copies (rtx, rtx, void *);
389static int cant_combine_insn_p (rtx);
390static int can_combine_p (rtx, rtx, rtx, rtx, rtx *, rtx *);
391static int combinable_i3pat (rtx, rtx *, rtx, rtx, int, rtx *);
392static int contains_muldiv (rtx);
393static rtx try_combine (rtx, rtx, rtx, int *);
394static void undo_all (void);
395static void undo_commit (void);
396static rtx *find_split_point (rtx *, rtx);
397static rtx subst (rtx, rtx, rtx, int, int);
398static rtx combine_simplify_rtx (rtx, enum machine_mode, int);
399static rtx simplify_if_then_else (rtx);
400static rtx simplify_set (rtx);
401static rtx simplify_logical (rtx);
402static rtx expand_compound_operation (rtx);
403static rtx expand_field_assignment (rtx);
404static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
405			    rtx, unsigned HOST_WIDE_INT, int, int, int);
406static rtx extract_left_shift (rtx, int);
407static rtx make_compound_operation (rtx, enum rtx_code);
408static int get_pos_from_mask (unsigned HOST_WIDE_INT,
409			      unsigned HOST_WIDE_INT *);
410static rtx canon_reg_for_combine (rtx, rtx);
411static rtx force_to_mode (rtx, enum machine_mode,
412			  unsigned HOST_WIDE_INT, int);
413static rtx if_then_else_cond (rtx, rtx *, rtx *);
414static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
415static int rtx_equal_for_field_assignment_p (rtx, rtx);
416static rtx make_field_assignment (rtx);
417static rtx apply_distributive_law (rtx);
418static rtx distribute_and_simplify_rtx (rtx, int);
419static rtx simplify_and_const_int_1 (enum machine_mode, rtx,
420				     unsigned HOST_WIDE_INT);
421static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
422				   unsigned HOST_WIDE_INT);
423static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
424			    HOST_WIDE_INT, enum machine_mode, int *);
425static rtx simplify_shift_const_1 (enum rtx_code, enum machine_mode, rtx, int);
426static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
427				 int);
428static int recog_for_combine (rtx *, rtx, rtx *);
429static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
430static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
431static void update_table_tick (rtx);
432static void record_value_for_reg (rtx, rtx, rtx);
433static void check_conversions (rtx, rtx);
434static void record_dead_and_set_regs_1 (rtx, rtx, void *);
435static void record_dead_and_set_regs (rtx);
436static int get_last_value_validate (rtx *, rtx, int, int);
437static rtx get_last_value (rtx);
438static int use_crosses_set_p (rtx, int);
439static void reg_dead_at_p_1 (rtx, rtx, void *);
440static int reg_dead_at_p (rtx, rtx);
441static void move_deaths (rtx, rtx, int, rtx, rtx *);
442static int reg_bitfield_target_p (rtx, rtx);
443static void distribute_notes (rtx, rtx, rtx, rtx, rtx, rtx);
444static void distribute_links (rtx);
445static void mark_used_regs_combine (rtx);
446static int insn_cuid (rtx);
447static void record_promoted_value (rtx, rtx);
448static int unmentioned_reg_p_1 (rtx *, void *);
449static bool unmentioned_reg_p (rtx, rtx);
450static void record_truncated_value (rtx);
451static bool reg_truncated_to_mode (enum machine_mode, rtx);
452static rtx gen_lowpart_or_truncate (enum machine_mode, rtx);
453
454
455/* It is not safe to use ordinary gen_lowpart in combine.
456   See comments in gen_lowpart_for_combine.  */
457#undef RTL_HOOKS_GEN_LOWPART
458#define RTL_HOOKS_GEN_LOWPART              gen_lowpart_for_combine
459
460/* Our implementation of gen_lowpart never emits a new pseudo.  */
461#undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
462#define RTL_HOOKS_GEN_LOWPART_NO_EMIT      gen_lowpart_for_combine
463
464#undef RTL_HOOKS_REG_NONZERO_REG_BITS
465#define RTL_HOOKS_REG_NONZERO_REG_BITS     reg_nonzero_bits_for_combine
466
467#undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
468#define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES  reg_num_sign_bit_copies_for_combine
469
470#undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
471#define RTL_HOOKS_REG_TRUNCATED_TO_MODE    reg_truncated_to_mode
472
473static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
474
475
476/* Substitute NEWVAL, an rtx expression, into INTO, a place in some
477   insn.  The substitution can be undone by undo_all.  If INTO is already
478   set to NEWVAL, do not record this change.  Because computing NEWVAL might
479   also call SUBST, we have to compute it before we put anything into
480   the undo table.  */
481
482static void
483do_SUBST (rtx *into, rtx newval)
484{
485  struct undo *buf;
486  rtx oldval = *into;
487
488  if (oldval == newval)
489    return;
490
491  /* We'd like to catch as many invalid transformations here as
492     possible.  Unfortunately, there are way too many mode changes
493     that are perfectly valid, so we'd waste too much effort for
494     little gain doing the checks here.  Focus on catching invalid
495     transformations involving integer constants.  */
496  if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
497      && GET_CODE (newval) == CONST_INT)
498    {
499      /* Sanity check that we're replacing oldval with a CONST_INT
500	 that is a valid sign-extension for the original mode.  */
501      gcc_assert (INTVAL (newval)
502		  == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
503
504      /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
505	 CONST_INT is not valid, because after the replacement, the
506	 original mode would be gone.  Unfortunately, we can't tell
507	 when do_SUBST is called to replace the operand thereof, so we
508	 perform this test on oldval instead, checking whether an
509	 invalid replacement took place before we got here.  */
510      gcc_assert (!(GET_CODE (oldval) == SUBREG
511		    && GET_CODE (SUBREG_REG (oldval)) == CONST_INT));
512      gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
513		    && GET_CODE (XEXP (oldval, 0)) == CONST_INT));
514    }
515
516  if (undobuf.frees)
517    buf = undobuf.frees, undobuf.frees = buf->next;
518  else
519    buf = XNEW (struct undo);
520
521  buf->kind = UNDO_RTX;
522  buf->where.r = into;
523  buf->old_contents.r = oldval;
524  *into = newval;
525
526  buf->next = undobuf.undos, undobuf.undos = buf;
527}
528
529#define SUBST(INTO, NEWVAL)	do_SUBST(&(INTO), (NEWVAL))
530
531/* Similar to SUBST, but NEWVAL is an int expression.  Note that substitution
532   for the value of a HOST_WIDE_INT value (including CONST_INT) is
533   not safe.  */
534
535static void
536do_SUBST_INT (int *into, int newval)
537{
538  struct undo *buf;
539  int oldval = *into;
540
541  if (oldval == newval)
542    return;
543
544  if (undobuf.frees)
545    buf = undobuf.frees, undobuf.frees = buf->next;
546  else
547    buf = XNEW (struct undo);
548
549  buf->kind = UNDO_INT;
550  buf->where.i = into;
551  buf->old_contents.i = oldval;
552  *into = newval;
553
554  buf->next = undobuf.undos, undobuf.undos = buf;
555}
556
557#define SUBST_INT(INTO, NEWVAL)  do_SUBST_INT(&(INTO), (NEWVAL))
558
559/* Similar to SUBST, but just substitute the mode.  This is used when
560   changing the mode of a pseudo-register, so that any other
561   references to the entry in the regno_reg_rtx array will change as
562   well.  */
563
564static void
565do_SUBST_MODE (rtx *into, enum machine_mode newval)
566{
567  struct undo *buf;
568  enum machine_mode oldval = GET_MODE (*into);
569
570  if (oldval == newval)
571    return;
572
573  if (undobuf.frees)
574    buf = undobuf.frees, undobuf.frees = buf->next;
575  else
576    buf = XNEW (struct undo);
577
578  buf->kind = UNDO_MODE;
579  buf->where.r = into;
580  buf->old_contents.m = oldval;
581  PUT_MODE (*into, newval);
582
583  buf->next = undobuf.undos, undobuf.undos = buf;
584}
585
586#define SUBST_MODE(INTO, NEWVAL)  do_SUBST_MODE(&(INTO), (NEWVAL))
587
588/* Subroutine of try_combine.  Determine whether the combine replacement
589   patterns NEWPAT and NEWI2PAT are cheaper according to insn_rtx_cost
590   that the original instruction sequence I1, I2 and I3.  Note that I1
591   and/or NEWI2PAT may be NULL_RTX.  This function returns false, if the
592   costs of all instructions can be estimated, and the replacements are
593   more expensive than the original sequence.  */
594
595static bool
596combine_validate_cost (rtx i1, rtx i2, rtx i3, rtx newpat, rtx newi2pat)
597{
598  int i1_cost, i2_cost, i3_cost;
599  int new_i2_cost, new_i3_cost;
600  int old_cost, new_cost;
601
602  /* Lookup the original insn_rtx_costs.  */
603  i2_cost = INSN_UID (i2) <= last_insn_cost
604	    ? uid_insn_cost[INSN_UID (i2)] : 0;
605  i3_cost = INSN_UID (i3) <= last_insn_cost
606	    ? uid_insn_cost[INSN_UID (i3)] : 0;
607
608  if (i1)
609    {
610      i1_cost = INSN_UID (i1) <= last_insn_cost
611		? uid_insn_cost[INSN_UID (i1)] : 0;
612      old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0)
613		 ? i1_cost + i2_cost + i3_cost : 0;
614    }
615  else
616    {
617      old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
618      i1_cost = 0;
619    }
620
621  /* Calculate the replacement insn_rtx_costs.  */
622  new_i3_cost = insn_rtx_cost (newpat);
623  if (newi2pat)
624    {
625      new_i2_cost = insn_rtx_cost (newi2pat);
626      new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
627		 ? new_i2_cost + new_i3_cost : 0;
628    }
629  else
630    {
631      new_cost = new_i3_cost;
632      new_i2_cost = 0;
633    }
634
635  if (undobuf.other_insn)
636    {
637      int old_other_cost, new_other_cost;
638
639      old_other_cost = (INSN_UID (undobuf.other_insn) <= last_insn_cost
640			? uid_insn_cost[INSN_UID (undobuf.other_insn)] : 0);
641      new_other_cost = insn_rtx_cost (PATTERN (undobuf.other_insn));
642      if (old_other_cost > 0 && new_other_cost > 0)
643	{
644	  old_cost += old_other_cost;
645	  new_cost += new_other_cost;
646	}
647      else
648	old_cost = 0;
649    }
650
651  /* Disallow this recombination if both new_cost and old_cost are
652     greater than zero, and new_cost is greater than old cost.  */
653  if (old_cost > 0
654      && new_cost > old_cost)
655    {
656      if (dump_file)
657	{
658	  if (i1)
659	    {
660	      fprintf (dump_file,
661		       "rejecting combination of insns %d, %d and %d\n",
662		       INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
663	      fprintf (dump_file, "original costs %d + %d + %d = %d\n",
664		       i1_cost, i2_cost, i3_cost, old_cost);
665	    }
666	  else
667	    {
668	      fprintf (dump_file,
669		       "rejecting combination of insns %d and %d\n",
670		       INSN_UID (i2), INSN_UID (i3));
671	      fprintf (dump_file, "original costs %d + %d = %d\n",
672		       i2_cost, i3_cost, old_cost);
673	    }
674
675	  if (newi2pat)
676	    {
677	      fprintf (dump_file, "replacement costs %d + %d = %d\n",
678		       new_i2_cost, new_i3_cost, new_cost);
679	    }
680	  else
681	    fprintf (dump_file, "replacement cost %d\n", new_cost);
682	}
683
684      return false;
685    }
686
687  /* Update the uid_insn_cost array with the replacement costs.  */
688  uid_insn_cost[INSN_UID (i2)] = new_i2_cost;
689  uid_insn_cost[INSN_UID (i3)] = new_i3_cost;
690  if (i1)
691    uid_insn_cost[INSN_UID (i1)] = 0;
692
693  return true;
694}
695
696/* Main entry point for combiner.  F is the first insn of the function.
697   NREGS is the first unused pseudo-reg number.
698
699   Return nonzero if the combiner has turned an indirect jump
700   instruction into a direct jump.  */
701static int
702combine_instructions (rtx f, unsigned int nregs)
703{
704  rtx insn, next;
705#ifdef HAVE_cc0
706  rtx prev;
707#endif
708  int i;
709  unsigned int j = 0;
710  rtx links, nextlinks;
711  sbitmap_iterator sbi;
712
713  int new_direct_jump_p = 0;
714
715  combine_attempts = 0;
716  combine_merges = 0;
717  combine_extras = 0;
718  combine_successes = 0;
719
720  combine_max_regno = nregs;
721
722  rtl_hooks = combine_rtl_hooks;
723
724  reg_stat = XCNEWVEC (struct reg_stat, nregs);
725
726  init_recog_no_volatile ();
727
728  /* Compute maximum uid value so uid_cuid can be allocated.  */
729
730  for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
731    if (INSN_UID (insn) > i)
732      i = INSN_UID (insn);
733
734  uid_cuid = XNEWVEC (int, i + 1);
735  max_uid_cuid = i;
736
737  nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
738
739  /* Don't use reg_stat[].nonzero_bits when computing it.  This can cause
740     problems when, for example, we have j <<= 1 in a loop.  */
741
742  nonzero_sign_valid = 0;
743
744  /* Compute the mapping from uids to cuids.
745     Cuids are numbers assigned to insns, like uids,
746     except that cuids increase monotonically through the code.
747
748     Scan all SETs and see if we can deduce anything about what
749     bits are known to be zero for some registers and how many copies
750     of the sign bit are known to exist for those registers.
751
752     Also set any known values so that we can use it while searching
753     for what bits are known to be set.  */
754
755  label_tick = 1;
756
757  setup_incoming_promotions ();
758
759  refresh_blocks = sbitmap_alloc (last_basic_block);
760  sbitmap_zero (refresh_blocks);
761
762  /* Allocate array of current insn_rtx_costs.  */
763  uid_insn_cost = XCNEWVEC (int, max_uid_cuid + 1);
764  last_insn_cost = max_uid_cuid;
765
766  for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
767    {
768      uid_cuid[INSN_UID (insn)] = ++i;
769      subst_low_cuid = i;
770      subst_insn = insn;
771
772      if (INSN_P (insn))
773	{
774	  note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
775		       NULL);
776	  record_dead_and_set_regs (insn);
777
778#ifdef AUTO_INC_DEC
779	  for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
780	    if (REG_NOTE_KIND (links) == REG_INC)
781	      set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
782						NULL);
783#endif
784
785	  /* Record the current insn_rtx_cost of this instruction.  */
786	  if (NONJUMP_INSN_P (insn))
787	    uid_insn_cost[INSN_UID (insn)] = insn_rtx_cost (PATTERN (insn));
788	  if (dump_file)
789	    fprintf(dump_file, "insn_cost %d: %d\n",
790		    INSN_UID (insn), uid_insn_cost[INSN_UID (insn)]);
791	}
792
793      if (LABEL_P (insn))
794	label_tick++;
795    }
796
797  nonzero_sign_valid = 1;
798
799  /* Now scan all the insns in forward order.  */
800
801  label_tick = 1;
802  last_call_cuid = 0;
803  mem_last_set = 0;
804  init_reg_last ();
805  setup_incoming_promotions ();
806
807  FOR_EACH_BB (this_basic_block)
808    {
809      for (insn = BB_HEAD (this_basic_block);
810	   insn != NEXT_INSN (BB_END (this_basic_block));
811	   insn = next ? next : NEXT_INSN (insn))
812	{
813	  next = 0;
814
815	  if (LABEL_P (insn))
816	    label_tick++;
817
818	  else if (INSN_P (insn))
819	    {
820	      /* See if we know about function return values before this
821		 insn based upon SUBREG flags.  */
822	      check_conversions (insn, PATTERN (insn));
823
824	      /* Try this insn with each insn it links back to.  */
825
826	      for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
827		if ((next = try_combine (insn, XEXP (links, 0),
828					 NULL_RTX, &new_direct_jump_p)) != 0)
829		  goto retry;
830
831	      /* Try each sequence of three linked insns ending with this one.  */
832
833	      for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
834		{
835		  rtx link = XEXP (links, 0);
836
837		  /* If the linked insn has been replaced by a note, then there
838		     is no point in pursuing this chain any further.  */
839		  if (NOTE_P (link))
840		    continue;
841
842		  for (nextlinks = LOG_LINKS (link);
843		       nextlinks;
844		       nextlinks = XEXP (nextlinks, 1))
845		    if ((next = try_combine (insn, link,
846					     XEXP (nextlinks, 0),
847					     &new_direct_jump_p)) != 0)
848		      goto retry;
849		}
850
851#ifdef HAVE_cc0
852	      /* Try to combine a jump insn that uses CC0
853		 with a preceding insn that sets CC0, and maybe with its
854		 logical predecessor as well.
855		 This is how we make decrement-and-branch insns.
856		 We need this special code because data flow connections
857		 via CC0 do not get entered in LOG_LINKS.  */
858
859	      if (JUMP_P (insn)
860		  && (prev = prev_nonnote_insn (insn)) != 0
861		  && NONJUMP_INSN_P (prev)
862		  && sets_cc0_p (PATTERN (prev)))
863		{
864		  if ((next = try_combine (insn, prev,
865					   NULL_RTX, &new_direct_jump_p)) != 0)
866		    goto retry;
867
868		  for (nextlinks = LOG_LINKS (prev); nextlinks;
869		       nextlinks = XEXP (nextlinks, 1))
870		    if ((next = try_combine (insn, prev,
871					     XEXP (nextlinks, 0),
872					     &new_direct_jump_p)) != 0)
873		      goto retry;
874		}
875
876	      /* Do the same for an insn that explicitly references CC0.  */
877	      if (NONJUMP_INSN_P (insn)
878		  && (prev = prev_nonnote_insn (insn)) != 0
879		  && NONJUMP_INSN_P (prev)
880		  && sets_cc0_p (PATTERN (prev))
881		  && GET_CODE (PATTERN (insn)) == SET
882		  && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
883		{
884		  if ((next = try_combine (insn, prev,
885					   NULL_RTX, &new_direct_jump_p)) != 0)
886		    goto retry;
887
888		  for (nextlinks = LOG_LINKS (prev); nextlinks;
889		       nextlinks = XEXP (nextlinks, 1))
890		    if ((next = try_combine (insn, prev,
891					     XEXP (nextlinks, 0),
892					     &new_direct_jump_p)) != 0)
893		      goto retry;
894		}
895
896	      /* Finally, see if any of the insns that this insn links to
897		 explicitly references CC0.  If so, try this insn, that insn,
898		 and its predecessor if it sets CC0.  */
899	      for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
900		if (NONJUMP_INSN_P (XEXP (links, 0))
901		    && GET_CODE (PATTERN (XEXP (links, 0))) == SET
902		    && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
903		    && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
904		    && NONJUMP_INSN_P (prev)
905		    && sets_cc0_p (PATTERN (prev))
906		    && (next = try_combine (insn, XEXP (links, 0),
907					    prev, &new_direct_jump_p)) != 0)
908		  goto retry;
909#endif
910
911	      /* Try combining an insn with two different insns whose results it
912		 uses.  */
913	      for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
914		for (nextlinks = XEXP (links, 1); nextlinks;
915		     nextlinks = XEXP (nextlinks, 1))
916		  if ((next = try_combine (insn, XEXP (links, 0),
917					   XEXP (nextlinks, 0),
918					   &new_direct_jump_p)) != 0)
919		    goto retry;
920
921	      /* Try this insn with each REG_EQUAL note it links back to.  */
922	      for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
923		{
924		  rtx set, note;
925		  rtx temp = XEXP (links, 0);
926		  if ((set = single_set (temp)) != 0
927		      && (note = find_reg_equal_equiv_note (temp)) != 0
928		      && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
929		      /* Avoid using a register that may already been marked
930			 dead by an earlier instruction.  */
931		      && ! unmentioned_reg_p (note, SET_SRC (set))
932		      && (GET_MODE (note) == VOIDmode
933			  ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
934			  : GET_MODE (SET_DEST (set)) == GET_MODE (note)))
935		    {
936		      /* Temporarily replace the set's source with the
937			 contents of the REG_EQUAL note.  The insn will
938			 be deleted or recognized by try_combine.  */
939		      rtx orig = SET_SRC (set);
940		      SET_SRC (set) = note;
941		      i2mod = temp;
942		      i2mod_old_rhs = copy_rtx (orig);
943		      i2mod_new_rhs = copy_rtx (note);
944		      next = try_combine (insn, i2mod, NULL_RTX,
945					  &new_direct_jump_p);
946		      i2mod = NULL_RTX;
947		      if (next)
948			goto retry;
949		      SET_SRC (set) = orig;
950		    }
951		}
952
953	      if (!NOTE_P (insn))
954		record_dead_and_set_regs (insn);
955
956	    retry:
957	      ;
958	    }
959	}
960    }
961  clear_bb_flags ();
962
963  EXECUTE_IF_SET_IN_SBITMAP (refresh_blocks, 0, j, sbi)
964    BASIC_BLOCK (j)->flags |= BB_DIRTY;
965  new_direct_jump_p |= purge_all_dead_edges ();
966  delete_noop_moves ();
967
968  update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
969				    PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE
970				    | PROP_KILL_DEAD_CODE);
971
972  /* Clean up.  */
973  sbitmap_free (refresh_blocks);
974  free (uid_insn_cost);
975  free (reg_stat);
976  free (uid_cuid);
977
978  {
979    struct undo *undo, *next;
980    for (undo = undobuf.frees; undo; undo = next)
981      {
982	next = undo->next;
983	free (undo);
984      }
985    undobuf.frees = 0;
986  }
987
988  total_attempts += combine_attempts;
989  total_merges += combine_merges;
990  total_extras += combine_extras;
991  total_successes += combine_successes;
992
993  nonzero_sign_valid = 0;
994  rtl_hooks = general_rtl_hooks;
995
996  /* Make recognizer allow volatile MEMs again.  */
997  init_recog ();
998
999  return new_direct_jump_p;
1000}
1001
1002/* Wipe the last_xxx fields of reg_stat in preparation for another pass.  */
1003
1004static void
1005init_reg_last (void)
1006{
1007  unsigned int i;
1008  for (i = 0; i < combine_max_regno; i++)
1009    memset (reg_stat + i, 0, offsetof (struct reg_stat, sign_bit_copies));
1010}
1011
1012/* Set up any promoted values for incoming argument registers.  */
1013
1014static void
1015setup_incoming_promotions (void)
1016{
1017  unsigned int regno;
1018  rtx reg;
1019  enum machine_mode mode;
1020  int unsignedp;
1021  rtx first = get_insns ();
1022
1023  if (targetm.calls.promote_function_args (TREE_TYPE (cfun->decl)))
1024    {
1025      for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
1026	/* Check whether this register can hold an incoming pointer
1027	   argument.  FUNCTION_ARG_REGNO_P tests outgoing register
1028	   numbers, so translate if necessary due to register windows.  */
1029	if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (regno))
1030	    && (reg = promoted_input_arg (regno, &mode, &unsignedp)) != 0)
1031	  {
1032	    record_value_for_reg
1033	      (reg, first, gen_rtx_fmt_e ((unsignedp ? ZERO_EXTEND
1034					   : SIGN_EXTEND),
1035					  GET_MODE (reg),
1036					  gen_rtx_CLOBBER (mode, const0_rtx)));
1037	  }
1038    }
1039}
1040
1041/* Called via note_stores.  If X is a pseudo that is narrower than
1042   HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1043
1044   If we are setting only a portion of X and we can't figure out what
1045   portion, assume all bits will be used since we don't know what will
1046   be happening.
1047
1048   Similarly, set how many bits of X are known to be copies of the sign bit
1049   at all locations in the function.  This is the smallest number implied
1050   by any set of X.  */
1051
1052static void
1053set_nonzero_bits_and_sign_copies (rtx x, rtx set,
1054				  void *data ATTRIBUTE_UNUSED)
1055{
1056  unsigned int num;
1057
1058  if (REG_P (x)
1059      && REGNO (x) >= FIRST_PSEUDO_REGISTER
1060      /* If this register is undefined at the start of the file, we can't
1061	 say what its contents were.  */
1062      && ! REGNO_REG_SET_P
1063	 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start, REGNO (x))
1064      && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
1065    {
1066      if (set == 0 || GET_CODE (set) == CLOBBER)
1067	{
1068	  reg_stat[REGNO (x)].nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1069	  reg_stat[REGNO (x)].sign_bit_copies = 1;
1070	  return;
1071	}
1072
1073      /* If this is a complex assignment, see if we can convert it into a
1074	 simple assignment.  */
1075      set = expand_field_assignment (set);
1076
1077      /* If this is a simple assignment, or we have a paradoxical SUBREG,
1078	 set what we know about X.  */
1079
1080      if (SET_DEST (set) == x
1081	  || (GET_CODE (SET_DEST (set)) == SUBREG
1082	      && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
1083		  > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
1084	      && SUBREG_REG (SET_DEST (set)) == x))
1085	{
1086	  rtx src = SET_SRC (set);
1087
1088#ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1089	  /* If X is narrower than a word and SRC is a non-negative
1090	     constant that would appear negative in the mode of X,
1091	     sign-extend it for use in reg_stat[].nonzero_bits because some
1092	     machines (maybe most) will actually do the sign-extension
1093	     and this is the conservative approach.
1094
1095	     ??? For 2.5, try to tighten up the MD files in this regard
1096	     instead of this kludge.  */
1097
1098	  if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
1099	      && GET_CODE (src) == CONST_INT
1100	      && INTVAL (src) > 0
1101	      && 0 != (INTVAL (src)
1102		       & ((HOST_WIDE_INT) 1
1103			  << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
1104	    src = GEN_INT (INTVAL (src)
1105			   | ((HOST_WIDE_INT) (-1)
1106			      << GET_MODE_BITSIZE (GET_MODE (x))));
1107#endif
1108
1109	  /* Don't call nonzero_bits if it cannot change anything.  */
1110	  if (reg_stat[REGNO (x)].nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1111	    reg_stat[REGNO (x)].nonzero_bits
1112	      |= nonzero_bits (src, nonzero_bits_mode);
1113	  num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1114	  if (reg_stat[REGNO (x)].sign_bit_copies == 0
1115	      || reg_stat[REGNO (x)].sign_bit_copies > num)
1116	    reg_stat[REGNO (x)].sign_bit_copies = num;
1117	}
1118      else
1119	{
1120	  reg_stat[REGNO (x)].nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1121	  reg_stat[REGNO (x)].sign_bit_copies = 1;
1122	}
1123    }
1124}
1125
1126/* See if INSN can be combined into I3.  PRED and SUCC are optionally
1127   insns that were previously combined into I3 or that will be combined
1128   into the merger of INSN and I3.
1129
1130   Return 0 if the combination is not allowed for any reason.
1131
1132   If the combination is allowed, *PDEST will be set to the single
1133   destination of INSN and *PSRC to the single source, and this function
1134   will return 1.  */
1135
1136static int
1137can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED, rtx succ,
1138	       rtx *pdest, rtx *psrc)
1139{
1140  int i;
1141  rtx set = 0, src, dest;
1142  rtx p;
1143#ifdef AUTO_INC_DEC
1144  rtx link;
1145#endif
1146  int all_adjacent = (succ ? (next_active_insn (insn) == succ
1147			      && next_active_insn (succ) == i3)
1148		      : next_active_insn (insn) == i3);
1149
1150  /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1151     or a PARALLEL consisting of such a SET and CLOBBERs.
1152
1153     If INSN has CLOBBER parallel parts, ignore them for our processing.
1154     By definition, these happen during the execution of the insn.  When it
1155     is merged with another insn, all bets are off.  If they are, in fact,
1156     needed and aren't also supplied in I3, they may be added by
1157     recog_for_combine.  Otherwise, it won't match.
1158
1159     We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1160     note.
1161
1162     Get the source and destination of INSN.  If more than one, can't
1163     combine.  */
1164
1165  if (GET_CODE (PATTERN (insn)) == SET)
1166    set = PATTERN (insn);
1167  else if (GET_CODE (PATTERN (insn)) == PARALLEL
1168	   && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1169    {
1170      for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1171	{
1172	  rtx elt = XVECEXP (PATTERN (insn), 0, i);
1173	  rtx note;
1174
1175	  switch (GET_CODE (elt))
1176	    {
1177	    /* This is important to combine floating point insns
1178	       for the SH4 port.  */
1179	    case USE:
1180	      /* Combining an isolated USE doesn't make sense.
1181		 We depend here on combinable_i3pat to reject them.  */
1182	      /* The code below this loop only verifies that the inputs of
1183		 the SET in INSN do not change.  We call reg_set_between_p
1184		 to verify that the REG in the USE does not change between
1185		 I3 and INSN.
1186		 If the USE in INSN was for a pseudo register, the matching
1187		 insn pattern will likely match any register; combining this
1188		 with any other USE would only be safe if we knew that the
1189		 used registers have identical values, or if there was
1190		 something to tell them apart, e.g. different modes.  For
1191		 now, we forgo such complicated tests and simply disallow
1192		 combining of USES of pseudo registers with any other USE.  */
1193	      if (REG_P (XEXP (elt, 0))
1194		  && GET_CODE (PATTERN (i3)) == PARALLEL)
1195		{
1196		  rtx i3pat = PATTERN (i3);
1197		  int i = XVECLEN (i3pat, 0) - 1;
1198		  unsigned int regno = REGNO (XEXP (elt, 0));
1199
1200		  do
1201		    {
1202		      rtx i3elt = XVECEXP (i3pat, 0, i);
1203
1204		      if (GET_CODE (i3elt) == USE
1205			  && REG_P (XEXP (i3elt, 0))
1206			  && (REGNO (XEXP (i3elt, 0)) == regno
1207			      ? reg_set_between_p (XEXP (elt, 0),
1208						   PREV_INSN (insn), i3)
1209			      : regno >= FIRST_PSEUDO_REGISTER))
1210			return 0;
1211		    }
1212		  while (--i >= 0);
1213		}
1214	      break;
1215
1216	      /* We can ignore CLOBBERs.  */
1217	    case CLOBBER:
1218	      break;
1219
1220	    case SET:
1221	      /* Ignore SETs whose result isn't used but not those that
1222		 have side-effects.  */
1223	      if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1224		  && (!(note = find_reg_note (insn, REG_EH_REGION, NULL_RTX))
1225		      || INTVAL (XEXP (note, 0)) <= 0)
1226		  && ! side_effects_p (elt))
1227		break;
1228
1229	      /* If we have already found a SET, this is a second one and
1230		 so we cannot combine with this insn.  */
1231	      if (set)
1232		return 0;
1233
1234	      set = elt;
1235	      break;
1236
1237	    default:
1238	      /* Anything else means we can't combine.  */
1239	      return 0;
1240	    }
1241	}
1242
1243      if (set == 0
1244	  /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1245	     so don't do anything with it.  */
1246	  || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1247	return 0;
1248    }
1249  else
1250    return 0;
1251
1252  if (set == 0)
1253    return 0;
1254
1255  set = expand_field_assignment (set);
1256  src = SET_SRC (set), dest = SET_DEST (set);
1257
1258  /* Don't eliminate a store in the stack pointer.  */
1259  if (dest == stack_pointer_rtx
1260      /* Don't combine with an insn that sets a register to itself if it has
1261	 a REG_EQUAL note.  This may be part of a REG_NO_CONFLICT sequence.  */
1262      || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1263      /* Can't merge an ASM_OPERANDS.  */
1264      || GET_CODE (src) == ASM_OPERANDS
1265      /* Can't merge a function call.  */
1266      || GET_CODE (src) == CALL
1267      /* Don't eliminate a function call argument.  */
1268      || (CALL_P (i3)
1269	  && (find_reg_fusage (i3, USE, dest)
1270	      || (REG_P (dest)
1271		  && REGNO (dest) < FIRST_PSEUDO_REGISTER
1272		  && global_regs[REGNO (dest)])))
1273      /* Don't substitute into an incremented register.  */
1274      || FIND_REG_INC_NOTE (i3, dest)
1275      || (succ && FIND_REG_INC_NOTE (succ, dest))
1276      /* Don't substitute into a non-local goto, this confuses CFG.  */
1277      || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1278#if 0
1279      /* Don't combine the end of a libcall into anything.  */
1280      /* ??? This gives worse code, and appears to be unnecessary, since no
1281	 pass after flow uses REG_LIBCALL/REG_RETVAL notes.  Local-alloc does
1282	 use REG_RETVAL notes for noconflict blocks, but other code here
1283	 makes sure that those insns don't disappear.  */
1284      || find_reg_note (insn, REG_RETVAL, NULL_RTX)
1285#endif
1286      /* Make sure that DEST is not used after SUCC but before I3.  */
1287      || (succ && ! all_adjacent
1288	  && reg_used_between_p (dest, succ, i3))
1289      /* Make sure that the value that is to be substituted for the register
1290	 does not use any registers whose values alter in between.  However,
1291	 If the insns are adjacent, a use can't cross a set even though we
1292	 think it might (this can happen for a sequence of insns each setting
1293	 the same destination; last_set of that register might point to
1294	 a NOTE).  If INSN has a REG_EQUIV note, the register is always
1295	 equivalent to the memory so the substitution is valid even if there
1296	 are intervening stores.  Also, don't move a volatile asm or
1297	 UNSPEC_VOLATILE across any other insns.  */
1298      || (! all_adjacent
1299	  && (((!MEM_P (src)
1300		|| ! find_reg_note (insn, REG_EQUIV, src))
1301	       && use_crosses_set_p (src, INSN_CUID (insn)))
1302	      || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1303	      || GET_CODE (src) == UNSPEC_VOLATILE))
1304      /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
1305	 better register allocation by not doing the combine.  */
1306      || find_reg_note (i3, REG_NO_CONFLICT, dest)
1307      || (succ && find_reg_note (succ, REG_NO_CONFLICT, dest))
1308      /* Don't combine across a CALL_INSN, because that would possibly
1309	 change whether the life span of some REGs crosses calls or not,
1310	 and it is a pain to update that information.
1311	 Exception: if source is a constant, moving it later can't hurt.
1312	 Accept that special case, because it helps -fforce-addr a lot.  */
1313      || (INSN_CUID (insn) < last_call_cuid && ! CONSTANT_P (src)))
1314    return 0;
1315
1316  /* DEST must either be a REG or CC0.  */
1317  if (REG_P (dest))
1318    {
1319      /* If register alignment is being enforced for multi-word items in all
1320	 cases except for parameters, it is possible to have a register copy
1321	 insn referencing a hard register that is not allowed to contain the
1322	 mode being copied and which would not be valid as an operand of most
1323	 insns.  Eliminate this problem by not combining with such an insn.
1324
1325	 Also, on some machines we don't want to extend the life of a hard
1326	 register.  */
1327
1328      if (REG_P (src)
1329	  && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1330	       && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1331	      /* Don't extend the life of a hard register unless it is
1332		 user variable (if we have few registers) or it can't
1333		 fit into the desired register (meaning something special
1334		 is going on).
1335		 Also avoid substituting a return register into I3, because
1336		 reload can't handle a conflict with constraints of other
1337		 inputs.  */
1338	      || (REGNO (src) < FIRST_PSEUDO_REGISTER
1339		  && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1340	return 0;
1341    }
1342  else if (GET_CODE (dest) != CC0)
1343    return 0;
1344
1345
1346  if (GET_CODE (PATTERN (i3)) == PARALLEL)
1347    for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1348      if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
1349	{
1350	  /* Don't substitute for a register intended as a clobberable
1351	     operand.  */
1352	  rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
1353	  if (rtx_equal_p (reg, dest))
1354	    return 0;
1355
1356	  /* If the clobber represents an earlyclobber operand, we must not
1357	     substitute an expression containing the clobbered register.
1358	     As we do not analyze the constraint strings here, we have to
1359	     make the conservative assumption.  However, if the register is
1360	     a fixed hard reg, the clobber cannot represent any operand;
1361	     we leave it up to the machine description to either accept or
1362	     reject use-and-clobber patterns.  */
1363	  if (!REG_P (reg)
1364	      || REGNO (reg) >= FIRST_PSEUDO_REGISTER
1365	      || !fixed_regs[REGNO (reg)])
1366	    if (reg_overlap_mentioned_p (reg, src))
1367	      return 0;
1368	}
1369
1370  /* If INSN contains anything volatile, or is an `asm' (whether volatile
1371     or not), reject, unless nothing volatile comes between it and I3 */
1372
1373  if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1374    {
1375      /* Make sure succ doesn't contain a volatile reference.  */
1376      if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1377	return 0;
1378
1379      for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1380	if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
1381	  return 0;
1382    }
1383
1384  /* If INSN is an asm, and DEST is a hard register, reject, since it has
1385     to be an explicit register variable, and was chosen for a reason.  */
1386
1387  if (GET_CODE (src) == ASM_OPERANDS
1388      && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1389    return 0;
1390
1391  /* If there are any volatile insns between INSN and I3, reject, because
1392     they might affect machine state.  */
1393
1394  for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1395    if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
1396      return 0;
1397
1398  /* If INSN contains an autoincrement or autodecrement, make sure that
1399     register is not used between there and I3, and not already used in
1400     I3 either.  Neither must it be used in PRED or SUCC, if they exist.
1401     Also insist that I3 not be a jump; if it were one
1402     and the incremented register were spilled, we would lose.  */
1403
1404#ifdef AUTO_INC_DEC
1405  for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1406    if (REG_NOTE_KIND (link) == REG_INC
1407	&& (JUMP_P (i3)
1408	    || reg_used_between_p (XEXP (link, 0), insn, i3)
1409	    || (pred != NULL_RTX
1410		&& reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
1411	    || (succ != NULL_RTX
1412		&& reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
1413	    || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1414      return 0;
1415#endif
1416
1417#ifdef HAVE_cc0
1418  /* Don't combine an insn that follows a CC0-setting insn.
1419     An insn that uses CC0 must not be separated from the one that sets it.
1420     We do, however, allow I2 to follow a CC0-setting insn if that insn
1421     is passed as I1; in that case it will be deleted also.
1422     We also allow combining in this case if all the insns are adjacent
1423     because that would leave the two CC0 insns adjacent as well.
1424     It would be more logical to test whether CC0 occurs inside I1 or I2,
1425     but that would be much slower, and this ought to be equivalent.  */
1426
1427  p = prev_nonnote_insn (insn);
1428  if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
1429      && ! all_adjacent)
1430    return 0;
1431#endif
1432
1433  /* If we get here, we have passed all the tests and the combination is
1434     to be allowed.  */
1435
1436  *pdest = dest;
1437  *psrc = src;
1438
1439  return 1;
1440}
1441
1442/* LOC is the location within I3 that contains its pattern or the component
1443   of a PARALLEL of the pattern.  We validate that it is valid for combining.
1444
1445   One problem is if I3 modifies its output, as opposed to replacing it
1446   entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1447   so would produce an insn that is not equivalent to the original insns.
1448
1449   Consider:
1450
1451	 (set (reg:DI 101) (reg:DI 100))
1452	 (set (subreg:SI (reg:DI 101) 0) <foo>)
1453
1454   This is NOT equivalent to:
1455
1456	 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1457		    (set (reg:DI 101) (reg:DI 100))])
1458
1459   Not only does this modify 100 (in which case it might still be valid
1460   if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1461
1462   We can also run into a problem if I2 sets a register that I1
1463   uses and I1 gets directly substituted into I3 (not via I2).  In that
1464   case, we would be getting the wrong value of I2DEST into I3, so we
1465   must reject the combination.  This case occurs when I2 and I1 both
1466   feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1467   If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
1468   of a SET must prevent combination from occurring.
1469
1470   Before doing the above check, we first try to expand a field assignment
1471   into a set of logical operations.
1472
1473   If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
1474   we place a register that is both set and used within I3.  If more than one
1475   such register is detected, we fail.
1476
1477   Return 1 if the combination is valid, zero otherwise.  */
1478
1479static int
1480combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest,
1481		  int i1_not_in_src, rtx *pi3dest_killed)
1482{
1483  rtx x = *loc;
1484
1485  if (GET_CODE (x) == SET)
1486    {
1487      rtx set = x ;
1488      rtx dest = SET_DEST (set);
1489      rtx src = SET_SRC (set);
1490      rtx inner_dest = dest;
1491      rtx subdest;
1492
1493      while (GET_CODE (inner_dest) == STRICT_LOW_PART
1494	     || GET_CODE (inner_dest) == SUBREG
1495	     || GET_CODE (inner_dest) == ZERO_EXTRACT)
1496	inner_dest = XEXP (inner_dest, 0);
1497
1498      /* Check for the case where I3 modifies its output, as discussed
1499	 above.  We don't want to prevent pseudos from being combined
1500	 into the address of a MEM, so only prevent the combination if
1501	 i1 or i2 set the same MEM.  */
1502      if ((inner_dest != dest &&
1503	   (!MEM_P (inner_dest)
1504	    || rtx_equal_p (i2dest, inner_dest)
1505	    || (i1dest && rtx_equal_p (i1dest, inner_dest)))
1506	   && (reg_overlap_mentioned_p (i2dest, inner_dest)
1507	       || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1508
1509	  /* This is the same test done in can_combine_p except we can't test
1510	     all_adjacent; we don't have to, since this instruction will stay
1511	     in place, thus we are not considering increasing the lifetime of
1512	     INNER_DEST.
1513
1514	     Also, if this insn sets a function argument, combining it with
1515	     something that might need a spill could clobber a previous
1516	     function argument; the all_adjacent test in can_combine_p also
1517	     checks this; here, we do a more specific test for this case.  */
1518
1519	  || (REG_P (inner_dest)
1520	      && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1521	      && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1522					GET_MODE (inner_dest))))
1523	  || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1524	return 0;
1525
1526      /* If DEST is used in I3, it is being killed in this insn, so
1527	 record that for later.  We have to consider paradoxical
1528	 subregs here, since they kill the whole register, but we
1529	 ignore partial subregs, STRICT_LOW_PART, etc.
1530	 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1531	 STACK_POINTER_REGNUM, since these are always considered to be
1532	 live.  Similarly for ARG_POINTER_REGNUM if it is fixed.  */
1533      subdest = dest;
1534      if (GET_CODE (subdest) == SUBREG
1535	  && (GET_MODE_SIZE (GET_MODE (subdest))
1536	      >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest)))))
1537	subdest = SUBREG_REG (subdest);
1538      if (pi3dest_killed
1539	  && REG_P (subdest)
1540	  && reg_referenced_p (subdest, PATTERN (i3))
1541	  && REGNO (subdest) != FRAME_POINTER_REGNUM
1542#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1543	  && REGNO (subdest) != HARD_FRAME_POINTER_REGNUM
1544#endif
1545#if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1546	  && (REGNO (subdest) != ARG_POINTER_REGNUM
1547	      || ! fixed_regs [REGNO (subdest)])
1548#endif
1549	  && REGNO (subdest) != STACK_POINTER_REGNUM)
1550	{
1551	  if (*pi3dest_killed)
1552	    return 0;
1553
1554	  *pi3dest_killed = subdest;
1555	}
1556    }
1557
1558  else if (GET_CODE (x) == PARALLEL)
1559    {
1560      int i;
1561
1562      for (i = 0; i < XVECLEN (x, 0); i++)
1563	if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1564				i1_not_in_src, pi3dest_killed))
1565	  return 0;
1566    }
1567
1568  return 1;
1569}
1570
1571/* Return 1 if X is an arithmetic expression that contains a multiplication
1572   and division.  We don't count multiplications by powers of two here.  */
1573
1574static int
1575contains_muldiv (rtx x)
1576{
1577  switch (GET_CODE (x))
1578    {
1579    case MOD:  case DIV:  case UMOD:  case UDIV:
1580      return 1;
1581
1582    case MULT:
1583      return ! (GET_CODE (XEXP (x, 1)) == CONST_INT
1584		&& exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1585    default:
1586      if (BINARY_P (x))
1587	return contains_muldiv (XEXP (x, 0))
1588	    || contains_muldiv (XEXP (x, 1));
1589
1590      if (UNARY_P (x))
1591	return contains_muldiv (XEXP (x, 0));
1592
1593      return 0;
1594    }
1595}
1596
1597/* Determine whether INSN can be used in a combination.  Return nonzero if
1598   not.  This is used in try_combine to detect early some cases where we
1599   can't perform combinations.  */
1600
1601static int
1602cant_combine_insn_p (rtx insn)
1603{
1604  rtx set;
1605  rtx src, dest;
1606
1607  /* If this isn't really an insn, we can't do anything.
1608     This can occur when flow deletes an insn that it has merged into an
1609     auto-increment address.  */
1610  if (! INSN_P (insn))
1611    return 1;
1612
1613  /* Never combine loads and stores involving hard regs that are likely
1614     to be spilled.  The register allocator can usually handle such
1615     reg-reg moves by tying.  If we allow the combiner to make
1616     substitutions of likely-spilled regs, reload might die.
1617     As an exception, we allow combinations involving fixed regs; these are
1618     not available to the register allocator so there's no risk involved.  */
1619
1620  set = single_set (insn);
1621  if (! set)
1622    return 0;
1623  src = SET_SRC (set);
1624  dest = SET_DEST (set);
1625  if (GET_CODE (src) == SUBREG)
1626    src = SUBREG_REG (src);
1627  if (GET_CODE (dest) == SUBREG)
1628    dest = SUBREG_REG (dest);
1629  if (REG_P (src) && REG_P (dest)
1630      && ((REGNO (src) < FIRST_PSEUDO_REGISTER
1631	   && ! fixed_regs[REGNO (src)]
1632	   && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (src))))
1633	  || (REGNO (dest) < FIRST_PSEUDO_REGISTER
1634	      && ! fixed_regs[REGNO (dest)]
1635	      && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (dest))))))
1636    return 1;
1637
1638  return 0;
1639}
1640
1641struct likely_spilled_retval_info
1642{
1643  unsigned regno, nregs;
1644  unsigned mask;
1645};
1646
1647/* Called via note_stores by likely_spilled_retval_p.  Remove from info->mask
1648   hard registers that are known to be written to / clobbered in full.  */
1649static void
1650likely_spilled_retval_1 (rtx x, rtx set, void *data)
1651{
1652  struct likely_spilled_retval_info *info = data;
1653  unsigned regno, nregs;
1654  unsigned new_mask;
1655
1656  if (!REG_P (XEXP (set, 0)))
1657    return;
1658  regno = REGNO (x);
1659  if (regno >= info->regno + info->nregs)
1660    return;
1661  nregs = hard_regno_nregs[regno][GET_MODE (x)];
1662  if (regno + nregs <= info->regno)
1663    return;
1664  new_mask = (2U << (nregs - 1)) - 1;
1665  if (regno < info->regno)
1666    new_mask >>= info->regno - regno;
1667  else
1668    new_mask <<= regno - info->regno;
1669  info->mask &= new_mask;
1670}
1671
1672/* Return nonzero iff part of the return value is live during INSN, and
1673   it is likely spilled.  This can happen when more than one insn is needed
1674   to copy the return value, e.g. when we consider to combine into the
1675   second copy insn for a complex value.  */
1676
1677static int
1678likely_spilled_retval_p (rtx insn)
1679{
1680  rtx use = BB_END (this_basic_block);
1681  rtx reg, p;
1682  unsigned regno, nregs;
1683  /* We assume here that no machine mode needs more than
1684     32 hard registers when the value overlaps with a register
1685     for which FUNCTION_VALUE_REGNO_P is true.  */
1686  unsigned mask;
1687  struct likely_spilled_retval_info info;
1688
1689  if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
1690    return 0;
1691  reg = XEXP (PATTERN (use), 0);
1692  if (!REG_P (reg) || !FUNCTION_VALUE_REGNO_P (REGNO (reg)))
1693    return 0;
1694  regno = REGNO (reg);
1695  nregs = hard_regno_nregs[regno][GET_MODE (reg)];
1696  if (nregs == 1)
1697    return 0;
1698  mask = (2U << (nregs - 1)) - 1;
1699
1700  /* Disregard parts of the return value that are set later.  */
1701  info.regno = regno;
1702  info.nregs = nregs;
1703  info.mask = mask;
1704  for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
1705    note_stores (PATTERN (insn), likely_spilled_retval_1, &info);
1706  mask = info.mask;
1707
1708  /* Check if any of the (probably) live return value registers is
1709     likely spilled.  */
1710  nregs --;
1711  do
1712    {
1713      if ((mask & 1 << nregs)
1714	  && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (regno + nregs)))
1715	return 1;
1716    } while (nregs--);
1717  return 0;
1718}
1719
1720/* Adjust INSN after we made a change to its destination.
1721
1722   Changing the destination can invalidate notes that say something about
1723   the results of the insn and a LOG_LINK pointing to the insn.  */
1724
1725static void
1726adjust_for_new_dest (rtx insn)
1727{
1728  rtx *loc;
1729
1730  /* For notes, be conservative and simply remove them.  */
1731  loc = &REG_NOTES (insn);
1732  while (*loc)
1733    {
1734      enum reg_note kind = REG_NOTE_KIND (*loc);
1735      if (kind == REG_EQUAL || kind == REG_EQUIV)
1736	*loc = XEXP (*loc, 1);
1737      else
1738	loc = &XEXP (*loc, 1);
1739    }
1740
1741  /* The new insn will have a destination that was previously the destination
1742     of an insn just above it.  Call distribute_links to make a LOG_LINK from
1743     the next use of that destination.  */
1744  distribute_links (gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX));
1745}
1746
1747/* Return TRUE if combine can reuse reg X in mode MODE.
1748   ADDED_SETS is nonzero if the original set is still required.  */
1749static bool
1750can_change_dest_mode (rtx x, int added_sets, enum machine_mode mode)
1751{
1752  unsigned int regno;
1753
1754  if (!REG_P(x))
1755    return false;
1756
1757  regno = REGNO (x);
1758  /* Allow hard registers if the new mode is legal, and occupies no more
1759     registers than the old mode.  */
1760  if (regno < FIRST_PSEUDO_REGISTER)
1761    return (HARD_REGNO_MODE_OK (regno, mode)
1762	    && (hard_regno_nregs[regno][GET_MODE (x)]
1763		>= hard_regno_nregs[regno][mode]));
1764
1765  /* Or a pseudo that is only used once.  */
1766  return (REG_N_SETS (regno) == 1 && !added_sets
1767	  && !REG_USERVAR_P (x));
1768}
1769
1770
1771/* Check whether X, the destination of a set, refers to part of
1772   the register specified by REG.  */
1773
1774static bool
1775reg_subword_p (rtx x, rtx reg)
1776{
1777  /* Check that reg is an integer mode register.  */
1778  if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
1779    return false;
1780
1781  if (GET_CODE (x) == STRICT_LOW_PART
1782      || GET_CODE (x) == ZERO_EXTRACT)
1783    x = XEXP (x, 0);
1784
1785  return GET_CODE (x) == SUBREG
1786	 && SUBREG_REG (x) == reg
1787	 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
1788}
1789
1790
1791/* Try to combine the insns I1 and I2 into I3.
1792   Here I1 and I2 appear earlier than I3.
1793   I1 can be zero; then we combine just I2 into I3.
1794
1795   If we are combining three insns and the resulting insn is not recognized,
1796   try splitting it into two insns.  If that happens, I2 and I3 are retained
1797   and I1 is pseudo-deleted by turning it into a NOTE.  Otherwise, I1 and I2
1798   are pseudo-deleted.
1799
1800   Return 0 if the combination does not work.  Then nothing is changed.
1801   If we did the combination, return the insn at which combine should
1802   resume scanning.
1803
1804   Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
1805   new direct jump instruction.  */
1806
1807static rtx
1808try_combine (rtx i3, rtx i2, rtx i1, int *new_direct_jump_p)
1809{
1810  /* New patterns for I3 and I2, respectively.  */
1811  rtx newpat, newi2pat = 0;
1812  rtvec newpat_vec_with_clobbers = 0;
1813  int substed_i2 = 0, substed_i1 = 0;
1814  /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead.  */
1815  int added_sets_1, added_sets_2;
1816  /* Total number of SETs to put into I3.  */
1817  int total_sets;
1818  /* Nonzero if I2's body now appears in I3.  */
1819  int i2_is_used;
1820  /* INSN_CODEs for new I3, new I2, and user of condition code.  */
1821  int insn_code_number, i2_code_number = 0, other_code_number = 0;
1822  /* Contains I3 if the destination of I3 is used in its source, which means
1823     that the old life of I3 is being killed.  If that usage is placed into
1824     I2 and not in I3, a REG_DEAD note must be made.  */
1825  rtx i3dest_killed = 0;
1826  /* SET_DEST and SET_SRC of I2 and I1.  */
1827  rtx i2dest, i2src, i1dest = 0, i1src = 0;
1828  /* PATTERN (I1) and PATTERN (I2), or a copy of it in certain cases.  */
1829  rtx i1pat = 0, i2pat = 0;
1830  /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC.  */
1831  int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
1832  int i2dest_killed = 0, i1dest_killed = 0;
1833  int i1_feeds_i3 = 0;
1834  /* Notes that must be added to REG_NOTES in I3 and I2.  */
1835  rtx new_i3_notes, new_i2_notes;
1836  /* Notes that we substituted I3 into I2 instead of the normal case.  */
1837  int i3_subst_into_i2 = 0;
1838  /* Notes that I1, I2 or I3 is a MULT operation.  */
1839  int have_mult = 0;
1840  int swap_i2i3 = 0;
1841
1842  int maxreg;
1843  rtx temp;
1844  rtx link;
1845  int i;
1846
1847  /* Exit early if one of the insns involved can't be used for
1848     combinations.  */
1849  if (cant_combine_insn_p (i3)
1850      || cant_combine_insn_p (i2)
1851      || (i1 && cant_combine_insn_p (i1))
1852      || likely_spilled_retval_p (i3)
1853      /* We also can't do anything if I3 has a
1854	 REG_LIBCALL note since we don't want to disrupt the contiguity of a
1855	 libcall.  */
1856#if 0
1857      /* ??? This gives worse code, and appears to be unnecessary, since no
1858	 pass after flow uses REG_LIBCALL/REG_RETVAL notes.  */
1859      || find_reg_note (i3, REG_LIBCALL, NULL_RTX)
1860#endif
1861      )
1862    return 0;
1863
1864  combine_attempts++;
1865  undobuf.other_insn = 0;
1866
1867  /* Reset the hard register usage information.  */
1868  CLEAR_HARD_REG_SET (newpat_used_regs);
1869
1870  /* If I1 and I2 both feed I3, they can be in any order.  To simplify the
1871     code below, set I1 to be the earlier of the two insns.  */
1872  if (i1 && INSN_CUID (i1) > INSN_CUID (i2))
1873    temp = i1, i1 = i2, i2 = temp;
1874
1875  added_links_insn = 0;
1876
1877  /* First check for one important special-case that the code below will
1878     not handle.  Namely, the case where I1 is zero, I2 is a PARALLEL
1879     and I3 is a SET whose SET_SRC is a SET_DEST in I2.  In that case,
1880     we may be able to replace that destination with the destination of I3.
1881     This occurs in the common code where we compute both a quotient and
1882     remainder into a structure, in which case we want to do the computation
1883     directly into the structure to avoid register-register copies.
1884
1885     Note that this case handles both multiple sets in I2 and also
1886     cases where I2 has a number of CLOBBER or PARALLELs.
1887
1888     We make very conservative checks below and only try to handle the
1889     most common cases of this.  For example, we only handle the case
1890     where I2 and I3 are adjacent to avoid making difficult register
1891     usage tests.  */
1892
1893  if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
1894      && REG_P (SET_SRC (PATTERN (i3)))
1895      && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
1896      && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
1897      && GET_CODE (PATTERN (i2)) == PARALLEL
1898      && ! side_effects_p (SET_DEST (PATTERN (i3)))
1899      /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
1900	 below would need to check what is inside (and reg_overlap_mentioned_p
1901	 doesn't support those codes anyway).  Don't allow those destinations;
1902	 the resulting insn isn't likely to be recognized anyway.  */
1903      && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
1904      && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
1905      && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
1906				    SET_DEST (PATTERN (i3)))
1907      && next_real_insn (i2) == i3)
1908    {
1909      rtx p2 = PATTERN (i2);
1910
1911      /* Make sure that the destination of I3,
1912	 which we are going to substitute into one output of I2,
1913	 is not used within another output of I2.  We must avoid making this:
1914	 (parallel [(set (mem (reg 69)) ...)
1915		    (set (reg 69) ...)])
1916	 which is not well-defined as to order of actions.
1917	 (Besides, reload can't handle output reloads for this.)
1918
1919	 The problem can also happen if the dest of I3 is a memory ref,
1920	 if another dest in I2 is an indirect memory ref.  */
1921      for (i = 0; i < XVECLEN (p2, 0); i++)
1922	if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1923	     || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1924	    && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
1925					SET_DEST (XVECEXP (p2, 0, i))))
1926	  break;
1927
1928      if (i == XVECLEN (p2, 0))
1929	for (i = 0; i < XVECLEN (p2, 0); i++)
1930	  if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1931	       || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1932	      && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
1933	    {
1934	      combine_merges++;
1935
1936	      subst_insn = i3;
1937	      subst_low_cuid = INSN_CUID (i2);
1938
1939	      added_sets_2 = added_sets_1 = 0;
1940	      i2dest = SET_SRC (PATTERN (i3));
1941	      i2dest_killed = dead_or_set_p (i2, i2dest);
1942
1943	      /* Replace the dest in I2 with our dest and make the resulting
1944		 insn the new pattern for I3.  Then skip to where we
1945		 validate the pattern.  Everything was set up above.  */
1946	      SUBST (SET_DEST (XVECEXP (p2, 0, i)),
1947		     SET_DEST (PATTERN (i3)));
1948
1949	      newpat = p2;
1950	      i3_subst_into_i2 = 1;
1951	      goto validate_replacement;
1952	    }
1953    }
1954
1955  /* If I2 is setting a pseudo to a constant and I3 is setting some
1956     sub-part of it to another constant, merge them by making a new
1957     constant.  */
1958  if (i1 == 0
1959      && (temp = single_set (i2)) != 0
1960      && (GET_CODE (SET_SRC (temp)) == CONST_INT
1961	  || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
1962      && GET_CODE (PATTERN (i3)) == SET
1963      && (GET_CODE (SET_SRC (PATTERN (i3))) == CONST_INT
1964	  || GET_CODE (SET_SRC (PATTERN (i3))) == CONST_DOUBLE)
1965      && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp)))
1966    {
1967      rtx dest = SET_DEST (PATTERN (i3));
1968      int offset = -1;
1969      int width = 0;
1970
1971      if (GET_CODE (dest) == ZERO_EXTRACT)
1972	{
1973	  if (GET_CODE (XEXP (dest, 1)) == CONST_INT
1974	      && GET_CODE (XEXP (dest, 2)) == CONST_INT)
1975	    {
1976	      width = INTVAL (XEXP (dest, 1));
1977	      offset = INTVAL (XEXP (dest, 2));
1978	      dest = XEXP (dest, 0);
1979	      if (BITS_BIG_ENDIAN)
1980		offset = GET_MODE_BITSIZE (GET_MODE (dest)) - width - offset;
1981	    }
1982	}
1983      else
1984	{
1985	  if (GET_CODE (dest) == STRICT_LOW_PART)
1986	    dest = XEXP (dest, 0);
1987	  width = GET_MODE_BITSIZE (GET_MODE (dest));
1988	  offset = 0;
1989	}
1990
1991      if (offset >= 0)
1992	{
1993	  /* If this is the low part, we're done.  */
1994	  if (subreg_lowpart_p (dest))
1995	    ;
1996	  /* Handle the case where inner is twice the size of outer.  */
1997	  else if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (temp)))
1998		   == 2 * GET_MODE_BITSIZE (GET_MODE (dest)))
1999	    offset += GET_MODE_BITSIZE (GET_MODE (dest));
2000	  /* Otherwise give up for now.  */
2001	  else
2002	    offset = -1;
2003	}
2004
2005      if (offset >= 0)
2006	{
2007	  HOST_WIDE_INT mhi, ohi, ihi;
2008	  HOST_WIDE_INT mlo, olo, ilo;
2009	  rtx inner = SET_SRC (PATTERN (i3));
2010	  rtx outer = SET_SRC (temp);
2011
2012	  if (GET_CODE (outer) == CONST_INT)
2013	    {
2014	      olo = INTVAL (outer);
2015	      ohi = olo < 0 ? -1 : 0;
2016	    }
2017	  else
2018	    {
2019	      olo = CONST_DOUBLE_LOW (outer);
2020	      ohi = CONST_DOUBLE_HIGH (outer);
2021	    }
2022
2023	  if (GET_CODE (inner) == CONST_INT)
2024	    {
2025	      ilo = INTVAL (inner);
2026	      ihi = ilo < 0 ? -1 : 0;
2027	    }
2028	  else
2029	    {
2030	      ilo = CONST_DOUBLE_LOW (inner);
2031	      ihi = CONST_DOUBLE_HIGH (inner);
2032	    }
2033
2034	  if (width < HOST_BITS_PER_WIDE_INT)
2035	    {
2036	      mlo = ((unsigned HOST_WIDE_INT) 1 << width) - 1;
2037	      mhi = 0;
2038	    }
2039	  else if (width < HOST_BITS_PER_WIDE_INT * 2)
2040	    {
2041	      mhi = ((unsigned HOST_WIDE_INT) 1
2042		     << (width - HOST_BITS_PER_WIDE_INT)) - 1;
2043	      mlo = -1;
2044	    }
2045	  else
2046	    {
2047	      mlo = -1;
2048	      mhi = -1;
2049	    }
2050
2051	  ilo &= mlo;
2052	  ihi &= mhi;
2053
2054	  if (offset >= HOST_BITS_PER_WIDE_INT)
2055	    {
2056	      mhi = mlo << (offset - HOST_BITS_PER_WIDE_INT);
2057	      mlo = 0;
2058	      ihi = ilo << (offset - HOST_BITS_PER_WIDE_INT);
2059	      ilo = 0;
2060	    }
2061	  else if (offset > 0)
2062	    {
2063	      mhi = (mhi << offset) | ((unsigned HOST_WIDE_INT) mlo
2064		     		       >> (HOST_BITS_PER_WIDE_INT - offset));
2065	      mlo = mlo << offset;
2066	      ihi = (ihi << offset) | ((unsigned HOST_WIDE_INT) ilo
2067		     		       >> (HOST_BITS_PER_WIDE_INT - offset));
2068	      ilo = ilo << offset;
2069	    }
2070
2071	  olo = (olo & ~mlo) | ilo;
2072	  ohi = (ohi & ~mhi) | ihi;
2073
2074	  combine_merges++;
2075	  subst_insn = i3;
2076	  subst_low_cuid = INSN_CUID (i2);
2077	  added_sets_2 = added_sets_1 = 0;
2078	  i2dest = SET_DEST (temp);
2079	  i2dest_killed = dead_or_set_p (i2, i2dest);
2080
2081	  SUBST (SET_SRC (temp),
2082		 immed_double_const (olo, ohi, GET_MODE (SET_DEST (temp))));
2083
2084	  newpat = PATTERN (i2);
2085	  goto validate_replacement;
2086	}
2087    }
2088
2089#ifndef HAVE_cc0
2090  /* If we have no I1 and I2 looks like:
2091	(parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2092		   (set Y OP)])
2093     make up a dummy I1 that is
2094	(set Y OP)
2095     and change I2 to be
2096	(set (reg:CC X) (compare:CC Y (const_int 0)))
2097
2098     (We can ignore any trailing CLOBBERs.)
2099
2100     This undoes a previous combination and allows us to match a branch-and-
2101     decrement insn.  */
2102
2103  if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
2104      && XVECLEN (PATTERN (i2), 0) >= 2
2105      && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
2106      && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2107	  == MODE_CC)
2108      && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2109      && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2110      && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
2111      && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)))
2112      && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2113		      SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
2114    {
2115      for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
2116	if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
2117	  break;
2118
2119      if (i == 1)
2120	{
2121	  /* We make I1 with the same INSN_UID as I2.  This gives it
2122	     the same INSN_CUID for value tracking.  Our fake I1 will
2123	     never appear in the insn stream so giving it the same INSN_UID
2124	     as I2 will not cause a problem.  */
2125
2126	  i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
2127			     BLOCK_FOR_INSN (i2), INSN_LOCATOR (i2),
2128			     XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX,
2129			     NULL_RTX);
2130
2131	  SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
2132	  SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
2133		 SET_DEST (PATTERN (i1)));
2134	}
2135    }
2136#endif
2137
2138  /* Verify that I2 and I1 are valid for combining.  */
2139  if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
2140      || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
2141    {
2142      undo_all ();
2143      return 0;
2144    }
2145
2146  /* Record whether I2DEST is used in I2SRC and similarly for the other
2147     cases.  Knowing this will help in register status updating below.  */
2148  i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
2149  i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
2150  i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
2151  i2dest_killed = dead_or_set_p (i2, i2dest);
2152  i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
2153
2154  /* See if I1 directly feeds into I3.  It does if I1DEST is not used
2155     in I2SRC.  */
2156  i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
2157
2158  /* Ensure that I3's pattern can be the destination of combines.  */
2159  if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
2160			  i1 && i2dest_in_i1src && i1_feeds_i3,
2161			  &i3dest_killed))
2162    {
2163      undo_all ();
2164      return 0;
2165    }
2166
2167  /* See if any of the insns is a MULT operation.  Unless one is, we will
2168     reject a combination that is, since it must be slower.  Be conservative
2169     here.  */
2170  if (GET_CODE (i2src) == MULT
2171      || (i1 != 0 && GET_CODE (i1src) == MULT)
2172      || (GET_CODE (PATTERN (i3)) == SET
2173	  && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
2174    have_mult = 1;
2175
2176  /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
2177     We used to do this EXCEPT in one case: I3 has a post-inc in an
2178     output operand.  However, that exception can give rise to insns like
2179	mov r3,(r3)+
2180     which is a famous insn on the PDP-11 where the value of r3 used as the
2181     source was model-dependent.  Avoid this sort of thing.  */
2182
2183#if 0
2184  if (!(GET_CODE (PATTERN (i3)) == SET
2185	&& REG_P (SET_SRC (PATTERN (i3)))
2186	&& MEM_P (SET_DEST (PATTERN (i3)))
2187	&& (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
2188	    || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
2189    /* It's not the exception.  */
2190#endif
2191#ifdef AUTO_INC_DEC
2192    for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
2193      if (REG_NOTE_KIND (link) == REG_INC
2194	  && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
2195	      || (i1 != 0
2196		  && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
2197	{
2198	  undo_all ();
2199	  return 0;
2200	}
2201#endif
2202
2203  /* See if the SETs in I1 or I2 need to be kept around in the merged
2204     instruction: whenever the value set there is still needed past I3.
2205     For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
2206
2207     For the SET in I1, we have two cases:  If I1 and I2 independently
2208     feed into I3, the set in I1 needs to be kept around if I1DEST dies
2209     or is set in I3.  Otherwise (if I1 feeds I2 which feeds I3), the set
2210     in I1 needs to be kept around unless I1DEST dies or is set in either
2211     I2 or I3.  We can distinguish these cases by seeing if I2SRC mentions
2212     I1DEST.  If so, we know I1 feeds into I2.  */
2213
2214  added_sets_2 = ! dead_or_set_p (i3, i2dest);
2215
2216  added_sets_1
2217    = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
2218	       : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
2219
2220  /* If the set in I2 needs to be kept around, we must make a copy of
2221     PATTERN (I2), so that when we substitute I1SRC for I1DEST in
2222     PATTERN (I2), we are only substituting for the original I1DEST, not into
2223     an already-substituted copy.  This also prevents making self-referential
2224     rtx.  If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
2225     I2DEST.  */
2226
2227  if (added_sets_2)
2228    {
2229      if (GET_CODE (PATTERN (i2)) == PARALLEL)
2230	i2pat = gen_rtx_SET (VOIDmode, i2dest, copy_rtx (i2src));
2231      else
2232	i2pat = copy_rtx (PATTERN (i2));
2233    }
2234
2235  if (added_sets_1)
2236    {
2237      if (GET_CODE (PATTERN (i1)) == PARALLEL)
2238	i1pat = gen_rtx_SET (VOIDmode, i1dest, copy_rtx (i1src));
2239      else
2240	i1pat = copy_rtx (PATTERN (i1));
2241    }
2242
2243  combine_merges++;
2244
2245  /* Substitute in the latest insn for the regs set by the earlier ones.  */
2246
2247  maxreg = max_reg_num ();
2248
2249  subst_insn = i3;
2250
2251#ifndef HAVE_cc0
2252  /* Many machines that don't use CC0 have insns that can both perform an
2253     arithmetic operation and set the condition code.  These operations will
2254     be represented as a PARALLEL with the first element of the vector
2255     being a COMPARE of an arithmetic operation with the constant zero.
2256     The second element of the vector will set some pseudo to the result
2257     of the same arithmetic operation.  If we simplify the COMPARE, we won't
2258     match such a pattern and so will generate an extra insn.   Here we test
2259     for this case, where both the comparison and the operation result are
2260     needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
2261     I2SRC.  Later we will make the PARALLEL that contains I2.  */
2262
2263  if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
2264      && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
2265      && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
2266      && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
2267    {
2268#ifdef SELECT_CC_MODE
2269      rtx *cc_use;
2270      enum machine_mode compare_mode;
2271#endif
2272
2273      newpat = PATTERN (i3);
2274      SUBST (XEXP (SET_SRC (newpat), 0), i2src);
2275
2276      i2_is_used = 1;
2277
2278#ifdef SELECT_CC_MODE
2279      /* See if a COMPARE with the operand we substituted in should be done
2280	 with the mode that is currently being used.  If not, do the same
2281	 processing we do in `subst' for a SET; namely, if the destination
2282	 is used only once, try to replace it with a register of the proper
2283	 mode and also replace the COMPARE.  */
2284      if (undobuf.other_insn == 0
2285	  && (cc_use = find_single_use (SET_DEST (newpat), i3,
2286					&undobuf.other_insn))
2287	  && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
2288					      i2src, const0_rtx))
2289	      != GET_MODE (SET_DEST (newpat))))
2290	{
2291	  if (can_change_dest_mode(SET_DEST (newpat), added_sets_2,
2292				   compare_mode))
2293	    {
2294	      unsigned int regno = REGNO (SET_DEST (newpat));
2295	      rtx new_dest;
2296
2297	      if (regno < FIRST_PSEUDO_REGISTER)
2298		new_dest = gen_rtx_REG (compare_mode, regno);
2299	      else
2300		{
2301		  SUBST_MODE (regno_reg_rtx[regno], compare_mode);
2302		  new_dest = regno_reg_rtx[regno];
2303		}
2304
2305	      SUBST (SET_DEST (newpat), new_dest);
2306	      SUBST (XEXP (*cc_use, 0), new_dest);
2307	      SUBST (SET_SRC (newpat),
2308		     gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
2309	    }
2310	  else
2311	    undobuf.other_insn = 0;
2312	}
2313#endif
2314    }
2315  else
2316#endif
2317    {
2318      /* It is possible that the source of I2 or I1 may be performing
2319	 an unneeded operation, such as a ZERO_EXTEND of something
2320	 that is known to have the high part zero.  Handle that case
2321	 by letting subst look at the innermost one of them.
2322
2323	 Another way to do this would be to have a function that tries
2324	 to simplify a single insn instead of merging two or more
2325	 insns.  We don't do this because of the potential of infinite
2326	 loops and because of the potential extra memory required.
2327	 However, doing it the way we are is a bit of a kludge and
2328	 doesn't catch all cases.
2329
2330	 But only do this if -fexpensive-optimizations since it slows
2331	 things down and doesn't usually win.
2332
2333	 This is not done in the COMPARE case above because the
2334	 unmodified I2PAT is used in the PARALLEL and so a pattern
2335	 with a modified I2SRC would not match.  */
2336
2337      if (flag_expensive_optimizations)
2338	{
2339	  /* Pass pc_rtx so no substitutions are done, just
2340	     simplifications.  */
2341	  if (i1)
2342	    {
2343	      subst_low_cuid = INSN_CUID (i1);
2344	      i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
2345	    }
2346	  else
2347	    {
2348	      subst_low_cuid = INSN_CUID (i2);
2349	      i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
2350	    }
2351	}
2352
2353      n_occurrences = 0;		/* `subst' counts here */
2354
2355      /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
2356	 need to make a unique copy of I2SRC each time we substitute it
2357	 to avoid self-referential rtl.  */
2358
2359      subst_low_cuid = INSN_CUID (i2);
2360      newpat = subst (PATTERN (i3), i2dest, i2src, 0,
2361		      ! i1_feeds_i3 && i1dest_in_i1src);
2362      substed_i2 = 1;
2363
2364      /* Record whether i2's body now appears within i3's body.  */
2365      i2_is_used = n_occurrences;
2366    }
2367
2368  /* If we already got a failure, don't try to do more.  Otherwise,
2369     try to substitute in I1 if we have it.  */
2370
2371  if (i1 && GET_CODE (newpat) != CLOBBER)
2372    {
2373      /* Before we can do this substitution, we must redo the test done
2374	 above (see detailed comments there) that ensures  that I1DEST
2375	 isn't mentioned in any SETs in NEWPAT that are field assignments.  */
2376
2377#if !defined(OPENBSD_NATIVE) && !defined(OPENBSD_CROSS) /* GCC PR #34628 */
2378      if (! combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX,
2379			      0, (rtx*) 0))
2380#endif
2381	{
2382	  undo_all ();
2383	  return 0;
2384	}
2385
2386      n_occurrences = 0;
2387      subst_low_cuid = INSN_CUID (i1);
2388      newpat = subst (newpat, i1dest, i1src, 0, 0);
2389      substed_i1 = 1;
2390    }
2391
2392  /* Fail if an autoincrement side-effect has been duplicated.  Be careful
2393     to count all the ways that I2SRC and I1SRC can be used.  */
2394  if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
2395       && i2_is_used + added_sets_2 > 1)
2396      || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
2397	  && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
2398	      > 1))
2399      /* Fail if we tried to make a new register.  */
2400      || max_reg_num () != maxreg
2401      /* Fail if we couldn't do something and have a CLOBBER.  */
2402      || GET_CODE (newpat) == CLOBBER
2403      /* Fail if this new pattern is a MULT and we didn't have one before
2404	 at the outer level.  */
2405      || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
2406	  && ! have_mult))
2407    {
2408      undo_all ();
2409      return 0;
2410    }
2411
2412  /* If the actions of the earlier insns must be kept
2413     in addition to substituting them into the latest one,
2414     we must make a new PARALLEL for the latest insn
2415     to hold additional the SETs.  */
2416
2417  if (added_sets_1 || added_sets_2)
2418    {
2419      combine_extras++;
2420
2421      if (GET_CODE (newpat) == PARALLEL)
2422	{
2423	  rtvec old = XVEC (newpat, 0);
2424	  total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
2425	  newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2426	  memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
2427		  sizeof (old->elem[0]) * old->num_elem);
2428	}
2429      else
2430	{
2431	  rtx old = newpat;
2432	  total_sets = 1 + added_sets_1 + added_sets_2;
2433	  newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2434	  XVECEXP (newpat, 0, 0) = old;
2435	}
2436
2437      if (added_sets_1)
2438	XVECEXP (newpat, 0, --total_sets) = i1pat;
2439
2440      if (added_sets_2)
2441	{
2442	  /* If there is no I1, use I2's body as is.  We used to also not do
2443	     the subst call below if I2 was substituted into I3,
2444	     but that could lose a simplification.  */
2445	  if (i1 == 0)
2446	    XVECEXP (newpat, 0, --total_sets) = i2pat;
2447	  else
2448	    /* See comment where i2pat is assigned.  */
2449	    XVECEXP (newpat, 0, --total_sets)
2450	      = subst (i2pat, i1dest, i1src, 0, 0);
2451	}
2452    }
2453
2454  /* We come here when we are replacing a destination in I2 with the
2455     destination of I3.  */
2456 validate_replacement:
2457
2458  /* Note which hard regs this insn has as inputs.  */
2459  mark_used_regs_combine (newpat);
2460
2461  /* If recog_for_combine fails, it strips existing clobbers.  If we'll
2462     consider splitting this pattern, we might need these clobbers.  */
2463  if (i1 && GET_CODE (newpat) == PARALLEL
2464      && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
2465    {
2466      int len = XVECLEN (newpat, 0);
2467
2468      newpat_vec_with_clobbers = rtvec_alloc (len);
2469      for (i = 0; i < len; i++)
2470	RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
2471    }
2472
2473  /* Is the result of combination a valid instruction?  */
2474  insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2475
2476  /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2477     the second SET's destination is a register that is unused and isn't
2478     marked as an instruction that might trap in an EH region.  In that case,
2479     we just need the first SET.   This can occur when simplifying a divmod
2480     insn.  We *must* test for this case here because the code below that
2481     splits two independent SETs doesn't handle this case correctly when it
2482     updates the register status.
2483
2484     It's pointless doing this if we originally had two sets, one from
2485     i3, and one from i2.  Combining then splitting the parallel results
2486     in the original i2 again plus an invalid insn (which we delete).
2487     The net effect is only to move instructions around, which makes
2488     debug info less accurate.
2489
2490     Also check the case where the first SET's destination is unused.
2491     That would not cause incorrect code, but does cause an unneeded
2492     insn to remain.  */
2493
2494  if (insn_code_number < 0
2495      && !(added_sets_2 && i1 == 0)
2496      && GET_CODE (newpat) == PARALLEL
2497      && XVECLEN (newpat, 0) == 2
2498      && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2499      && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2500      && asm_noperands (newpat) < 0)
2501    {
2502      rtx set0 = XVECEXP (newpat, 0, 0);
2503      rtx set1 = XVECEXP (newpat, 0, 1);
2504      rtx note;
2505
2506      if (((REG_P (SET_DEST (set1))
2507	    && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
2508	   || (GET_CODE (SET_DEST (set1)) == SUBREG
2509	       && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
2510	  && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2511	      || INTVAL (XEXP (note, 0)) <= 0)
2512	  && ! side_effects_p (SET_SRC (set1)))
2513	{
2514	  newpat = set0;
2515	  insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2516	}
2517
2518      else if (((REG_P (SET_DEST (set0))
2519		 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
2520		|| (GET_CODE (SET_DEST (set0)) == SUBREG
2521		    && find_reg_note (i3, REG_UNUSED,
2522				      SUBREG_REG (SET_DEST (set0)))))
2523	       && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2524		   || INTVAL (XEXP (note, 0)) <= 0)
2525	       && ! side_effects_p (SET_SRC (set0)))
2526	{
2527	  newpat = set1;
2528	  insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2529
2530	  if (insn_code_number >= 0)
2531	    {
2532	      /* If we will be able to accept this, we have made a
2533		 change to the destination of I3.  This requires us to
2534		 do a few adjustments.  */
2535
2536	      PATTERN (i3) = newpat;
2537	      adjust_for_new_dest (i3);
2538	    }
2539	}
2540    }
2541
2542  /* If we were combining three insns and the result is a simple SET
2543     with no ASM_OPERANDS that wasn't recognized, try to split it into two
2544     insns.  There are two ways to do this.  It can be split using a
2545     machine-specific method (like when you have an addition of a large
2546     constant) or by combine in the function find_split_point.  */
2547
2548  if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
2549      && asm_noperands (newpat) < 0)
2550    {
2551      rtx m_split, *split;
2552
2553      /* See if the MD file can split NEWPAT.  If it can't, see if letting it
2554	 use I2DEST as a scratch register will help.  In the latter case,
2555	 convert I2DEST to the mode of the source of NEWPAT if we can.  */
2556
2557      m_split = split_insns (newpat, i3);
2558
2559      /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2560	 inputs of NEWPAT.  */
2561
2562      /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2563	 possible to try that as a scratch reg.  This would require adding
2564	 more code to make it work though.  */
2565
2566      if (m_split == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
2567	{
2568	  enum machine_mode new_mode = GET_MODE (SET_DEST (newpat));
2569
2570	  /* First try to split using the original register as a
2571	     scratch register.  */
2572	  m_split = split_insns (gen_rtx_PARALLEL
2573				 (VOIDmode,
2574				  gen_rtvec (2, newpat,
2575					     gen_rtx_CLOBBER (VOIDmode,
2576							      i2dest))),
2577				 i3);
2578
2579	  /* If that didn't work, try changing the mode of I2DEST if
2580	     we can.  */
2581	  if (m_split == 0
2582	      && new_mode != GET_MODE (i2dest)
2583	      && new_mode != VOIDmode
2584	      && can_change_dest_mode (i2dest, added_sets_2, new_mode))
2585	    {
2586	      enum machine_mode old_mode = GET_MODE (i2dest);
2587	      rtx ni2dest;
2588
2589	      if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
2590		ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
2591	      else
2592		{
2593		  SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
2594		  ni2dest = regno_reg_rtx[REGNO (i2dest)];
2595		}
2596
2597	      m_split = split_insns (gen_rtx_PARALLEL
2598				     (VOIDmode,
2599				      gen_rtvec (2, newpat,
2600						 gen_rtx_CLOBBER (VOIDmode,
2601								  ni2dest))),
2602				     i3);
2603
2604	      if (m_split == 0
2605		  && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2606		{
2607		  struct undo *buf;
2608
2609		  PUT_MODE (regno_reg_rtx[REGNO (i2dest)], old_mode);
2610		  buf = undobuf.undos;
2611		  undobuf.undos = buf->next;
2612		  buf->next = undobuf.frees;
2613		  undobuf.frees = buf;
2614		}
2615	    }
2616	}
2617
2618      /* If recog_for_combine has discarded clobbers, try to use them
2619	 again for the split.  */
2620      if (m_split == 0 && newpat_vec_with_clobbers)
2621	m_split
2622	  = split_insns (gen_rtx_PARALLEL (VOIDmode,
2623					   newpat_vec_with_clobbers), i3);
2624
2625      if (m_split && NEXT_INSN (m_split) == NULL_RTX)
2626	{
2627	  m_split = PATTERN (m_split);
2628	  insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
2629	  if (insn_code_number >= 0)
2630	    newpat = m_split;
2631	}
2632      else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
2633	       && (next_real_insn (i2) == i3
2634		   || ! use_crosses_set_p (PATTERN (m_split), INSN_CUID (i2))))
2635	{
2636	  rtx i2set, i3set;
2637	  rtx newi3pat = PATTERN (NEXT_INSN (m_split));
2638	  newi2pat = PATTERN (m_split);
2639
2640	  i3set = single_set (NEXT_INSN (m_split));
2641	  i2set = single_set (m_split);
2642
2643	  i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2644
2645	  /* If I2 or I3 has multiple SETs, we won't know how to track
2646	     register status, so don't use these insns.  If I2's destination
2647	     is used between I2 and I3, we also can't use these insns.  */
2648
2649	  if (i2_code_number >= 0 && i2set && i3set
2650	      && (next_real_insn (i2) == i3
2651		  || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
2652	    insn_code_number = recog_for_combine (&newi3pat, i3,
2653						  &new_i3_notes);
2654	  if (insn_code_number >= 0)
2655	    newpat = newi3pat;
2656
2657	  /* It is possible that both insns now set the destination of I3.
2658	     If so, we must show an extra use of it.  */
2659
2660	  if (insn_code_number >= 0)
2661	    {
2662	      rtx new_i3_dest = SET_DEST (i3set);
2663	      rtx new_i2_dest = SET_DEST (i2set);
2664
2665	      while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
2666		     || GET_CODE (new_i3_dest) == STRICT_LOW_PART
2667		     || GET_CODE (new_i3_dest) == SUBREG)
2668		new_i3_dest = XEXP (new_i3_dest, 0);
2669
2670	      while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
2671		     || GET_CODE (new_i2_dest) == STRICT_LOW_PART
2672		     || GET_CODE (new_i2_dest) == SUBREG)
2673		new_i2_dest = XEXP (new_i2_dest, 0);
2674
2675	      if (REG_P (new_i3_dest)
2676		  && REG_P (new_i2_dest)
2677		  && REGNO (new_i3_dest) == REGNO (new_i2_dest))
2678		REG_N_SETS (REGNO (new_i2_dest))++;
2679	    }
2680	}
2681
2682      /* If we can split it and use I2DEST, go ahead and see if that
2683	 helps things be recognized.  Verify that none of the registers
2684	 are set between I2 and I3.  */
2685      if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
2686#ifdef HAVE_cc0
2687	  && REG_P (i2dest)
2688#endif
2689	  /* We need I2DEST in the proper mode.  If it is a hard register
2690	     or the only use of a pseudo, we can change its mode.
2691	     Make sure we don't change a hard register to have a mode that
2692	     isn't valid for it, or change the number of registers.  */
2693	  && (GET_MODE (*split) == GET_MODE (i2dest)
2694	      || GET_MODE (*split) == VOIDmode
2695	      || can_change_dest_mode (i2dest, added_sets_2,
2696				       GET_MODE (*split)))
2697	  && (next_real_insn (i2) == i3
2698	      || ! use_crosses_set_p (*split, INSN_CUID (i2)))
2699	  /* We can't overwrite I2DEST if its value is still used by
2700	     NEWPAT.  */
2701	  && ! reg_referenced_p (i2dest, newpat))
2702	{
2703	  rtx newdest = i2dest;
2704	  enum rtx_code split_code = GET_CODE (*split);
2705	  enum machine_mode split_mode = GET_MODE (*split);
2706	  bool subst_done = false;
2707	  newi2pat = NULL_RTX;
2708
2709	  /* Get NEWDEST as a register in the proper mode.  We have already
2710	     validated that we can do this.  */
2711	  if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
2712	    {
2713	      if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
2714		newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
2715	      else
2716		{
2717		  SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
2718		  newdest = regno_reg_rtx[REGNO (i2dest)];
2719		}
2720	    }
2721
2722	  /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
2723	     an ASHIFT.  This can occur if it was inside a PLUS and hence
2724	     appeared to be a memory address.  This is a kludge.  */
2725	  if (split_code == MULT
2726	      && GET_CODE (XEXP (*split, 1)) == CONST_INT
2727	      && INTVAL (XEXP (*split, 1)) > 0
2728	      && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
2729	    {
2730	      SUBST (*split, gen_rtx_ASHIFT (split_mode,
2731					     XEXP (*split, 0), GEN_INT (i)));
2732	      /* Update split_code because we may not have a multiply
2733		 anymore.  */
2734	      split_code = GET_CODE (*split);
2735	    }
2736
2737#ifdef INSN_SCHEDULING
2738	  /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
2739	     be written as a ZERO_EXTEND.  */
2740	  if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
2741	    {
2742#ifdef LOAD_EXTEND_OP
2743	      /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
2744		 what it really is.  */
2745	      if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
2746		  == SIGN_EXTEND)
2747		SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
2748						    SUBREG_REG (*split)));
2749	      else
2750#endif
2751		SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
2752						    SUBREG_REG (*split)));
2753	    }
2754#endif
2755
2756	  /* Attempt to split binary operators using arithmetic identities.  */
2757	  if (BINARY_P (SET_SRC (newpat))
2758	      && split_mode == GET_MODE (SET_SRC (newpat))
2759	      && ! side_effects_p (SET_SRC (newpat)))
2760	    {
2761	      rtx setsrc = SET_SRC (newpat);
2762	      enum machine_mode mode = GET_MODE (setsrc);
2763	      enum rtx_code code = GET_CODE (setsrc);
2764	      rtx src_op0 = XEXP (setsrc, 0);
2765	      rtx src_op1 = XEXP (setsrc, 1);
2766
2767	      /* Split "X = Y op Y" as "Z = Y; X = Z op Z".  */
2768	      if (rtx_equal_p (src_op0, src_op1))
2769		{
2770		  newi2pat = gen_rtx_SET (VOIDmode, newdest, src_op0);
2771		  SUBST (XEXP (setsrc, 0), newdest);
2772		  SUBST (XEXP (setsrc, 1), newdest);
2773		  subst_done = true;
2774		}
2775	      /* Split "((P op Q) op R) op S" where op is PLUS or MULT.  */
2776	      else if ((code == PLUS || code == MULT)
2777		       && GET_CODE (src_op0) == code
2778		       && GET_CODE (XEXP (src_op0, 0)) == code
2779		       && (INTEGRAL_MODE_P (mode)
2780			   || (FLOAT_MODE_P (mode)
2781			       && flag_unsafe_math_optimizations)))
2782		{
2783		  rtx p = XEXP (XEXP (src_op0, 0), 0);
2784		  rtx q = XEXP (XEXP (src_op0, 0), 1);
2785		  rtx r = XEXP (src_op0, 1);
2786		  rtx s = src_op1;
2787
2788		  /* Split both "((X op Y) op X) op Y" and
2789		     "((X op Y) op Y) op X" as "T op T" where T is
2790		     "X op Y".  */
2791		  if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
2792		       || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
2793		    {
2794		      newi2pat = gen_rtx_SET (VOIDmode, newdest,
2795					      XEXP (src_op0, 0));
2796		      SUBST (XEXP (setsrc, 0), newdest);
2797		      SUBST (XEXP (setsrc, 1), newdest);
2798		      subst_done = true;
2799		    }
2800		  /* Split "((X op X) op Y) op Y)" as "T op T" where
2801		     T is "X op Y".  */
2802		  else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
2803		    {
2804		      rtx tmp = simplify_gen_binary (code, mode, p, r);
2805		      newi2pat = gen_rtx_SET (VOIDmode, newdest, tmp);
2806		      SUBST (XEXP (setsrc, 0), newdest);
2807		      SUBST (XEXP (setsrc, 1), newdest);
2808		      subst_done = true;
2809		    }
2810		}
2811	    }
2812
2813	  if (!subst_done)
2814	    {
2815	      newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
2816	      SUBST (*split, newdest);
2817	    }
2818
2819	  i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2820
2821	  /* recog_for_combine might have added CLOBBERs to newi2pat.
2822	     Make sure NEWPAT does not depend on the clobbered regs.  */
2823	  if (GET_CODE (newi2pat) == PARALLEL)
2824	    for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
2825	      if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
2826		{
2827		  rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
2828		  if (reg_overlap_mentioned_p (reg, newpat))
2829		    {
2830		      undo_all ();
2831		      return 0;
2832		    }
2833		}
2834
2835	  /* If the split point was a MULT and we didn't have one before,
2836	     don't use one now.  */
2837	  if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
2838	    insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2839	}
2840    }
2841
2842  /* Check for a case where we loaded from memory in a narrow mode and
2843     then sign extended it, but we need both registers.  In that case,
2844     we have a PARALLEL with both loads from the same memory location.
2845     We can split this into a load from memory followed by a register-register
2846     copy.  This saves at least one insn, more if register allocation can
2847     eliminate the copy.
2848
2849     We cannot do this if the destination of the first assignment is a
2850     condition code register or cc0.  We eliminate this case by making sure
2851     the SET_DEST and SET_SRC have the same mode.
2852
2853     We cannot do this if the destination of the second assignment is
2854     a register that we have already assumed is zero-extended.  Similarly
2855     for a SUBREG of such a register.  */
2856
2857  else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2858	   && GET_CODE (newpat) == PARALLEL
2859	   && XVECLEN (newpat, 0) == 2
2860	   && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2861	   && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
2862	   && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
2863	       == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
2864	   && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2865	   && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2866			   XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
2867	   && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2868				   INSN_CUID (i2))
2869	   && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2870	   && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2871	   && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
2872		 (REG_P (temp)
2873		  && reg_stat[REGNO (temp)].nonzero_bits != 0
2874		  && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2875		  && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2876		  && (reg_stat[REGNO (temp)].nonzero_bits
2877		      != GET_MODE_MASK (word_mode))))
2878	   && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
2879		 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
2880		     (REG_P (temp)
2881		      && reg_stat[REGNO (temp)].nonzero_bits != 0
2882		      && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2883		      && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2884		      && (reg_stat[REGNO (temp)].nonzero_bits
2885			  != GET_MODE_MASK (word_mode)))))
2886	   && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2887					 SET_SRC (XVECEXP (newpat, 0, 1)))
2888	   && ! find_reg_note (i3, REG_UNUSED,
2889			       SET_DEST (XVECEXP (newpat, 0, 0))))
2890    {
2891      rtx ni2dest;
2892
2893      newi2pat = XVECEXP (newpat, 0, 0);
2894      ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
2895      newpat = XVECEXP (newpat, 0, 1);
2896      SUBST (SET_SRC (newpat),
2897	     gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
2898      i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2899
2900      if (i2_code_number >= 0)
2901	insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2902
2903      if (insn_code_number >= 0)
2904	swap_i2i3 = 1;
2905    }
2906
2907  /* Similarly, check for a case where we have a PARALLEL of two independent
2908     SETs but we started with three insns.  In this case, we can do the sets
2909     as two separate insns.  This case occurs when some SET allows two
2910     other insns to combine, but the destination of that SET is still live.  */
2911
2912  else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2913	   && GET_CODE (newpat) == PARALLEL
2914	   && XVECLEN (newpat, 0) == 2
2915	   && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2916	   && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
2917	   && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
2918	   && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2919	   && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2920	   && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2921	   && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2922				   INSN_CUID (i2))
2923	   && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2924				  XVECEXP (newpat, 0, 0))
2925	   && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
2926				  XVECEXP (newpat, 0, 1))
2927	   && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
2928		 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1))))
2929#ifdef HAVE_cc0
2930	   /* We cannot split the parallel into two sets if both sets
2931	      reference cc0.  */
2932	   && ! (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0))
2933		 && reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 1)))
2934#endif
2935	   )
2936    {
2937      /* Normally, it doesn't matter which of the two is done first,
2938	 but it does if one references cc0.  In that case, it has to
2939	 be first.  */
2940#ifdef HAVE_cc0
2941      if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
2942	{
2943	  newi2pat = XVECEXP (newpat, 0, 0);
2944	  newpat = XVECEXP (newpat, 0, 1);
2945	}
2946      else
2947#endif
2948	{
2949	  newi2pat = XVECEXP (newpat, 0, 1);
2950	  newpat = XVECEXP (newpat, 0, 0);
2951	}
2952
2953      i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2954
2955      if (i2_code_number >= 0)
2956	insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2957    }
2958
2959  /* If it still isn't recognized, fail and change things back the way they
2960     were.  */
2961  if ((insn_code_number < 0
2962       /* Is the result a reasonable ASM_OPERANDS?  */
2963       && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
2964    {
2965      undo_all ();
2966      return 0;
2967    }
2968
2969  /* If we had to change another insn, make sure it is valid also.  */
2970  if (undobuf.other_insn)
2971    {
2972      rtx other_pat = PATTERN (undobuf.other_insn);
2973      rtx new_other_notes;
2974      rtx note, next;
2975
2976      CLEAR_HARD_REG_SET (newpat_used_regs);
2977
2978      other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
2979					     &new_other_notes);
2980
2981      if (other_code_number < 0 && ! check_asm_operands (other_pat))
2982	{
2983	  undo_all ();
2984	  return 0;
2985	}
2986
2987      PATTERN (undobuf.other_insn) = other_pat;
2988
2989      /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
2990	 are still valid.  Then add any non-duplicate notes added by
2991	 recog_for_combine.  */
2992      for (note = REG_NOTES (undobuf.other_insn); note; note = next)
2993	{
2994	  next = XEXP (note, 1);
2995
2996	  if (REG_NOTE_KIND (note) == REG_UNUSED
2997	      && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
2998	    {
2999	      if (REG_P (XEXP (note, 0)))
3000		REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
3001
3002	      remove_note (undobuf.other_insn, note);
3003	    }
3004	}
3005
3006      for (note = new_other_notes; note; note = XEXP (note, 1))
3007	if (REG_P (XEXP (note, 0)))
3008	  REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
3009
3010      distribute_notes (new_other_notes, undobuf.other_insn,
3011			undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX);
3012    }
3013#ifdef HAVE_cc0
3014  /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
3015     they are adjacent to each other or not.  */
3016  {
3017    rtx p = prev_nonnote_insn (i3);
3018    if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
3019	&& sets_cc0_p (newi2pat))
3020      {
3021	undo_all ();
3022	return 0;
3023      }
3024  }
3025#endif
3026
3027  /* Only allow this combination if insn_rtx_costs reports that the
3028     replacement instructions are cheaper than the originals.  */
3029  if (!combine_validate_cost (i1, i2, i3, newpat, newi2pat))
3030    {
3031      undo_all ();
3032      return 0;
3033    }
3034
3035  /* We now know that we can do this combination.  Merge the insns and
3036     update the status of registers and LOG_LINKS.  */
3037
3038  if (swap_i2i3)
3039    {
3040      rtx insn;
3041      rtx link;
3042      rtx ni2dest;
3043
3044      /* I3 now uses what used to be its destination and which is now
3045	 I2's destination.  This requires us to do a few adjustments.  */
3046      PATTERN (i3) = newpat;
3047      adjust_for_new_dest (i3);
3048
3049      /* We need a LOG_LINK from I3 to I2.  But we used to have one,
3050	 so we still will.
3051
3052	 However, some later insn might be using I2's dest and have
3053	 a LOG_LINK pointing at I3.  We must remove this link.
3054	 The simplest way to remove the link is to point it at I1,
3055	 which we know will be a NOTE.  */
3056
3057      /* newi2pat is usually a SET here; however, recog_for_combine might
3058	 have added some clobbers.  */
3059      if (GET_CODE (newi2pat) == PARALLEL)
3060	ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
3061      else
3062	ni2dest = SET_DEST (newi2pat);
3063
3064      for (insn = NEXT_INSN (i3);
3065	   insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
3066		    || insn != BB_HEAD (this_basic_block->next_bb));
3067	   insn = NEXT_INSN (insn))
3068	{
3069	  if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
3070	    {
3071	      for (link = LOG_LINKS (insn); link;
3072		   link = XEXP (link, 1))
3073		if (XEXP (link, 0) == i3)
3074		  XEXP (link, 0) = i1;
3075
3076	      break;
3077	    }
3078	}
3079    }
3080
3081  {
3082    rtx i3notes, i2notes, i1notes = 0;
3083    rtx i3links, i2links, i1links = 0;
3084    rtx midnotes = 0;
3085    unsigned int regno;
3086    /* Compute which registers we expect to eliminate.  newi2pat may be setting
3087       either i3dest or i2dest, so we must check it.  Also, i1dest may be the
3088       same as i3dest, in which case newi2pat may be setting i1dest.  */
3089    rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
3090		   || i2dest_in_i2src || i2dest_in_i1src
3091		   || !i2dest_killed
3092		   ? 0 : i2dest);
3093    rtx elim_i1 = (i1 == 0 || i1dest_in_i1src
3094		   || (newi2pat && reg_set_p (i1dest, newi2pat))
3095		   || !i1dest_killed
3096		   ? 0 : i1dest);
3097
3098    /* Get the old REG_NOTES and LOG_LINKS from all our insns and
3099       clear them.  */
3100    i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
3101    i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
3102    if (i1)
3103      i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
3104
3105    /* Ensure that we do not have something that should not be shared but
3106       occurs multiple times in the new insns.  Check this by first
3107       resetting all the `used' flags and then copying anything is shared.  */
3108
3109    reset_used_flags (i3notes);
3110    reset_used_flags (i2notes);
3111    reset_used_flags (i1notes);
3112    reset_used_flags (newpat);
3113    reset_used_flags (newi2pat);
3114    if (undobuf.other_insn)
3115      reset_used_flags (PATTERN (undobuf.other_insn));
3116
3117    i3notes = copy_rtx_if_shared (i3notes);
3118    i2notes = copy_rtx_if_shared (i2notes);
3119    i1notes = copy_rtx_if_shared (i1notes);
3120    newpat = copy_rtx_if_shared (newpat);
3121    newi2pat = copy_rtx_if_shared (newi2pat);
3122    if (undobuf.other_insn)
3123      reset_used_flags (PATTERN (undobuf.other_insn));
3124
3125    INSN_CODE (i3) = insn_code_number;
3126    PATTERN (i3) = newpat;
3127
3128    if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
3129      {
3130	rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
3131
3132	reset_used_flags (call_usage);
3133	call_usage = copy_rtx (call_usage);
3134
3135	if (substed_i2)
3136	  replace_rtx (call_usage, i2dest, i2src);
3137
3138	if (substed_i1)
3139	  replace_rtx (call_usage, i1dest, i1src);
3140
3141	CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
3142      }
3143
3144    if (undobuf.other_insn)
3145      INSN_CODE (undobuf.other_insn) = other_code_number;
3146
3147    /* We had one special case above where I2 had more than one set and
3148       we replaced a destination of one of those sets with the destination
3149       of I3.  In that case, we have to update LOG_LINKS of insns later
3150       in this basic block.  Note that this (expensive) case is rare.
3151
3152       Also, in this case, we must pretend that all REG_NOTEs for I2
3153       actually came from I3, so that REG_UNUSED notes from I2 will be
3154       properly handled.  */
3155
3156    if (i3_subst_into_i2)
3157      {
3158	for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
3159	  if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
3160	       || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
3161	      && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
3162	      && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
3163	      && ! find_reg_note (i2, REG_UNUSED,
3164				  SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
3165	    for (temp = NEXT_INSN (i2);
3166		 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
3167			  || BB_HEAD (this_basic_block) != temp);
3168		 temp = NEXT_INSN (temp))
3169	      if (temp != i3 && INSN_P (temp))
3170		for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
3171		  if (XEXP (link, 0) == i2)
3172		    XEXP (link, 0) = i3;
3173
3174	if (i3notes)
3175	  {
3176	    rtx link = i3notes;
3177	    while (XEXP (link, 1))
3178	      link = XEXP (link, 1);
3179	    XEXP (link, 1) = i2notes;
3180	  }
3181	else
3182	  i3notes = i2notes;
3183	i2notes = 0;
3184      }
3185
3186    LOG_LINKS (i3) = 0;
3187    REG_NOTES (i3) = 0;
3188    LOG_LINKS (i2) = 0;
3189    REG_NOTES (i2) = 0;
3190
3191    if (newi2pat)
3192      {
3193	INSN_CODE (i2) = i2_code_number;
3194	PATTERN (i2) = newi2pat;
3195      }
3196    else
3197      SET_INSN_DELETED (i2);
3198
3199    if (i1)
3200      {
3201	LOG_LINKS (i1) = 0;
3202	REG_NOTES (i1) = 0;
3203	SET_INSN_DELETED (i1);
3204      }
3205
3206    /* Get death notes for everything that is now used in either I3 or
3207       I2 and used to die in a previous insn.  If we built two new
3208       patterns, move from I1 to I2 then I2 to I3 so that we get the
3209       proper movement on registers that I2 modifies.  */
3210
3211    if (newi2pat)
3212      {
3213	move_deaths (newi2pat, NULL_RTX, INSN_CUID (i1), i2, &midnotes);
3214	move_deaths (newpat, newi2pat, INSN_CUID (i1), i3, &midnotes);
3215      }
3216    else
3217      move_deaths (newpat, NULL_RTX, i1 ? INSN_CUID (i1) : INSN_CUID (i2),
3218		   i3, &midnotes);
3219
3220    /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3.  */
3221    if (i3notes)
3222      distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
3223			elim_i2, elim_i1);
3224    if (i2notes)
3225      distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
3226			elim_i2, elim_i1);
3227    if (i1notes)
3228      distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
3229			elim_i2, elim_i1);
3230    if (midnotes)
3231      distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3232			elim_i2, elim_i1);
3233
3234    /* Distribute any notes added to I2 or I3 by recog_for_combine.  We
3235       know these are REG_UNUSED and want them to go to the desired insn,
3236       so we always pass it as i3.  We have not counted the notes in
3237       reg_n_deaths yet, so we need to do so now.  */
3238
3239    if (newi2pat && new_i2_notes)
3240      {
3241	for (temp = new_i2_notes; temp; temp = XEXP (temp, 1))
3242	  if (REG_P (XEXP (temp, 0)))
3243	    REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
3244
3245	distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3246      }
3247
3248    if (new_i3_notes)
3249      {
3250	for (temp = new_i3_notes; temp; temp = XEXP (temp, 1))
3251	  if (REG_P (XEXP (temp, 0)))
3252	    REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
3253
3254	distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX);
3255      }
3256
3257    /* If I3DEST was used in I3SRC, it really died in I3.  We may need to
3258       put a REG_DEAD note for it somewhere.  If NEWI2PAT exists and sets
3259       I3DEST, the death must be somewhere before I2, not I3.  If we passed I3
3260       in that case, it might delete I2.  Similarly for I2 and I1.
3261       Show an additional death due to the REG_DEAD note we make here.  If
3262       we discard it in distribute_notes, we will decrement it again.  */
3263
3264    if (i3dest_killed)
3265      {
3266	if (REG_P (i3dest_killed))
3267	  REG_N_DEATHS (REGNO (i3dest_killed))++;
3268
3269	if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
3270	  distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
3271					       NULL_RTX),
3272			    NULL_RTX, i2, NULL_RTX, elim_i2, elim_i1);
3273	else
3274	  distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
3275					       NULL_RTX),
3276			    NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3277			    elim_i2, elim_i1);
3278      }
3279
3280    if (i2dest_in_i2src)
3281      {
3282	if (REG_P (i2dest))
3283	  REG_N_DEATHS (REGNO (i2dest))++;
3284
3285	if (newi2pat && reg_set_p (i2dest, newi2pat))
3286	  distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
3287			    NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3288	else
3289	  distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
3290			    NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3291			    NULL_RTX, NULL_RTX);
3292      }
3293
3294    if (i1dest_in_i1src)
3295      {
3296	if (REG_P (i1dest))
3297	  REG_N_DEATHS (REGNO (i1dest))++;
3298
3299	if (newi2pat && reg_set_p (i1dest, newi2pat))
3300	  distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
3301			    NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3302	else
3303	  distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
3304			    NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3305			    NULL_RTX, NULL_RTX);
3306      }
3307
3308    distribute_links (i3links);
3309    distribute_links (i2links);
3310    distribute_links (i1links);
3311
3312    if (REG_P (i2dest))
3313      {
3314	rtx link;
3315	rtx i2_insn = 0, i2_val = 0, set;
3316
3317	/* The insn that used to set this register doesn't exist, and
3318	   this life of the register may not exist either.  See if one of
3319	   I3's links points to an insn that sets I2DEST.  If it does,
3320	   that is now the last known value for I2DEST. If we don't update
3321	   this and I2 set the register to a value that depended on its old
3322	   contents, we will get confused.  If this insn is used, thing
3323	   will be set correctly in combine_instructions.  */
3324
3325	for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
3326	  if ((set = single_set (XEXP (link, 0))) != 0
3327	      && rtx_equal_p (i2dest, SET_DEST (set)))
3328	    i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
3329
3330	record_value_for_reg (i2dest, i2_insn, i2_val);
3331
3332	/* If the reg formerly set in I2 died only once and that was in I3,
3333	   zero its use count so it won't make `reload' do any work.  */
3334	if (! added_sets_2
3335	    && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
3336	    && ! i2dest_in_i2src)
3337	  {
3338	    regno = REGNO (i2dest);
3339	    REG_N_SETS (regno)--;
3340	  }
3341      }
3342
3343    if (i1 && REG_P (i1dest))
3344      {
3345	rtx link;
3346	rtx i1_insn = 0, i1_val = 0, set;
3347
3348	for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
3349	  if ((set = single_set (XEXP (link, 0))) != 0
3350	      && rtx_equal_p (i1dest, SET_DEST (set)))
3351	    i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
3352
3353	record_value_for_reg (i1dest, i1_insn, i1_val);
3354
3355	regno = REGNO (i1dest);
3356	if (! added_sets_1 && ! i1dest_in_i1src)
3357	  REG_N_SETS (regno)--;
3358      }
3359
3360    /* Update reg_stat[].nonzero_bits et al for any changes that may have
3361       been made to this insn.  The order of
3362       set_nonzero_bits_and_sign_copies() is important.  Because newi2pat
3363       can affect nonzero_bits of newpat */
3364    if (newi2pat)
3365      note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
3366    note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
3367
3368    /* Set new_direct_jump_p if a new return or simple jump instruction
3369       has been created.
3370
3371       If I3 is now an unconditional jump, ensure that it has a
3372       BARRIER following it since it may have initially been a
3373       conditional jump.  It may also be the last nonnote insn.  */
3374
3375    if (returnjump_p (i3) || any_uncondjump_p (i3))
3376      {
3377	*new_direct_jump_p = 1;
3378	mark_jump_label (PATTERN (i3), i3, 0);
3379
3380	if ((temp = next_nonnote_insn (i3)) == NULL_RTX
3381	    || !BARRIER_P (temp))
3382	  emit_barrier_after (i3);
3383      }
3384
3385    if (undobuf.other_insn != NULL_RTX
3386	&& (returnjump_p (undobuf.other_insn)
3387	    || any_uncondjump_p (undobuf.other_insn)))
3388      {
3389	*new_direct_jump_p = 1;
3390
3391	if ((temp = next_nonnote_insn (undobuf.other_insn)) == NULL_RTX
3392	    || !BARRIER_P (temp))
3393	  emit_barrier_after (undobuf.other_insn);
3394      }
3395
3396    /* An NOOP jump does not need barrier, but it does need cleaning up
3397       of CFG.  */
3398    if (GET_CODE (newpat) == SET
3399	&& SET_SRC (newpat) == pc_rtx
3400	&& SET_DEST (newpat) == pc_rtx)
3401      *new_direct_jump_p = 1;
3402  }
3403
3404  combine_successes++;
3405  undo_commit ();
3406
3407  if (added_links_insn
3408      && (newi2pat == 0 || INSN_CUID (added_links_insn) < INSN_CUID (i2))
3409      && INSN_CUID (added_links_insn) < INSN_CUID (i3))
3410    return added_links_insn;
3411  else
3412    return newi2pat ? i2 : i3;
3413}
3414
3415/* Undo all the modifications recorded in undobuf.  */
3416
3417static void
3418undo_all (void)
3419{
3420  struct undo *undo, *next;
3421
3422  for (undo = undobuf.undos; undo; undo = next)
3423    {
3424      next = undo->next;
3425      switch (undo->kind)
3426	{
3427	case UNDO_RTX:
3428	  *undo->where.r = undo->old_contents.r;
3429	  break;
3430	case UNDO_INT:
3431	  *undo->where.i = undo->old_contents.i;
3432	  break;
3433	case UNDO_MODE:
3434	  PUT_MODE (*undo->where.r, undo->old_contents.m);
3435	  break;
3436	default:
3437	  gcc_unreachable ();
3438	}
3439
3440      undo->next = undobuf.frees;
3441      undobuf.frees = undo;
3442    }
3443
3444  undobuf.undos = 0;
3445}
3446
3447/* We've committed to accepting the changes we made.  Move all
3448   of the undos to the free list.  */
3449
3450static void
3451undo_commit (void)
3452{
3453  struct undo *undo, *next;
3454
3455  for (undo = undobuf.undos; undo; undo = next)
3456    {
3457      next = undo->next;
3458      undo->next = undobuf.frees;
3459      undobuf.frees = undo;
3460    }
3461  undobuf.undos = 0;
3462}
3463
3464/* Find the innermost point within the rtx at LOC, possibly LOC itself,
3465   where we have an arithmetic expression and return that point.  LOC will
3466   be inside INSN.
3467
3468   try_combine will call this function to see if an insn can be split into
3469   two insns.  */
3470
3471static rtx *
3472find_split_point (rtx *loc, rtx insn)
3473{
3474  rtx x = *loc;
3475  enum rtx_code code = GET_CODE (x);
3476  rtx *split;
3477  unsigned HOST_WIDE_INT len = 0;
3478  HOST_WIDE_INT pos = 0;
3479  int unsignedp = 0;
3480  rtx inner = NULL_RTX;
3481
3482  /* First special-case some codes.  */
3483  switch (code)
3484    {
3485    case SUBREG:
3486#ifdef INSN_SCHEDULING
3487      /* If we are making a paradoxical SUBREG invalid, it becomes a split
3488	 point.  */
3489      if (MEM_P (SUBREG_REG (x)))
3490	return loc;
3491#endif
3492      return find_split_point (&SUBREG_REG (x), insn);
3493
3494    case MEM:
3495#ifdef HAVE_lo_sum
3496      /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
3497	 using LO_SUM and HIGH.  */
3498      if (GET_CODE (XEXP (x, 0)) == CONST
3499	  || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
3500	{
3501	  SUBST (XEXP (x, 0),
3502		 gen_rtx_LO_SUM (Pmode,
3503				 gen_rtx_HIGH (Pmode, XEXP (x, 0)),
3504				 XEXP (x, 0)));
3505	  return &XEXP (XEXP (x, 0), 0);
3506	}
3507#endif
3508
3509      /* If we have a PLUS whose second operand is a constant and the
3510	 address is not valid, perhaps will can split it up using
3511	 the machine-specific way to split large constants.  We use
3512	 the first pseudo-reg (one of the virtual regs) as a placeholder;
3513	 it will not remain in the result.  */
3514      if (GET_CODE (XEXP (x, 0)) == PLUS
3515	  && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3516	  && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
3517	{
3518	  rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
3519	  rtx seq = split_insns (gen_rtx_SET (VOIDmode, reg, XEXP (x, 0)),
3520				 subst_insn);
3521
3522	  /* This should have produced two insns, each of which sets our
3523	     placeholder.  If the source of the second is a valid address,
3524	     we can make put both sources together and make a split point
3525	     in the middle.  */
3526
3527	  if (seq
3528	      && NEXT_INSN (seq) != NULL_RTX
3529	      && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
3530	      && NONJUMP_INSN_P (seq)
3531	      && GET_CODE (PATTERN (seq)) == SET
3532	      && SET_DEST (PATTERN (seq)) == reg
3533	      && ! reg_mentioned_p (reg,
3534				    SET_SRC (PATTERN (seq)))
3535	      && NONJUMP_INSN_P (NEXT_INSN (seq))
3536	      && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
3537	      && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
3538	      && memory_address_p (GET_MODE (x),
3539				   SET_SRC (PATTERN (NEXT_INSN (seq)))))
3540	    {
3541	      rtx src1 = SET_SRC (PATTERN (seq));
3542	      rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
3543
3544	      /* Replace the placeholder in SRC2 with SRC1.  If we can
3545		 find where in SRC2 it was placed, that can become our
3546		 split point and we can replace this address with SRC2.
3547		 Just try two obvious places.  */
3548
3549	      src2 = replace_rtx (src2, reg, src1);
3550	      split = 0;
3551	      if (XEXP (src2, 0) == src1)
3552		split = &XEXP (src2, 0);
3553	      else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
3554		       && XEXP (XEXP (src2, 0), 0) == src1)
3555		split = &XEXP (XEXP (src2, 0), 0);
3556
3557	      if (split)
3558		{
3559		  SUBST (XEXP (x, 0), src2);
3560		  return split;
3561		}
3562	    }
3563
3564	  /* If that didn't work, perhaps the first operand is complex and
3565	     needs to be computed separately, so make a split point there.
3566	     This will occur on machines that just support REG + CONST
3567	     and have a constant moved through some previous computation.  */
3568
3569	  else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
3570		   && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
3571			 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
3572	    return &XEXP (XEXP (x, 0), 0);
3573	}
3574      break;
3575
3576    case SET:
3577#ifdef HAVE_cc0
3578      /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
3579	 ZERO_EXTRACT, the most likely reason why this doesn't match is that
3580	 we need to put the operand into a register.  So split at that
3581	 point.  */
3582
3583      if (SET_DEST (x) == cc0_rtx
3584	  && GET_CODE (SET_SRC (x)) != COMPARE
3585	  && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
3586	  && !OBJECT_P (SET_SRC (x))
3587	  && ! (GET_CODE (SET_SRC (x)) == SUBREG
3588		&& OBJECT_P (SUBREG_REG (SET_SRC (x)))))
3589	return &SET_SRC (x);
3590#endif
3591
3592      /* See if we can split SET_SRC as it stands.  */
3593      split = find_split_point (&SET_SRC (x), insn);
3594      if (split && split != &SET_SRC (x))
3595	return split;
3596
3597      /* See if we can split SET_DEST as it stands.  */
3598      split = find_split_point (&SET_DEST (x), insn);
3599      if (split && split != &SET_DEST (x))
3600	return split;
3601
3602      /* See if this is a bitfield assignment with everything constant.  If
3603	 so, this is an IOR of an AND, so split it into that.  */
3604      if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
3605	  && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
3606	      <= HOST_BITS_PER_WIDE_INT)
3607	  && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
3608	  && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
3609	  && GET_CODE (SET_SRC (x)) == CONST_INT
3610	  && ((INTVAL (XEXP (SET_DEST (x), 1))
3611	       + INTVAL (XEXP (SET_DEST (x), 2)))
3612	      <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
3613	  && ! side_effects_p (XEXP (SET_DEST (x), 0)))
3614	{
3615	  HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
3616	  unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
3617	  unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
3618	  rtx dest = XEXP (SET_DEST (x), 0);
3619	  enum machine_mode mode = GET_MODE (dest);
3620	  unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
3621	  rtx or_mask;
3622
3623	  if (BITS_BIG_ENDIAN)
3624	    pos = GET_MODE_BITSIZE (mode) - len - pos;
3625
3626	  or_mask = gen_int_mode (src << pos, mode);
3627	  if (src == mask)
3628	    SUBST (SET_SRC (x),
3629		   simplify_gen_binary (IOR, mode, dest, or_mask));
3630	  else
3631	    {
3632	      rtx negmask = gen_int_mode (~(mask << pos), mode);
3633	      SUBST (SET_SRC (x),
3634		     simplify_gen_binary (IOR, mode,
3635					  simplify_gen_binary (AND, mode,
3636							       dest, negmask),
3637					  or_mask));
3638	    }
3639
3640	  SUBST (SET_DEST (x), dest);
3641
3642	  split = find_split_point (&SET_SRC (x), insn);
3643	  if (split && split != &SET_SRC (x))
3644	    return split;
3645	}
3646
3647      /* Otherwise, see if this is an operation that we can split into two.
3648	 If so, try to split that.  */
3649      code = GET_CODE (SET_SRC (x));
3650
3651      switch (code)
3652	{
3653	case AND:
3654	  /* If we are AND'ing with a large constant that is only a single
3655	     bit and the result is only being used in a context where we
3656	     need to know if it is zero or nonzero, replace it with a bit
3657	     extraction.  This will avoid the large constant, which might
3658	     have taken more than one insn to make.  If the constant were
3659	     not a valid argument to the AND but took only one insn to make,
3660	     this is no worse, but if it took more than one insn, it will
3661	     be better.  */
3662
3663	  if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3664	      && REG_P (XEXP (SET_SRC (x), 0))
3665	      && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
3666	      && REG_P (SET_DEST (x))
3667	      && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
3668	      && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
3669	      && XEXP (*split, 0) == SET_DEST (x)
3670	      && XEXP (*split, 1) == const0_rtx)
3671	    {
3672	      rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
3673						XEXP (SET_SRC (x), 0),
3674						pos, NULL_RTX, 1, 1, 0, 0);
3675	      if (extraction != 0)
3676		{
3677		  SUBST (SET_SRC (x), extraction);
3678		  return find_split_point (loc, insn);
3679		}
3680	    }
3681	  break;
3682
3683	case NE:
3684	  /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
3685	     is known to be on, this can be converted into a NEG of a shift.  */
3686	  if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
3687	      && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
3688	      && 1 <= (pos = exact_log2
3689		       (nonzero_bits (XEXP (SET_SRC (x), 0),
3690				      GET_MODE (XEXP (SET_SRC (x), 0))))))
3691	    {
3692	      enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
3693
3694	      SUBST (SET_SRC (x),
3695		     gen_rtx_NEG (mode,
3696				  gen_rtx_LSHIFTRT (mode,
3697						    XEXP (SET_SRC (x), 0),
3698						    GEN_INT (pos))));
3699
3700	      split = find_split_point (&SET_SRC (x), insn);
3701	      if (split && split != &SET_SRC (x))
3702		return split;
3703	    }
3704	  break;
3705
3706	case SIGN_EXTEND:
3707	  inner = XEXP (SET_SRC (x), 0);
3708
3709	  /* We can't optimize if either mode is a partial integer
3710	     mode as we don't know how many bits are significant
3711	     in those modes.  */
3712	  if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
3713	      || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
3714	    break;
3715
3716	  pos = 0;
3717	  len = GET_MODE_BITSIZE (GET_MODE (inner));
3718	  unsignedp = 0;
3719	  break;
3720
3721	case SIGN_EXTRACT:
3722	case ZERO_EXTRACT:
3723	  if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3724	      && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
3725	    {
3726	      inner = XEXP (SET_SRC (x), 0);
3727	      len = INTVAL (XEXP (SET_SRC (x), 1));
3728	      pos = INTVAL (XEXP (SET_SRC (x), 2));
3729
3730	      if (BITS_BIG_ENDIAN)
3731		pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
3732	      unsignedp = (code == ZERO_EXTRACT);
3733	    }
3734	  break;
3735
3736	default:
3737	  break;
3738	}
3739
3740      if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
3741	{
3742	  enum machine_mode mode = GET_MODE (SET_SRC (x));
3743
3744	  /* For unsigned, we have a choice of a shift followed by an
3745	     AND or two shifts.  Use two shifts for field sizes where the
3746	     constant might be too large.  We assume here that we can
3747	     always at least get 8-bit constants in an AND insn, which is
3748	     true for every current RISC.  */
3749
3750	  if (unsignedp && len <= 8)
3751	    {
3752	      SUBST (SET_SRC (x),
3753		     gen_rtx_AND (mode,
3754				  gen_rtx_LSHIFTRT
3755				  (mode, gen_lowpart (mode, inner),
3756				   GEN_INT (pos)),
3757				  GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
3758
3759	      split = find_split_point (&SET_SRC (x), insn);
3760	      if (split && split != &SET_SRC (x))
3761		return split;
3762	    }
3763	  else
3764	    {
3765	      SUBST (SET_SRC (x),
3766		     gen_rtx_fmt_ee
3767		     (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
3768		      gen_rtx_ASHIFT (mode,
3769				      gen_lowpart (mode, inner),
3770				      GEN_INT (GET_MODE_BITSIZE (mode)
3771					       - len - pos)),
3772		      GEN_INT (GET_MODE_BITSIZE (mode) - len)));
3773
3774	      split = find_split_point (&SET_SRC (x), insn);
3775	      if (split && split != &SET_SRC (x))
3776		return split;
3777	    }
3778	}
3779
3780      /* See if this is a simple operation with a constant as the second
3781	 operand.  It might be that this constant is out of range and hence
3782	 could be used as a split point.  */
3783      if (BINARY_P (SET_SRC (x))
3784	  && CONSTANT_P (XEXP (SET_SRC (x), 1))
3785	  && (OBJECT_P (XEXP (SET_SRC (x), 0))
3786	      || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
3787		  && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
3788	return &XEXP (SET_SRC (x), 1);
3789
3790      /* Finally, see if this is a simple operation with its first operand
3791	 not in a register.  The operation might require this operand in a
3792	 register, so return it as a split point.  We can always do this
3793	 because if the first operand were another operation, we would have
3794	 already found it as a split point.  */
3795      if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
3796	  && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
3797	return &XEXP (SET_SRC (x), 0);
3798
3799      return 0;
3800
3801    case AND:
3802    case IOR:
3803      /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
3804	 it is better to write this as (not (ior A B)) so we can split it.
3805	 Similarly for IOR.  */
3806      if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
3807	{
3808	  SUBST (*loc,
3809		 gen_rtx_NOT (GET_MODE (x),
3810			      gen_rtx_fmt_ee (code == IOR ? AND : IOR,
3811					      GET_MODE (x),
3812					      XEXP (XEXP (x, 0), 0),
3813					      XEXP (XEXP (x, 1), 0))));
3814	  return find_split_point (loc, insn);
3815	}
3816
3817      /* Many RISC machines have a large set of logical insns.  If the
3818	 second operand is a NOT, put it first so we will try to split the
3819	 other operand first.  */
3820      if (GET_CODE (XEXP (x, 1)) == NOT)
3821	{
3822	  rtx tem = XEXP (x, 0);
3823	  SUBST (XEXP (x, 0), XEXP (x, 1));
3824	  SUBST (XEXP (x, 1), tem);
3825	}
3826      break;
3827
3828    default:
3829      break;
3830    }
3831
3832  /* Otherwise, select our actions depending on our rtx class.  */
3833  switch (GET_RTX_CLASS (code))
3834    {
3835    case RTX_BITFIELD_OPS:		/* This is ZERO_EXTRACT and SIGN_EXTRACT.  */
3836    case RTX_TERNARY:
3837      split = find_split_point (&XEXP (x, 2), insn);
3838      if (split)
3839	return split;
3840      /* ... fall through ...  */
3841    case RTX_BIN_ARITH:
3842    case RTX_COMM_ARITH:
3843    case RTX_COMPARE:
3844    case RTX_COMM_COMPARE:
3845      split = find_split_point (&XEXP (x, 1), insn);
3846      if (split)
3847	return split;
3848      /* ... fall through ...  */
3849    case RTX_UNARY:
3850      /* Some machines have (and (shift ...) ...) insns.  If X is not
3851	 an AND, but XEXP (X, 0) is, use it as our split point.  */
3852      if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
3853	return &XEXP (x, 0);
3854
3855      split = find_split_point (&XEXP (x, 0), insn);
3856      if (split)
3857	return split;
3858      return loc;
3859
3860    default:
3861      /* Otherwise, we don't have a split point.  */
3862      return 0;
3863    }
3864}
3865
3866/* Throughout X, replace FROM with TO, and return the result.
3867   The result is TO if X is FROM;
3868   otherwise the result is X, but its contents may have been modified.
3869   If they were modified, a record was made in undobuf so that
3870   undo_all will (among other things) return X to its original state.
3871
3872   If the number of changes necessary is too much to record to undo,
3873   the excess changes are not made, so the result is invalid.
3874   The changes already made can still be undone.
3875   undobuf.num_undo is incremented for such changes, so by testing that
3876   the caller can tell whether the result is valid.
3877
3878   `n_occurrences' is incremented each time FROM is replaced.
3879
3880   IN_DEST is nonzero if we are processing the SET_DEST of a SET.
3881
3882   UNIQUE_COPY is nonzero if each substitution must be unique.  We do this
3883   by copying if `n_occurrences' is nonzero.  */
3884
3885static rtx
3886subst (rtx x, rtx from, rtx to, int in_dest, int unique_copy)
3887{
3888  enum rtx_code code = GET_CODE (x);
3889  enum machine_mode op0_mode = VOIDmode;
3890  const char *fmt;
3891  int len, i;
3892  rtx new;
3893
3894/* Two expressions are equal if they are identical copies of a shared
3895   RTX or if they are both registers with the same register number
3896   and mode.  */
3897
3898#define COMBINE_RTX_EQUAL_P(X,Y)			\
3899  ((X) == (Y)						\
3900   || (REG_P (X) && REG_P (Y)	\
3901       && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
3902
3903  if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
3904    {
3905      n_occurrences++;
3906      return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
3907    }
3908
3909  /* If X and FROM are the same register but different modes, they will
3910     not have been seen as equal above.  However, flow.c will make a
3911     LOG_LINKS entry for that case.  If we do nothing, we will try to
3912     rerecognize our original insn and, when it succeeds, we will
3913     delete the feeding insn, which is incorrect.
3914
3915     So force this insn not to match in this (rare) case.  */
3916  if (! in_dest && code == REG && REG_P (from)
3917      && REGNO (x) == REGNO (from))
3918    return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
3919
3920  /* If this is an object, we are done unless it is a MEM or LO_SUM, both
3921     of which may contain things that can be combined.  */
3922  if (code != MEM && code != LO_SUM && OBJECT_P (x))
3923    return x;
3924
3925  /* It is possible to have a subexpression appear twice in the insn.
3926     Suppose that FROM is a register that appears within TO.
3927     Then, after that subexpression has been scanned once by `subst',
3928     the second time it is scanned, TO may be found.  If we were
3929     to scan TO here, we would find FROM within it and create a
3930     self-referent rtl structure which is completely wrong.  */
3931  if (COMBINE_RTX_EQUAL_P (x, to))
3932    return to;
3933
3934  /* Parallel asm_operands need special attention because all of the
3935     inputs are shared across the arms.  Furthermore, unsharing the
3936     rtl results in recognition failures.  Failure to handle this case
3937     specially can result in circular rtl.
3938
3939     Solve this by doing a normal pass across the first entry of the
3940     parallel, and only processing the SET_DESTs of the subsequent
3941     entries.  Ug.  */
3942
3943  if (code == PARALLEL
3944      && GET_CODE (XVECEXP (x, 0, 0)) == SET
3945      && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
3946    {
3947      new = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
3948
3949      /* If this substitution failed, this whole thing fails.  */
3950      if (GET_CODE (new) == CLOBBER
3951	  && XEXP (new, 0) == const0_rtx)
3952	return new;
3953
3954      SUBST (XVECEXP (x, 0, 0), new);
3955
3956      for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
3957	{
3958	  rtx dest = SET_DEST (XVECEXP (x, 0, i));
3959
3960	  if (!REG_P (dest)
3961	      && GET_CODE (dest) != CC0
3962	      && GET_CODE (dest) != PC)
3963	    {
3964	      new = subst (dest, from, to, 0, unique_copy);
3965
3966	      /* If this substitution failed, this whole thing fails.  */
3967	      if (GET_CODE (new) == CLOBBER
3968		  && XEXP (new, 0) == const0_rtx)
3969		return new;
3970
3971	      SUBST (SET_DEST (XVECEXP (x, 0, i)), new);
3972	    }
3973	}
3974    }
3975  else
3976    {
3977      len = GET_RTX_LENGTH (code);
3978      fmt = GET_RTX_FORMAT (code);
3979
3980      /* We don't need to process a SET_DEST that is a register, CC0,
3981	 or PC, so set up to skip this common case.  All other cases
3982	 where we want to suppress replacing something inside a
3983	 SET_SRC are handled via the IN_DEST operand.  */
3984      if (code == SET
3985	  && (REG_P (SET_DEST (x))
3986	      || GET_CODE (SET_DEST (x)) == CC0
3987	      || GET_CODE (SET_DEST (x)) == PC))
3988	fmt = "ie";
3989
3990      /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
3991	 constant.  */
3992      if (fmt[0] == 'e')
3993	op0_mode = GET_MODE (XEXP (x, 0));
3994
3995      for (i = 0; i < len; i++)
3996	{
3997	  if (fmt[i] == 'E')
3998	    {
3999	      int j;
4000	      for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4001		{
4002		  if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
4003		    {
4004		      new = (unique_copy && n_occurrences
4005			     ? copy_rtx (to) : to);
4006		      n_occurrences++;
4007		    }
4008		  else
4009		    {
4010		      new = subst (XVECEXP (x, i, j), from, to, 0,
4011				   unique_copy);
4012
4013		      /* If this substitution failed, this whole thing
4014			 fails.  */
4015		      if (GET_CODE (new) == CLOBBER
4016			  && XEXP (new, 0) == const0_rtx)
4017			return new;
4018		    }
4019
4020		  SUBST (XVECEXP (x, i, j), new);
4021		}
4022	    }
4023	  else if (fmt[i] == 'e')
4024	    {
4025	      /* If this is a register being set, ignore it.  */
4026	      new = XEXP (x, i);
4027	      if (in_dest
4028		  && i == 0
4029		  && (((code == SUBREG || code == ZERO_EXTRACT)
4030		       && REG_P (new))
4031		      || code == STRICT_LOW_PART))
4032		;
4033
4034	      else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
4035		{
4036		  /* In general, don't install a subreg involving two
4037		     modes not tieable.  It can worsen register
4038		     allocation, and can even make invalid reload
4039		     insns, since the reg inside may need to be copied
4040		     from in the outside mode, and that may be invalid
4041		     if it is an fp reg copied in integer mode.
4042
4043		     We allow two exceptions to this: It is valid if
4044		     it is inside another SUBREG and the mode of that
4045		     SUBREG and the mode of the inside of TO is
4046		     tieable and it is valid if X is a SET that copies
4047		     FROM to CC0.  */
4048
4049		  if (GET_CODE (to) == SUBREG
4050		      && ! MODES_TIEABLE_P (GET_MODE (to),
4051					    GET_MODE (SUBREG_REG (to)))
4052		      && ! (code == SUBREG
4053			    && MODES_TIEABLE_P (GET_MODE (x),
4054						GET_MODE (SUBREG_REG (to))))
4055#ifdef HAVE_cc0
4056		      && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
4057#endif
4058		      )
4059		    return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
4060
4061#ifdef CANNOT_CHANGE_MODE_CLASS
4062		  if (code == SUBREG
4063		      && REG_P (to)
4064		      && REGNO (to) < FIRST_PSEUDO_REGISTER
4065		      && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
4066						   GET_MODE (to),
4067						   GET_MODE (x)))
4068		    return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
4069#endif
4070
4071		  new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
4072		  n_occurrences++;
4073		}
4074	      else
4075		/* If we are in a SET_DEST, suppress most cases unless we
4076		   have gone inside a MEM, in which case we want to
4077		   simplify the address.  We assume here that things that
4078		   are actually part of the destination have their inner
4079		   parts in the first expression.  This is true for SUBREG,
4080		   STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
4081		   things aside from REG and MEM that should appear in a
4082		   SET_DEST.  */
4083		new = subst (XEXP (x, i), from, to,
4084			     (((in_dest
4085				&& (code == SUBREG || code == STRICT_LOW_PART
4086				    || code == ZERO_EXTRACT))
4087			       || code == SET)
4088			      && i == 0), unique_copy);
4089
4090	      /* If we found that we will have to reject this combination,
4091		 indicate that by returning the CLOBBER ourselves, rather than
4092		 an expression containing it.  This will speed things up as
4093		 well as prevent accidents where two CLOBBERs are considered
4094		 to be equal, thus producing an incorrect simplification.  */
4095
4096	      if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
4097		return new;
4098
4099	      if (GET_CODE (x) == SUBREG
4100		  && (GET_CODE (new) == CONST_INT
4101		      || GET_CODE (new) == CONST_DOUBLE))
4102		{
4103		  enum machine_mode mode = GET_MODE (x);
4104
4105		  x = simplify_subreg (GET_MODE (x), new,
4106				       GET_MODE (SUBREG_REG (x)),
4107				       SUBREG_BYTE (x));
4108		  if (! x)
4109		    x = gen_rtx_CLOBBER (mode, const0_rtx);
4110		}
4111	      else if (GET_CODE (new) == CONST_INT
4112		       && GET_CODE (x) == ZERO_EXTEND)
4113		{
4114		  x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
4115						new, GET_MODE (XEXP (x, 0)));
4116		  gcc_assert (x);
4117		}
4118	      else
4119		SUBST (XEXP (x, i), new);
4120	    }
4121	}
4122    }
4123
4124  /* Try to simplify X.  If the simplification changed the code, it is likely
4125     that further simplification will help, so loop, but limit the number
4126     of repetitions that will be performed.  */
4127
4128  for (i = 0; i < 4; i++)
4129    {
4130      /* If X is sufficiently simple, don't bother trying to do anything
4131	 with it.  */
4132      if (code != CONST_INT && code != REG && code != CLOBBER)
4133	x = combine_simplify_rtx (x, op0_mode, in_dest);
4134
4135      if (GET_CODE (x) == code)
4136	break;
4137
4138      code = GET_CODE (x);
4139
4140      /* We no longer know the original mode of operand 0 since we
4141	 have changed the form of X)  */
4142      op0_mode = VOIDmode;
4143    }
4144
4145  return x;
4146}
4147
4148/* Simplify X, a piece of RTL.  We just operate on the expression at the
4149   outer level; call `subst' to simplify recursively.  Return the new
4150   expression.
4151
4152   OP0_MODE is the original mode of XEXP (x, 0).  IN_DEST is nonzero
4153   if we are inside a SET_DEST.  */
4154
4155static rtx
4156combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int in_dest)
4157{
4158  enum rtx_code code = GET_CODE (x);
4159  enum machine_mode mode = GET_MODE (x);
4160  rtx temp;
4161  int i;
4162
4163  /* If this is a commutative operation, put a constant last and a complex
4164     expression first.  We don't need to do this for comparisons here.  */
4165  if (COMMUTATIVE_ARITH_P (x)
4166      && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
4167    {
4168      temp = XEXP (x, 0);
4169      SUBST (XEXP (x, 0), XEXP (x, 1));
4170      SUBST (XEXP (x, 1), temp);
4171    }
4172
4173  /* If this is a simple operation applied to an IF_THEN_ELSE, try
4174     applying it to the arms of the IF_THEN_ELSE.  This often simplifies
4175     things.  Check for cases where both arms are testing the same
4176     condition.
4177
4178     Don't do anything if all operands are very simple.  */
4179
4180  if ((BINARY_P (x)
4181       && ((!OBJECT_P (XEXP (x, 0))
4182	    && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4183		  && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
4184	   || (!OBJECT_P (XEXP (x, 1))
4185	       && ! (GET_CODE (XEXP (x, 1)) == SUBREG
4186		     && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
4187      || (UNARY_P (x)
4188	  && (!OBJECT_P (XEXP (x, 0))
4189	       && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4190		     && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
4191    {
4192      rtx cond, true_rtx, false_rtx;
4193
4194      cond = if_then_else_cond (x, &true_rtx, &false_rtx);
4195      if (cond != 0
4196	  /* If everything is a comparison, what we have is highly unlikely
4197	     to be simpler, so don't use it.  */
4198	  && ! (COMPARISON_P (x)
4199		&& (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
4200	{
4201	  rtx cop1 = const0_rtx;
4202	  enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
4203
4204	  if (cond_code == NE && COMPARISON_P (cond))
4205	    return x;
4206
4207	  /* Simplify the alternative arms; this may collapse the true and
4208	     false arms to store-flag values.  Be careful to use copy_rtx
4209	     here since true_rtx or false_rtx might share RTL with x as a
4210	     result of the if_then_else_cond call above.  */
4211	  true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0);
4212	  false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0);
4213
4214	  /* If true_rtx and false_rtx are not general_operands, an if_then_else
4215	     is unlikely to be simpler.  */
4216	  if (general_operand (true_rtx, VOIDmode)
4217	      && general_operand (false_rtx, VOIDmode))
4218	    {
4219	      enum rtx_code reversed;
4220
4221	      /* Restarting if we generate a store-flag expression will cause
4222		 us to loop.  Just drop through in this case.  */
4223
4224	      /* If the result values are STORE_FLAG_VALUE and zero, we can
4225		 just make the comparison operation.  */
4226	      if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
4227		x = simplify_gen_relational (cond_code, mode, VOIDmode,
4228					     cond, cop1);
4229	      else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
4230		       && ((reversed = reversed_comparison_code_parts
4231					(cond_code, cond, cop1, NULL))
4232			   != UNKNOWN))
4233		x = simplify_gen_relational (reversed, mode, VOIDmode,
4234					     cond, cop1);
4235
4236	      /* Likewise, we can make the negate of a comparison operation
4237		 if the result values are - STORE_FLAG_VALUE and zero.  */
4238	      else if (GET_CODE (true_rtx) == CONST_INT
4239		       && INTVAL (true_rtx) == - STORE_FLAG_VALUE
4240		       && false_rtx == const0_rtx)
4241		x = simplify_gen_unary (NEG, mode,
4242					simplify_gen_relational (cond_code,
4243								 mode, VOIDmode,
4244								 cond, cop1),
4245					mode);
4246	      else if (GET_CODE (false_rtx) == CONST_INT
4247		       && INTVAL (false_rtx) == - STORE_FLAG_VALUE
4248		       && true_rtx == const0_rtx
4249		       && ((reversed = reversed_comparison_code_parts
4250					(cond_code, cond, cop1, NULL))
4251			   != UNKNOWN))
4252		x = simplify_gen_unary (NEG, mode,
4253					simplify_gen_relational (reversed,
4254								 mode, VOIDmode,
4255								 cond, cop1),
4256					mode);
4257	      else
4258		return gen_rtx_IF_THEN_ELSE (mode,
4259					     simplify_gen_relational (cond_code,
4260								      mode,
4261								      VOIDmode,
4262								      cond,
4263								      cop1),
4264					     true_rtx, false_rtx);
4265
4266	      code = GET_CODE (x);
4267	      op0_mode = VOIDmode;
4268	    }
4269	}
4270    }
4271
4272  /* Try to fold this expression in case we have constants that weren't
4273     present before.  */
4274  temp = 0;
4275  switch (GET_RTX_CLASS (code))
4276    {
4277    case RTX_UNARY:
4278      if (op0_mode == VOIDmode)
4279	op0_mode = GET_MODE (XEXP (x, 0));
4280      temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
4281      break;
4282    case RTX_COMPARE:
4283    case RTX_COMM_COMPARE:
4284      {
4285	enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
4286	if (cmp_mode == VOIDmode)
4287	  {
4288	    cmp_mode = GET_MODE (XEXP (x, 1));
4289	    if (cmp_mode == VOIDmode)
4290	      cmp_mode = op0_mode;
4291	  }
4292	temp = simplify_relational_operation (code, mode, cmp_mode,
4293					      XEXP (x, 0), XEXP (x, 1));
4294      }
4295      break;
4296    case RTX_COMM_ARITH:
4297    case RTX_BIN_ARITH:
4298      temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
4299      break;
4300    case RTX_BITFIELD_OPS:
4301    case RTX_TERNARY:
4302      temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
4303					 XEXP (x, 1), XEXP (x, 2));
4304      break;
4305    default:
4306      break;
4307    }
4308
4309  if (temp)
4310    {
4311      x = temp;
4312      code = GET_CODE (temp);
4313      op0_mode = VOIDmode;
4314      mode = GET_MODE (temp);
4315    }
4316
4317  /* First see if we can apply the inverse distributive law.  */
4318  if (code == PLUS || code == MINUS
4319      || code == AND || code == IOR || code == XOR)
4320    {
4321      x = apply_distributive_law (x);
4322      code = GET_CODE (x);
4323      op0_mode = VOIDmode;
4324    }
4325
4326  /* If CODE is an associative operation not otherwise handled, see if we
4327     can associate some operands.  This can win if they are constants or
4328     if they are logically related (i.e. (a & b) & a).  */
4329  if ((code == PLUS || code == MINUS || code == MULT || code == DIV
4330       || code == AND || code == IOR || code == XOR
4331       || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
4332      && ((INTEGRAL_MODE_P (mode) && code != DIV)
4333	  || (flag_unsafe_math_optimizations && FLOAT_MODE_P (mode))))
4334    {
4335      if (GET_CODE (XEXP (x, 0)) == code)
4336	{
4337	  rtx other = XEXP (XEXP (x, 0), 0);
4338	  rtx inner_op0 = XEXP (XEXP (x, 0), 1);
4339	  rtx inner_op1 = XEXP (x, 1);
4340	  rtx inner;
4341
4342	  /* Make sure we pass the constant operand if any as the second
4343	     one if this is a commutative operation.  */
4344	  if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
4345	    {
4346	      rtx tem = inner_op0;
4347	      inner_op0 = inner_op1;
4348	      inner_op1 = tem;
4349	    }
4350	  inner = simplify_binary_operation (code == MINUS ? PLUS
4351					     : code == DIV ? MULT
4352					     : code,
4353					     mode, inner_op0, inner_op1);
4354
4355	  /* For commutative operations, try the other pair if that one
4356	     didn't simplify.  */
4357	  if (inner == 0 && COMMUTATIVE_ARITH_P (x))
4358	    {
4359	      other = XEXP (XEXP (x, 0), 1);
4360	      inner = simplify_binary_operation (code, mode,
4361						 XEXP (XEXP (x, 0), 0),
4362						 XEXP (x, 1));
4363	    }
4364
4365	  if (inner)
4366	    return simplify_gen_binary (code, mode, other, inner);
4367	}
4368    }
4369
4370  /* A little bit of algebraic simplification here.  */
4371  switch (code)
4372    {
4373    case MEM:
4374      /* Ensure that our address has any ASHIFTs converted to MULT in case
4375	 address-recognizing predicates are called later.  */
4376      temp = make_compound_operation (XEXP (x, 0), MEM);
4377      SUBST (XEXP (x, 0), temp);
4378      break;
4379
4380    case SUBREG:
4381      if (op0_mode == VOIDmode)
4382	op0_mode = GET_MODE (SUBREG_REG (x));
4383
4384      /* See if this can be moved to simplify_subreg.  */
4385      if (CONSTANT_P (SUBREG_REG (x))
4386	  && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
4387	     /* Don't call gen_lowpart if the inner mode
4388		is VOIDmode and we cannot simplify it, as SUBREG without
4389		inner mode is invalid.  */
4390	  && (GET_MODE (SUBREG_REG (x)) != VOIDmode
4391	      || gen_lowpart_common (mode, SUBREG_REG (x))))
4392	return gen_lowpart (mode, SUBREG_REG (x));
4393
4394      if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
4395	break;
4396      {
4397	rtx temp;
4398	temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
4399				SUBREG_BYTE (x));
4400	if (temp)
4401	  return temp;
4402      }
4403
4404      /* Don't change the mode of the MEM if that would change the meaning
4405	 of the address.  */
4406      if (MEM_P (SUBREG_REG (x))
4407	  && (MEM_VOLATILE_P (SUBREG_REG (x))
4408	      || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
4409	return gen_rtx_CLOBBER (mode, const0_rtx);
4410
4411      /* Note that we cannot do any narrowing for non-constants since
4412	 we might have been counting on using the fact that some bits were
4413	 zero.  We now do this in the SET.  */
4414
4415      break;
4416
4417    case NEG:
4418      temp = expand_compound_operation (XEXP (x, 0));
4419
4420      /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
4421	 replaced by (lshiftrt X C).  This will convert
4422	 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y).  */
4423
4424      if (GET_CODE (temp) == ASHIFTRT
4425	  && GET_CODE (XEXP (temp, 1)) == CONST_INT
4426	  && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
4427	return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
4428				     INTVAL (XEXP (temp, 1)));
4429
4430      /* If X has only a single bit that might be nonzero, say, bit I, convert
4431	 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
4432	 MODE minus 1.  This will convert (neg (zero_extract X 1 Y)) to
4433	 (sign_extract X 1 Y).  But only do this if TEMP isn't a register
4434	 or a SUBREG of one since we'd be making the expression more
4435	 complex if it was just a register.  */
4436
4437      if (!REG_P (temp)
4438	  && ! (GET_CODE (temp) == SUBREG
4439		&& REG_P (SUBREG_REG (temp)))
4440	  && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
4441	{
4442	  rtx temp1 = simplify_shift_const
4443	    (NULL_RTX, ASHIFTRT, mode,
4444	     simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
4445				   GET_MODE_BITSIZE (mode) - 1 - i),
4446	     GET_MODE_BITSIZE (mode) - 1 - i);
4447
4448	  /* If all we did was surround TEMP with the two shifts, we
4449	     haven't improved anything, so don't use it.  Otherwise,
4450	     we are better off with TEMP1.  */
4451	  if (GET_CODE (temp1) != ASHIFTRT
4452	      || GET_CODE (XEXP (temp1, 0)) != ASHIFT
4453	      || XEXP (XEXP (temp1, 0), 0) != temp)
4454	    return temp1;
4455	}
4456      break;
4457
4458    case TRUNCATE:
4459      /* We can't handle truncation to a partial integer mode here
4460	 because we don't know the real bitsize of the partial
4461	 integer mode.  */
4462      if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
4463	break;
4464
4465      if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4466	  && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4467				    GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))))
4468	SUBST (XEXP (x, 0),
4469	       force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
4470			      GET_MODE_MASK (mode), 0));
4471
4472      /* Similarly to what we do in simplify-rtx.c, a truncate of a register
4473	 whose value is a comparison can be replaced with a subreg if
4474	 STORE_FLAG_VALUE permits.  */
4475      if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4476	  && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
4477	  && (temp = get_last_value (XEXP (x, 0)))
4478	  && COMPARISON_P (temp))
4479	return gen_lowpart (mode, XEXP (x, 0));
4480      break;
4481
4482#ifdef HAVE_cc0
4483    case COMPARE:
4484      /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
4485	 using cc0, in which case we want to leave it as a COMPARE
4486	 so we can distinguish it from a register-register-copy.  */
4487      if (XEXP (x, 1) == const0_rtx)
4488	return XEXP (x, 0);
4489
4490      /* x - 0 is the same as x unless x's mode has signed zeros and
4491	 allows rounding towards -infinity.  Under those conditions,
4492	 0 - 0 is -0.  */
4493      if (!(HONOR_SIGNED_ZEROS (GET_MODE (XEXP (x, 0)))
4494	    && HONOR_SIGN_DEPENDENT_ROUNDING (GET_MODE (XEXP (x, 0))))
4495	  && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
4496	return XEXP (x, 0);
4497      break;
4498#endif
4499
4500    case CONST:
4501      /* (const (const X)) can become (const X).  Do it this way rather than
4502	 returning the inner CONST since CONST can be shared with a
4503	 REG_EQUAL note.  */
4504      if (GET_CODE (XEXP (x, 0)) == CONST)
4505	SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4506      break;
4507
4508#ifdef HAVE_lo_sum
4509    case LO_SUM:
4510      /* Convert (lo_sum (high FOO) FOO) to FOO.  This is necessary so we
4511	 can add in an offset.  find_split_point will split this address up
4512	 again if it doesn't match.  */
4513      if (GET_CODE (XEXP (x, 0)) == HIGH
4514	  && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
4515	return XEXP (x, 1);
4516      break;
4517#endif
4518
4519    case PLUS:
4520      /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4521	 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4522	 bit-field and can be replaced by either a sign_extend or a
4523	 sign_extract.  The `and' may be a zero_extend and the two
4524	 <c>, -<c> constants may be reversed.  */
4525      if (GET_CODE (XEXP (x, 0)) == XOR
4526	  && GET_CODE (XEXP (x, 1)) == CONST_INT
4527	  && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4528	  && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
4529	  && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
4530	      || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
4531	  && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4532	  && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
4533	       && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
4534	       && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
4535		   == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
4536	      || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
4537		  && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
4538		      == (unsigned int) i + 1))))
4539	return simplify_shift_const
4540	  (NULL_RTX, ASHIFTRT, mode,
4541	   simplify_shift_const (NULL_RTX, ASHIFT, mode,
4542				 XEXP (XEXP (XEXP (x, 0), 0), 0),
4543				 GET_MODE_BITSIZE (mode) - (i + 1)),
4544	   GET_MODE_BITSIZE (mode) - (i + 1));
4545
4546      /* If only the low-order bit of X is possibly nonzero, (plus x -1)
4547	 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4548	 the bitsize of the mode - 1.  This allows simplification of
4549	 "a = (b & 8) == 0;"  */
4550      if (XEXP (x, 1) == constm1_rtx
4551	  && !REG_P (XEXP (x, 0))
4552	  && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4553		&& REG_P (SUBREG_REG (XEXP (x, 0))))
4554	  && nonzero_bits (XEXP (x, 0), mode) == 1)
4555	return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
4556	   simplify_shift_const (NULL_RTX, ASHIFT, mode,
4557				 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
4558				 GET_MODE_BITSIZE (mode) - 1),
4559	   GET_MODE_BITSIZE (mode) - 1);
4560
4561      /* If we are adding two things that have no bits in common, convert
4562	 the addition into an IOR.  This will often be further simplified,
4563	 for example in cases like ((a & 1) + (a & 2)), which can
4564	 become a & 3.  */
4565
4566      if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4567	  && (nonzero_bits (XEXP (x, 0), mode)
4568	      & nonzero_bits (XEXP (x, 1), mode)) == 0)
4569	{
4570	  /* Try to simplify the expression further.  */
4571	  rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
4572	  temp = combine_simplify_rtx (tor, mode, in_dest);
4573
4574	  /* If we could, great.  If not, do not go ahead with the IOR
4575	     replacement, since PLUS appears in many special purpose
4576	     address arithmetic instructions.  */
4577	  if (GET_CODE (temp) != CLOBBER && temp != tor)
4578	    return temp;
4579	}
4580      break;
4581
4582    case MINUS:
4583      /* (minus <foo> (and <foo> (const_int -pow2))) becomes
4584	 (and <foo> (const_int pow2-1))  */
4585      if (GET_CODE (XEXP (x, 1)) == AND
4586	  && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4587	  && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
4588	  && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
4589	return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
4590				       -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
4591      break;
4592
4593    case MULT:
4594      /* If we have (mult (plus A B) C), apply the distributive law and then
4595	 the inverse distributive law to see if things simplify.  This
4596	 occurs mostly in addresses, often when unrolling loops.  */
4597
4598      if (GET_CODE (XEXP (x, 0)) == PLUS)
4599	{
4600	  rtx result = distribute_and_simplify_rtx (x, 0);
4601	  if (result)
4602	    return result;
4603	}
4604
4605      /* Try simplify a*(b/c) as (a*b)/c.  */
4606      if (FLOAT_MODE_P (mode) && flag_unsafe_math_optimizations
4607	  && GET_CODE (XEXP (x, 0)) == DIV)
4608	{
4609	  rtx tem = simplify_binary_operation (MULT, mode,
4610					       XEXP (XEXP (x, 0), 0),
4611					       XEXP (x, 1));
4612	  if (tem)
4613	    return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
4614	}
4615      break;
4616
4617    case UDIV:
4618      /* If this is a divide by a power of two, treat it as a shift if
4619	 its first operand is a shift.  */
4620      if (GET_CODE (XEXP (x, 1)) == CONST_INT
4621	  && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
4622	  && (GET_CODE (XEXP (x, 0)) == ASHIFT
4623	      || GET_CODE (XEXP (x, 0)) == LSHIFTRT
4624	      || GET_CODE (XEXP (x, 0)) == ASHIFTRT
4625	      || GET_CODE (XEXP (x, 0)) == ROTATE
4626	      || GET_CODE (XEXP (x, 0)) == ROTATERT))
4627	return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
4628      break;
4629
4630    case EQ:  case NE:
4631    case GT:  case GTU:  case GE:  case GEU:
4632    case LT:  case LTU:  case LE:  case LEU:
4633    case UNEQ:  case LTGT:
4634    case UNGT:  case UNGE:
4635    case UNLT:  case UNLE:
4636    case UNORDERED: case ORDERED:
4637      /* If the first operand is a condition code, we can't do anything
4638	 with it.  */
4639      if (GET_CODE (XEXP (x, 0)) == COMPARE
4640	  || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
4641	      && ! CC0_P (XEXP (x, 0))))
4642	{
4643	  rtx op0 = XEXP (x, 0);
4644	  rtx op1 = XEXP (x, 1);
4645	  enum rtx_code new_code;
4646
4647	  if (GET_CODE (op0) == COMPARE)
4648	    op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4649
4650	  /* Simplify our comparison, if possible.  */
4651	  new_code = simplify_comparison (code, &op0, &op1);
4652
4653	  /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
4654	     if only the low-order bit is possibly nonzero in X (such as when
4655	     X is a ZERO_EXTRACT of one bit).  Similarly, we can convert EQ to
4656	     (xor X 1) or (minus 1 X); we use the former.  Finally, if X is
4657	     known to be either 0 or -1, NE becomes a NEG and EQ becomes
4658	     (plus X 1).
4659
4660	     Remove any ZERO_EXTRACT we made when thinking this was a
4661	     comparison.  It may now be simpler to use, e.g., an AND.  If a
4662	     ZERO_EXTRACT is indeed appropriate, it will be placed back by
4663	     the call to make_compound_operation in the SET case.  */
4664
4665	  if (STORE_FLAG_VALUE == 1
4666	      && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4667	      && op1 == const0_rtx
4668	      && mode == GET_MODE (op0)
4669	      && nonzero_bits (op0, mode) == 1)
4670	    return gen_lowpart (mode,
4671				expand_compound_operation (op0));
4672
4673	  else if (STORE_FLAG_VALUE == 1
4674		   && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4675		   && op1 == const0_rtx
4676		   && mode == GET_MODE (op0)
4677		   && (num_sign_bit_copies (op0, mode)
4678		       == GET_MODE_BITSIZE (mode)))
4679	    {
4680	      op0 = expand_compound_operation (op0);
4681	      return simplify_gen_unary (NEG, mode,
4682					 gen_lowpart (mode, op0),
4683					 mode);
4684	    }
4685
4686	  else if (STORE_FLAG_VALUE == 1
4687		   && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4688		   && op1 == const0_rtx
4689		   && mode == GET_MODE (op0)
4690		   && nonzero_bits (op0, mode) == 1)
4691	    {
4692	      op0 = expand_compound_operation (op0);
4693	      return simplify_gen_binary (XOR, mode,
4694					  gen_lowpart (mode, op0),
4695					  const1_rtx);
4696	    }
4697
4698	  else if (STORE_FLAG_VALUE == 1
4699		   && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4700		   && op1 == const0_rtx
4701		   && mode == GET_MODE (op0)
4702		   && (num_sign_bit_copies (op0, mode)
4703		       == GET_MODE_BITSIZE (mode)))
4704	    {
4705	      op0 = expand_compound_operation (op0);
4706	      return plus_constant (gen_lowpart (mode, op0), 1);
4707	    }
4708
4709	  /* If STORE_FLAG_VALUE is -1, we have cases similar to
4710	     those above.  */
4711	  if (STORE_FLAG_VALUE == -1
4712	      && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4713	      && op1 == const0_rtx
4714	      && (num_sign_bit_copies (op0, mode)
4715		  == GET_MODE_BITSIZE (mode)))
4716	    return gen_lowpart (mode,
4717				expand_compound_operation (op0));
4718
4719	  else if (STORE_FLAG_VALUE == -1
4720		   && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4721		   && op1 == const0_rtx
4722		   && mode == GET_MODE (op0)
4723		   && nonzero_bits (op0, mode) == 1)
4724	    {
4725	      op0 = expand_compound_operation (op0);
4726	      return simplify_gen_unary (NEG, mode,
4727					 gen_lowpart (mode, op0),
4728					 mode);
4729	    }
4730
4731	  else if (STORE_FLAG_VALUE == -1
4732		   && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4733		   && op1 == const0_rtx
4734		   && mode == GET_MODE (op0)
4735		   && (num_sign_bit_copies (op0, mode)
4736		       == GET_MODE_BITSIZE (mode)))
4737	    {
4738	      op0 = expand_compound_operation (op0);
4739	      return simplify_gen_unary (NOT, mode,
4740					 gen_lowpart (mode, op0),
4741					 mode);
4742	    }
4743
4744	  /* If X is 0/1, (eq X 0) is X-1.  */
4745	  else if (STORE_FLAG_VALUE == -1
4746		   && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4747		   && op1 == const0_rtx
4748		   && mode == GET_MODE (op0)
4749		   && nonzero_bits (op0, mode) == 1)
4750	    {
4751	      op0 = expand_compound_operation (op0);
4752	      return plus_constant (gen_lowpart (mode, op0), -1);
4753	    }
4754
4755	  /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
4756	     one bit that might be nonzero, we can convert (ne x 0) to
4757	     (ashift x c) where C puts the bit in the sign bit.  Remove any
4758	     AND with STORE_FLAG_VALUE when we are done, since we are only
4759	     going to test the sign bit.  */
4760	  if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4761	      && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4762	      && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
4763		  == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
4764	      && op1 == const0_rtx
4765	      && mode == GET_MODE (op0)
4766	      && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
4767	    {
4768	      x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
4769					expand_compound_operation (op0),
4770					GET_MODE_BITSIZE (mode) - 1 - i);
4771	      if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
4772		return XEXP (x, 0);
4773	      else
4774		return x;
4775	    }
4776
4777	  /* If the code changed, return a whole new comparison.  */
4778	  if (new_code != code)
4779	    return gen_rtx_fmt_ee (new_code, mode, op0, op1);
4780
4781	  /* Otherwise, keep this operation, but maybe change its operands.
4782	     This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR).  */
4783	  SUBST (XEXP (x, 0), op0);
4784	  SUBST (XEXP (x, 1), op1);
4785	}
4786      break;
4787
4788    case IF_THEN_ELSE:
4789      return simplify_if_then_else (x);
4790
4791    case ZERO_EXTRACT:
4792    case SIGN_EXTRACT:
4793    case ZERO_EXTEND:
4794    case SIGN_EXTEND:
4795      /* If we are processing SET_DEST, we are done.  */
4796      if (in_dest)
4797	return x;
4798
4799      return expand_compound_operation (x);
4800
4801    case SET:
4802      return simplify_set (x);
4803
4804    case AND:
4805    case IOR:
4806      return simplify_logical (x);
4807
4808    case ASHIFT:
4809    case LSHIFTRT:
4810    case ASHIFTRT:
4811    case ROTATE:
4812    case ROTATERT:
4813      /* If this is a shift by a constant amount, simplify it.  */
4814      if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4815	return simplify_shift_const (x, code, mode, XEXP (x, 0),
4816				     INTVAL (XEXP (x, 1)));
4817
4818      else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
4819	SUBST (XEXP (x, 1),
4820	       force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
4821			      ((HOST_WIDE_INT) 1
4822			       << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
4823			      - 1,
4824			      0));
4825      break;
4826
4827    default:
4828      break;
4829    }
4830
4831  return x;
4832}
4833
4834/* Simplify X, an IF_THEN_ELSE expression.  Return the new expression.  */
4835
4836static rtx
4837simplify_if_then_else (rtx x)
4838{
4839  enum machine_mode mode = GET_MODE (x);
4840  rtx cond = XEXP (x, 0);
4841  rtx true_rtx = XEXP (x, 1);
4842  rtx false_rtx = XEXP (x, 2);
4843  enum rtx_code true_code = GET_CODE (cond);
4844  int comparison_p = COMPARISON_P (cond);
4845  rtx temp;
4846  int i;
4847  enum rtx_code false_code;
4848  rtx reversed;
4849
4850  /* Simplify storing of the truth value.  */
4851  if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
4852    return simplify_gen_relational (true_code, mode, VOIDmode,
4853				    XEXP (cond, 0), XEXP (cond, 1));
4854
4855  /* Also when the truth value has to be reversed.  */
4856  if (comparison_p
4857      && true_rtx == const0_rtx && false_rtx == const_true_rtx
4858      && (reversed = reversed_comparison (cond, mode)))
4859    return reversed;
4860
4861  /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
4862     in it is being compared against certain values.  Get the true and false
4863     comparisons and see if that says anything about the value of each arm.  */
4864
4865  if (comparison_p
4866      && ((false_code = reversed_comparison_code (cond, NULL))
4867	  != UNKNOWN)
4868      && REG_P (XEXP (cond, 0)))
4869    {
4870      HOST_WIDE_INT nzb;
4871      rtx from = XEXP (cond, 0);
4872      rtx true_val = XEXP (cond, 1);
4873      rtx false_val = true_val;
4874      int swapped = 0;
4875
4876      /* If FALSE_CODE is EQ, swap the codes and arms.  */
4877
4878      if (false_code == EQ)
4879	{
4880	  swapped = 1, true_code = EQ, false_code = NE;
4881	  temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4882	}
4883
4884      /* If we are comparing against zero and the expression being tested has
4885	 only a single bit that might be nonzero, that is its value when it is
4886	 not equal to zero.  Similarly if it is known to be -1 or 0.  */
4887
4888      if (true_code == EQ && true_val == const0_rtx
4889	  && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
4890	false_code = EQ, false_val = GEN_INT (nzb);
4891      else if (true_code == EQ && true_val == const0_rtx
4892	       && (num_sign_bit_copies (from, GET_MODE (from))
4893		   == GET_MODE_BITSIZE (GET_MODE (from))))
4894	false_code = EQ, false_val = constm1_rtx;
4895
4896      /* Now simplify an arm if we know the value of the register in the
4897	 branch and it is used in the arm.  Be careful due to the potential
4898	 of locally-shared RTL.  */
4899
4900      if (reg_mentioned_p (from, true_rtx))
4901	true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
4902				      from, true_val),
4903		      pc_rtx, pc_rtx, 0, 0);
4904      if (reg_mentioned_p (from, false_rtx))
4905	false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
4906				   from, false_val),
4907		       pc_rtx, pc_rtx, 0, 0);
4908
4909      SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
4910      SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
4911
4912      true_rtx = XEXP (x, 1);
4913      false_rtx = XEXP (x, 2);
4914      true_code = GET_CODE (cond);
4915    }
4916
4917  /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
4918     reversed, do so to avoid needing two sets of patterns for
4919     subtract-and-branch insns.  Similarly if we have a constant in the true
4920     arm, the false arm is the same as the first operand of the comparison, or
4921     the false arm is more complicated than the true arm.  */
4922
4923  if (comparison_p
4924      && reversed_comparison_code (cond, NULL) != UNKNOWN
4925      && (true_rtx == pc_rtx
4926	  || (CONSTANT_P (true_rtx)
4927	      && GET_CODE (false_rtx) != CONST_INT && false_rtx != pc_rtx)
4928	  || true_rtx == const0_rtx
4929	  || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
4930	  || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
4931	      && !OBJECT_P (false_rtx))
4932	  || reg_mentioned_p (true_rtx, false_rtx)
4933	  || rtx_equal_p (false_rtx, XEXP (cond, 0))))
4934    {
4935      true_code = reversed_comparison_code (cond, NULL);
4936      SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
4937      SUBST (XEXP (x, 1), false_rtx);
4938      SUBST (XEXP (x, 2), true_rtx);
4939
4940      temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4941      cond = XEXP (x, 0);
4942
4943      /* It is possible that the conditional has been simplified out.  */
4944      true_code = GET_CODE (cond);
4945      comparison_p = COMPARISON_P (cond);
4946    }
4947
4948  /* If the two arms are identical, we don't need the comparison.  */
4949
4950  if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
4951    return true_rtx;
4952
4953  /* Convert a == b ? b : a to "a".  */
4954  if (true_code == EQ && ! side_effects_p (cond)
4955      && !HONOR_NANS (mode)
4956      && rtx_equal_p (XEXP (cond, 0), false_rtx)
4957      && rtx_equal_p (XEXP (cond, 1), true_rtx))
4958    return false_rtx;
4959  else if (true_code == NE && ! side_effects_p (cond)
4960	   && !HONOR_NANS (mode)
4961	   && rtx_equal_p (XEXP (cond, 0), true_rtx)
4962	   && rtx_equal_p (XEXP (cond, 1), false_rtx))
4963    return true_rtx;
4964
4965  /* Look for cases where we have (abs x) or (neg (abs X)).  */
4966
4967  if (GET_MODE_CLASS (mode) == MODE_INT
4968      && GET_CODE (false_rtx) == NEG
4969      && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
4970      && comparison_p
4971      && rtx_equal_p (true_rtx, XEXP (cond, 0))
4972      && ! side_effects_p (true_rtx))
4973    switch (true_code)
4974      {
4975      case GT:
4976      case GE:
4977	return simplify_gen_unary (ABS, mode, true_rtx, mode);
4978      case LT:
4979      case LE:
4980	return
4981	  simplify_gen_unary (NEG, mode,
4982			      simplify_gen_unary (ABS, mode, true_rtx, mode),
4983			      mode);
4984      default:
4985	break;
4986      }
4987
4988  /* Look for MIN or MAX.  */
4989
4990  if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
4991      && comparison_p
4992      && rtx_equal_p (XEXP (cond, 0), true_rtx)
4993      && rtx_equal_p (XEXP (cond, 1), false_rtx)
4994      && ! side_effects_p (cond))
4995    switch (true_code)
4996      {
4997      case GE:
4998      case GT:
4999	return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
5000      case LE:
5001      case LT:
5002	return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
5003      case GEU:
5004      case GTU:
5005	return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
5006      case LEU:
5007      case LTU:
5008	return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
5009      default:
5010	break;
5011      }
5012
5013  /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
5014     second operand is zero, this can be done as (OP Z (mult COND C2)) where
5015     C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
5016     SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
5017     We can do this kind of thing in some cases when STORE_FLAG_VALUE is
5018     neither 1 or -1, but it isn't worth checking for.  */
5019
5020  if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
5021      && comparison_p
5022      && GET_MODE_CLASS (mode) == MODE_INT
5023      && ! side_effects_p (x))
5024    {
5025      rtx t = make_compound_operation (true_rtx, SET);
5026      rtx f = make_compound_operation (false_rtx, SET);
5027      rtx cond_op0 = XEXP (cond, 0);
5028      rtx cond_op1 = XEXP (cond, 1);
5029      enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
5030      enum machine_mode m = mode;
5031      rtx z = 0, c1 = NULL_RTX;
5032
5033      if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
5034	   || GET_CODE (t) == IOR || GET_CODE (t) == XOR
5035	   || GET_CODE (t) == ASHIFT
5036	   || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
5037	  && rtx_equal_p (XEXP (t, 0), f))
5038	c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
5039
5040      /* If an identity-zero op is commutative, check whether there
5041	 would be a match if we swapped the operands.  */
5042      else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
5043		|| GET_CODE (t) == XOR)
5044	       && rtx_equal_p (XEXP (t, 1), f))
5045	c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
5046      else if (GET_CODE (t) == SIGN_EXTEND
5047	       && (GET_CODE (XEXP (t, 0)) == PLUS
5048		   || GET_CODE (XEXP (t, 0)) == MINUS
5049		   || GET_CODE (XEXP (t, 0)) == IOR
5050		   || GET_CODE (XEXP (t, 0)) == XOR
5051		   || GET_CODE (XEXP (t, 0)) == ASHIFT
5052		   || GET_CODE (XEXP (t, 0)) == LSHIFTRT
5053		   || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
5054	       && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
5055	       && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5056	       && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5057	       && (num_sign_bit_copies (f, GET_MODE (f))
5058		   > (unsigned int)
5059		     (GET_MODE_BITSIZE (mode)
5060		      - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
5061	{
5062	  c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5063	  extend_op = SIGN_EXTEND;
5064	  m = GET_MODE (XEXP (t, 0));
5065	}
5066      else if (GET_CODE (t) == SIGN_EXTEND
5067	       && (GET_CODE (XEXP (t, 0)) == PLUS
5068		   || GET_CODE (XEXP (t, 0)) == IOR
5069		   || GET_CODE (XEXP (t, 0)) == XOR)
5070	       && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5071	       && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5072	       && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5073	       && (num_sign_bit_copies (f, GET_MODE (f))
5074		   > (unsigned int)
5075		     (GET_MODE_BITSIZE (mode)
5076		      - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
5077	{
5078	  c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5079	  extend_op = SIGN_EXTEND;
5080	  m = GET_MODE (XEXP (t, 0));
5081	}
5082      else if (GET_CODE (t) == ZERO_EXTEND
5083	       && (GET_CODE (XEXP (t, 0)) == PLUS
5084		   || GET_CODE (XEXP (t, 0)) == MINUS
5085		   || GET_CODE (XEXP (t, 0)) == IOR
5086		   || GET_CODE (XEXP (t, 0)) == XOR
5087		   || GET_CODE (XEXP (t, 0)) == ASHIFT
5088		   || GET_CODE (XEXP (t, 0)) == LSHIFTRT
5089		   || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
5090	       && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
5091	       && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5092	       && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5093	       && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5094	       && ((nonzero_bits (f, GET_MODE (f))
5095		    & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
5096		   == 0))
5097	{
5098	  c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5099	  extend_op = ZERO_EXTEND;
5100	  m = GET_MODE (XEXP (t, 0));
5101	}
5102      else if (GET_CODE (t) == ZERO_EXTEND
5103	       && (GET_CODE (XEXP (t, 0)) == PLUS
5104		   || GET_CODE (XEXP (t, 0)) == IOR
5105		   || GET_CODE (XEXP (t, 0)) == XOR)
5106	       && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5107	       && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5108	       && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5109	       && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5110	       && ((nonzero_bits (f, GET_MODE (f))
5111		    & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
5112		   == 0))
5113	{
5114	  c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5115	  extend_op = ZERO_EXTEND;
5116	  m = GET_MODE (XEXP (t, 0));
5117	}
5118
5119      if (z)
5120	{
5121	  temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
5122						 cond_op0, cond_op1),
5123			pc_rtx, pc_rtx, 0, 0);
5124	  temp = simplify_gen_binary (MULT, m, temp,
5125				      simplify_gen_binary (MULT, m, c1,
5126							   const_true_rtx));
5127	  temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
5128	  temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
5129
5130	  if (extend_op != UNKNOWN)
5131	    temp = simplify_gen_unary (extend_op, mode, temp, m);
5132
5133	  return temp;
5134	}
5135    }
5136
5137  /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
5138     1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
5139     negation of a single bit, we can convert this operation to a shift.  We
5140     can actually do this more generally, but it doesn't seem worth it.  */
5141
5142  if (true_code == NE && XEXP (cond, 1) == const0_rtx
5143      && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5144      && ((1 == nonzero_bits (XEXP (cond, 0), mode)
5145	   && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
5146	  || ((num_sign_bit_copies (XEXP (cond, 0), mode)
5147	       == GET_MODE_BITSIZE (mode))
5148	      && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
5149    return
5150      simplify_shift_const (NULL_RTX, ASHIFT, mode,
5151			    gen_lowpart (mode, XEXP (cond, 0)), i);
5152
5153  /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8.  */
5154  if (true_code == NE && XEXP (cond, 1) == const0_rtx
5155      && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5156      && GET_MODE (XEXP (cond, 0)) == mode
5157      && (INTVAL (true_rtx) & GET_MODE_MASK (mode))
5158	  == nonzero_bits (XEXP (cond, 0), mode)
5159      && (i = exact_log2 (INTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
5160    return XEXP (cond, 0);
5161
5162  return x;
5163}
5164
5165/* Simplify X, a SET expression.  Return the new expression.  */
5166
5167static rtx
5168simplify_set (rtx x)
5169{
5170  rtx src = SET_SRC (x);
5171  rtx dest = SET_DEST (x);
5172  enum machine_mode mode
5173    = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
5174  rtx other_insn;
5175  rtx *cc_use;
5176
5177  /* (set (pc) (return)) gets written as (return).  */
5178  if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
5179    return src;
5180
5181  /* Now that we know for sure which bits of SRC we are using, see if we can
5182     simplify the expression for the object knowing that we only need the
5183     low-order bits.  */
5184
5185  if (GET_MODE_CLASS (mode) == MODE_INT
5186      && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
5187    {
5188      src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, 0);
5189      SUBST (SET_SRC (x), src);
5190    }
5191
5192  /* If we are setting CC0 or if the source is a COMPARE, look for the use of
5193     the comparison result and try to simplify it unless we already have used
5194     undobuf.other_insn.  */
5195  if ((GET_MODE_CLASS (mode) == MODE_CC
5196       || GET_CODE (src) == COMPARE
5197       || CC0_P (dest))
5198      && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
5199      && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
5200      && COMPARISON_P (*cc_use)
5201      && rtx_equal_p (XEXP (*cc_use, 0), dest))
5202    {
5203      enum rtx_code old_code = GET_CODE (*cc_use);
5204      enum rtx_code new_code;
5205      rtx op0, op1, tmp;
5206      int other_changed = 0;
5207      enum machine_mode compare_mode = GET_MODE (dest);
5208
5209      if (GET_CODE (src) == COMPARE)
5210	op0 = XEXP (src, 0), op1 = XEXP (src, 1);
5211      else
5212	op0 = src, op1 = CONST0_RTX (GET_MODE (src));
5213
5214      tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
5215					   op0, op1);
5216      if (!tmp)
5217	new_code = old_code;
5218      else if (!CONSTANT_P (tmp))
5219	{
5220	  new_code = GET_CODE (tmp);
5221	  op0 = XEXP (tmp, 0);
5222	  op1 = XEXP (tmp, 1);
5223	}
5224      else
5225	{
5226	  rtx pat = PATTERN (other_insn);
5227	  undobuf.other_insn = other_insn;
5228	  SUBST (*cc_use, tmp);
5229
5230	  /* Attempt to simplify CC user.  */
5231	  if (GET_CODE (pat) == SET)
5232	    {
5233	      rtx new = simplify_rtx (SET_SRC (pat));
5234	      if (new != NULL_RTX)
5235		SUBST (SET_SRC (pat), new);
5236	    }
5237
5238	  /* Convert X into a no-op move.  */
5239	  SUBST (SET_DEST (x), pc_rtx);
5240	  SUBST (SET_SRC (x), pc_rtx);
5241	  return x;
5242	}
5243
5244      /* Simplify our comparison, if possible.  */
5245      new_code = simplify_comparison (new_code, &op0, &op1);
5246
5247#ifdef SELECT_CC_MODE
5248      /* If this machine has CC modes other than CCmode, check to see if we
5249	 need to use a different CC mode here.  */
5250      if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5251	compare_mode = GET_MODE (op0);
5252      else
5253	compare_mode = SELECT_CC_MODE (new_code, op0, op1);
5254
5255#ifndef HAVE_cc0
5256      /* If the mode changed, we have to change SET_DEST, the mode in the
5257	 compare, and the mode in the place SET_DEST is used.  If SET_DEST is
5258	 a hard register, just build new versions with the proper mode.  If it
5259	 is a pseudo, we lose unless it is only time we set the pseudo, in
5260	 which case we can safely change its mode.  */
5261      if (compare_mode != GET_MODE (dest))
5262	{
5263	  if (can_change_dest_mode (dest, 0, compare_mode))
5264	    {
5265	      unsigned int regno = REGNO (dest);
5266	      rtx new_dest;
5267
5268	      if (regno < FIRST_PSEUDO_REGISTER)
5269		new_dest = gen_rtx_REG (compare_mode, regno);
5270	      else
5271		{
5272		  SUBST_MODE (regno_reg_rtx[regno], compare_mode);
5273		  new_dest = regno_reg_rtx[regno];
5274		}
5275
5276	      SUBST (SET_DEST (x), new_dest);
5277	      SUBST (XEXP (*cc_use, 0), new_dest);
5278	      other_changed = 1;
5279
5280	      dest = new_dest;
5281	    }
5282	}
5283#endif  /* cc0 */
5284#endif  /* SELECT_CC_MODE */
5285
5286      /* If the code changed, we have to build a new comparison in
5287	 undobuf.other_insn.  */
5288      if (new_code != old_code)
5289	{
5290	  int other_changed_previously = other_changed;
5291	  unsigned HOST_WIDE_INT mask;
5292
5293	  SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
5294					  dest, const0_rtx));
5295	  other_changed = 1;
5296
5297	  /* If the only change we made was to change an EQ into an NE or
5298	     vice versa, OP0 has only one bit that might be nonzero, and OP1
5299	     is zero, check if changing the user of the condition code will
5300	     produce a valid insn.  If it won't, we can keep the original code
5301	     in that insn by surrounding our operation with an XOR.  */
5302
5303	  if (((old_code == NE && new_code == EQ)
5304	       || (old_code == EQ && new_code == NE))
5305	      && ! other_changed_previously && op1 == const0_rtx
5306	      && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
5307	      && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
5308	    {
5309	      rtx pat = PATTERN (other_insn), note = 0;
5310
5311	      if ((recog_for_combine (&pat, other_insn, &note) < 0
5312		   && ! check_asm_operands (pat)))
5313		{
5314		  PUT_CODE (*cc_use, old_code);
5315		  other_changed = 0;
5316
5317		  op0 = simplify_gen_binary (XOR, GET_MODE (op0),
5318					     op0, GEN_INT (mask));
5319		}
5320	    }
5321	}
5322
5323      if (other_changed)
5324	undobuf.other_insn = other_insn;
5325
5326#ifdef HAVE_cc0
5327      /* If we are now comparing against zero, change our source if
5328	 needed.  If we do not use cc0, we always have a COMPARE.  */
5329      if (op1 == const0_rtx && dest == cc0_rtx)
5330	{
5331	  SUBST (SET_SRC (x), op0);
5332	  src = op0;
5333	}
5334      else
5335#endif
5336
5337      /* Otherwise, if we didn't previously have a COMPARE in the
5338	 correct mode, we need one.  */
5339      if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
5340	{
5341	  SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5342	  src = SET_SRC (x);
5343	}
5344      else if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
5345	{
5346	  SUBST (SET_SRC (x), op0);
5347	  src = SET_SRC (x);
5348	}
5349      /* Otherwise, update the COMPARE if needed.  */
5350      else if (XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
5351	{
5352	  SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5353	  src = SET_SRC (x);
5354	}
5355    }
5356  else
5357    {
5358      /* Get SET_SRC in a form where we have placed back any
5359	 compound expressions.  Then do the checks below.  */
5360      src = make_compound_operation (src, SET);
5361      SUBST (SET_SRC (x), src);
5362    }
5363
5364  /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5365     and X being a REG or (subreg (reg)), we may be able to convert this to
5366     (set (subreg:m2 x) (op)).
5367
5368     We can always do this if M1 is narrower than M2 because that means that
5369     we only care about the low bits of the result.
5370
5371     However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
5372     perform a narrower operation than requested since the high-order bits will
5373     be undefined.  On machine where it is defined, this transformation is safe
5374     as long as M1 and M2 have the same number of words.  */
5375
5376  if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5377      && !OBJECT_P (SUBREG_REG (src))
5378      && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
5379	   / UNITS_PER_WORD)
5380	  == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5381	       + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
5382#ifndef WORD_REGISTER_OPERATIONS
5383      && (GET_MODE_SIZE (GET_MODE (src))
5384	< GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5385#endif
5386#ifdef CANNOT_CHANGE_MODE_CLASS
5387      && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
5388	    && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
5389					 GET_MODE (SUBREG_REG (src)),
5390					 GET_MODE (src)))
5391#endif
5392      && (REG_P (dest)
5393	  || (GET_CODE (dest) == SUBREG
5394	      && REG_P (SUBREG_REG (dest)))))
5395    {
5396      SUBST (SET_DEST (x),
5397	     gen_lowpart (GET_MODE (SUBREG_REG (src)),
5398				      dest));
5399      SUBST (SET_SRC (x), SUBREG_REG (src));
5400
5401      src = SET_SRC (x), dest = SET_DEST (x);
5402    }
5403
5404#ifdef HAVE_cc0
5405  /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
5406     in SRC.  */
5407  if (dest == cc0_rtx
5408      && GET_CODE (src) == SUBREG
5409      && subreg_lowpart_p (src)
5410      && (GET_MODE_BITSIZE (GET_MODE (src))
5411	  < GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src)))))
5412    {
5413      rtx inner = SUBREG_REG (src);
5414      enum machine_mode inner_mode = GET_MODE (inner);
5415
5416      /* Here we make sure that we don't have a sign bit on.  */
5417      if (GET_MODE_BITSIZE (inner_mode) <= HOST_BITS_PER_WIDE_INT
5418	  && (nonzero_bits (inner, inner_mode)
5419	      < ((unsigned HOST_WIDE_INT) 1
5420		 << (GET_MODE_BITSIZE (GET_MODE (src)) - 1))))
5421	{
5422	  SUBST (SET_SRC (x), inner);
5423	  src = SET_SRC (x);
5424	}
5425    }
5426#endif
5427
5428#ifdef LOAD_EXTEND_OP
5429  /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5430     would require a paradoxical subreg.  Replace the subreg with a
5431     zero_extend to avoid the reload that would otherwise be required.  */
5432
5433  if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5434      && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
5435      && SUBREG_BYTE (src) == 0
5436      && (GET_MODE_SIZE (GET_MODE (src))
5437	  > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5438      && MEM_P (SUBREG_REG (src)))
5439    {
5440      SUBST (SET_SRC (x),
5441	     gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
5442			    GET_MODE (src), SUBREG_REG (src)));
5443
5444      src = SET_SRC (x);
5445    }
5446#endif
5447
5448  /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5449     are comparing an item known to be 0 or -1 against 0, use a logical
5450     operation instead. Check for one of the arms being an IOR of the other
5451     arm with some value.  We compute three terms to be IOR'ed together.  In
5452     practice, at most two will be nonzero.  Then we do the IOR's.  */
5453
5454  if (GET_CODE (dest) != PC
5455      && GET_CODE (src) == IF_THEN_ELSE
5456      && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
5457      && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
5458      && XEXP (XEXP (src, 0), 1) == const0_rtx
5459      && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
5460#ifdef HAVE_conditional_move
5461      && ! can_conditionally_move_p (GET_MODE (src))
5462#endif
5463      && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
5464			       GET_MODE (XEXP (XEXP (src, 0), 0)))
5465	  == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
5466      && ! side_effects_p (src))
5467    {
5468      rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
5469		      ? XEXP (src, 1) : XEXP (src, 2));
5470      rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
5471		   ? XEXP (src, 2) : XEXP (src, 1));
5472      rtx term1 = const0_rtx, term2, term3;
5473
5474      if (GET_CODE (true_rtx) == IOR
5475	  && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
5476	term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
5477      else if (GET_CODE (true_rtx) == IOR
5478	       && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
5479	term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
5480      else if (GET_CODE (false_rtx) == IOR
5481	       && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
5482	term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
5483      else if (GET_CODE (false_rtx) == IOR
5484	       && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
5485	term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
5486
5487      term2 = simplify_gen_binary (AND, GET_MODE (src),
5488				   XEXP (XEXP (src, 0), 0), true_rtx);
5489      term3 = simplify_gen_binary (AND, GET_MODE (src),
5490				   simplify_gen_unary (NOT, GET_MODE (src),
5491						       XEXP (XEXP (src, 0), 0),
5492						       GET_MODE (src)),
5493				   false_rtx);
5494
5495      SUBST (SET_SRC (x),
5496	     simplify_gen_binary (IOR, GET_MODE (src),
5497				  simplify_gen_binary (IOR, GET_MODE (src),
5498						       term1, term2),
5499				  term3));
5500
5501      src = SET_SRC (x);
5502    }
5503
5504  /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5505     whole thing fail.  */
5506  if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
5507    return src;
5508  else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
5509    return dest;
5510  else
5511    /* Convert this into a field assignment operation, if possible.  */
5512    return make_field_assignment (x);
5513}
5514
5515/* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5516   result.  */
5517
5518static rtx
5519simplify_logical (rtx x)
5520{
5521  enum machine_mode mode = GET_MODE (x);
5522  rtx op0 = XEXP (x, 0);
5523  rtx op1 = XEXP (x, 1);
5524
5525  switch (GET_CODE (x))
5526    {
5527    case AND:
5528      /* We can call simplify_and_const_int only if we don't lose
5529	 any (sign) bits when converting INTVAL (op1) to
5530	 "unsigned HOST_WIDE_INT".  */
5531      if (GET_CODE (op1) == CONST_INT
5532	  && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5533	      || INTVAL (op1) > 0))
5534	{
5535	  x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
5536	  if (GET_CODE (x) != AND)
5537	    return x;
5538
5539	  op0 = XEXP (x, 0);
5540	  op1 = XEXP (x, 1);
5541	}
5542
5543      /* If we have any of (and (ior A B) C) or (and (xor A B) C),
5544	 apply the distributive law and then the inverse distributive
5545	 law to see if things simplify.  */
5546      if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
5547	{
5548	  rtx result = distribute_and_simplify_rtx (x, 0);
5549	  if (result)
5550	    return result;
5551	}
5552      if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
5553	{
5554	  rtx result = distribute_and_simplify_rtx (x, 1);
5555	  if (result)
5556	    return result;
5557	}
5558      break;
5559
5560    case IOR:
5561      /* If we have (ior (and A B) C), apply the distributive law and then
5562	 the inverse distributive law to see if things simplify.  */
5563
5564      if (GET_CODE (op0) == AND)
5565	{
5566	  rtx result = distribute_and_simplify_rtx (x, 0);
5567	  if (result)
5568	    return result;
5569	}
5570
5571      if (GET_CODE (op1) == AND)
5572	{
5573	  rtx result = distribute_and_simplify_rtx (x, 1);
5574	  if (result)
5575	    return result;
5576	}
5577      break;
5578
5579    default:
5580      gcc_unreachable ();
5581    }
5582
5583  return x;
5584}
5585
5586/* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
5587   operations" because they can be replaced with two more basic operations.
5588   ZERO_EXTEND is also considered "compound" because it can be replaced with
5589   an AND operation, which is simpler, though only one operation.
5590
5591   The function expand_compound_operation is called with an rtx expression
5592   and will convert it to the appropriate shifts and AND operations,
5593   simplifying at each stage.
5594
5595   The function make_compound_operation is called to convert an expression
5596   consisting of shifts and ANDs into the equivalent compound expression.
5597   It is the inverse of this function, loosely speaking.  */
5598
5599static rtx
5600expand_compound_operation (rtx x)
5601{
5602  unsigned HOST_WIDE_INT pos = 0, len;
5603  int unsignedp = 0;
5604  unsigned int modewidth;
5605  rtx tem;
5606
5607  switch (GET_CODE (x))
5608    {
5609    case ZERO_EXTEND:
5610      unsignedp = 1;
5611    case SIGN_EXTEND:
5612      /* We can't necessarily use a const_int for a multiword mode;
5613	 it depends on implicitly extending the value.
5614	 Since we don't know the right way to extend it,
5615	 we can't tell whether the implicit way is right.
5616
5617	 Even for a mode that is no wider than a const_int,
5618	 we can't win, because we need to sign extend one of its bits through
5619	 the rest of it, and we don't know which bit.  */
5620      if (GET_CODE (XEXP (x, 0)) == CONST_INT)
5621	return x;
5622
5623      /* Return if (subreg:MODE FROM 0) is not a safe replacement for
5624	 (zero_extend:MODE FROM) or (sign_extend:MODE FROM).  It is for any MEM
5625	 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
5626	 reloaded. If not for that, MEM's would very rarely be safe.
5627
5628	 Reject MODEs bigger than a word, because we might not be able
5629	 to reference a two-register group starting with an arbitrary register
5630	 (and currently gen_lowpart might crash for a SUBREG).  */
5631
5632      if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
5633	return x;
5634
5635      /* Reject MODEs that aren't scalar integers because turning vector
5636	 or complex modes into shifts causes problems.  */
5637
5638      if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5639	return x;
5640
5641      len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
5642      /* If the inner object has VOIDmode (the only way this can happen
5643	 is if it is an ASM_OPERANDS), we can't do anything since we don't
5644	 know how much masking to do.  */
5645      if (len == 0)
5646	return x;
5647
5648      break;
5649
5650    case ZERO_EXTRACT:
5651      unsignedp = 1;
5652
5653      /* ... fall through ...  */
5654
5655    case SIGN_EXTRACT:
5656      /* If the operand is a CLOBBER, just return it.  */
5657      if (GET_CODE (XEXP (x, 0)) == CLOBBER)
5658	return XEXP (x, 0);
5659
5660      if (GET_CODE (XEXP (x, 1)) != CONST_INT
5661	  || GET_CODE (XEXP (x, 2)) != CONST_INT
5662	  || GET_MODE (XEXP (x, 0)) == VOIDmode)
5663	return x;
5664
5665      /* Reject MODEs that aren't scalar integers because turning vector
5666	 or complex modes into shifts causes problems.  */
5667
5668      if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5669	return x;
5670
5671      len = INTVAL (XEXP (x, 1));
5672      pos = INTVAL (XEXP (x, 2));
5673
5674      /* This should stay within the object being extracted, fail otherwise.  */
5675      if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
5676	return x;
5677
5678      if (BITS_BIG_ENDIAN)
5679	pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
5680
5681      break;
5682
5683    default:
5684      return x;
5685    }
5686  /* Convert sign extension to zero extension, if we know that the high
5687     bit is not set, as this is easier to optimize.  It will be converted
5688     back to cheaper alternative in make_extraction.  */
5689  if (GET_CODE (x) == SIGN_EXTEND
5690      && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5691	  && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
5692		& ~(((unsigned HOST_WIDE_INT)
5693		      GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
5694		     >> 1))
5695	       == 0)))
5696    {
5697      rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
5698      rtx temp2 = expand_compound_operation (temp);
5699
5700      /* Make sure this is a profitable operation.  */
5701      if (rtx_cost (x, SET) > rtx_cost (temp2, SET))
5702       return temp2;
5703      else if (rtx_cost (x, SET) > rtx_cost (temp, SET))
5704       return temp;
5705      else
5706       return x;
5707    }
5708
5709  /* We can optimize some special cases of ZERO_EXTEND.  */
5710  if (GET_CODE (x) == ZERO_EXTEND)
5711    {
5712      /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
5713	 know that the last value didn't have any inappropriate bits
5714	 set.  */
5715      if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5716	  && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5717	  && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5718	  && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
5719	      & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5720	return XEXP (XEXP (x, 0), 0);
5721
5722      /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)).  */
5723      if (GET_CODE (XEXP (x, 0)) == SUBREG
5724	  && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5725	  && subreg_lowpart_p (XEXP (x, 0))
5726	  && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5727	  && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
5728	      & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5729	return SUBREG_REG (XEXP (x, 0));
5730
5731      /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
5732	 is a comparison and STORE_FLAG_VALUE permits.  This is like
5733	 the first case, but it works even when GET_MODE (x) is larger
5734	 than HOST_WIDE_INT.  */
5735      if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5736	  && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5737	  && COMPARISON_P (XEXP (XEXP (x, 0), 0))
5738	  && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5739	      <= HOST_BITS_PER_WIDE_INT)
5740	  && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5741	      & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5742	return XEXP (XEXP (x, 0), 0);
5743
5744      /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)).  */
5745      if (GET_CODE (XEXP (x, 0)) == SUBREG
5746	  && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5747	  && subreg_lowpart_p (XEXP (x, 0))
5748	  && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
5749	  && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5750	      <= HOST_BITS_PER_WIDE_INT)
5751	  && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5752	      & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5753	return SUBREG_REG (XEXP (x, 0));
5754
5755    }
5756
5757  /* If we reach here, we want to return a pair of shifts.  The inner
5758     shift is a left shift of BITSIZE - POS - LEN bits.  The outer
5759     shift is a right shift of BITSIZE - LEN bits.  It is arithmetic or
5760     logical depending on the value of UNSIGNEDP.
5761
5762     If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
5763     converted into an AND of a shift.
5764
5765     We must check for the case where the left shift would have a negative
5766     count.  This can happen in a case like (x >> 31) & 255 on machines
5767     that can't shift by a constant.  On those machines, we would first
5768     combine the shift with the AND to produce a variable-position
5769     extraction.  Then the constant of 31 would be substituted in to produce
5770     a such a position.  */
5771
5772  modewidth = GET_MODE_BITSIZE (GET_MODE (x));
5773  if (modewidth + len >= pos)
5774    {
5775      enum machine_mode mode = GET_MODE (x);
5776      tem = gen_lowpart (mode, XEXP (x, 0));
5777      if (!tem || GET_CODE (tem) == CLOBBER)
5778	return x;
5779      tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
5780				  tem, modewidth - pos - len);
5781      tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
5782				  mode, tem, modewidth - len);
5783    }
5784  else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
5785    tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
5786				  simplify_shift_const (NULL_RTX, LSHIFTRT,
5787							GET_MODE (x),
5788							XEXP (x, 0), pos),
5789				  ((HOST_WIDE_INT) 1 << len) - 1);
5790  else
5791    /* Any other cases we can't handle.  */
5792    return x;
5793
5794  /* If we couldn't do this for some reason, return the original
5795     expression.  */
5796  if (GET_CODE (tem) == CLOBBER)
5797    return x;
5798
5799  return tem;
5800}
5801
5802/* X is a SET which contains an assignment of one object into
5803   a part of another (such as a bit-field assignment, STRICT_LOW_PART,
5804   or certain SUBREGS). If possible, convert it into a series of
5805   logical operations.
5806
5807   We half-heartedly support variable positions, but do not at all
5808   support variable lengths.  */
5809
5810static rtx
5811expand_field_assignment (rtx x)
5812{
5813  rtx inner;
5814  rtx pos;			/* Always counts from low bit.  */
5815  int len;
5816  rtx mask, cleared, masked;
5817  enum machine_mode compute_mode;
5818
5819  /* Loop until we find something we can't simplify.  */
5820  while (1)
5821    {
5822      if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
5823	  && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
5824	{
5825	  inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
5826	  len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
5827	  pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
5828	}
5829      else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5830	       && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
5831	{
5832	  inner = XEXP (SET_DEST (x), 0);
5833	  len = INTVAL (XEXP (SET_DEST (x), 1));
5834	  pos = XEXP (SET_DEST (x), 2);
5835
5836	  /* A constant position should stay within the width of INNER.  */
5837	  if (GET_CODE (pos) == CONST_INT
5838	      && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
5839	    break;
5840
5841	  if (BITS_BIG_ENDIAN)
5842	    {
5843	      if (GET_CODE (pos) == CONST_INT)
5844		pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
5845			       - INTVAL (pos));
5846	      else if (GET_CODE (pos) == MINUS
5847		       && GET_CODE (XEXP (pos, 1)) == CONST_INT
5848		       && (INTVAL (XEXP (pos, 1))
5849			   == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
5850		/* If position is ADJUST - X, new position is X.  */
5851		pos = XEXP (pos, 0);
5852	      else
5853		pos = simplify_gen_binary (MINUS, GET_MODE (pos),
5854					   GEN_INT (GET_MODE_BITSIZE (
5855						    GET_MODE (inner))
5856						    - len),
5857					   pos);
5858	    }
5859	}
5860
5861      /* A SUBREG between two modes that occupy the same numbers of words
5862	 can be done by moving the SUBREG to the source.  */
5863      else if (GET_CODE (SET_DEST (x)) == SUBREG
5864	       /* We need SUBREGs to compute nonzero_bits properly.  */
5865	       && nonzero_sign_valid
5866	       && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
5867		     + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
5868		   == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
5869			+ (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
5870	{
5871	  x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
5872			   gen_lowpart
5873			   (GET_MODE (SUBREG_REG (SET_DEST (x))),
5874			    SET_SRC (x)));
5875	  continue;
5876	}
5877      else
5878	break;
5879
5880      while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
5881	inner = SUBREG_REG (inner);
5882
5883      compute_mode = GET_MODE (inner);
5884
5885      /* Don't attempt bitwise arithmetic on non scalar integer modes.  */
5886      if (! SCALAR_INT_MODE_P (compute_mode))
5887	{
5888	  enum machine_mode imode;
5889
5890	  /* Don't do anything for vector or complex integral types.  */
5891	  if (! FLOAT_MODE_P (compute_mode))
5892	    break;
5893
5894	  /* Try to find an integral mode to pun with.  */
5895	  imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
5896	  if (imode == BLKmode)
5897	    break;
5898
5899	  compute_mode = imode;
5900	  inner = gen_lowpart (imode, inner);
5901	}
5902
5903      /* Compute a mask of LEN bits, if we can do this on the host machine.  */
5904      if (len >= HOST_BITS_PER_WIDE_INT)
5905	break;
5906
5907      /* Now compute the equivalent expression.  Make a copy of INNER
5908	 for the SET_DEST in case it is a MEM into which we will substitute;
5909	 we don't want shared RTL in that case.  */
5910      mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
5911      cleared = simplify_gen_binary (AND, compute_mode,
5912				     simplify_gen_unary (NOT, compute_mode,
5913				       simplify_gen_binary (ASHIFT,
5914							    compute_mode,
5915							    mask, pos),
5916				       compute_mode),
5917				     inner);
5918      masked = simplify_gen_binary (ASHIFT, compute_mode,
5919				    simplify_gen_binary (
5920				      AND, compute_mode,
5921				      gen_lowpart (compute_mode, SET_SRC (x)),
5922				      mask),
5923				    pos);
5924
5925      x = gen_rtx_SET (VOIDmode, copy_rtx (inner),
5926		       simplify_gen_binary (IOR, compute_mode,
5927					    cleared, masked));
5928    }
5929
5930  return x;
5931}
5932
5933/* Return an RTX for a reference to LEN bits of INNER.  If POS_RTX is nonzero,
5934   it is an RTX that represents a variable starting position; otherwise,
5935   POS is the (constant) starting bit position (counted from the LSB).
5936
5937   UNSIGNEDP is nonzero for an unsigned reference and zero for a
5938   signed reference.
5939
5940   IN_DEST is nonzero if this is a reference in the destination of a
5941   SET.  This is used when a ZERO_ or SIGN_EXTRACT isn't needed.  If nonzero,
5942   a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
5943   be used.
5944
5945   IN_COMPARE is nonzero if we are in a COMPARE.  This means that a
5946   ZERO_EXTRACT should be built even for bits starting at bit 0.
5947
5948   MODE is the desired mode of the result (if IN_DEST == 0).
5949
5950   The result is an RTX for the extraction or NULL_RTX if the target
5951   can't handle it.  */
5952
5953static rtx
5954make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
5955		 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
5956		 int in_dest, int in_compare)
5957{
5958  /* This mode describes the size of the storage area
5959     to fetch the overall value from.  Within that, we
5960     ignore the POS lowest bits, etc.  */
5961  enum machine_mode is_mode = GET_MODE (inner);
5962  enum machine_mode inner_mode;
5963  enum machine_mode wanted_inner_mode;
5964  enum machine_mode wanted_inner_reg_mode = word_mode;
5965  enum machine_mode pos_mode = word_mode;
5966  enum machine_mode extraction_mode = word_mode;
5967  enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
5968  rtx new = 0;
5969  rtx orig_pos_rtx = pos_rtx;
5970  HOST_WIDE_INT orig_pos;
5971
5972  if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
5973    {
5974      /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
5975	 consider just the QI as the memory to extract from.
5976	 The subreg adds or removes high bits; its mode is
5977	 irrelevant to the meaning of this extraction,
5978	 since POS and LEN count from the lsb.  */
5979      if (MEM_P (SUBREG_REG (inner)))
5980	is_mode = GET_MODE (SUBREG_REG (inner));
5981      inner = SUBREG_REG (inner);
5982    }
5983  else if (GET_CODE (inner) == ASHIFT
5984	   && GET_CODE (XEXP (inner, 1)) == CONST_INT
5985	   && pos_rtx == 0 && pos == 0
5986	   && len > (unsigned HOST_WIDE_INT) INTVAL (XEXP (inner, 1)))
5987    {
5988      /* We're extracting the least significant bits of an rtx
5989	 (ashift X (const_int C)), where LEN > C.  Extract the
5990	 least significant (LEN - C) bits of X, giving an rtx
5991	 whose mode is MODE, then shift it left C times.  */
5992      new = make_extraction (mode, XEXP (inner, 0),
5993			     0, 0, len - INTVAL (XEXP (inner, 1)),
5994			     unsignedp, in_dest, in_compare);
5995      if (new != 0)
5996	return gen_rtx_ASHIFT (mode, new, XEXP (inner, 1));
5997    }
5998
5999  inner_mode = GET_MODE (inner);
6000
6001  if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
6002    pos = INTVAL (pos_rtx), pos_rtx = 0;
6003
6004  /* See if this can be done without an extraction.  We never can if the
6005     width of the field is not the same as that of some integer mode. For
6006     registers, we can only avoid the extraction if the position is at the
6007     low-order bit and this is either not in the destination or we have the
6008     appropriate STRICT_LOW_PART operation available.
6009
6010     For MEM, we can avoid an extract if the field starts on an appropriate
6011     boundary and we can change the mode of the memory reference.  */
6012
6013  if (tmode != BLKmode
6014      && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
6015	   && !MEM_P (inner)
6016	   && (inner_mode == tmode
6017	       || !REG_P (inner)
6018	       || TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (tmode),
6019					 GET_MODE_BITSIZE (inner_mode))
6020	       || reg_truncated_to_mode (tmode, inner))
6021	   && (! in_dest
6022	       || (REG_P (inner)
6023		   && have_insn_for (STRICT_LOW_PART, tmode))))
6024	  || (MEM_P (inner) && pos_rtx == 0
6025	      && (pos
6026		  % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
6027		     : BITS_PER_UNIT)) == 0
6028	      /* We can't do this if we are widening INNER_MODE (it
6029		 may not be aligned, for one thing).  */
6030	      && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
6031	      && (inner_mode == tmode
6032		  || (! mode_dependent_address_p (XEXP (inner, 0))
6033		      && ! MEM_VOLATILE_P (inner))))))
6034    {
6035      /* If INNER is a MEM, make a new MEM that encompasses just the desired
6036	 field.  If the original and current mode are the same, we need not
6037	 adjust the offset.  Otherwise, we do if bytes big endian.
6038
6039	 If INNER is not a MEM, get a piece consisting of just the field
6040	 of interest (in this case POS % BITS_PER_WORD must be 0).  */
6041
6042      if (MEM_P (inner))
6043	{
6044	  HOST_WIDE_INT offset;
6045
6046	  /* POS counts from lsb, but make OFFSET count in memory order.  */
6047	  if (BYTES_BIG_ENDIAN)
6048	    offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
6049	  else
6050	    offset = pos / BITS_PER_UNIT;
6051
6052	  new = adjust_address_nv (inner, tmode, offset);
6053	}
6054      else if (REG_P (inner))
6055	{
6056	  if (tmode != inner_mode)
6057	    {
6058	      /* We can't call gen_lowpart in a DEST since we
6059		 always want a SUBREG (see below) and it would sometimes
6060		 return a new hard register.  */
6061	      if (pos || in_dest)
6062		{
6063		  HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
6064
6065		  if (WORDS_BIG_ENDIAN
6066		      && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
6067		    final_word = ((GET_MODE_SIZE (inner_mode)
6068				   - GET_MODE_SIZE (tmode))
6069				  / UNITS_PER_WORD) - final_word;
6070
6071		  final_word *= UNITS_PER_WORD;
6072		  if (BYTES_BIG_ENDIAN &&
6073		      GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
6074		    final_word += (GET_MODE_SIZE (inner_mode)
6075				   - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
6076
6077		  /* Avoid creating invalid subregs, for example when
6078		     simplifying (x>>32)&255.  */
6079		  if (!validate_subreg (tmode, inner_mode, inner, final_word))
6080		    return NULL_RTX;
6081
6082		  new = gen_rtx_SUBREG (tmode, inner, final_word);
6083		}
6084	      else
6085		new = gen_lowpart (tmode, inner);
6086	    }
6087	  else
6088	    new = inner;
6089	}
6090      else
6091	new = force_to_mode (inner, tmode,
6092			     len >= HOST_BITS_PER_WIDE_INT
6093			     ? ~(unsigned HOST_WIDE_INT) 0
6094			     : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
6095			     0);
6096
6097      /* If this extraction is going into the destination of a SET,
6098	 make a STRICT_LOW_PART unless we made a MEM.  */
6099
6100      if (in_dest)
6101	return (MEM_P (new) ? new
6102		: (GET_CODE (new) != SUBREG
6103		   ? gen_rtx_CLOBBER (tmode, const0_rtx)
6104		   : gen_rtx_STRICT_LOW_PART (VOIDmode, new)));
6105
6106      if (mode == tmode)
6107	return new;
6108
6109      if (GET_CODE (new) == CONST_INT)
6110	return gen_int_mode (INTVAL (new), mode);
6111
6112      /* If we know that no extraneous bits are set, and that the high
6113	 bit is not set, convert the extraction to the cheaper of
6114	 sign and zero extension, that are equivalent in these cases.  */
6115      if (flag_expensive_optimizations
6116	  && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
6117	      && ((nonzero_bits (new, tmode)
6118		   & ~(((unsigned HOST_WIDE_INT)
6119			GET_MODE_MASK (tmode))
6120		       >> 1))
6121		  == 0)))
6122	{
6123	  rtx temp = gen_rtx_ZERO_EXTEND (mode, new);
6124	  rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new);
6125
6126	  /* Prefer ZERO_EXTENSION, since it gives more information to
6127	     backends.  */
6128	  if (rtx_cost (temp, SET) <= rtx_cost (temp1, SET))
6129	    return temp;
6130	  return temp1;
6131	}
6132
6133      /* Otherwise, sign- or zero-extend unless we already are in the
6134	 proper mode.  */
6135
6136      return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
6137			     mode, new));
6138    }
6139
6140  /* Unless this is a COMPARE or we have a funny memory reference,
6141     don't do anything with zero-extending field extracts starting at
6142     the low-order bit since they are simple AND operations.  */
6143  if (pos_rtx == 0 && pos == 0 && ! in_dest
6144      && ! in_compare && unsignedp)
6145    return 0;
6146
6147  /* Unless INNER is not MEM, reject this if we would be spanning bytes or
6148     if the position is not a constant and the length is not 1.  In all
6149     other cases, we would only be going outside our object in cases when
6150     an original shift would have been undefined.  */
6151  if (MEM_P (inner)
6152      && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
6153	  || (pos_rtx != 0 && len != 1)))
6154    return 0;
6155
6156  /* Get the mode to use should INNER not be a MEM, the mode for the position,
6157     and the mode for the result.  */
6158  if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
6159    {
6160      wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
6161      pos_mode = mode_for_extraction (EP_insv, 2);
6162      extraction_mode = mode_for_extraction (EP_insv, 3);
6163    }
6164
6165  if (! in_dest && unsignedp
6166      && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
6167    {
6168      wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
6169      pos_mode = mode_for_extraction (EP_extzv, 3);
6170      extraction_mode = mode_for_extraction (EP_extzv, 0);
6171    }
6172
6173  if (! in_dest && ! unsignedp
6174      && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
6175    {
6176      wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
6177      pos_mode = mode_for_extraction (EP_extv, 3);
6178      extraction_mode = mode_for_extraction (EP_extv, 0);
6179    }
6180
6181  /* Never narrow an object, since that might not be safe.  */
6182
6183  if (mode != VOIDmode
6184      && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
6185    extraction_mode = mode;
6186
6187  if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
6188      && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6189    pos_mode = GET_MODE (pos_rtx);
6190
6191  /* If this is not from memory, the desired mode is the preferred mode
6192     for an extraction pattern's first input operand, or word_mode if there
6193     is none.  */
6194  if (!MEM_P (inner))
6195    wanted_inner_mode = wanted_inner_reg_mode;
6196  else
6197    {
6198      /* Be careful not to go beyond the extracted object and maintain the
6199	 natural alignment of the memory.  */
6200      wanted_inner_mode = smallest_mode_for_size (len, MODE_INT);
6201      while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
6202	     > GET_MODE_BITSIZE (wanted_inner_mode))
6203	{
6204	  wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode);
6205	  gcc_assert (wanted_inner_mode != VOIDmode);
6206	}
6207
6208      /* If we have to change the mode of memory and cannot, the desired mode
6209	 is EXTRACTION_MODE.  */
6210      if (inner_mode != wanted_inner_mode
6211	  && (mode_dependent_address_p (XEXP (inner, 0))
6212	      || MEM_VOLATILE_P (inner)
6213	      || pos_rtx))
6214	wanted_inner_mode = extraction_mode;
6215    }
6216
6217  orig_pos = pos;
6218
6219  if (BITS_BIG_ENDIAN)
6220    {
6221      /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6222	 BITS_BIG_ENDIAN style.  If position is constant, compute new
6223	 position.  Otherwise, build subtraction.
6224	 Note that POS is relative to the mode of the original argument.
6225	 If it's a MEM we need to recompute POS relative to that.
6226	 However, if we're extracting from (or inserting into) a register,
6227	 we want to recompute POS relative to wanted_inner_mode.  */
6228      int width = (MEM_P (inner)
6229		   ? GET_MODE_BITSIZE (is_mode)
6230		   : GET_MODE_BITSIZE (wanted_inner_mode));
6231
6232      if (pos_rtx == 0)
6233	pos = width - len - pos;
6234      else
6235	pos_rtx
6236	  = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
6237      /* POS may be less than 0 now, but we check for that below.
6238	 Note that it can only be less than 0 if !MEM_P (inner).  */
6239    }
6240
6241  /* If INNER has a wider mode, and this is a constant extraction, try to
6242     make it smaller and adjust the byte to point to the byte containing
6243     the value.  */
6244  if (wanted_inner_mode != VOIDmode
6245      && inner_mode != wanted_inner_mode
6246      && ! pos_rtx
6247      && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
6248      && MEM_P (inner)
6249      && ! mode_dependent_address_p (XEXP (inner, 0))
6250      && ! MEM_VOLATILE_P (inner))
6251    {
6252      int offset = 0;
6253
6254      /* The computations below will be correct if the machine is big
6255	 endian in both bits and bytes or little endian in bits and bytes.
6256	 If it is mixed, we must adjust.  */
6257
6258      /* If bytes are big endian and we had a paradoxical SUBREG, we must
6259	 adjust OFFSET to compensate.  */
6260      if (BYTES_BIG_ENDIAN
6261	  && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
6262	offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
6263
6264      /* We can now move to the desired byte.  */
6265      offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
6266		* GET_MODE_SIZE (wanted_inner_mode);
6267      pos %= GET_MODE_BITSIZE (wanted_inner_mode);
6268
6269      if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
6270	  && is_mode != wanted_inner_mode)
6271	offset = (GET_MODE_SIZE (is_mode)
6272		  - GET_MODE_SIZE (wanted_inner_mode) - offset);
6273
6274      inner = adjust_address_nv (inner, wanted_inner_mode, offset);
6275    }
6276
6277  /* If INNER is not memory, we can always get it into the proper mode.  If we
6278     are changing its mode, POS must be a constant and smaller than the size
6279     of the new mode.  */
6280  else if (!MEM_P (inner))
6281    {
6282      if (GET_MODE (inner) != wanted_inner_mode
6283	  && (pos_rtx != 0
6284	      || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
6285	return 0;
6286
6287      if (orig_pos < 0)
6288	return 0;
6289
6290      inner = force_to_mode (inner, wanted_inner_mode,
6291			     pos_rtx
6292			     || len + orig_pos >= HOST_BITS_PER_WIDE_INT
6293			     ? ~(unsigned HOST_WIDE_INT) 0
6294			     : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
6295				<< orig_pos),
6296			     0);
6297    }
6298
6299  /* Adjust mode of POS_RTX, if needed.  If we want a wider mode, we
6300     have to zero extend.  Otherwise, we can just use a SUBREG.  */
6301  if (pos_rtx != 0
6302      && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
6303    {
6304      rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
6305
6306      /* If we know that no extraneous bits are set, and that the high
6307	 bit is not set, convert extraction to cheaper one - either
6308	 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6309	 cases.  */
6310      if (flag_expensive_optimizations
6311	  && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
6312	      && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
6313		   & ~(((unsigned HOST_WIDE_INT)
6314			GET_MODE_MASK (GET_MODE (pos_rtx)))
6315		       >> 1))
6316		  == 0)))
6317	{
6318	  rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
6319
6320	  /* Prefer ZERO_EXTENSION, since it gives more information to
6321	     backends.  */
6322	  if (rtx_cost (temp1, SET) < rtx_cost (temp, SET))
6323	    temp = temp1;
6324	}
6325      pos_rtx = temp;
6326    }
6327  else if (pos_rtx != 0
6328	   && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6329    pos_rtx = gen_lowpart (pos_mode, pos_rtx);
6330
6331  /* Make POS_RTX unless we already have it and it is correct.  If we don't
6332     have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6333     be a CONST_INT.  */
6334  if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
6335    pos_rtx = orig_pos_rtx;
6336
6337  else if (pos_rtx == 0)
6338    pos_rtx = GEN_INT (pos);
6339
6340  /* Make the required operation.  See if we can use existing rtx.  */
6341  new = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
6342			 extraction_mode, inner, GEN_INT (len), pos_rtx);
6343  if (! in_dest)
6344    new = gen_lowpart (mode, new);
6345
6346  return new;
6347}
6348
6349/* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6350   with any other operations in X.  Return X without that shift if so.  */
6351
6352static rtx
6353extract_left_shift (rtx x, int count)
6354{
6355  enum rtx_code code = GET_CODE (x);
6356  enum machine_mode mode = GET_MODE (x);
6357  rtx tem;
6358
6359  switch (code)
6360    {
6361    case ASHIFT:
6362      /* This is the shift itself.  If it is wide enough, we will return
6363	 either the value being shifted if the shift count is equal to
6364	 COUNT or a shift for the difference.  */
6365      if (GET_CODE (XEXP (x, 1)) == CONST_INT
6366	  && INTVAL (XEXP (x, 1)) >= count)
6367	return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
6368				     INTVAL (XEXP (x, 1)) - count);
6369      break;
6370
6371    case NEG:  case NOT:
6372      if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6373	return simplify_gen_unary (code, mode, tem, mode);
6374
6375      break;
6376
6377    case PLUS:  case IOR:  case XOR:  case AND:
6378      /* If we can safely shift this constant and we find the inner shift,
6379	 make a new operation.  */
6380      if (GET_CODE (XEXP (x, 1)) == CONST_INT
6381	  && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
6382	  && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6383	return simplify_gen_binary (code, mode, tem,
6384				    GEN_INT (INTVAL (XEXP (x, 1)) >> count));
6385
6386      break;
6387
6388    default:
6389      break;
6390    }
6391
6392  return 0;
6393}
6394
6395/* Look at the expression rooted at X.  Look for expressions
6396   equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6397   Form these expressions.
6398
6399   Return the new rtx, usually just X.
6400
6401   Also, for machines like the VAX that don't have logical shift insns,
6402   try to convert logical to arithmetic shift operations in cases where
6403   they are equivalent.  This undoes the canonicalizations to logical
6404   shifts done elsewhere.
6405
6406   We try, as much as possible, to re-use rtl expressions to save memory.
6407
6408   IN_CODE says what kind of expression we are processing.  Normally, it is
6409   SET.  In a memory address (inside a MEM, PLUS or minus, the latter two
6410   being kludges), it is MEM.  When processing the arguments of a comparison
6411   or a COMPARE against zero, it is COMPARE.  */
6412
6413static rtx
6414make_compound_operation (rtx x, enum rtx_code in_code)
6415{
6416  enum rtx_code code = GET_CODE (x);
6417  enum machine_mode mode = GET_MODE (x);
6418  int mode_width = GET_MODE_BITSIZE (mode);
6419  rtx rhs, lhs;
6420  enum rtx_code next_code;
6421  int i;
6422  rtx new = 0;
6423  rtx tem;
6424  const char *fmt;
6425
6426  /* Select the code to be used in recursive calls.  Once we are inside an
6427     address, we stay there.  If we have a comparison, set to COMPARE,
6428     but once inside, go back to our default of SET.  */
6429
6430  next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
6431	       : ((code == COMPARE || COMPARISON_P (x))
6432		  && XEXP (x, 1) == const0_rtx) ? COMPARE
6433	       : in_code == COMPARE ? SET : in_code);
6434
6435  /* Process depending on the code of this operation.  If NEW is set
6436     nonzero, it will be returned.  */
6437
6438  switch (code)
6439    {
6440    case ASHIFT:
6441      /* Convert shifts by constants into multiplications if inside
6442	 an address.  */
6443      if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
6444	  && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6445	  && INTVAL (XEXP (x, 1)) >= 0)
6446	{
6447	  new = make_compound_operation (XEXP (x, 0), next_code);
6448	  new = gen_rtx_MULT (mode, new,
6449			      GEN_INT ((HOST_WIDE_INT) 1
6450				       << INTVAL (XEXP (x, 1))));
6451	}
6452      break;
6453
6454    case AND:
6455      /* If the second operand is not a constant, we can't do anything
6456	 with it.  */
6457      if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6458	break;
6459
6460      /* If the constant is a power of two minus one and the first operand
6461	 is a logical right shift, make an extraction.  */
6462      if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6463	  && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6464	{
6465	  new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6466	  new = make_extraction (mode, new, 0, XEXP (XEXP (x, 0), 1), i, 1,
6467				 0, in_code == COMPARE);
6468	}
6469
6470      /* Same as previous, but for (subreg (lshiftrt ...)) in first op.  */
6471      else if (GET_CODE (XEXP (x, 0)) == SUBREG
6472	       && subreg_lowpart_p (XEXP (x, 0))
6473	       && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
6474	       && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6475	{
6476	  new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
6477					 next_code);
6478	  new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new, 0,
6479				 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
6480				 0, in_code == COMPARE);
6481	}
6482      /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)).  */
6483      else if ((GET_CODE (XEXP (x, 0)) == XOR
6484		|| GET_CODE (XEXP (x, 0)) == IOR)
6485	       && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
6486	       && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
6487	       && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6488	{
6489	  /* Apply the distributive law, and then try to make extractions.  */
6490	  new = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
6491				gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
6492					     XEXP (x, 1)),
6493				gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
6494					     XEXP (x, 1)));
6495	  new = make_compound_operation (new, in_code);
6496	}
6497
6498      /* If we are have (and (rotate X C) M) and C is larger than the number
6499	 of bits in M, this is an extraction.  */
6500
6501      else if (GET_CODE (XEXP (x, 0)) == ROTATE
6502	       && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6503	       && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
6504	       && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
6505	{
6506	  new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6507	  new = make_extraction (mode, new,
6508				 (GET_MODE_BITSIZE (mode)
6509				  - INTVAL (XEXP (XEXP (x, 0), 1))),
6510				 NULL_RTX, i, 1, 0, in_code == COMPARE);
6511	}
6512
6513      /* On machines without logical shifts, if the operand of the AND is
6514	 a logical shift and our mask turns off all the propagated sign
6515	 bits, we can replace the logical shift with an arithmetic shift.  */
6516      else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6517	       && !have_insn_for (LSHIFTRT, mode)
6518	       && have_insn_for (ASHIFTRT, mode)
6519	       && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6520	       && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6521	       && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6522	       && mode_width <= HOST_BITS_PER_WIDE_INT)
6523	{
6524	  unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
6525
6526	  mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
6527	  if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
6528	    SUBST (XEXP (x, 0),
6529		   gen_rtx_ASHIFTRT (mode,
6530				     make_compound_operation
6531				     (XEXP (XEXP (x, 0), 0), next_code),
6532				     XEXP (XEXP (x, 0), 1)));
6533	}
6534
6535      /* If the constant is one less than a power of two, this might be
6536	 representable by an extraction even if no shift is present.
6537	 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6538	 we are in a COMPARE.  */
6539      else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6540	new = make_extraction (mode,
6541			       make_compound_operation (XEXP (x, 0),
6542							next_code),
6543			       0, NULL_RTX, i, 1, 0, in_code == COMPARE);
6544
6545      /* If we are in a comparison and this is an AND with a power of two,
6546	 convert this into the appropriate bit extract.  */
6547      else if (in_code == COMPARE
6548	       && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
6549	new = make_extraction (mode,
6550			       make_compound_operation (XEXP (x, 0),
6551							next_code),
6552			       i, NULL_RTX, 1, 1, 0, 1);
6553
6554      break;
6555
6556    case LSHIFTRT:
6557      /* If the sign bit is known to be zero, replace this with an
6558	 arithmetic shift.  */
6559      if (have_insn_for (ASHIFTRT, mode)
6560	  && ! have_insn_for (LSHIFTRT, mode)
6561	  && mode_width <= HOST_BITS_PER_WIDE_INT
6562	  && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
6563	{
6564	  new = gen_rtx_ASHIFTRT (mode,
6565				  make_compound_operation (XEXP (x, 0),
6566							   next_code),
6567				  XEXP (x, 1));
6568	  break;
6569	}
6570
6571      /* ... fall through ...  */
6572
6573    case ASHIFTRT:
6574      lhs = XEXP (x, 0);
6575      rhs = XEXP (x, 1);
6576
6577      /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
6578	 this is a SIGN_EXTRACT.  */
6579      if (GET_CODE (rhs) == CONST_INT
6580	  && GET_CODE (lhs) == ASHIFT
6581	  && GET_CODE (XEXP (lhs, 1)) == CONST_INT
6582	  && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1)))
6583	{
6584	  new = make_compound_operation (XEXP (lhs, 0), next_code);
6585	  new = make_extraction (mode, new,
6586				 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
6587				 NULL_RTX, mode_width - INTVAL (rhs),
6588				 code == LSHIFTRT, 0, in_code == COMPARE);
6589	  break;
6590	}
6591
6592      /* See if we have operations between an ASHIFTRT and an ASHIFT.
6593	 If so, try to merge the shifts into a SIGN_EXTEND.  We could
6594	 also do this for some cases of SIGN_EXTRACT, but it doesn't
6595	 seem worth the effort; the case checked for occurs on Alpha.  */
6596
6597      if (!OBJECT_P (lhs)
6598	  && ! (GET_CODE (lhs) == SUBREG
6599		&& (OBJECT_P (SUBREG_REG (lhs))))
6600	  && GET_CODE (rhs) == CONST_INT
6601	  && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
6602	  && (new = extract_left_shift (lhs, INTVAL (rhs))) != 0)
6603	new = make_extraction (mode, make_compound_operation (new, next_code),
6604			       0, NULL_RTX, mode_width - INTVAL (rhs),
6605			       code == LSHIFTRT, 0, in_code == COMPARE);
6606
6607      break;
6608
6609    case SUBREG:
6610      /* Call ourselves recursively on the inner expression.  If we are
6611	 narrowing the object and it has a different RTL code from
6612	 what it originally did, do this SUBREG as a force_to_mode.  */
6613
6614      tem = make_compound_operation (SUBREG_REG (x), in_code);
6615
6616      {
6617	rtx simplified;
6618	simplified = simplify_subreg (GET_MODE (x), tem, GET_MODE (tem),
6619				      SUBREG_BYTE (x));
6620
6621	if (simplified)
6622	  tem = simplified;
6623
6624	if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
6625	    && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
6626	    && subreg_lowpart_p (x))
6627	  {
6628	    rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0,
6629				       0);
6630
6631	    /* If we have something other than a SUBREG, we might have
6632	       done an expansion, so rerun ourselves.  */
6633	    if (GET_CODE (newer) != SUBREG)
6634	      newer = make_compound_operation (newer, in_code);
6635
6636	    return newer;
6637	  }
6638
6639	if (simplified)
6640	  return tem;
6641      }
6642      break;
6643
6644    default:
6645      break;
6646    }
6647
6648  if (new)
6649    {
6650      x = gen_lowpart (mode, new);
6651      code = GET_CODE (x);
6652    }
6653
6654  /* Now recursively process each operand of this operation.  */
6655  fmt = GET_RTX_FORMAT (code);
6656  for (i = 0; i < GET_RTX_LENGTH (code); i++)
6657    if (fmt[i] == 'e')
6658      {
6659	new = make_compound_operation (XEXP (x, i), next_code);
6660	SUBST (XEXP (x, i), new);
6661      }
6662
6663  /* If this is a commutative operation, the changes to the operands
6664     may have made it noncanonical.  */
6665  if (COMMUTATIVE_ARITH_P (x)
6666      && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
6667    {
6668      tem = XEXP (x, 0);
6669      SUBST (XEXP (x, 0), XEXP (x, 1));
6670      SUBST (XEXP (x, 1), tem);
6671    }
6672
6673  return x;
6674}
6675
6676/* Given M see if it is a value that would select a field of bits
6677   within an item, but not the entire word.  Return -1 if not.
6678   Otherwise, return the starting position of the field, where 0 is the
6679   low-order bit.
6680
6681   *PLEN is set to the length of the field.  */
6682
6683static int
6684get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
6685{
6686  /* Get the bit number of the first 1 bit from the right, -1 if none.  */
6687  int pos = exact_log2 (m & -m);
6688  int len = 0;
6689
6690  if (pos >= 0)
6691    /* Now shift off the low-order zero bits and see if we have a
6692       power of two minus 1.  */
6693    len = exact_log2 ((m >> pos) + 1);
6694
6695  if (len <= 0)
6696    pos = -1;
6697
6698  *plen = len;
6699  return pos;
6700}
6701
6702/* If X refers to a register that equals REG in value, replace these
6703   references with REG.  */
6704static rtx
6705canon_reg_for_combine (rtx x, rtx reg)
6706{
6707  rtx op0, op1, op2;
6708  const char *fmt;
6709  int i;
6710  bool copied;
6711
6712  enum rtx_code code = GET_CODE (x);
6713  switch (GET_RTX_CLASS (code))
6714    {
6715    case RTX_UNARY:
6716      op0 = canon_reg_for_combine (XEXP (x, 0), reg);
6717      if (op0 != XEXP (x, 0))
6718	return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
6719				   GET_MODE (reg));
6720      break;
6721
6722    case RTX_BIN_ARITH:
6723    case RTX_COMM_ARITH:
6724      op0 = canon_reg_for_combine (XEXP (x, 0), reg);
6725      op1 = canon_reg_for_combine (XEXP (x, 1), reg);
6726      if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
6727	return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
6728      break;
6729
6730    case RTX_COMPARE:
6731    case RTX_COMM_COMPARE:
6732      op0 = canon_reg_for_combine (XEXP (x, 0), reg);
6733      op1 = canon_reg_for_combine (XEXP (x, 1), reg);
6734      if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
6735	return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
6736					GET_MODE (op0), op0, op1);
6737      break;
6738
6739    case RTX_TERNARY:
6740    case RTX_BITFIELD_OPS:
6741      op0 = canon_reg_for_combine (XEXP (x, 0), reg);
6742      op1 = canon_reg_for_combine (XEXP (x, 1), reg);
6743      op2 = canon_reg_for_combine (XEXP (x, 2), reg);
6744      if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
6745	return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
6746				     GET_MODE (op0), op0, op1, op2);
6747
6748    case RTX_OBJ:
6749      if (REG_P (x))
6750	{
6751	  if (rtx_equal_p (get_last_value (reg), x)
6752	      || rtx_equal_p (reg, get_last_value (x)))
6753	    return reg;
6754	  else
6755	    break;
6756	}
6757
6758      /* fall through */
6759
6760    default:
6761      fmt = GET_RTX_FORMAT (code);
6762      copied = false;
6763      for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6764	if (fmt[i] == 'e')
6765	  {
6766	    rtx op = canon_reg_for_combine (XEXP (x, i), reg);
6767	    if (op != XEXP (x, i))
6768	      {
6769		if (!copied)
6770		  {
6771		    copied = true;
6772		    x = copy_rtx (x);
6773		  }
6774		XEXP (x, i) = op;
6775	      }
6776	  }
6777	else if (fmt[i] == 'E')
6778	  {
6779	    int j;
6780	    for (j = 0; j < XVECLEN (x, i); j++)
6781	      {
6782		rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
6783		if (op != XVECEXP (x, i, j))
6784		  {
6785		    if (!copied)
6786		      {
6787			copied = true;
6788			x = copy_rtx (x);
6789		      }
6790		    XVECEXP (x, i, j) = op;
6791		  }
6792	      }
6793	  }
6794
6795      break;
6796    }
6797
6798  return x;
6799}
6800
6801/* Return X converted to MODE.  If the value is already truncated to
6802   MODE we can just return a subreg even though in the general case we
6803   would need an explicit truncation.  */
6804
6805static rtx
6806gen_lowpart_or_truncate (enum machine_mode mode, rtx x)
6807{
6808  if (GET_MODE_SIZE (GET_MODE (x)) <= GET_MODE_SIZE (mode)
6809      || TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
6810				GET_MODE_BITSIZE (GET_MODE (x)))
6811      || (REG_P (x) && reg_truncated_to_mode (mode, x)))
6812    return gen_lowpart (mode, x);
6813  else
6814    return simplify_gen_unary (TRUNCATE, mode, x, GET_MODE (x));
6815}
6816
6817/* See if X can be simplified knowing that we will only refer to it in
6818   MODE and will only refer to those bits that are nonzero in MASK.
6819   If other bits are being computed or if masking operations are done
6820   that select a superset of the bits in MASK, they can sometimes be
6821   ignored.
6822
6823   Return a possibly simplified expression, but always convert X to
6824   MODE.  If X is a CONST_INT, AND the CONST_INT with MASK.
6825
6826   If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
6827   are all off in X.  This is used when X will be complemented, by either
6828   NOT, NEG, or XOR.  */
6829
6830static rtx
6831force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
6832	       int just_select)
6833{
6834  enum rtx_code code = GET_CODE (x);
6835  int next_select = just_select || code == XOR || code == NOT || code == NEG;
6836  enum machine_mode op_mode;
6837  unsigned HOST_WIDE_INT fuller_mask, nonzero;
6838  rtx op0, op1, temp;
6839
6840  /* If this is a CALL or ASM_OPERANDS, don't do anything.  Some of the
6841     code below will do the wrong thing since the mode of such an
6842     expression is VOIDmode.
6843
6844     Also do nothing if X is a CLOBBER; this can happen if X was
6845     the return value from a call to gen_lowpart.  */
6846  if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
6847    return x;
6848
6849  /* We want to perform the operation is its present mode unless we know
6850     that the operation is valid in MODE, in which case we do the operation
6851     in MODE.  */
6852  op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
6853	      && have_insn_for (code, mode))
6854	     ? mode : GET_MODE (x));
6855
6856  /* It is not valid to do a right-shift in a narrower mode
6857     than the one it came in with.  */
6858  if ((code == LSHIFTRT || code == ASHIFTRT)
6859      && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
6860    op_mode = GET_MODE (x);
6861
6862  /* Truncate MASK to fit OP_MODE.  */
6863  if (op_mode)
6864    mask &= GET_MODE_MASK (op_mode);
6865
6866  /* When we have an arithmetic operation, or a shift whose count we
6867     do not know, we need to assume that all bits up to the highest-order
6868     bit in MASK will be needed.  This is how we form such a mask.  */
6869  if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
6870    fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
6871  else
6872    fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
6873		   - 1);
6874
6875  /* Determine what bits of X are guaranteed to be (non)zero.  */
6876  nonzero = nonzero_bits (x, mode);
6877
6878  /* If none of the bits in X are needed, return a zero.  */
6879  if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
6880    x = const0_rtx;
6881
6882  /* If X is a CONST_INT, return a new one.  Do this here since the
6883     test below will fail.  */
6884  if (GET_CODE (x) == CONST_INT)
6885    {
6886      if (SCALAR_INT_MODE_P (mode))
6887	return gen_int_mode (INTVAL (x) & mask, mode);
6888      else
6889	{
6890	  x = GEN_INT (INTVAL (x) & mask);
6891	  return gen_lowpart_common (mode, x);
6892	}
6893    }
6894
6895  /* If X is narrower than MODE and we want all the bits in X's mode, just
6896     get X in the proper mode.  */
6897  if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
6898      && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
6899    return gen_lowpart (mode, x);
6900
6901  switch (code)
6902    {
6903    case CLOBBER:
6904      /* If X is a (clobber (const_int)), return it since we know we are
6905	 generating something that won't match.  */
6906      return x;
6907
6908    case SIGN_EXTEND:
6909    case ZERO_EXTEND:
6910    case ZERO_EXTRACT:
6911    case SIGN_EXTRACT:
6912      x = expand_compound_operation (x);
6913      if (GET_CODE (x) != code)
6914	return force_to_mode (x, mode, mask, next_select);
6915      break;
6916
6917    case SUBREG:
6918      if (subreg_lowpart_p (x)
6919	  /* We can ignore the effect of this SUBREG if it narrows the mode or
6920	     if the constant masks to zero all the bits the mode doesn't
6921	     have.  */
6922	  && ((GET_MODE_SIZE (GET_MODE (x))
6923	       < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
6924	      || (0 == (mask
6925			& GET_MODE_MASK (GET_MODE (x))
6926			& ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
6927	return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
6928      break;
6929
6930    case AND:
6931      /* If this is an AND with a constant, convert it into an AND
6932	 whose constant is the AND of that constant with MASK.  If it
6933	 remains an AND of MASK, delete it since it is redundant.  */
6934
6935      if (GET_CODE (XEXP (x, 1)) == CONST_INT)
6936	{
6937	  x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
6938				      mask & INTVAL (XEXP (x, 1)));
6939
6940	  /* If X is still an AND, see if it is an AND with a mask that
6941	     is just some low-order bits.  If so, and it is MASK, we don't
6942	     need it.  */
6943
6944	  if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6945	      && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
6946		  == mask))
6947	    x = XEXP (x, 0);
6948
6949	  /* If it remains an AND, try making another AND with the bits
6950	     in the mode mask that aren't in MASK turned on.  If the
6951	     constant in the AND is wide enough, this might make a
6952	     cheaper constant.  */
6953
6954	  if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6955	      && GET_MODE_MASK (GET_MODE (x)) != mask
6956	      && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
6957	    {
6958	      HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
6959				    | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
6960	      int width = GET_MODE_BITSIZE (GET_MODE (x));
6961	      rtx y;
6962
6963	      /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative
6964		 number, sign extend it.  */
6965	      if (width > 0 && width < HOST_BITS_PER_WIDE_INT
6966		  && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6967		cval |= (HOST_WIDE_INT) -1 << width;
6968
6969	      y = simplify_gen_binary (AND, GET_MODE (x),
6970				       XEXP (x, 0), GEN_INT (cval));
6971	      if (rtx_cost (y, SET) < rtx_cost (x, SET))
6972		x = y;
6973	    }
6974
6975	  break;
6976	}
6977
6978      goto binop;
6979
6980    case PLUS:
6981      /* In (and (plus FOO C1) M), if M is a mask that just turns off
6982	 low-order bits (as in an alignment operation) and FOO is already
6983	 aligned to that boundary, mask C1 to that boundary as well.
6984	 This may eliminate that PLUS and, later, the AND.  */
6985
6986      {
6987	unsigned int width = GET_MODE_BITSIZE (mode);
6988	unsigned HOST_WIDE_INT smask = mask;
6989
6990	/* If MODE is narrower than HOST_WIDE_INT and mask is a negative
6991	   number, sign extend it.  */
6992
6993	if (width < HOST_BITS_PER_WIDE_INT
6994	    && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6995	  smask |= (HOST_WIDE_INT) -1 << width;
6996
6997	if (GET_CODE (XEXP (x, 1)) == CONST_INT
6998	    && exact_log2 (- smask) >= 0
6999	    && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
7000	    && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
7001	  return force_to_mode (plus_constant (XEXP (x, 0),
7002					       (INTVAL (XEXP (x, 1)) & smask)),
7003				mode, smask, next_select);
7004      }
7005
7006      /* ... fall through ...  */
7007
7008    case MULT:
7009      /* For PLUS, MINUS and MULT, we need any bits less significant than the
7010	 most significant bit in MASK since carries from those bits will
7011	 affect the bits we are interested in.  */
7012      mask = fuller_mask;
7013      goto binop;
7014
7015    case MINUS:
7016      /* If X is (minus C Y) where C's least set bit is larger than any bit
7017	 in the mask, then we may replace with (neg Y).  */
7018      if (GET_CODE (XEXP (x, 0)) == CONST_INT
7019	  && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
7020					& -INTVAL (XEXP (x, 0))))
7021	      > mask))
7022	{
7023	  x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
7024				  GET_MODE (x));
7025	  return force_to_mode (x, mode, mask, next_select);
7026	}
7027
7028      /* Similarly, if C contains every bit in the fuller_mask, then we may
7029	 replace with (not Y).  */
7030      if (GET_CODE (XEXP (x, 0)) == CONST_INT
7031	  && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) fuller_mask)
7032	      == INTVAL (XEXP (x, 0))))
7033	{
7034	  x = simplify_gen_unary (NOT, GET_MODE (x),
7035				  XEXP (x, 1), GET_MODE (x));
7036	  return force_to_mode (x, mode, mask, next_select);
7037	}
7038
7039      mask = fuller_mask;
7040      goto binop;
7041
7042    case IOR:
7043    case XOR:
7044      /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
7045	 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
7046	 operation which may be a bitfield extraction.  Ensure that the
7047	 constant we form is not wider than the mode of X.  */
7048
7049      if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7050	  && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7051	  && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7052	  && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7053	  && GET_CODE (XEXP (x, 1)) == CONST_INT
7054	  && ((INTVAL (XEXP (XEXP (x, 0), 1))
7055	       + floor_log2 (INTVAL (XEXP (x, 1))))
7056	      < GET_MODE_BITSIZE (GET_MODE (x)))
7057	  && (INTVAL (XEXP (x, 1))
7058	      & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
7059	{
7060	  temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
7061			  << INTVAL (XEXP (XEXP (x, 0), 1)));
7062	  temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
7063				      XEXP (XEXP (x, 0), 0), temp);
7064	  x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
7065				   XEXP (XEXP (x, 0), 1));
7066	  return force_to_mode (x, mode, mask, next_select);
7067	}
7068
7069    binop:
7070      /* For most binary operations, just propagate into the operation and
7071	 change the mode if we have an operation of that mode.  */
7072
7073      op0 = gen_lowpart_or_truncate (op_mode,
7074				     force_to_mode (XEXP (x, 0), mode, mask,
7075						    next_select));
7076      op1 = gen_lowpart_or_truncate (op_mode,
7077				     force_to_mode (XEXP (x, 1), mode, mask,
7078					next_select));
7079
7080      if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7081	x = simplify_gen_binary (code, op_mode, op0, op1);
7082      break;
7083
7084    case ASHIFT:
7085      /* For left shifts, do the same, but just for the first operand.
7086	 However, we cannot do anything with shifts where we cannot
7087	 guarantee that the counts are smaller than the size of the mode
7088	 because such a count will have a different meaning in a
7089	 wider mode.  */
7090
7091      if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
7092	     && INTVAL (XEXP (x, 1)) >= 0
7093	     && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
7094	  && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
7095		&& (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
7096		    < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
7097	break;
7098
7099      /* If the shift count is a constant and we can do arithmetic in
7100	 the mode of the shift, refine which bits we need.  Otherwise, use the
7101	 conservative form of the mask.  */
7102      if (GET_CODE (XEXP (x, 1)) == CONST_INT
7103	  && INTVAL (XEXP (x, 1)) >= 0
7104	  && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
7105	  && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7106	mask >>= INTVAL (XEXP (x, 1));
7107      else
7108	mask = fuller_mask;
7109
7110      op0 = gen_lowpart_or_truncate (op_mode,
7111				     force_to_mode (XEXP (x, 0), op_mode,
7112						    mask, next_select));
7113
7114      if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7115	x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
7116      break;
7117
7118    case LSHIFTRT:
7119      /* Here we can only do something if the shift count is a constant,
7120	 this shift constant is valid for the host, and we can do arithmetic
7121	 in OP_MODE.  */
7122
7123      if (GET_CODE (XEXP (x, 1)) == CONST_INT
7124	  && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7125	  && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7126	{
7127	  rtx inner = XEXP (x, 0);
7128	  unsigned HOST_WIDE_INT inner_mask;
7129
7130	  /* Select the mask of the bits we need for the shift operand.  */
7131	  inner_mask = mask << INTVAL (XEXP (x, 1));
7132
7133	  /* We can only change the mode of the shift if we can do arithmetic
7134	     in the mode of the shift and INNER_MASK is no wider than the
7135	     width of X's mode.  */
7136	  if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
7137	    op_mode = GET_MODE (x);
7138
7139	  inner = force_to_mode (inner, op_mode, inner_mask, next_select);
7140
7141	  if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
7142	    x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
7143	}
7144
7145      /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
7146	 shift and AND produces only copies of the sign bit (C2 is one less
7147	 than a power of two), we can do this with just a shift.  */
7148
7149      if (GET_CODE (x) == LSHIFTRT
7150	  && GET_CODE (XEXP (x, 1)) == CONST_INT
7151	  /* The shift puts one of the sign bit copies in the least significant
7152	     bit.  */
7153	  && ((INTVAL (XEXP (x, 1))
7154	       + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
7155	      >= GET_MODE_BITSIZE (GET_MODE (x)))
7156	  && exact_log2 (mask + 1) >= 0
7157	  /* Number of bits left after the shift must be more than the mask
7158	     needs.  */
7159	  && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
7160	      <= GET_MODE_BITSIZE (GET_MODE (x)))
7161	  /* Must be more sign bit copies than the mask needs.  */
7162	  && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7163	      >= exact_log2 (mask + 1)))
7164	x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7165				 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
7166					  - exact_log2 (mask + 1)));
7167
7168      goto shiftrt;
7169
7170    case ASHIFTRT:
7171      /* If we are just looking for the sign bit, we don't need this shift at
7172	 all, even if it has a variable count.  */
7173      if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7174	  && (mask == ((unsigned HOST_WIDE_INT) 1
7175		       << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7176	return force_to_mode (XEXP (x, 0), mode, mask, next_select);
7177
7178      /* If this is a shift by a constant, get a mask that contains those bits
7179	 that are not copies of the sign bit.  We then have two cases:  If
7180	 MASK only includes those bits, this can be a logical shift, which may
7181	 allow simplifications.  If MASK is a single-bit field not within
7182	 those bits, we are requesting a copy of the sign bit and hence can
7183	 shift the sign bit to the appropriate location.  */
7184
7185      if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
7186	  && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7187	{
7188	  int i;
7189
7190	  /* If the considered data is wider than HOST_WIDE_INT, we can't
7191	     represent a mask for all its bits in a single scalar.
7192	     But we only care about the lower bits, so calculate these.  */
7193
7194	  if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
7195	    {
7196	      nonzero = ~(HOST_WIDE_INT) 0;
7197
7198	      /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7199		 is the number of bits a full-width mask would have set.
7200		 We need only shift if these are fewer than nonzero can
7201		 hold.  If not, we must keep all bits set in nonzero.  */
7202
7203	      if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7204		  < HOST_BITS_PER_WIDE_INT)
7205		nonzero >>= INTVAL (XEXP (x, 1))
7206			    + HOST_BITS_PER_WIDE_INT
7207			    - GET_MODE_BITSIZE (GET_MODE (x)) ;
7208	    }
7209	  else
7210	    {
7211	      nonzero = GET_MODE_MASK (GET_MODE (x));
7212	      nonzero >>= INTVAL (XEXP (x, 1));
7213	    }
7214
7215	  if ((mask & ~nonzero) == 0)
7216	    {
7217	      x = simplify_shift_const (NULL_RTX, LSHIFTRT, GET_MODE (x),
7218					XEXP (x, 0), INTVAL (XEXP (x, 1)));
7219	      if (GET_CODE (x) != ASHIFTRT)
7220		return force_to_mode (x, mode, mask, next_select);
7221	    }
7222
7223	  else if ((i = exact_log2 (mask)) >= 0)
7224	    {
7225	      x = simplify_shift_const
7226		  (NULL_RTX, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7227		   GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
7228
7229	      if (GET_CODE (x) != ASHIFTRT)
7230		return force_to_mode (x, mode, mask, next_select);
7231	    }
7232	}
7233
7234      /* If MASK is 1, convert this to an LSHIFTRT.  This can be done
7235	 even if the shift count isn't a constant.  */
7236      if (mask == 1)
7237	x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
7238				 XEXP (x, 0), XEXP (x, 1));
7239
7240    shiftrt:
7241
7242      /* If this is a zero- or sign-extension operation that just affects bits
7243	 we don't care about, remove it.  Be sure the call above returned
7244	 something that is still a shift.  */
7245
7246      if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
7247	  && GET_CODE (XEXP (x, 1)) == CONST_INT
7248	  && INTVAL (XEXP (x, 1)) >= 0
7249	  && (INTVAL (XEXP (x, 1))
7250	      <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
7251	  && GET_CODE (XEXP (x, 0)) == ASHIFT
7252	  && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
7253	return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
7254			      next_select);
7255
7256      break;
7257
7258    case ROTATE:
7259    case ROTATERT:
7260      /* If the shift count is constant and we can do computations
7261	 in the mode of X, compute where the bits we care about are.
7262	 Otherwise, we can't do anything.  Don't change the mode of
7263	 the shift or propagate MODE into the shift, though.  */
7264      if (GET_CODE (XEXP (x, 1)) == CONST_INT
7265	  && INTVAL (XEXP (x, 1)) >= 0)
7266	{
7267	  temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
7268					    GET_MODE (x), GEN_INT (mask),
7269					    XEXP (x, 1));
7270	  if (temp && GET_CODE (temp) == CONST_INT)
7271	    SUBST (XEXP (x, 0),
7272		   force_to_mode (XEXP (x, 0), GET_MODE (x),
7273				  INTVAL (temp), next_select));
7274	}
7275      break;
7276
7277    case NEG:
7278      /* If we just want the low-order bit, the NEG isn't needed since it
7279	 won't change the low-order bit.  */
7280      if (mask == 1)
7281	return force_to_mode (XEXP (x, 0), mode, mask, just_select);
7282
7283      /* We need any bits less significant than the most significant bit in
7284	 MASK since carries from those bits will affect the bits we are
7285	 interested in.  */
7286      mask = fuller_mask;
7287      goto unop;
7288
7289    case NOT:
7290      /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7291	 same as the XOR case above.  Ensure that the constant we form is not
7292	 wider than the mode of X.  */
7293
7294      if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7295	  && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7296	  && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7297	  && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
7298	      < GET_MODE_BITSIZE (GET_MODE (x)))
7299	  && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
7300	{
7301	  temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
7302			       GET_MODE (x));
7303	  temp = simplify_gen_binary (XOR, GET_MODE (x),
7304				      XEXP (XEXP (x, 0), 0), temp);
7305	  x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
7306				   temp, XEXP (XEXP (x, 0), 1));
7307
7308	  return force_to_mode (x, mode, mask, next_select);
7309	}
7310
7311      /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7312	 use the full mask inside the NOT.  */
7313      mask = fuller_mask;
7314
7315    unop:
7316      op0 = gen_lowpart_or_truncate (op_mode,
7317				     force_to_mode (XEXP (x, 0), mode, mask,
7318						    next_select));
7319      if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7320	x = simplify_gen_unary (code, op_mode, op0, op_mode);
7321      break;
7322
7323    case NE:
7324      /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
7325	 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
7326	 which is equal to STORE_FLAG_VALUE.  */
7327      if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
7328	  && GET_MODE (XEXP (x, 0)) == mode
7329	  && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
7330	  && (nonzero_bits (XEXP (x, 0), mode)
7331	      == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
7332	return force_to_mode (XEXP (x, 0), mode, mask, next_select);
7333
7334      break;
7335
7336    case IF_THEN_ELSE:
7337      /* We have no way of knowing if the IF_THEN_ELSE can itself be
7338	 written in a narrower mode.  We play it safe and do not do so.  */
7339
7340      SUBST (XEXP (x, 1),
7341	     gen_lowpart_or_truncate (GET_MODE (x),
7342				      force_to_mode (XEXP (x, 1), mode,
7343						     mask, next_select)));
7344      SUBST (XEXP (x, 2),
7345	     gen_lowpart_or_truncate (GET_MODE (x),
7346				      force_to_mode (XEXP (x, 2), mode,
7347						     mask, next_select)));
7348      break;
7349
7350    default:
7351      break;
7352    }
7353
7354  /* Ensure we return a value of the proper mode.  */
7355  return gen_lowpart_or_truncate (mode, x);
7356}
7357
7358/* Return nonzero if X is an expression that has one of two values depending on
7359   whether some other value is zero or nonzero.  In that case, we return the
7360   value that is being tested, *PTRUE is set to the value if the rtx being
7361   returned has a nonzero value, and *PFALSE is set to the other alternative.
7362
7363   If we return zero, we set *PTRUE and *PFALSE to X.  */
7364
7365static rtx
7366if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
7367{
7368  enum machine_mode mode = GET_MODE (x);
7369  enum rtx_code code = GET_CODE (x);
7370  rtx cond0, cond1, true0, true1, false0, false1;
7371  unsigned HOST_WIDE_INT nz;
7372
7373  /* If we are comparing a value against zero, we are done.  */
7374  if ((code == NE || code == EQ)
7375      && XEXP (x, 1) == const0_rtx)
7376    {
7377      *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
7378      *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
7379      return XEXP (x, 0);
7380    }
7381
7382  /* If this is a unary operation whose operand has one of two values, apply
7383     our opcode to compute those values.  */
7384  else if (UNARY_P (x)
7385	   && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
7386    {
7387      *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
7388      *pfalse = simplify_gen_unary (code, mode, false0,
7389				    GET_MODE (XEXP (x, 0)));
7390      return cond0;
7391    }
7392
7393  /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
7394     make can't possibly match and would suppress other optimizations.  */
7395  else if (code == COMPARE)
7396    ;
7397
7398  /* If this is a binary operation, see if either side has only one of two
7399     values.  If either one does or if both do and they are conditional on
7400     the same value, compute the new true and false values.  */
7401  else if (BINARY_P (x))
7402    {
7403      cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
7404      cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
7405
7406      if ((cond0 != 0 || cond1 != 0)
7407	  && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
7408	{
7409	  /* If if_then_else_cond returned zero, then true/false are the
7410	     same rtl.  We must copy one of them to prevent invalid rtl
7411	     sharing.  */
7412	  if (cond0 == 0)
7413	    true0 = copy_rtx (true0);
7414	  else if (cond1 == 0)
7415	    true1 = copy_rtx (true1);
7416
7417	  if (COMPARISON_P (x))
7418	    {
7419	      *ptrue = simplify_gen_relational (code, mode, VOIDmode,
7420						true0, true1);
7421	      *pfalse = simplify_gen_relational (code, mode, VOIDmode,
7422						 false0, false1);
7423	     }
7424	  else
7425	    {
7426	      *ptrue = simplify_gen_binary (code, mode, true0, true1);
7427	      *pfalse = simplify_gen_binary (code, mode, false0, false1);
7428	    }
7429
7430	  return cond0 ? cond0 : cond1;
7431	}
7432
7433      /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
7434	 operands is zero when the other is nonzero, and vice-versa,
7435	 and STORE_FLAG_VALUE is 1 or -1.  */
7436
7437      if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7438	  && (code == PLUS || code == IOR || code == XOR || code == MINUS
7439	      || code == UMAX)
7440	  && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7441	{
7442	  rtx op0 = XEXP (XEXP (x, 0), 1);
7443	  rtx op1 = XEXP (XEXP (x, 1), 1);
7444
7445	  cond0 = XEXP (XEXP (x, 0), 0);
7446	  cond1 = XEXP (XEXP (x, 1), 0);
7447
7448	  if (COMPARISON_P (cond0)
7449	      && COMPARISON_P (cond1)
7450	      && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
7451		   && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7452		   && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7453		  || ((swap_condition (GET_CODE (cond0))
7454		       == reversed_comparison_code (cond1, NULL))
7455		      && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7456		      && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7457	      && ! side_effects_p (x))
7458	    {
7459	      *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
7460	      *pfalse = simplify_gen_binary (MULT, mode,
7461					     (code == MINUS
7462					      ? simplify_gen_unary (NEG, mode,
7463								    op1, mode)
7464					      : op1),
7465					      const_true_rtx);
7466	      return cond0;
7467	    }
7468	}
7469
7470      /* Similarly for MULT, AND and UMIN, except that for these the result
7471	 is always zero.  */
7472      if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7473	  && (code == MULT || code == AND || code == UMIN)
7474	  && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7475	{
7476	  cond0 = XEXP (XEXP (x, 0), 0);
7477	  cond1 = XEXP (XEXP (x, 1), 0);
7478
7479	  if (COMPARISON_P (cond0)
7480	      && COMPARISON_P (cond1)
7481	      && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
7482		   && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7483		   && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7484		  || ((swap_condition (GET_CODE (cond0))
7485		       == reversed_comparison_code (cond1, NULL))
7486		      && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7487		      && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7488	      && ! side_effects_p (x))
7489	    {
7490	      *ptrue = *pfalse = const0_rtx;
7491	      return cond0;
7492	    }
7493	}
7494    }
7495
7496  else if (code == IF_THEN_ELSE)
7497    {
7498      /* If we have IF_THEN_ELSE already, extract the condition and
7499	 canonicalize it if it is NE or EQ.  */
7500      cond0 = XEXP (x, 0);
7501      *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
7502      if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
7503	return XEXP (cond0, 0);
7504      else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
7505	{
7506	  *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
7507	  return XEXP (cond0, 0);
7508	}
7509      else
7510	return cond0;
7511    }
7512
7513  /* If X is a SUBREG, we can narrow both the true and false values
7514     if the inner expression, if there is a condition.  */
7515  else if (code == SUBREG
7516	   && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
7517					       &true0, &false0)))
7518    {
7519      true0 = simplify_gen_subreg (mode, true0,
7520				   GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7521      false0 = simplify_gen_subreg (mode, false0,
7522				    GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7523      if (true0 && false0)
7524	{
7525	  *ptrue = true0;
7526	  *pfalse = false0;
7527	  return cond0;
7528	}
7529    }
7530
7531  /* If X is a constant, this isn't special and will cause confusions
7532     if we treat it as such.  Likewise if it is equivalent to a constant.  */
7533  else if (CONSTANT_P (x)
7534	   || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
7535    ;
7536
7537  /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
7538     will be least confusing to the rest of the compiler.  */
7539  else if (mode == BImode)
7540    {
7541      *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
7542      return x;
7543    }
7544
7545  /* If X is known to be either 0 or -1, those are the true and
7546     false values when testing X.  */
7547  else if (x == constm1_rtx || x == const0_rtx
7548	   || (mode != VOIDmode
7549	       && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
7550    {
7551      *ptrue = constm1_rtx, *pfalse = const0_rtx;
7552      return x;
7553    }
7554
7555  /* Likewise for 0 or a single bit.  */
7556  else if (SCALAR_INT_MODE_P (mode)
7557	   && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7558	   && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
7559    {
7560      *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
7561      return x;
7562    }
7563
7564  /* Otherwise fail; show no condition with true and false values the same.  */
7565  *ptrue = *pfalse = x;
7566  return 0;
7567}
7568
7569/* Return the value of expression X given the fact that condition COND
7570   is known to be true when applied to REG as its first operand and VAL
7571   as its second.  X is known to not be shared and so can be modified in
7572   place.
7573
7574   We only handle the simplest cases, and specifically those cases that
7575   arise with IF_THEN_ELSE expressions.  */
7576
7577static rtx
7578known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
7579{
7580  enum rtx_code code = GET_CODE (x);
7581  rtx temp;
7582  const char *fmt;
7583  int i, j;
7584
7585  if (side_effects_p (x))
7586    return x;
7587
7588  /* If either operand of the condition is a floating point value,
7589     then we have to avoid collapsing an EQ comparison.  */
7590  if (cond == EQ
7591      && rtx_equal_p (x, reg)
7592      && ! FLOAT_MODE_P (GET_MODE (x))
7593      && ! FLOAT_MODE_P (GET_MODE (val)))
7594    return val;
7595
7596  if (cond == UNEQ && rtx_equal_p (x, reg))
7597    return val;
7598
7599  /* If X is (abs REG) and we know something about REG's relationship
7600     with zero, we may be able to simplify this.  */
7601
7602  if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
7603    switch (cond)
7604      {
7605      case GE:  case GT:  case EQ:
7606	return XEXP (x, 0);
7607      case LT:  case LE:
7608	return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
7609				   XEXP (x, 0),
7610				   GET_MODE (XEXP (x, 0)));
7611      default:
7612	break;
7613      }
7614
7615  /* The only other cases we handle are MIN, MAX, and comparisons if the
7616     operands are the same as REG and VAL.  */
7617
7618  else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
7619    {
7620      if (rtx_equal_p (XEXP (x, 0), val))
7621	cond = swap_condition (cond), temp = val, val = reg, reg = temp;
7622
7623      if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
7624	{
7625	  if (COMPARISON_P (x))
7626	    {
7627	      if (comparison_dominates_p (cond, code))
7628		return const_true_rtx;
7629
7630	      code = reversed_comparison_code (x, NULL);
7631	      if (code != UNKNOWN
7632		  && comparison_dominates_p (cond, code))
7633		return const0_rtx;
7634	      else
7635		return x;
7636	    }
7637	  else if (code == SMAX || code == SMIN
7638		   || code == UMIN || code == UMAX)
7639	    {
7640	      int unsignedp = (code == UMIN || code == UMAX);
7641
7642	      /* Do not reverse the condition when it is NE or EQ.
7643		 This is because we cannot conclude anything about
7644		 the value of 'SMAX (x, y)' when x is not equal to y,
7645		 but we can when x equals y.  */
7646	      if ((code == SMAX || code == UMAX)
7647		  && ! (cond == EQ || cond == NE))
7648		cond = reverse_condition (cond);
7649
7650	      switch (cond)
7651		{
7652		case GE:   case GT:
7653		  return unsignedp ? x : XEXP (x, 1);
7654		case LE:   case LT:
7655		  return unsignedp ? x : XEXP (x, 0);
7656		case GEU:  case GTU:
7657		  return unsignedp ? XEXP (x, 1) : x;
7658		case LEU:  case LTU:
7659		  return unsignedp ? XEXP (x, 0) : x;
7660		default:
7661		  break;
7662		}
7663	    }
7664	}
7665    }
7666  else if (code == SUBREG)
7667    {
7668      enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
7669      rtx new, r = known_cond (SUBREG_REG (x), cond, reg, val);
7670
7671      if (SUBREG_REG (x) != r)
7672	{
7673	  /* We must simplify subreg here, before we lose track of the
7674	     original inner_mode.  */
7675	  new = simplify_subreg (GET_MODE (x), r,
7676				 inner_mode, SUBREG_BYTE (x));
7677	  if (new)
7678	    return new;
7679	  else
7680	    SUBST (SUBREG_REG (x), r);
7681	}
7682
7683      return x;
7684    }
7685  /* We don't have to handle SIGN_EXTEND here, because even in the
7686     case of replacing something with a modeless CONST_INT, a
7687     CONST_INT is already (supposed to be) a valid sign extension for
7688     its narrower mode, which implies it's already properly
7689     sign-extended for the wider mode.  Now, for ZERO_EXTEND, the
7690     story is different.  */
7691  else if (code == ZERO_EXTEND)
7692    {
7693      enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
7694      rtx new, r = known_cond (XEXP (x, 0), cond, reg, val);
7695
7696      if (XEXP (x, 0) != r)
7697	{
7698	  /* We must simplify the zero_extend here, before we lose
7699	     track of the original inner_mode.  */
7700	  new = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
7701					  r, inner_mode);
7702	  if (new)
7703	    return new;
7704	  else
7705	    SUBST (XEXP (x, 0), r);
7706	}
7707
7708      return x;
7709    }
7710
7711  fmt = GET_RTX_FORMAT (code);
7712  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7713    {
7714      if (fmt[i] == 'e')
7715	SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
7716      else if (fmt[i] == 'E')
7717	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7718	  SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
7719						cond, reg, val));
7720    }
7721
7722  return x;
7723}
7724
7725/* See if X and Y are equal for the purposes of seeing if we can rewrite an
7726   assignment as a field assignment.  */
7727
7728static int
7729rtx_equal_for_field_assignment_p (rtx x, rtx y)
7730{
7731  if (x == y || rtx_equal_p (x, y))
7732    return 1;
7733
7734  if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
7735    return 0;
7736
7737  /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
7738     Note that all SUBREGs of MEM are paradoxical; otherwise they
7739     would have been rewritten.  */
7740  if (MEM_P (x) && GET_CODE (y) == SUBREG
7741      && MEM_P (SUBREG_REG (y))
7742      && rtx_equal_p (SUBREG_REG (y),
7743		      gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
7744    return 1;
7745
7746  if (MEM_P (y) && GET_CODE (x) == SUBREG
7747      && MEM_P (SUBREG_REG (x))
7748      && rtx_equal_p (SUBREG_REG (x),
7749		      gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
7750    return 1;
7751
7752  /* We used to see if get_last_value of X and Y were the same but that's
7753     not correct.  In one direction, we'll cause the assignment to have
7754     the wrong destination and in the case, we'll import a register into this
7755     insn that might have already have been dead.   So fail if none of the
7756     above cases are true.  */
7757  return 0;
7758}
7759
7760/* See if X, a SET operation, can be rewritten as a bit-field assignment.
7761   Return that assignment if so.
7762
7763   We only handle the most common cases.  */
7764
7765static rtx
7766make_field_assignment (rtx x)
7767{
7768  rtx dest = SET_DEST (x);
7769  rtx src = SET_SRC (x);
7770  rtx assign;
7771  rtx rhs, lhs;
7772  HOST_WIDE_INT c1;
7773  HOST_WIDE_INT pos;
7774  unsigned HOST_WIDE_INT len;
7775  rtx other;
7776  enum machine_mode mode;
7777
7778  /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
7779     a clear of a one-bit field.  We will have changed it to
7780     (and (rotate (const_int -2) POS) DEST), so check for that.  Also check
7781     for a SUBREG.  */
7782
7783  if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
7784      && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
7785      && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
7786      && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7787    {
7788      assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7789				1, 1, 1, 0);
7790      if (assign != 0)
7791	return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7792      return x;
7793    }
7794
7795  if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
7796      && subreg_lowpart_p (XEXP (src, 0))
7797      && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
7798	  < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
7799      && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
7800      && GET_CODE (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == CONST_INT
7801      && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
7802      && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7803    {
7804      assign = make_extraction (VOIDmode, dest, 0,
7805				XEXP (SUBREG_REG (XEXP (src, 0)), 1),
7806				1, 1, 1, 0);
7807      if (assign != 0)
7808	return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7809      return x;
7810    }
7811
7812  /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
7813     one-bit field.  */
7814  if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
7815      && XEXP (XEXP (src, 0), 0) == const1_rtx
7816      && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7817    {
7818      assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7819				1, 1, 1, 0);
7820      if (assign != 0)
7821	return gen_rtx_SET (VOIDmode, assign, const1_rtx);
7822      return x;
7823    }
7824
7825  /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
7826     SRC is an AND with all bits of that field set, then we can discard
7827     the AND.  */
7828  if (GET_CODE (dest) == ZERO_EXTRACT
7829      && GET_CODE (XEXP (dest, 1)) == CONST_INT
7830      && GET_CODE (src) == AND
7831      && GET_CODE (XEXP (src, 1)) == CONST_INT)
7832    {
7833      HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
7834      unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
7835      unsigned HOST_WIDE_INT ze_mask;
7836
7837      if (width >= HOST_BITS_PER_WIDE_INT)
7838	ze_mask = -1;
7839      else
7840	ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
7841
7842      /* Complete overlap.  We can remove the source AND.  */
7843      if ((and_mask & ze_mask) == ze_mask)
7844	return gen_rtx_SET (VOIDmode, dest, XEXP (src, 0));
7845
7846      /* Partial overlap.  We can reduce the source AND.  */
7847      if ((and_mask & ze_mask) != and_mask)
7848	{
7849	  mode = GET_MODE (src);
7850	  src = gen_rtx_AND (mode, XEXP (src, 0),
7851			     gen_int_mode (and_mask & ze_mask, mode));
7852	  return gen_rtx_SET (VOIDmode, dest, src);
7853	}
7854    }
7855
7856  /* The other case we handle is assignments into a constant-position
7857     field.  They look like (ior/xor (and DEST C1) OTHER).  If C1 represents
7858     a mask that has all one bits except for a group of zero bits and
7859     OTHER is known to have zeros where C1 has ones, this is such an
7860     assignment.  Compute the position and length from C1.  Shift OTHER
7861     to the appropriate position, force it to the required mode, and
7862     make the extraction.  Check for the AND in both operands.  */
7863
7864  if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
7865    return x;
7866
7867  rhs = expand_compound_operation (XEXP (src, 0));
7868  lhs = expand_compound_operation (XEXP (src, 1));
7869
7870  if (GET_CODE (rhs) == AND
7871      && GET_CODE (XEXP (rhs, 1)) == CONST_INT
7872      && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
7873    c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
7874  else if (GET_CODE (lhs) == AND
7875	   && GET_CODE (XEXP (lhs, 1)) == CONST_INT
7876	   && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
7877    c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
7878  else
7879    return x;
7880
7881  pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
7882  if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
7883      || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
7884      || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
7885    return x;
7886
7887  assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
7888  if (assign == 0)
7889    return x;
7890
7891  /* The mode to use for the source is the mode of the assignment, or of
7892     what is inside a possible STRICT_LOW_PART.  */
7893  mode = (GET_CODE (assign) == STRICT_LOW_PART
7894	  ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
7895
7896  /* Shift OTHER right POS places and make it the source, restricting it
7897     to the proper length and mode.  */
7898
7899  src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
7900						     GET_MODE (src),
7901						     other, pos),
7902			       dest);
7903  src = force_to_mode (src, mode,
7904		       GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
7905		       ? ~(unsigned HOST_WIDE_INT) 0
7906		       : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7907		       0);
7908
7909  /* If SRC is masked by an AND that does not make a difference in
7910     the value being stored, strip it.  */
7911  if (GET_CODE (assign) == ZERO_EXTRACT
7912      && GET_CODE (XEXP (assign, 1)) == CONST_INT
7913      && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
7914      && GET_CODE (src) == AND
7915      && GET_CODE (XEXP (src, 1)) == CONST_INT
7916      && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (src, 1))
7917	  == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1))
7918    src = XEXP (src, 0);
7919
7920  return gen_rtx_SET (VOIDmode, assign, src);
7921}
7922
7923/* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
7924   if so.  */
7925
7926static rtx
7927apply_distributive_law (rtx x)
7928{
7929  enum rtx_code code = GET_CODE (x);
7930  enum rtx_code inner_code;
7931  rtx lhs, rhs, other;
7932  rtx tem;
7933
7934  /* Distributivity is not true for floating point as it can change the
7935     value.  So we don't do it unless -funsafe-math-optimizations.  */
7936  if (FLOAT_MODE_P (GET_MODE (x))
7937      && ! flag_unsafe_math_optimizations)
7938    return x;
7939
7940  /* The outer operation can only be one of the following:  */
7941  if (code != IOR && code != AND && code != XOR
7942      && code != PLUS && code != MINUS)
7943    return x;
7944
7945  lhs = XEXP (x, 0);
7946  rhs = XEXP (x, 1);
7947
7948  /* If either operand is a primitive we can't do anything, so get out
7949     fast.  */
7950  if (OBJECT_P (lhs) || OBJECT_P (rhs))
7951    return x;
7952
7953  lhs = expand_compound_operation (lhs);
7954  rhs = expand_compound_operation (rhs);
7955  inner_code = GET_CODE (lhs);
7956  if (inner_code != GET_CODE (rhs))
7957    return x;
7958
7959  /* See if the inner and outer operations distribute.  */
7960  switch (inner_code)
7961    {
7962    case LSHIFTRT:
7963    case ASHIFTRT:
7964    case AND:
7965    case IOR:
7966      /* These all distribute except over PLUS.  */
7967      if (code == PLUS || code == MINUS)
7968	return x;
7969      break;
7970
7971    case MULT:
7972      if (code != PLUS && code != MINUS)
7973	return x;
7974      break;
7975
7976    case ASHIFT:
7977      /* This is also a multiply, so it distributes over everything.  */
7978      break;
7979
7980    case SUBREG:
7981      /* Non-paradoxical SUBREGs distributes over all operations,
7982	 provided the inner modes and byte offsets are the same, this
7983	 is an extraction of a low-order part, we don't convert an fp
7984	 operation to int or vice versa, this is not a vector mode,
7985	 and we would not be converting a single-word operation into a
7986	 multi-word operation.  The latter test is not required, but
7987	 it prevents generating unneeded multi-word operations.  Some
7988	 of the previous tests are redundant given the latter test,
7989	 but are retained because they are required for correctness.
7990
7991	 We produce the result slightly differently in this case.  */
7992
7993      if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
7994	  || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
7995	  || ! subreg_lowpart_p (lhs)
7996	  || (GET_MODE_CLASS (GET_MODE (lhs))
7997	      != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
7998	  || (GET_MODE_SIZE (GET_MODE (lhs))
7999	      > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
8000	  || VECTOR_MODE_P (GET_MODE (lhs))
8001	  || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD
8002	  /* Result might need to be truncated.  Don't change mode if
8003	     explicit truncation is needed.  */
8004	  || !TRULY_NOOP_TRUNCATION
8005	       (GET_MODE_BITSIZE (GET_MODE (x)),
8006		GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (lhs)))))
8007	return x;
8008
8009      tem = simplify_gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
8010				 SUBREG_REG (lhs), SUBREG_REG (rhs));
8011      return gen_lowpart (GET_MODE (x), tem);
8012
8013    default:
8014      return x;
8015    }
8016
8017  /* Set LHS and RHS to the inner operands (A and B in the example
8018     above) and set OTHER to the common operand (C in the example).
8019     There is only one way to do this unless the inner operation is
8020     commutative.  */
8021  if (COMMUTATIVE_ARITH_P (lhs)
8022      && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
8023    other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
8024  else if (COMMUTATIVE_ARITH_P (lhs)
8025	   && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
8026    other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
8027  else if (COMMUTATIVE_ARITH_P (lhs)
8028	   && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
8029    other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
8030  else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
8031    other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
8032  else
8033    return x;
8034
8035  /* Form the new inner operation, seeing if it simplifies first.  */
8036  tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
8037
8038  /* There is one exception to the general way of distributing:
8039     (a | c) ^ (b | c) -> (a ^ b) & ~c  */
8040  if (code == XOR && inner_code == IOR)
8041    {
8042      inner_code = AND;
8043      other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
8044    }
8045
8046  /* We may be able to continuing distributing the result, so call
8047     ourselves recursively on the inner operation before forming the
8048     outer operation, which we return.  */
8049  return simplify_gen_binary (inner_code, GET_MODE (x),
8050			      apply_distributive_law (tem), other);
8051}
8052
8053/* See if X is of the form (* (+ A B) C), and if so convert to
8054   (+ (* A C) (* B C)) and try to simplify.
8055
8056   Most of the time, this results in no change.  However, if some of
8057   the operands are the same or inverses of each other, simplifications
8058   will result.
8059
8060   For example, (and (ior A B) (not B)) can occur as the result of
8061   expanding a bit field assignment.  When we apply the distributive
8062   law to this, we get (ior (and (A (not B))) (and (B (not B)))),
8063   which then simplifies to (and (A (not B))).
8064
8065   Note that no checks happen on the validity of applying the inverse
8066   distributive law.  This is pointless since we can do it in the
8067   few places where this routine is called.
8068
8069   N is the index of the term that is decomposed (the arithmetic operation,
8070   i.e. (+ A B) in the first example above).  !N is the index of the term that
8071   is distributed, i.e. of C in the first example above.  */
8072static rtx
8073distribute_and_simplify_rtx (rtx x, int n)
8074{
8075  enum machine_mode mode;
8076  enum rtx_code outer_code, inner_code;
8077  rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
8078
8079  decomposed = XEXP (x, n);
8080  if (!ARITHMETIC_P (decomposed))
8081    return NULL_RTX;
8082
8083  mode = GET_MODE (x);
8084  outer_code = GET_CODE (x);
8085  distributed = XEXP (x, !n);
8086
8087  inner_code = GET_CODE (decomposed);
8088  inner_op0 = XEXP (decomposed, 0);
8089  inner_op1 = XEXP (decomposed, 1);
8090
8091  /* Special case (and (xor B C) (not A)), which is equivalent to
8092     (xor (ior A B) (ior A C))  */
8093  if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
8094    {
8095      distributed = XEXP (distributed, 0);
8096      outer_code = IOR;
8097    }
8098
8099  if (n == 0)
8100    {
8101      /* Distribute the second term.  */
8102      new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
8103      new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
8104    }
8105  else
8106    {
8107      /* Distribute the first term.  */
8108      new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
8109      new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
8110    }
8111
8112  tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
8113						     new_op0, new_op1));
8114  if (GET_CODE (tmp) != outer_code
8115      && rtx_cost (tmp, SET) < rtx_cost (x, SET))
8116    return tmp;
8117
8118  return NULL_RTX;
8119}
8120
8121/* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
8122   in MODE.  Return an equivalent form, if different from (and VAROP
8123   (const_int CONSTOP)).  Otherwise, return NULL_RTX.  */
8124
8125static rtx
8126simplify_and_const_int_1 (enum machine_mode mode, rtx varop,
8127			  unsigned HOST_WIDE_INT constop)
8128{
8129  unsigned HOST_WIDE_INT nonzero;
8130  unsigned HOST_WIDE_INT orig_constop;
8131  rtx orig_varop;
8132  int i;
8133
8134  orig_varop = varop;
8135  orig_constop = constop;
8136  if (GET_CODE (varop) == CLOBBER)
8137    return NULL_RTX;
8138
8139  /* Simplify VAROP knowing that we will be only looking at some of the
8140     bits in it.
8141
8142     Note by passing in CONSTOP, we guarantee that the bits not set in
8143     CONSTOP are not significant and will never be examined.  We must
8144     ensure that is the case by explicitly masking out those bits
8145     before returning.  */
8146  varop = force_to_mode (varop, mode, constop, 0);
8147
8148  /* If VAROP is a CLOBBER, we will fail so return it.  */
8149  if (GET_CODE (varop) == CLOBBER)
8150    return varop;
8151
8152  /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
8153     to VAROP and return the new constant.  */
8154  if (GET_CODE (varop) == CONST_INT)
8155    return gen_int_mode (INTVAL (varop) & constop, mode);
8156
8157  /* See what bits may be nonzero in VAROP.  Unlike the general case of
8158     a call to nonzero_bits, here we don't care about bits outside
8159     MODE.  */
8160
8161  nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
8162
8163  /* Turn off all bits in the constant that are known to already be zero.
8164     Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
8165     which is tested below.  */
8166
8167  constop &= nonzero;
8168
8169  /* If we don't have any bits left, return zero.  */
8170  if (constop == 0)
8171    return const0_rtx;
8172
8173  /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
8174     a power of two, we can replace this with an ASHIFT.  */
8175  if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
8176      && (i = exact_log2 (constop)) >= 0)
8177    return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
8178
8179  /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
8180     or XOR, then try to apply the distributive law.  This may eliminate
8181     operations if either branch can be simplified because of the AND.
8182     It may also make some cases more complex, but those cases probably
8183     won't match a pattern either with or without this.  */
8184
8185  if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
8186    return
8187      gen_lowpart
8188	(mode,
8189	 apply_distributive_law
8190	 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
8191			       simplify_and_const_int (NULL_RTX,
8192						       GET_MODE (varop),
8193						       XEXP (varop, 0),
8194						       constop),
8195			       simplify_and_const_int (NULL_RTX,
8196						       GET_MODE (varop),
8197						       XEXP (varop, 1),
8198						       constop))));
8199
8200  /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
8201     the AND and see if one of the operands simplifies to zero.  If so, we
8202     may eliminate it.  */
8203
8204  if (GET_CODE (varop) == PLUS
8205      && exact_log2 (constop + 1) >= 0)
8206    {
8207      rtx o0, o1;
8208
8209      o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
8210      o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
8211      if (o0 == const0_rtx)
8212	return o1;
8213      if (o1 == const0_rtx)
8214	return o0;
8215    }
8216
8217  /* Make a SUBREG if necessary.  If we can't make it, fail.  */
8218  varop = gen_lowpart (mode, varop);
8219  if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
8220    return NULL_RTX;
8221
8222  /* If we are only masking insignificant bits, return VAROP.  */
8223  if (constop == nonzero)
8224    return varop;
8225
8226  if (varop == orig_varop && constop == orig_constop)
8227    return NULL_RTX;
8228
8229  /* Otherwise, return an AND.  */
8230  return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
8231}
8232
8233
8234/* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
8235   in MODE.
8236
8237   Return an equivalent form, if different from X.  Otherwise, return X.  If
8238   X is zero, we are to always construct the equivalent form.  */
8239
8240static rtx
8241simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
8242			unsigned HOST_WIDE_INT constop)
8243{
8244  rtx tem = simplify_and_const_int_1 (mode, varop, constop);
8245  if (tem)
8246    return tem;
8247
8248  if (!x)
8249    x = simplify_gen_binary (AND, GET_MODE (varop), varop,
8250			     gen_int_mode (constop, mode));
8251  if (GET_MODE (x) != mode)
8252    x = gen_lowpart (mode, x);
8253  return x;
8254}
8255
8256/* Given a REG, X, compute which bits in X can be nonzero.
8257   We don't care about bits outside of those defined in MODE.
8258
8259   For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
8260   a shift, AND, or zero_extract, we can do better.  */
8261
8262static rtx
8263reg_nonzero_bits_for_combine (rtx x, enum machine_mode mode,
8264			      rtx known_x ATTRIBUTE_UNUSED,
8265			      enum machine_mode known_mode ATTRIBUTE_UNUSED,
8266			      unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
8267			      unsigned HOST_WIDE_INT *nonzero)
8268{
8269  rtx tem;
8270
8271  /* If X is a register whose nonzero bits value is current, use it.
8272     Otherwise, if X is a register whose value we can find, use that
8273     value.  Otherwise, use the previously-computed global nonzero bits
8274     for this register.  */
8275
8276  if (reg_stat[REGNO (x)].last_set_value != 0
8277      && (reg_stat[REGNO (x)].last_set_mode == mode
8278	  || (GET_MODE_CLASS (reg_stat[REGNO (x)].last_set_mode) == MODE_INT
8279	      && GET_MODE_CLASS (mode) == MODE_INT))
8280      && (reg_stat[REGNO (x)].last_set_label == label_tick
8281	  || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8282	      && REG_N_SETS (REGNO (x)) == 1
8283	      && ! REGNO_REG_SET_P
8284		 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start,
8285		  REGNO (x))))
8286      && INSN_CUID (reg_stat[REGNO (x)].last_set) < subst_low_cuid)
8287    {
8288      *nonzero &= reg_stat[REGNO (x)].last_set_nonzero_bits;
8289      return NULL;
8290    }
8291
8292  tem = get_last_value (x);
8293
8294  if (tem)
8295    {
8296#ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8297      /* If X is narrower than MODE and TEM is a non-negative
8298	 constant that would appear negative in the mode of X,
8299	 sign-extend it for use in reg_nonzero_bits because some
8300	 machines (maybe most) will actually do the sign-extension
8301	 and this is the conservative approach.
8302
8303	 ??? For 2.5, try to tighten up the MD files in this regard
8304	 instead of this kludge.  */
8305
8306      if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode)
8307	  && GET_CODE (tem) == CONST_INT
8308	  && INTVAL (tem) > 0
8309	  && 0 != (INTVAL (tem)
8310		   & ((HOST_WIDE_INT) 1
8311		      << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
8312	tem = GEN_INT (INTVAL (tem)
8313		       | ((HOST_WIDE_INT) (-1)
8314			  << GET_MODE_BITSIZE (GET_MODE (x))));
8315#endif
8316      return tem;
8317    }
8318  else if (nonzero_sign_valid && reg_stat[REGNO (x)].nonzero_bits)
8319    {
8320      unsigned HOST_WIDE_INT mask = reg_stat[REGNO (x)].nonzero_bits;
8321
8322      if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode))
8323	/* We don't know anything about the upper bits.  */
8324	mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
8325      *nonzero &= mask;
8326    }
8327
8328  return NULL;
8329}
8330
8331/* Return the number of bits at the high-order end of X that are known to
8332   be equal to the sign bit.  X will be used in mode MODE; if MODE is
8333   VOIDmode, X will be used in its own mode.  The returned value  will always
8334   be between 1 and the number of bits in MODE.  */
8335
8336static rtx
8337reg_num_sign_bit_copies_for_combine (rtx x, enum machine_mode mode,
8338				     rtx known_x ATTRIBUTE_UNUSED,
8339				     enum machine_mode known_mode
8340				     ATTRIBUTE_UNUSED,
8341				     unsigned int known_ret ATTRIBUTE_UNUSED,
8342				     unsigned int *result)
8343{
8344  rtx tem;
8345
8346  if (reg_stat[REGNO (x)].last_set_value != 0
8347      && reg_stat[REGNO (x)].last_set_mode == mode
8348      && (reg_stat[REGNO (x)].last_set_label == label_tick
8349	  || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8350	      && REG_N_SETS (REGNO (x)) == 1
8351	      && ! REGNO_REG_SET_P
8352		 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start,
8353		  REGNO (x))))
8354      && INSN_CUID (reg_stat[REGNO (x)].last_set) < subst_low_cuid)
8355    {
8356      *result = reg_stat[REGNO (x)].last_set_sign_bit_copies;
8357      return NULL;
8358    }
8359
8360  tem = get_last_value (x);
8361  if (tem != 0)
8362    return tem;
8363
8364  if (nonzero_sign_valid && reg_stat[REGNO (x)].sign_bit_copies != 0
8365      && GET_MODE_BITSIZE (GET_MODE (x)) == GET_MODE_BITSIZE (mode))
8366    *result = reg_stat[REGNO (x)].sign_bit_copies;
8367
8368  return NULL;
8369}
8370
8371/* Return the number of "extended" bits there are in X, when interpreted
8372   as a quantity in MODE whose signedness is indicated by UNSIGNEDP.  For
8373   unsigned quantities, this is the number of high-order zero bits.
8374   For signed quantities, this is the number of copies of the sign bit
8375   minus 1.  In both case, this function returns the number of "spare"
8376   bits.  For example, if two quantities for which this function returns
8377   at least 1 are added, the addition is known not to overflow.
8378
8379   This function will always return 0 unless called during combine, which
8380   implies that it must be called from a define_split.  */
8381
8382unsigned int
8383extended_count (rtx x, enum machine_mode mode, int unsignedp)
8384{
8385  if (nonzero_sign_valid == 0)
8386    return 0;
8387
8388  return (unsignedp
8389	  ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8390	     ? (unsigned int) (GET_MODE_BITSIZE (mode) - 1
8391			       - floor_log2 (nonzero_bits (x, mode)))
8392	     : 0)
8393	  : num_sign_bit_copies (x, mode) - 1);
8394}
8395
8396/* This function is called from `simplify_shift_const' to merge two
8397   outer operations.  Specifically, we have already found that we need
8398   to perform operation *POP0 with constant *PCONST0 at the outermost
8399   position.  We would now like to also perform OP1 with constant CONST1
8400   (with *POP0 being done last).
8401
8402   Return 1 if we can do the operation and update *POP0 and *PCONST0 with
8403   the resulting operation.  *PCOMP_P is set to 1 if we would need to
8404   complement the innermost operand, otherwise it is unchanged.
8405
8406   MODE is the mode in which the operation will be done.  No bits outside
8407   the width of this mode matter.  It is assumed that the width of this mode
8408   is smaller than or equal to HOST_BITS_PER_WIDE_INT.
8409
8410   If *POP0 or OP1 are UNKNOWN, it means no operation is required.  Only NEG, PLUS,
8411   IOR, XOR, and AND are supported.  We may set *POP0 to SET if the proper
8412   result is simply *PCONST0.
8413
8414   If the resulting operation cannot be expressed as one operation, we
8415   return 0 and do not change *POP0, *PCONST0, and *PCOMP_P.  */
8416
8417static int
8418merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
8419{
8420  enum rtx_code op0 = *pop0;
8421  HOST_WIDE_INT const0 = *pconst0;
8422
8423  const0 &= GET_MODE_MASK (mode);
8424  const1 &= GET_MODE_MASK (mode);
8425
8426  /* If OP0 is an AND, clear unimportant bits in CONST1.  */
8427  if (op0 == AND)
8428    const1 &= const0;
8429
8430  /* If OP0 or OP1 is UNKNOWN, this is easy.  Similarly if they are the same or
8431     if OP0 is SET.  */
8432
8433  if (op1 == UNKNOWN || op0 == SET)
8434    return 1;
8435
8436  else if (op0 == UNKNOWN)
8437    op0 = op1, const0 = const1;
8438
8439  else if (op0 == op1)
8440    {
8441      switch (op0)
8442	{
8443	case AND:
8444	  const0 &= const1;
8445	  break;
8446	case IOR:
8447	  const0 |= const1;
8448	  break;
8449	case XOR:
8450	  const0 ^= const1;
8451	  break;
8452	case PLUS:
8453	  const0 += const1;
8454	  break;
8455	case NEG:
8456	  op0 = UNKNOWN;
8457	  break;
8458	default:
8459	  break;
8460	}
8461    }
8462
8463  /* Otherwise, if either is a PLUS or NEG, we can't do anything.  */
8464  else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
8465    return 0;
8466
8467  /* If the two constants aren't the same, we can't do anything.  The
8468     remaining six cases can all be done.  */
8469  else if (const0 != const1)
8470    return 0;
8471
8472  else
8473    switch (op0)
8474      {
8475      case IOR:
8476	if (op1 == AND)
8477	  /* (a & b) | b == b */
8478	  op0 = SET;
8479	else /* op1 == XOR */
8480	  /* (a ^ b) | b == a | b */
8481	  {;}
8482	break;
8483
8484      case XOR:
8485	if (op1 == AND)
8486	  /* (a & b) ^ b == (~a) & b */
8487	  op0 = AND, *pcomp_p = 1;
8488	else /* op1 == IOR */
8489	  /* (a | b) ^ b == a & ~b */
8490	  op0 = AND, const0 = ~const0;
8491	break;
8492
8493      case AND:
8494	if (op1 == IOR)
8495	  /* (a | b) & b == b */
8496	op0 = SET;
8497	else /* op1 == XOR */
8498	  /* (a ^ b) & b) == (~a) & b */
8499	  *pcomp_p = 1;
8500	break;
8501      default:
8502	break;
8503      }
8504
8505  /* Check for NO-OP cases.  */
8506  const0 &= GET_MODE_MASK (mode);
8507  if (const0 == 0
8508      && (op0 == IOR || op0 == XOR || op0 == PLUS))
8509    op0 = UNKNOWN;
8510  else if (const0 == 0 && op0 == AND)
8511    op0 = SET;
8512  else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
8513	   && op0 == AND)
8514    op0 = UNKNOWN;
8515
8516  /* ??? Slightly redundant with the above mask, but not entirely.
8517     Moving this above means we'd have to sign-extend the mode mask
8518     for the final test.  */
8519  const0 = trunc_int_for_mode (const0, mode);
8520
8521  *pop0 = op0;
8522  *pconst0 = const0;
8523
8524  return 1;
8525}
8526
8527/* Simplify a shift of VAROP by COUNT bits.  CODE says what kind of shift.
8528   The result of the shift is RESULT_MODE.  Return NULL_RTX if we cannot
8529   simplify it.  Otherwise, return a simplified value.
8530
8531   The shift is normally computed in the widest mode we find in VAROP, as
8532   long as it isn't a different number of words than RESULT_MODE.  Exceptions
8533   are ASHIFTRT and ROTATE, which are always done in their original mode.  */
8534
8535static rtx
8536simplify_shift_const_1 (enum rtx_code code, enum machine_mode result_mode,
8537			rtx varop, int orig_count)
8538{
8539  enum rtx_code orig_code = code;
8540  rtx orig_varop = varop;
8541  int count;
8542  enum machine_mode mode = result_mode;
8543  enum machine_mode shift_mode, tmode;
8544  unsigned int mode_words
8545    = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
8546  /* We form (outer_op (code varop count) (outer_const)).  */
8547  enum rtx_code outer_op = UNKNOWN;
8548  HOST_WIDE_INT outer_const = 0;
8549  int complement_p = 0;
8550  rtx new, x;
8551
8552  /* Make sure and truncate the "natural" shift on the way in.  We don't
8553     want to do this inside the loop as it makes it more difficult to
8554     combine shifts.  */
8555  if (SHIFT_COUNT_TRUNCATED)
8556    orig_count &= GET_MODE_BITSIZE (mode) - 1;
8557
8558  /* If we were given an invalid count, don't do anything except exactly
8559     what was requested.  */
8560
8561  if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
8562    return NULL_RTX;
8563
8564  count = orig_count;
8565
8566  /* Unless one of the branches of the `if' in this loop does a `continue',
8567     we will `break' the loop after the `if'.  */
8568
8569  while (count != 0)
8570    {
8571      /* If we have an operand of (clobber (const_int 0)), fail.  */
8572      if (GET_CODE (varop) == CLOBBER)
8573	return NULL_RTX;
8574
8575      /* If we discovered we had to complement VAROP, leave.  Making a NOT
8576	 here would cause an infinite loop.  */
8577      if (complement_p)
8578	break;
8579
8580      /* Convert ROTATERT to ROTATE.  */
8581      if (code == ROTATERT)
8582	{
8583	  unsigned int bitsize = GET_MODE_BITSIZE (result_mode);;
8584	  code = ROTATE;
8585	  if (VECTOR_MODE_P (result_mode))
8586	    count = bitsize / GET_MODE_NUNITS (result_mode) - count;
8587	  else
8588	    count = bitsize - count;
8589	}
8590
8591      /* We need to determine what mode we will do the shift in.  If the
8592	 shift is a right shift or a ROTATE, we must always do it in the mode
8593	 it was originally done in.  Otherwise, we can do it in MODE, the
8594	 widest mode encountered.  */
8595      shift_mode
8596	= (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
8597	   ? result_mode : mode);
8598
8599      /* Handle cases where the count is greater than the size of the mode
8600	 minus 1.  For ASHIFT, use the size minus one as the count (this can
8601	 occur when simplifying (lshiftrt (ashiftrt ..))).  For rotates,
8602	 take the count modulo the size.  For other shifts, the result is
8603	 zero.
8604
8605	 Since these shifts are being produced by the compiler by combining
8606	 multiple operations, each of which are defined, we know what the
8607	 result is supposed to be.  */
8608
8609      if (count > (GET_MODE_BITSIZE (shift_mode) - 1))
8610	{
8611	  if (code == ASHIFTRT)
8612	    count = GET_MODE_BITSIZE (shift_mode) - 1;
8613	  else if (code == ROTATE || code == ROTATERT)
8614	    count %= GET_MODE_BITSIZE (shift_mode);
8615	  else
8616	    {
8617	      /* We can't simply return zero because there may be an
8618		 outer op.  */
8619	      varop = const0_rtx;
8620	      count = 0;
8621	      break;
8622	    }
8623	}
8624
8625      /* An arithmetic right shift of a quantity known to be -1 or 0
8626	 is a no-op.  */
8627      if (code == ASHIFTRT
8628	  && (num_sign_bit_copies (varop, shift_mode)
8629	      == GET_MODE_BITSIZE (shift_mode)))
8630	{
8631	  count = 0;
8632	  break;
8633	}
8634
8635      /* If we are doing an arithmetic right shift and discarding all but
8636	 the sign bit copies, this is equivalent to doing a shift by the
8637	 bitsize minus one.  Convert it into that shift because it will often
8638	 allow other simplifications.  */
8639
8640      if (code == ASHIFTRT
8641	  && (count + num_sign_bit_copies (varop, shift_mode)
8642	      >= GET_MODE_BITSIZE (shift_mode)))
8643	count = GET_MODE_BITSIZE (shift_mode) - 1;
8644
8645      /* We simplify the tests below and elsewhere by converting
8646	 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
8647	 `make_compound_operation' will convert it to an ASHIFTRT for
8648	 those machines (such as VAX) that don't have an LSHIFTRT.  */
8649      if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8650	  && code == ASHIFTRT
8651	  && ((nonzero_bits (varop, shift_mode)
8652	       & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
8653	      == 0))
8654	code = LSHIFTRT;
8655
8656      if (((code == LSHIFTRT
8657	    && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8658	    && !(nonzero_bits (varop, shift_mode) >> count))
8659	   || (code == ASHIFT
8660	       && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8661	       && !((nonzero_bits (varop, shift_mode) << count)
8662		    & GET_MODE_MASK (shift_mode))))
8663	  && !side_effects_p (varop))
8664	varop = const0_rtx;
8665
8666      switch (GET_CODE (varop))
8667	{
8668	case SIGN_EXTEND:
8669	case ZERO_EXTEND:
8670	case SIGN_EXTRACT:
8671	case ZERO_EXTRACT:
8672	  new = expand_compound_operation (varop);
8673	  if (new != varop)
8674	    {
8675	      varop = new;
8676	      continue;
8677	    }
8678	  break;
8679
8680	case MEM:
8681	  /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
8682	     minus the width of a smaller mode, we can do this with a
8683	     SIGN_EXTEND or ZERO_EXTEND from the narrower memory location.  */
8684	  if ((code == ASHIFTRT || code == LSHIFTRT)
8685	      && ! mode_dependent_address_p (XEXP (varop, 0))
8686	      && ! MEM_VOLATILE_P (varop)
8687	      && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
8688					 MODE_INT, 1)) != BLKmode)
8689	    {
8690	      new = adjust_address_nv (varop, tmode,
8691				       BYTES_BIG_ENDIAN ? 0
8692				       : count / BITS_PER_UNIT);
8693
8694	      varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
8695				     : ZERO_EXTEND, mode, new);
8696	      count = 0;
8697	      continue;
8698	    }
8699	  break;
8700
8701	case SUBREG:
8702	  /* If VAROP is a SUBREG, strip it as long as the inner operand has
8703	     the same number of words as what we've seen so far.  Then store
8704	     the widest mode in MODE.  */
8705	  if (subreg_lowpart_p (varop)
8706	      && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
8707		  > GET_MODE_SIZE (GET_MODE (varop)))
8708	      && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
8709				  + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
8710		 == mode_words)
8711	    {
8712	      varop = SUBREG_REG (varop);
8713	      if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
8714		mode = GET_MODE (varop);
8715	      continue;
8716	    }
8717	  break;
8718
8719	case MULT:
8720	  /* Some machines use MULT instead of ASHIFT because MULT
8721	     is cheaper.  But it is still better on those machines to
8722	     merge two shifts into one.  */
8723	  if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8724	      && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
8725	    {
8726	      varop
8727		= simplify_gen_binary (ASHIFT, GET_MODE (varop),
8728				       XEXP (varop, 0),
8729				       GEN_INT (exact_log2 (
8730						INTVAL (XEXP (varop, 1)))));
8731	      continue;
8732	    }
8733	  break;
8734
8735	case UDIV:
8736	  /* Similar, for when divides are cheaper.  */
8737	  if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8738	      && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
8739	    {
8740	      varop
8741		= simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
8742				       XEXP (varop, 0),
8743				       GEN_INT (exact_log2 (
8744						INTVAL (XEXP (varop, 1)))));
8745	      continue;
8746	    }
8747	  break;
8748
8749	case ASHIFTRT:
8750	  /* If we are extracting just the sign bit of an arithmetic
8751	     right shift, that shift is not needed.  However, the sign
8752	     bit of a wider mode may be different from what would be
8753	     interpreted as the sign bit in a narrower mode, so, if
8754	     the result is narrower, don't discard the shift.  */
8755	  if (code == LSHIFTRT
8756	      && count == (GET_MODE_BITSIZE (result_mode) - 1)
8757	      && (GET_MODE_BITSIZE (result_mode)
8758		  >= GET_MODE_BITSIZE (GET_MODE (varop))))
8759	    {
8760	      varop = XEXP (varop, 0);
8761	      continue;
8762	    }
8763
8764	  /* ... fall through ...  */
8765
8766	case LSHIFTRT:
8767	case ASHIFT:
8768	case ROTATE:
8769	  /* Here we have two nested shifts.  The result is usually the
8770	     AND of a new shift with a mask.  We compute the result below.  */
8771	  if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8772	      && INTVAL (XEXP (varop, 1)) >= 0
8773	      && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
8774	      && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
8775	      && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8776	      && !VECTOR_MODE_P (result_mode))
8777	    {
8778	      enum rtx_code first_code = GET_CODE (varop);
8779	      unsigned int first_count = INTVAL (XEXP (varop, 1));
8780	      unsigned HOST_WIDE_INT mask;
8781	      rtx mask_rtx;
8782
8783	      /* We have one common special case.  We can't do any merging if
8784		 the inner code is an ASHIFTRT of a smaller mode.  However, if
8785		 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
8786		 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
8787		 we can convert it to
8788		 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
8789		 This simplifies certain SIGN_EXTEND operations.  */
8790	      if (code == ASHIFT && first_code == ASHIFTRT
8791		  && count == (GET_MODE_BITSIZE (result_mode)
8792			       - GET_MODE_BITSIZE (GET_MODE (varop))))
8793		{
8794		  /* C3 has the low-order C1 bits zero.  */
8795
8796		  mask = (GET_MODE_MASK (mode)
8797			  & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
8798
8799		  varop = simplify_and_const_int (NULL_RTX, result_mode,
8800						  XEXP (varop, 0), mask);
8801		  varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
8802						varop, count);
8803		  count = first_count;
8804		  code = ASHIFTRT;
8805		  continue;
8806		}
8807
8808	      /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
8809		 than C1 high-order bits equal to the sign bit, we can convert
8810		 this to either an ASHIFT or an ASHIFTRT depending on the
8811		 two counts.
8812
8813		 We cannot do this if VAROP's mode is not SHIFT_MODE.  */
8814
8815	      if (code == ASHIFTRT && first_code == ASHIFT
8816		  && GET_MODE (varop) == shift_mode
8817		  && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
8818		      > first_count))
8819		{
8820		  varop = XEXP (varop, 0);
8821		  count -= first_count;
8822		  if (count < 0)
8823		    {
8824		      count = -count;
8825		      code = ASHIFT;
8826		    }
8827
8828		  continue;
8829		}
8830
8831	      /* There are some cases we can't do.  If CODE is ASHIFTRT,
8832		 we can only do this if FIRST_CODE is also ASHIFTRT.
8833
8834		 We can't do the case when CODE is ROTATE and FIRST_CODE is
8835		 ASHIFTRT.
8836
8837		 If the mode of this shift is not the mode of the outer shift,
8838		 we can't do this if either shift is a right shift or ROTATE.
8839
8840		 Finally, we can't do any of these if the mode is too wide
8841		 unless the codes are the same.
8842
8843		 Handle the case where the shift codes are the same
8844		 first.  */
8845
8846	      if (code == first_code)
8847		{
8848		  if (GET_MODE (varop) != result_mode
8849		      && (code == ASHIFTRT || code == LSHIFTRT
8850			  || code == ROTATE))
8851		    break;
8852
8853		  count += first_count;
8854		  varop = XEXP (varop, 0);
8855		  continue;
8856		}
8857
8858	      if (code == ASHIFTRT
8859		  || (code == ROTATE && first_code == ASHIFTRT)
8860		  || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
8861		  || (GET_MODE (varop) != result_mode
8862		      && (first_code == ASHIFTRT || first_code == LSHIFTRT
8863			  || first_code == ROTATE
8864			  || code == ROTATE)))
8865		break;
8866
8867	      /* To compute the mask to apply after the shift, shift the
8868		 nonzero bits of the inner shift the same way the
8869		 outer shift will.  */
8870
8871	      mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
8872
8873	      mask_rtx
8874		= simplify_const_binary_operation (code, result_mode, mask_rtx,
8875						   GEN_INT (count));
8876
8877	      /* Give up if we can't compute an outer operation to use.  */
8878	      if (mask_rtx == 0
8879		  || GET_CODE (mask_rtx) != CONST_INT
8880		  || ! merge_outer_ops (&outer_op, &outer_const, AND,
8881					INTVAL (mask_rtx),
8882					result_mode, &complement_p))
8883		break;
8884
8885	      /* If the shifts are in the same direction, we add the
8886		 counts.  Otherwise, we subtract them.  */
8887	      if ((code == ASHIFTRT || code == LSHIFTRT)
8888		  == (first_code == ASHIFTRT || first_code == LSHIFTRT))
8889		count += first_count;
8890	      else
8891		count -= first_count;
8892
8893	      /* If COUNT is positive, the new shift is usually CODE,
8894		 except for the two exceptions below, in which case it is
8895		 FIRST_CODE.  If the count is negative, FIRST_CODE should
8896		 always be used  */
8897	      if (count > 0
8898		  && ((first_code == ROTATE && code == ASHIFT)
8899		      || (first_code == ASHIFTRT && code == LSHIFTRT)))
8900		code = first_code;
8901	      else if (count < 0)
8902		code = first_code, count = -count;
8903
8904	      varop = XEXP (varop, 0);
8905	      continue;
8906	    }
8907
8908	  /* If we have (A << B << C) for any shift, we can convert this to
8909	     (A << C << B).  This wins if A is a constant.  Only try this if
8910	     B is not a constant.  */
8911
8912	  else if (GET_CODE (varop) == code
8913		   && GET_CODE (XEXP (varop, 0)) == CONST_INT
8914		   && GET_CODE (XEXP (varop, 1)) != CONST_INT)
8915	    {
8916	      rtx new = simplify_const_binary_operation (code, mode,
8917							 XEXP (varop, 0),
8918							 GEN_INT (count));
8919	      varop = gen_rtx_fmt_ee (code, mode, new, XEXP (varop, 1));
8920	      count = 0;
8921	      continue;
8922	    }
8923	  break;
8924
8925	case NOT:
8926	  /* Make this fit the case below.  */
8927	  varop = gen_rtx_XOR (mode, XEXP (varop, 0),
8928			       GEN_INT (GET_MODE_MASK (mode)));
8929	  continue;
8930
8931	case IOR:
8932	case AND:
8933	case XOR:
8934	  /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
8935	     with C the size of VAROP - 1 and the shift is logical if
8936	     STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
8937	     we have an (le X 0) operation.   If we have an arithmetic shift
8938	     and STORE_FLAG_VALUE is 1 or we have a logical shift with
8939	     STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation.  */
8940
8941	  if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
8942	      && XEXP (XEXP (varop, 0), 1) == constm1_rtx
8943	      && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8944	      && (code == LSHIFTRT || code == ASHIFTRT)
8945	      && count == (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
8946	      && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
8947	    {
8948	      count = 0;
8949	      varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
8950				  const0_rtx);
8951
8952	      if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
8953		varop = gen_rtx_NEG (GET_MODE (varop), varop);
8954
8955	      continue;
8956	    }
8957
8958	  /* If we have (shift (logical)), move the logical to the outside
8959	     to allow it to possibly combine with another logical and the
8960	     shift to combine with another shift.  This also canonicalizes to
8961	     what a ZERO_EXTRACT looks like.  Also, some machines have
8962	     (and (shift)) insns.  */
8963
8964	  if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8965	      /* We can't do this if we have (ashiftrt (xor))  and the
8966		 constant has its sign bit set in shift_mode.  */
8967	      && !(code == ASHIFTRT && GET_CODE (varop) == XOR
8968		   && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
8969					      shift_mode))
8970	      && (new = simplify_const_binary_operation (code, result_mode,
8971							 XEXP (varop, 1),
8972							 GEN_INT (count))) != 0
8973	      && GET_CODE (new) == CONST_INT
8974	      && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
8975				  INTVAL (new), result_mode, &complement_p))
8976	    {
8977	      varop = XEXP (varop, 0);
8978	      continue;
8979	    }
8980
8981	  /* If we can't do that, try to simplify the shift in each arm of the
8982	     logical expression, make a new logical expression, and apply
8983	     the inverse distributive law.  This also can't be done
8984	     for some (ashiftrt (xor)).  */
8985	  if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8986	     && !(code == ASHIFTRT && GET_CODE (varop) == XOR
8987		  && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
8988					     shift_mode)))
8989	    {
8990	      rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
8991					      XEXP (varop, 0), count);
8992	      rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
8993					      XEXP (varop, 1), count);
8994
8995	      varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
8996					   lhs, rhs);
8997	      varop = apply_distributive_law (varop);
8998
8999	      count = 0;
9000	      continue;
9001	    }
9002	  break;
9003
9004	case EQ:
9005	  /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
9006	     says that the sign bit can be tested, FOO has mode MODE, C is
9007	     GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
9008	     that may be nonzero.  */
9009	  if (code == LSHIFTRT
9010	      && XEXP (varop, 1) == const0_rtx
9011	      && GET_MODE (XEXP (varop, 0)) == result_mode
9012	      && count == (GET_MODE_BITSIZE (result_mode) - 1)
9013	      && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9014	      && STORE_FLAG_VALUE == -1
9015	      && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9016	      && merge_outer_ops (&outer_op, &outer_const, XOR,
9017				  (HOST_WIDE_INT) 1, result_mode,
9018				  &complement_p))
9019	    {
9020	      varop = XEXP (varop, 0);
9021	      count = 0;
9022	      continue;
9023	    }
9024	  break;
9025
9026	case NEG:
9027	  /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
9028	     than the number of bits in the mode is equivalent to A.  */
9029	  if (code == LSHIFTRT
9030	      && count == (GET_MODE_BITSIZE (result_mode) - 1)
9031	      && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
9032	    {
9033	      varop = XEXP (varop, 0);
9034	      count = 0;
9035	      continue;
9036	    }
9037
9038	  /* NEG commutes with ASHIFT since it is multiplication.  Move the
9039	     NEG outside to allow shifts to combine.  */
9040	  if (code == ASHIFT
9041	      && merge_outer_ops (&outer_op, &outer_const, NEG,
9042				  (HOST_WIDE_INT) 0, result_mode,
9043				  &complement_p))
9044	    {
9045	      varop = XEXP (varop, 0);
9046	      continue;
9047	    }
9048	  break;
9049
9050	case PLUS:
9051	  /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
9052	     is one less than the number of bits in the mode is
9053	     equivalent to (xor A 1).  */
9054	  if (code == LSHIFTRT
9055	      && count == (GET_MODE_BITSIZE (result_mode) - 1)
9056	      && XEXP (varop, 1) == constm1_rtx
9057	      && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9058	      && merge_outer_ops (&outer_op, &outer_const, XOR,
9059				  (HOST_WIDE_INT) 1, result_mode,
9060				  &complement_p))
9061	    {
9062	      count = 0;
9063	      varop = XEXP (varop, 0);
9064	      continue;
9065	    }
9066
9067	  /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
9068	     that might be nonzero in BAR are those being shifted out and those
9069	     bits are known zero in FOO, we can replace the PLUS with FOO.
9070	     Similarly in the other operand order.  This code occurs when
9071	     we are computing the size of a variable-size array.  */
9072
9073	  if ((code == ASHIFTRT || code == LSHIFTRT)
9074	      && count < HOST_BITS_PER_WIDE_INT
9075	      && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
9076	      && (nonzero_bits (XEXP (varop, 1), result_mode)
9077		  & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
9078	    {
9079	      varop = XEXP (varop, 0);
9080	      continue;
9081	    }
9082	  else if ((code == ASHIFTRT || code == LSHIFTRT)
9083		   && count < HOST_BITS_PER_WIDE_INT
9084		   && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9085		   && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9086			    >> count)
9087		   && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9088			    & nonzero_bits (XEXP (varop, 1),
9089						 result_mode)))
9090	    {
9091	      varop = XEXP (varop, 1);
9092	      continue;
9093	    }
9094
9095	  /* (ashift (plus foo C) N) is (plus (ashift foo N) C').  */
9096	  if (code == ASHIFT
9097	      && GET_CODE (XEXP (varop, 1)) == CONST_INT
9098	      && (new = simplify_const_binary_operation (ASHIFT, result_mode,
9099							 XEXP (varop, 1),
9100							 GEN_INT (count))) != 0
9101	      && GET_CODE (new) == CONST_INT
9102	      && merge_outer_ops (&outer_op, &outer_const, PLUS,
9103				  INTVAL (new), result_mode, &complement_p))
9104	    {
9105	      varop = XEXP (varop, 0);
9106	      continue;
9107	    }
9108
9109	  /* Check for 'PLUS signbit', which is the canonical form of 'XOR
9110	     signbit', and attempt to change the PLUS to an XOR and move it to
9111	     the outer operation as is done above in the AND/IOR/XOR case
9112	     leg for shift(logical). See details in logical handling above
9113	     for reasoning in doing so.  */
9114	  if (code == LSHIFTRT
9115	      && GET_CODE (XEXP (varop, 1)) == CONST_INT
9116	      && mode_signbit_p (result_mode, XEXP (varop, 1))
9117	      && (new = simplify_const_binary_operation (code, result_mode,
9118							 XEXP (varop, 1),
9119							 GEN_INT (count))) != 0
9120	      && GET_CODE (new) == CONST_INT
9121	      && merge_outer_ops (&outer_op, &outer_const, XOR,
9122				  INTVAL (new), result_mode, &complement_p))
9123	    {
9124	      varop = XEXP (varop, 0);
9125	      continue;
9126	    }
9127
9128	  break;
9129
9130	case MINUS:
9131	  /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9132	     with C the size of VAROP - 1 and the shift is logical if
9133	     STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9134	     we have a (gt X 0) operation.  If the shift is arithmetic with
9135	     STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9136	     we have a (neg (gt X 0)) operation.  */
9137
9138	  if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9139	      && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
9140	      && count == (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9141	      && (code == LSHIFTRT || code == ASHIFTRT)
9142	      && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9143	      && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
9144	      && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9145	    {
9146	      count = 0;
9147	      varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
9148				  const0_rtx);
9149
9150	      if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9151		varop = gen_rtx_NEG (GET_MODE (varop), varop);
9152
9153	      continue;
9154	    }
9155	  break;
9156
9157	case TRUNCATE:
9158	  /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9159	     if the truncate does not affect the value.  */
9160	  if (code == LSHIFTRT
9161	      && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
9162	      && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9163	      && (INTVAL (XEXP (XEXP (varop, 0), 1))
9164		  >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
9165		      - GET_MODE_BITSIZE (GET_MODE (varop)))))
9166	    {
9167	      rtx varop_inner = XEXP (varop, 0);
9168
9169	      varop_inner
9170		= gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
9171				    XEXP (varop_inner, 0),
9172				    GEN_INT
9173				    (count + INTVAL (XEXP (varop_inner, 1))));
9174	      varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
9175	      count = 0;
9176	      continue;
9177	    }
9178	  break;
9179
9180	default:
9181	  break;
9182	}
9183
9184      break;
9185    }
9186
9187  /* We need to determine what mode to do the shift in.  If the shift is
9188     a right shift or ROTATE, we must always do it in the mode it was
9189     originally done in.  Otherwise, we can do it in MODE, the widest mode
9190     encountered.  The code we care about is that of the shift that will
9191     actually be done, not the shift that was originally requested.  */
9192  shift_mode
9193    = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9194       ? result_mode : mode);
9195
9196  /* We have now finished analyzing the shift.  The result should be
9197     a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places.  If
9198     OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
9199     to the result of the shift.  OUTER_CONST is the relevant constant,
9200     but we must turn off all bits turned off in the shift.  */
9201
9202  if (outer_op == UNKNOWN
9203      && orig_code == code && orig_count == count
9204      && varop == orig_varop
9205      && shift_mode == GET_MODE (varop))
9206    return NULL_RTX;
9207
9208  /* Make a SUBREG if necessary.  If we can't make it, fail.  */
9209  varop = gen_lowpart (shift_mode, varop);
9210  if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
9211    return NULL_RTX;
9212
9213  /* If we have an outer operation and we just made a shift, it is
9214     possible that we could have simplified the shift were it not
9215     for the outer operation.  So try to do the simplification
9216     recursively.  */
9217
9218  if (outer_op != UNKNOWN)
9219    x = simplify_shift_const_1 (code, shift_mode, varop, count);
9220  else
9221    x = NULL_RTX;
9222
9223  if (x == NULL_RTX)
9224    x = simplify_gen_binary (code, shift_mode, varop, GEN_INT (count));
9225
9226  /* If we were doing an LSHIFTRT in a wider mode than it was originally,
9227     turn off all the bits that the shift would have turned off.  */
9228  if (orig_code == LSHIFTRT && result_mode != shift_mode)
9229    x = simplify_and_const_int (NULL_RTX, shift_mode, x,
9230				GET_MODE_MASK (result_mode) >> orig_count);
9231
9232  /* Do the remainder of the processing in RESULT_MODE.  */
9233  x = gen_lowpart_or_truncate (result_mode, x);
9234
9235  /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9236     operation.  */
9237  if (complement_p)
9238    x = simplify_gen_unary (NOT, result_mode, x, result_mode);
9239
9240  if (outer_op != UNKNOWN)
9241    {
9242      if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
9243	outer_const = trunc_int_for_mode (outer_const, result_mode);
9244
9245      if (outer_op == AND)
9246	x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
9247      else if (outer_op == SET)
9248	{
9249	  /* This means that we have determined that the result is
9250	     equivalent to a constant.  This should be rare.  */
9251	  if (!side_effects_p (x))
9252	    x = GEN_INT (outer_const);
9253	}
9254      else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
9255	x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
9256      else
9257	x = simplify_gen_binary (outer_op, result_mode, x,
9258				 GEN_INT (outer_const));
9259    }
9260
9261  return x;
9262}
9263
9264/* Simplify a shift of VAROP by COUNT bits.  CODE says what kind of shift.
9265   The result of the shift is RESULT_MODE.  If we cannot simplify it,
9266   return X or, if it is NULL, synthesize the expression with
9267   simplify_gen_binary.  Otherwise, return a simplified value.
9268
9269   The shift is normally computed in the widest mode we find in VAROP, as
9270   long as it isn't a different number of words than RESULT_MODE.  Exceptions
9271   are ASHIFTRT and ROTATE, which are always done in their original mode.  */
9272
9273static rtx
9274simplify_shift_const (rtx x, enum rtx_code code, enum machine_mode result_mode,
9275		      rtx varop, int count)
9276{
9277  rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
9278  if (tem)
9279    return tem;
9280
9281  if (!x)
9282    x = simplify_gen_binary (code, GET_MODE (varop), varop, GEN_INT (count));
9283  if (GET_MODE (x) != result_mode)
9284    x = gen_lowpart (result_mode, x);
9285  return x;
9286}
9287
9288
9289/* Like recog, but we receive the address of a pointer to a new pattern.
9290   We try to match the rtx that the pointer points to.
9291   If that fails, we may try to modify or replace the pattern,
9292   storing the replacement into the same pointer object.
9293
9294   Modifications include deletion or addition of CLOBBERs.
9295
9296   PNOTES is a pointer to a location where any REG_UNUSED notes added for
9297   the CLOBBERs are placed.
9298
9299   The value is the final insn code from the pattern ultimately matched,
9300   or -1.  */
9301
9302static int
9303recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
9304{
9305  rtx pat = *pnewpat;
9306  int insn_code_number;
9307  int num_clobbers_to_add = 0;
9308  int i;
9309  rtx notes = 0;
9310  rtx old_notes, old_pat;
9311
9312  /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9313     we use to indicate that something didn't match.  If we find such a
9314     thing, force rejection.  */
9315  if (GET_CODE (pat) == PARALLEL)
9316    for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
9317      if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
9318	  && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
9319	return -1;
9320
9321  old_pat = PATTERN (insn);
9322  old_notes = REG_NOTES (insn);
9323  PATTERN (insn) = pat;
9324  REG_NOTES (insn) = 0;
9325
9326  insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9327
9328  /* If it isn't, there is the possibility that we previously had an insn
9329     that clobbered some register as a side effect, but the combined
9330     insn doesn't need to do that.  So try once more without the clobbers
9331     unless this represents an ASM insn.  */
9332
9333  if (insn_code_number < 0 && ! check_asm_operands (pat)
9334      && GET_CODE (pat) == PARALLEL)
9335    {
9336      int pos;
9337
9338      for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
9339	if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
9340	  {
9341	    if (i != pos)
9342	      SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
9343	    pos++;
9344	  }
9345
9346      SUBST_INT (XVECLEN (pat, 0), pos);
9347
9348      if (pos == 1)
9349	pat = XVECEXP (pat, 0, 0);
9350
9351      PATTERN (insn) = pat;
9352      insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9353    }
9354  PATTERN (insn) = old_pat;
9355  REG_NOTES (insn) = old_notes;
9356
9357  /* Recognize all noop sets, these will be killed by followup pass.  */
9358  if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
9359    insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
9360
9361  /* If we had any clobbers to add, make a new pattern than contains
9362     them.  Then check to make sure that all of them are dead.  */
9363  if (num_clobbers_to_add)
9364    {
9365      rtx newpat = gen_rtx_PARALLEL (VOIDmode,
9366				     rtvec_alloc (GET_CODE (pat) == PARALLEL
9367						  ? (XVECLEN (pat, 0)
9368						     + num_clobbers_to_add)
9369						  : num_clobbers_to_add + 1));
9370
9371      if (GET_CODE (pat) == PARALLEL)
9372	for (i = 0; i < XVECLEN (pat, 0); i++)
9373	  XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
9374      else
9375	XVECEXP (newpat, 0, 0) = pat;
9376
9377      add_clobbers (newpat, insn_code_number);
9378
9379      for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
9380	   i < XVECLEN (newpat, 0); i++)
9381	{
9382	  if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
9383	      && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
9384	    return -1;
9385	  notes = gen_rtx_EXPR_LIST (REG_UNUSED,
9386				     XEXP (XVECEXP (newpat, 0, i), 0), notes);
9387	}
9388      pat = newpat;
9389    }
9390
9391  *pnewpat = pat;
9392  *pnotes = notes;
9393
9394  return insn_code_number;
9395}
9396
9397/* Like gen_lowpart_general but for use by combine.  In combine it
9398   is not possible to create any new pseudoregs.  However, it is
9399   safe to create invalid memory addresses, because combine will
9400   try to recognize them and all they will do is make the combine
9401   attempt fail.
9402
9403   If for some reason this cannot do its job, an rtx
9404   (clobber (const_int 0)) is returned.
9405   An insn containing that will not be recognized.  */
9406
9407static rtx
9408gen_lowpart_for_combine (enum machine_mode omode, rtx x)
9409{
9410  enum machine_mode imode = GET_MODE (x);
9411  unsigned int osize = GET_MODE_SIZE (omode);
9412  unsigned int isize = GET_MODE_SIZE (imode);
9413  rtx result;
9414
9415  if (omode == imode)
9416    return x;
9417
9418  /* Return identity if this is a CONST or symbolic reference.  */
9419  if (omode == Pmode
9420      && (GET_CODE (x) == CONST
9421	  || GET_CODE (x) == SYMBOL_REF
9422	  || GET_CODE (x) == LABEL_REF))
9423    return x;
9424
9425  /* We can only support MODE being wider than a word if X is a
9426     constant integer or has a mode the same size.  */
9427  if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
9428      && ! ((imode == VOIDmode
9429	     && (GET_CODE (x) == CONST_INT
9430		 || GET_CODE (x) == CONST_DOUBLE))
9431	    || isize == osize))
9432    goto fail;
9433
9434  /* X might be a paradoxical (subreg (mem)).  In that case, gen_lowpart
9435     won't know what to do.  So we will strip off the SUBREG here and
9436     process normally.  */
9437  if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
9438    {
9439      x = SUBREG_REG (x);
9440
9441      /* For use in case we fall down into the address adjustments
9442	 further below, we need to adjust the known mode and size of
9443	 x; imode and isize, since we just adjusted x.  */
9444      imode = GET_MODE (x);
9445
9446      if (imode == omode)
9447	return x;
9448
9449      isize = GET_MODE_SIZE (imode);
9450    }
9451
9452  result = gen_lowpart_common (omode, x);
9453
9454#ifdef CANNOT_CHANGE_MODE_CLASS
9455  if (result != 0 && GET_CODE (result) == SUBREG)
9456    record_subregs_of_mode (result);
9457#endif
9458
9459  if (result)
9460    return result;
9461
9462  if (MEM_P (x))
9463    {
9464      int offset = 0;
9465
9466      /* Refuse to work on a volatile memory ref or one with a mode-dependent
9467	 address.  */
9468      if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
9469	goto fail;
9470
9471      /* If we want to refer to something bigger than the original memref,
9472	 generate a paradoxical subreg instead.  That will force a reload
9473	 of the original memref X.  */
9474      if (isize < osize)
9475	return gen_rtx_SUBREG (omode, x, 0);
9476
9477      if (WORDS_BIG_ENDIAN)
9478	offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
9479
9480      /* Adjust the address so that the address-after-the-data is
9481	 unchanged.  */
9482      if (BYTES_BIG_ENDIAN)
9483	offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
9484
9485      return adjust_address_nv (x, omode, offset);
9486    }
9487
9488  /* If X is a comparison operator, rewrite it in a new mode.  This
9489     probably won't match, but may allow further simplifications.  */
9490  else if (COMPARISON_P (x))
9491    return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
9492
9493  /* If we couldn't simplify X any other way, just enclose it in a
9494     SUBREG.  Normally, this SUBREG won't match, but some patterns may
9495     include an explicit SUBREG or we may simplify it further in combine.  */
9496  else
9497    {
9498      int offset = 0;
9499      rtx res;
9500
9501      offset = subreg_lowpart_offset (omode, imode);
9502      if (imode == VOIDmode)
9503	{
9504	  imode = int_mode_for_mode (omode);
9505	  x = gen_lowpart_common (imode, x);
9506	  if (x == NULL)
9507	    goto fail;
9508	}
9509      res = simplify_gen_subreg (omode, x, imode, offset);
9510      if (res)
9511	return res;
9512    }
9513
9514 fail:
9515  return gen_rtx_CLOBBER (imode, const0_rtx);
9516}
9517
9518/* Simplify a comparison between *POP0 and *POP1 where CODE is the
9519   comparison code that will be tested.
9520
9521   The result is a possibly different comparison code to use.  *POP0 and
9522   *POP1 may be updated.
9523
9524   It is possible that we might detect that a comparison is either always
9525   true or always false.  However, we do not perform general constant
9526   folding in combine, so this knowledge isn't useful.  Such tautologies
9527   should have been detected earlier.  Hence we ignore all such cases.  */
9528
9529static enum rtx_code
9530simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
9531{
9532  rtx op0 = *pop0;
9533  rtx op1 = *pop1;
9534  rtx tem, tem1;
9535  int i;
9536  enum machine_mode mode, tmode;
9537
9538  /* Try a few ways of applying the same transformation to both operands.  */
9539  while (1)
9540    {
9541#ifndef WORD_REGISTER_OPERATIONS
9542      /* The test below this one won't handle SIGN_EXTENDs on these machines,
9543	 so check specially.  */
9544      if (code != GTU && code != GEU && code != LTU && code != LEU
9545	  && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
9546	  && GET_CODE (XEXP (op0, 0)) == ASHIFT
9547	  && GET_CODE (XEXP (op1, 0)) == ASHIFT
9548	  && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
9549	  && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
9550	  && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
9551	      == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
9552	  && GET_CODE (XEXP (op0, 1)) == CONST_INT
9553	  && XEXP (op0, 1) == XEXP (op1, 1)
9554	  && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
9555	  && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
9556	  && (INTVAL (XEXP (op0, 1))
9557	      == (GET_MODE_BITSIZE (GET_MODE (op0))
9558		  - (GET_MODE_BITSIZE
9559		     (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
9560	{
9561	  op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
9562	  op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
9563	}
9564#endif
9565
9566      /* If both operands are the same constant shift, see if we can ignore the
9567	 shift.  We can if the shift is a rotate or if the bits shifted out of
9568	 this shift are known to be zero for both inputs and if the type of
9569	 comparison is compatible with the shift.  */
9570      if (GET_CODE (op0) == GET_CODE (op1)
9571	  && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
9572	  && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
9573	      || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
9574		  && (code != GT && code != LT && code != GE && code != LE))
9575	      || (GET_CODE (op0) == ASHIFTRT
9576		  && (code != GTU && code != LTU
9577		      && code != GEU && code != LEU)))
9578	  && GET_CODE (XEXP (op0, 1)) == CONST_INT
9579	  && INTVAL (XEXP (op0, 1)) >= 0
9580	  && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
9581	  && XEXP (op0, 1) == XEXP (op1, 1))
9582	{
9583	  enum machine_mode mode = GET_MODE (op0);
9584	  unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9585	  int shift_count = INTVAL (XEXP (op0, 1));
9586
9587	  if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
9588	    mask &= (mask >> shift_count) << shift_count;
9589	  else if (GET_CODE (op0) == ASHIFT)
9590	    mask = (mask & (mask << shift_count)) >> shift_count;
9591
9592	  if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
9593	      && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
9594	    op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
9595	  else
9596	    break;
9597	}
9598
9599      /* If both operands are AND's of a paradoxical SUBREG by constant, the
9600	 SUBREGs are of the same mode, and, in both cases, the AND would
9601	 be redundant if the comparison was done in the narrower mode,
9602	 do the comparison in the narrower mode (e.g., we are AND'ing with 1
9603	 and the operand's possibly nonzero bits are 0xffffff01; in that case
9604	 if we only care about QImode, we don't need the AND).  This case
9605	 occurs if the output mode of an scc insn is not SImode and
9606	 STORE_FLAG_VALUE == 1 (e.g., the 386).
9607
9608	 Similarly, check for a case where the AND's are ZERO_EXTEND
9609	 operations from some narrower mode even though a SUBREG is not
9610	 present.  */
9611
9612      else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
9613	       && GET_CODE (XEXP (op0, 1)) == CONST_INT
9614	       && GET_CODE (XEXP (op1, 1)) == CONST_INT)
9615	{
9616	  rtx inner_op0 = XEXP (op0, 0);
9617	  rtx inner_op1 = XEXP (op1, 0);
9618	  HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
9619	  HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
9620	  int changed = 0;
9621
9622	  if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
9623	      && (GET_MODE_SIZE (GET_MODE (inner_op0))
9624		  > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
9625	      && (GET_MODE (SUBREG_REG (inner_op0))
9626		  == GET_MODE (SUBREG_REG (inner_op1)))
9627	      && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
9628		  <= HOST_BITS_PER_WIDE_INT)
9629	      && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
9630					     GET_MODE (SUBREG_REG (inner_op0)))))
9631	      && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
9632					     GET_MODE (SUBREG_REG (inner_op1))))))
9633	    {
9634	      op0 = SUBREG_REG (inner_op0);
9635	      op1 = SUBREG_REG (inner_op1);
9636
9637	      /* The resulting comparison is always unsigned since we masked
9638		 off the original sign bit.  */
9639	      code = unsigned_condition (code);
9640
9641	      changed = 1;
9642	    }
9643
9644	  else if (c0 == c1)
9645	    for (tmode = GET_CLASS_NARROWEST_MODE
9646		 (GET_MODE_CLASS (GET_MODE (op0)));
9647		 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
9648	      if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
9649		{
9650		  op0 = gen_lowpart (tmode, inner_op0);
9651		  op1 = gen_lowpart (tmode, inner_op1);
9652		  code = unsigned_condition (code);
9653		  changed = 1;
9654		  break;
9655		}
9656
9657	  if (! changed)
9658	    break;
9659	}
9660
9661      /* If both operands are NOT, we can strip off the outer operation
9662	 and adjust the comparison code for swapped operands; similarly for
9663	 NEG, except that this must be an equality comparison.  */
9664      else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
9665	       || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
9666		   && (code == EQ || code == NE)))
9667	op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
9668
9669      else
9670	break;
9671    }
9672
9673  /* If the first operand is a constant, swap the operands and adjust the
9674     comparison code appropriately, but don't do this if the second operand
9675     is already a constant integer.  */
9676  if (swap_commutative_operands_p (op0, op1))
9677    {
9678      tem = op0, op0 = op1, op1 = tem;
9679      code = swap_condition (code);
9680    }
9681
9682  /* We now enter a loop during which we will try to simplify the comparison.
9683     For the most part, we only are concerned with comparisons with zero,
9684     but some things may really be comparisons with zero but not start
9685     out looking that way.  */
9686
9687  while (GET_CODE (op1) == CONST_INT)
9688    {
9689      enum machine_mode mode = GET_MODE (op0);
9690      unsigned int mode_width = GET_MODE_BITSIZE (mode);
9691      unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9692      int equality_comparison_p;
9693      int sign_bit_comparison_p;
9694      int unsigned_comparison_p;
9695      HOST_WIDE_INT const_op;
9696
9697      /* We only want to handle integral modes.  This catches VOIDmode,
9698	 CCmode, and the floating-point modes.  An exception is that we
9699	 can handle VOIDmode if OP0 is a COMPARE or a comparison
9700	 operation.  */
9701
9702      if (GET_MODE_CLASS (mode) != MODE_INT
9703	  && ! (mode == VOIDmode
9704		&& (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
9705	break;
9706
9707      /* Get the constant we are comparing against and turn off all bits
9708	 not on in our mode.  */
9709      const_op = INTVAL (op1);
9710      if (mode != VOIDmode)
9711	const_op = trunc_int_for_mode (const_op, mode);
9712      op1 = GEN_INT (const_op);
9713
9714      /* If we are comparing against a constant power of two and the value
9715	 being compared can only have that single bit nonzero (e.g., it was
9716	 `and'ed with that bit), we can replace this with a comparison
9717	 with zero.  */
9718      if (const_op
9719	  && (code == EQ || code == NE || code == GE || code == GEU
9720	      || code == LT || code == LTU)
9721	  && mode_width <= HOST_BITS_PER_WIDE_INT
9722	  && exact_log2 (const_op) >= 0
9723	  && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
9724	{
9725	  code = (code == EQ || code == GE || code == GEU ? NE : EQ);
9726	  op1 = const0_rtx, const_op = 0;
9727	}
9728
9729      /* Similarly, if we are comparing a value known to be either -1 or
9730	 0 with -1, change it to the opposite comparison against zero.  */
9731
9732      if (const_op == -1
9733	  && (code == EQ || code == NE || code == GT || code == LE
9734	      || code == GEU || code == LTU)
9735	  && num_sign_bit_copies (op0, mode) == mode_width)
9736	{
9737	  code = (code == EQ || code == LE || code == GEU ? NE : EQ);
9738	  op1 = const0_rtx, const_op = 0;
9739	}
9740
9741      /* Do some canonicalizations based on the comparison code.  We prefer
9742	 comparisons against zero and then prefer equality comparisons.
9743	 If we can reduce the size of a constant, we will do that too.  */
9744
9745      switch (code)
9746	{
9747	case LT:
9748	  /* < C is equivalent to <= (C - 1) */
9749	  if (const_op > 0)
9750	    {
9751	      const_op -= 1;
9752	      op1 = GEN_INT (const_op);
9753	      code = LE;
9754	      /* ... fall through to LE case below.  */
9755	    }
9756	  else
9757	    break;
9758
9759	case LE:
9760	  /* <= C is equivalent to < (C + 1); we do this for C < 0  */
9761	  if (const_op < 0)
9762	    {
9763	      const_op += 1;
9764	      op1 = GEN_INT (const_op);
9765	      code = LT;
9766	    }
9767
9768	  /* If we are doing a <= 0 comparison on a value known to have
9769	     a zero sign bit, we can replace this with == 0.  */
9770	  else if (const_op == 0
9771		   && mode_width <= HOST_BITS_PER_WIDE_INT
9772		   && (nonzero_bits (op0, mode)
9773		       & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
9774	    code = EQ;
9775	  break;
9776
9777	case GE:
9778	  /* >= C is equivalent to > (C - 1).  */
9779	  if (const_op > 0)
9780	    {
9781	      const_op -= 1;
9782	      op1 = GEN_INT (const_op);
9783	      code = GT;
9784	      /* ... fall through to GT below.  */
9785	    }
9786	  else
9787	    break;
9788
9789	case GT:
9790	  /* > C is equivalent to >= (C + 1); we do this for C < 0.  */
9791	  if (const_op < 0)
9792	    {
9793	      const_op += 1;
9794	      op1 = GEN_INT (const_op);
9795	      code = GE;
9796	    }
9797
9798	  /* If we are doing a > 0 comparison on a value known to have
9799	     a zero sign bit, we can replace this with != 0.  */
9800	  else if (const_op == 0
9801		   && mode_width <= HOST_BITS_PER_WIDE_INT
9802		   && (nonzero_bits (op0, mode)
9803		       & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
9804	    code = NE;
9805	  break;
9806
9807	case LTU:
9808	  /* < C is equivalent to <= (C - 1).  */
9809	  if (const_op > 0)
9810	    {
9811	      const_op -= 1;
9812	      op1 = GEN_INT (const_op);
9813	      code = LEU;
9814	      /* ... fall through ...  */
9815	    }
9816
9817	  /* (unsigned) < 0x80000000 is equivalent to >= 0.  */
9818	  else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9819		   && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
9820	    {
9821	      const_op = 0, op1 = const0_rtx;
9822	      code = GE;
9823	      break;
9824	    }
9825	  else
9826	    break;
9827
9828	case LEU:
9829	  /* unsigned <= 0 is equivalent to == 0 */
9830	  if (const_op == 0)
9831	    code = EQ;
9832
9833	  /* (unsigned) <= 0x7fffffff is equivalent to >= 0.  */
9834	  else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9835		   && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
9836	    {
9837	      const_op = 0, op1 = const0_rtx;
9838	      code = GE;
9839	    }
9840	  break;
9841
9842	case GEU:
9843	  /* >= C is equivalent to > (C - 1).  */
9844	  if (const_op > 1)
9845	    {
9846	      const_op -= 1;
9847	      op1 = GEN_INT (const_op);
9848	      code = GTU;
9849	      /* ... fall through ...  */
9850	    }
9851
9852	  /* (unsigned) >= 0x80000000 is equivalent to < 0.  */
9853	  else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9854		   && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
9855	    {
9856	      const_op = 0, op1 = const0_rtx;
9857	      code = LT;
9858	      break;
9859	    }
9860	  else
9861	    break;
9862
9863	case GTU:
9864	  /* unsigned > 0 is equivalent to != 0 */
9865	  if (const_op == 0)
9866	    code = NE;
9867
9868	  /* (unsigned) > 0x7fffffff is equivalent to < 0.  */
9869	  else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9870		   && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
9871	    {
9872	      const_op = 0, op1 = const0_rtx;
9873	      code = LT;
9874	    }
9875	  break;
9876
9877	default:
9878	  break;
9879	}
9880
9881      /* Compute some predicates to simplify code below.  */
9882
9883      equality_comparison_p = (code == EQ || code == NE);
9884      sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
9885      unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
9886			       || code == GEU);
9887
9888      /* If this is a sign bit comparison and we can do arithmetic in
9889	 MODE, say that we will only be needing the sign bit of OP0.  */
9890      if (sign_bit_comparison_p
9891	  && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
9892	op0 = force_to_mode (op0, mode,
9893			     ((HOST_WIDE_INT) 1
9894			      << (GET_MODE_BITSIZE (mode) - 1)),
9895			     0);
9896
9897      /* Now try cases based on the opcode of OP0.  If none of the cases
9898	 does a "continue", we exit this loop immediately after the
9899	 switch.  */
9900
9901      switch (GET_CODE (op0))
9902	{
9903	case ZERO_EXTRACT:
9904	  /* If we are extracting a single bit from a variable position in
9905	     a constant that has only a single bit set and are comparing it
9906	     with zero, we can convert this into an equality comparison
9907	     between the position and the location of the single bit.  */
9908	  /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
9909	     have already reduced the shift count modulo the word size.  */
9910	  if (!SHIFT_COUNT_TRUNCATED
9911	      && GET_CODE (XEXP (op0, 0)) == CONST_INT
9912	      && XEXP (op0, 1) == const1_rtx
9913	      && equality_comparison_p && const_op == 0
9914	      && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
9915	    {
9916	      if (BITS_BIG_ENDIAN)
9917		{
9918		  enum machine_mode new_mode
9919		    = mode_for_extraction (EP_extzv, 1);
9920		  if (new_mode == MAX_MACHINE_MODE)
9921		    i = BITS_PER_WORD - 1 - i;
9922		  else
9923		    {
9924		      mode = new_mode;
9925		      i = (GET_MODE_BITSIZE (mode) - 1 - i);
9926		    }
9927		}
9928
9929	      op0 = XEXP (op0, 2);
9930	      op1 = GEN_INT (i);
9931	      const_op = i;
9932
9933	      /* Result is nonzero iff shift count is equal to I.  */
9934	      code = reverse_condition (code);
9935	      continue;
9936	    }
9937
9938	  /* ... fall through ...  */
9939
9940	case SIGN_EXTRACT:
9941	  tem = expand_compound_operation (op0);
9942	  if (tem != op0)
9943	    {
9944	      op0 = tem;
9945	      continue;
9946	    }
9947	  break;
9948
9949	case NOT:
9950	  /* If testing for equality, we can take the NOT of the constant.  */
9951	  if (equality_comparison_p
9952	      && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
9953	    {
9954	      op0 = XEXP (op0, 0);
9955	      op1 = tem;
9956	      continue;
9957	    }
9958
9959	  /* If just looking at the sign bit, reverse the sense of the
9960	     comparison.  */
9961	  if (sign_bit_comparison_p)
9962	    {
9963	      op0 = XEXP (op0, 0);
9964	      code = (code == GE ? LT : GE);
9965	      continue;
9966	    }
9967	  break;
9968
9969	case NEG:
9970	  /* If testing for equality, we can take the NEG of the constant.  */
9971	  if (equality_comparison_p
9972	      && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
9973	    {
9974	      op0 = XEXP (op0, 0);
9975	      op1 = tem;
9976	      continue;
9977	    }
9978
9979	  /* The remaining cases only apply to comparisons with zero.  */
9980	  if (const_op != 0)
9981	    break;
9982
9983	  /* When X is ABS or is known positive,
9984	     (neg X) is < 0 if and only if X != 0.  */
9985
9986	  if (sign_bit_comparison_p
9987	      && (GET_CODE (XEXP (op0, 0)) == ABS
9988		  || (mode_width <= HOST_BITS_PER_WIDE_INT
9989		      && (nonzero_bits (XEXP (op0, 0), mode)
9990			  & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
9991	    {
9992	      op0 = XEXP (op0, 0);
9993	      code = (code == LT ? NE : EQ);
9994	      continue;
9995	    }
9996
9997	  /* If we have NEG of something whose two high-order bits are the
9998	     same, we know that "(-a) < 0" is equivalent to "a > 0".  */
9999	  if (num_sign_bit_copies (op0, mode) >= 2)
10000	    {
10001	      op0 = XEXP (op0, 0);
10002	      code = swap_condition (code);
10003	      continue;
10004	    }
10005	  break;
10006
10007	case ROTATE:
10008	  /* If we are testing equality and our count is a constant, we
10009	     can perform the inverse operation on our RHS.  */
10010	  if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10011	      && (tem = simplify_binary_operation (ROTATERT, mode,
10012						   op1, XEXP (op0, 1))) != 0)
10013	    {
10014	      op0 = XEXP (op0, 0);
10015	      op1 = tem;
10016	      continue;
10017	    }
10018
10019	  /* If we are doing a < 0 or >= 0 comparison, it means we are testing
10020	     a particular bit.  Convert it to an AND of a constant of that
10021	     bit.  This will be converted into a ZERO_EXTRACT.  */
10022	  if (const_op == 0 && sign_bit_comparison_p
10023	      && GET_CODE (XEXP (op0, 1)) == CONST_INT
10024	      && mode_width <= HOST_BITS_PER_WIDE_INT)
10025	    {
10026	      op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10027					    ((HOST_WIDE_INT) 1
10028					     << (mode_width - 1
10029						 - INTVAL (XEXP (op0, 1)))));
10030	      code = (code == LT ? NE : EQ);
10031	      continue;
10032	    }
10033
10034	  /* Fall through.  */
10035
10036	case ABS:
10037	  /* ABS is ignorable inside an equality comparison with zero.  */
10038	  if (const_op == 0 && equality_comparison_p)
10039	    {
10040	      op0 = XEXP (op0, 0);
10041	      continue;
10042	    }
10043	  break;
10044
10045	case SIGN_EXTEND:
10046	  /* Can simplify (compare (zero/sign_extend FOO) CONST) to
10047	     (compare FOO CONST) if CONST fits in FOO's mode and we
10048	     are either testing inequality or have an unsigned
10049	     comparison with ZERO_EXTEND or a signed comparison with
10050	     SIGN_EXTEND.  But don't do it if we don't have a compare
10051	     insn of the given mode, since we'd have to revert it
10052	     later on, and then we wouldn't know whether to sign- or
10053	     zero-extend.  */
10054	  mode = GET_MODE (XEXP (op0, 0));
10055	  if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10056	      && ! unsigned_comparison_p
10057	      && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10058	      && ((unsigned HOST_WIDE_INT) const_op
10059		  < (((unsigned HOST_WIDE_INT) 1
10060		      << (GET_MODE_BITSIZE (mode) - 1))))
10061	      && cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
10062	    {
10063	      op0 = XEXP (op0, 0);
10064	      continue;
10065	    }
10066	  break;
10067
10068	case SUBREG:
10069	  /* Check for the case where we are comparing A - C1 with C2, that is
10070
10071	       (subreg:MODE (plus (A) (-C1))) op (C2)
10072
10073	     with C1 a constant, and try to lift the SUBREG, i.e. to do the
10074	     comparison in the wider mode.  One of the following two conditions
10075	     must be true in order for this to be valid:
10076
10077	       1. The mode extension results in the same bit pattern being added
10078		  on both sides and the comparison is equality or unsigned.  As
10079		  C2 has been truncated to fit in MODE, the pattern can only be
10080		  all 0s or all 1s.
10081
10082	       2. The mode extension results in the sign bit being copied on
10083		  each side.
10084
10085	     The difficulty here is that we have predicates for A but not for
10086	     (A - C1) so we need to check that C1 is within proper bounds so
10087	     as to perturbate A as little as possible.  */
10088
10089	  if (mode_width <= HOST_BITS_PER_WIDE_INT
10090	      && subreg_lowpart_p (op0)
10091	      && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) > mode_width
10092	      && GET_CODE (SUBREG_REG (op0)) == PLUS
10093	      && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT)
10094	    {
10095	      enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
10096	      rtx a = XEXP (SUBREG_REG (op0), 0);
10097	      HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
10098
10099	      if ((c1 > 0
10100		   && (unsigned HOST_WIDE_INT) c1
10101		       < (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)
10102		   && (equality_comparison_p || unsigned_comparison_p)
10103		   /* (A - C1) zero-extends if it is positive and sign-extends
10104		      if it is negative, C2 both zero- and sign-extends.  */
10105		   && ((0 == (nonzero_bits (a, inner_mode)
10106			      & ~GET_MODE_MASK (mode))
10107			&& const_op >= 0)
10108		       /* (A - C1) sign-extends if it is positive and 1-extends
10109			  if it is negative, C2 both sign- and 1-extends.  */
10110		       || (num_sign_bit_copies (a, inner_mode)
10111			   > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10112					     - mode_width)
10113			   && const_op < 0)))
10114		  || ((unsigned HOST_WIDE_INT) c1
10115		       < (unsigned HOST_WIDE_INT) 1 << (mode_width - 2)
10116		      /* (A - C1) always sign-extends, like C2.  */
10117		      && num_sign_bit_copies (a, inner_mode)
10118			 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10119					   - (mode_width - 1))))
10120		{
10121		  op0 = SUBREG_REG (op0);
10122		  continue;
10123		}
10124	    }
10125
10126	  /* If the inner mode is narrower and we are extracting the low part,
10127	     we can treat the SUBREG as if it were a ZERO_EXTEND.  */
10128	  if (subreg_lowpart_p (op0)
10129	      && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10130	    /* Fall through */ ;
10131	  else
10132	    break;
10133
10134	  /* ... fall through ...  */
10135
10136	case ZERO_EXTEND:
10137	  mode = GET_MODE (XEXP (op0, 0));
10138	  if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10139	      && (unsigned_comparison_p || equality_comparison_p)
10140	      && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10141	      && ((unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode))
10142	      && cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
10143	    {
10144	      op0 = XEXP (op0, 0);
10145	      continue;
10146	    }
10147	  break;
10148
10149	case PLUS:
10150	  /* (eq (plus X A) B) -> (eq X (minus B A)).  We can only do
10151	     this for equality comparisons due to pathological cases involving
10152	     overflows.  */
10153	  if (equality_comparison_p
10154	      && 0 != (tem = simplify_binary_operation (MINUS, mode,
10155							op1, XEXP (op0, 1))))
10156	    {
10157	      op0 = XEXP (op0, 0);
10158	      op1 = tem;
10159	      continue;
10160	    }
10161
10162	  /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0.  */
10163	  if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
10164	      && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
10165	    {
10166	      op0 = XEXP (XEXP (op0, 0), 0);
10167	      code = (code == LT ? EQ : NE);
10168	      continue;
10169	    }
10170	  break;
10171
10172	case MINUS:
10173	  /* We used to optimize signed comparisons against zero, but that
10174	     was incorrect.  Unsigned comparisons against zero (GTU, LEU)
10175	     arrive here as equality comparisons, or (GEU, LTU) are
10176	     optimized away.  No need to special-case them.  */
10177
10178	  /* (eq (minus A B) C) -> (eq A (plus B C)) or
10179	     (eq B (minus A C)), whichever simplifies.  We can only do
10180	     this for equality comparisons due to pathological cases involving
10181	     overflows.  */
10182	  if (equality_comparison_p
10183	      && 0 != (tem = simplify_binary_operation (PLUS, mode,
10184							XEXP (op0, 1), op1)))
10185	    {
10186	      op0 = XEXP (op0, 0);
10187	      op1 = tem;
10188	      continue;
10189	    }
10190
10191	  if (equality_comparison_p
10192	      && 0 != (tem = simplify_binary_operation (MINUS, mode,
10193							XEXP (op0, 0), op1)))
10194	    {
10195	      op0 = XEXP (op0, 1);
10196	      op1 = tem;
10197	      continue;
10198	    }
10199
10200	  /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10201	     of bits in X minus 1, is one iff X > 0.  */
10202	  if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
10203	      && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10204	      && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (op0, 0), 1))
10205		 == mode_width - 1
10206	      && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10207	    {
10208	      op0 = XEXP (op0, 1);
10209	      code = (code == GE ? LE : GT);
10210	      continue;
10211	    }
10212	  break;
10213
10214	case XOR:
10215	  /* (eq (xor A B) C) -> (eq A (xor B C)).  This is a simplification
10216	     if C is zero or B is a constant.  */
10217	  if (equality_comparison_p
10218	      && 0 != (tem = simplify_binary_operation (XOR, mode,
10219							XEXP (op0, 1), op1)))
10220	    {
10221	      op0 = XEXP (op0, 0);
10222	      op1 = tem;
10223	      continue;
10224	    }
10225	  break;
10226
10227	case EQ:  case NE:
10228	case UNEQ:  case LTGT:
10229	case LT:  case LTU:  case UNLT:  case LE:  case LEU:  case UNLE:
10230	case GT:  case GTU:  case UNGT:  case GE:  case GEU:  case UNGE:
10231	case UNORDERED: case ORDERED:
10232	  /* We can't do anything if OP0 is a condition code value, rather
10233	     than an actual data value.  */
10234	  if (const_op != 0
10235	      || CC0_P (XEXP (op0, 0))
10236	      || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
10237	    break;
10238
10239	  /* Get the two operands being compared.  */
10240	  if (GET_CODE (XEXP (op0, 0)) == COMPARE)
10241	    tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
10242	  else
10243	    tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
10244
10245	  /* Check for the cases where we simply want the result of the
10246	     earlier test or the opposite of that result.  */
10247	  if (code == NE || code == EQ
10248	      || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10249		  && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10250		  && (STORE_FLAG_VALUE
10251		      & (((HOST_WIDE_INT) 1
10252			  << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
10253		  && (code == LT || code == GE)))
10254	    {
10255	      enum rtx_code new_code;
10256	      if (code == LT || code == NE)
10257		new_code = GET_CODE (op0);
10258	      else
10259		new_code = reversed_comparison_code (op0, NULL);
10260
10261	      if (new_code != UNKNOWN)
10262		{
10263		  code = new_code;
10264		  op0 = tem;
10265		  op1 = tem1;
10266		  continue;
10267		}
10268	    }
10269	  break;
10270
10271	case IOR:
10272	  /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
10273	     iff X <= 0.  */
10274	  if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
10275	      && XEXP (XEXP (op0, 0), 1) == constm1_rtx
10276	      && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10277	    {
10278	      op0 = XEXP (op0, 1);
10279	      code = (code == GE ? GT : LE);
10280	      continue;
10281	    }
10282	  break;
10283
10284	case AND:
10285	  /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1).  This
10286	     will be converted to a ZERO_EXTRACT later.  */
10287	  if (const_op == 0 && equality_comparison_p
10288	      && GET_CODE (XEXP (op0, 0)) == ASHIFT
10289	      && XEXP (XEXP (op0, 0), 0) == const1_rtx)
10290	    {
10291	      op0 = simplify_and_const_int
10292		(NULL_RTX, mode, gen_rtx_LSHIFTRT (mode,
10293						   XEXP (op0, 1),
10294						   XEXP (XEXP (op0, 0), 1)),
10295		 (HOST_WIDE_INT) 1);
10296	      continue;
10297	    }
10298
10299	  /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10300	     zero and X is a comparison and C1 and C2 describe only bits set
10301	     in STORE_FLAG_VALUE, we can compare with X.  */
10302	  if (const_op == 0 && equality_comparison_p
10303	      && mode_width <= HOST_BITS_PER_WIDE_INT
10304	      && GET_CODE (XEXP (op0, 1)) == CONST_INT
10305	      && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10306	      && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10307	      && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
10308	      && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
10309	    {
10310	      mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10311		      << INTVAL (XEXP (XEXP (op0, 0), 1)));
10312	      if ((~STORE_FLAG_VALUE & mask) == 0
10313		  && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
10314		      || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
10315			  && COMPARISON_P (tem))))
10316		{
10317		  op0 = XEXP (XEXP (op0, 0), 0);
10318		  continue;
10319		}
10320	    }
10321
10322	  /* If we are doing an equality comparison of an AND of a bit equal
10323	     to the sign bit, replace this with a LT or GE comparison of
10324	     the underlying value.  */
10325	  if (equality_comparison_p
10326	      && const_op == 0
10327	      && GET_CODE (XEXP (op0, 1)) == CONST_INT
10328	      && mode_width <= HOST_BITS_PER_WIDE_INT
10329	      && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10330		  == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10331	    {
10332	      op0 = XEXP (op0, 0);
10333	      code = (code == EQ ? GE : LT);
10334	      continue;
10335	    }
10336
10337	  /* If this AND operation is really a ZERO_EXTEND from a narrower
10338	     mode, the constant fits within that mode, and this is either an
10339	     equality or unsigned comparison, try to do this comparison in
10340	     the narrower mode.
10341
10342	     Note that in:
10343
10344	     (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
10345	     -> (ne:DI (reg:SI 4) (const_int 0))
10346
10347	     unless TRULY_NOOP_TRUNCATION allows it or the register is
10348	     known to hold a value of the required mode the
10349	     transformation is invalid.  */
10350	  if ((equality_comparison_p || unsigned_comparison_p)
10351	      && GET_CODE (XEXP (op0, 1)) == CONST_INT
10352	      && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
10353				   & GET_MODE_MASK (mode))
10354				  + 1)) >= 0
10355	      && const_op >> i == 0
10356	      && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode
10357	      && (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (tmode),
10358					 GET_MODE_BITSIZE (GET_MODE (op0)))
10359		  || (REG_P (XEXP (op0, 0))
10360		      && reg_truncated_to_mode (tmode, XEXP (op0, 0)))))
10361	    {
10362	      op0 = gen_lowpart (tmode, XEXP (op0, 0));
10363	      continue;
10364	    }
10365
10366	  /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
10367	     fits in both M1 and M2 and the SUBREG is either paradoxical
10368	     or represents the low part, permute the SUBREG and the AND
10369	     and try again.  */
10370	  if (GET_CODE (XEXP (op0, 0)) == SUBREG)
10371	    {
10372	      unsigned HOST_WIDE_INT c1;
10373	      tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
10374	      /* Require an integral mode, to avoid creating something like
10375		 (AND:SF ...).  */
10376	      if (SCALAR_INT_MODE_P (tmode)
10377		  /* It is unsafe to commute the AND into the SUBREG if the
10378		     SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
10379		     not defined.  As originally written the upper bits
10380		     have a defined value due to the AND operation.
10381		     However, if we commute the AND inside the SUBREG then
10382		     they no longer have defined values and the meaning of
10383		     the code has been changed.  */
10384		  && (0
10385#ifdef WORD_REGISTER_OPERATIONS
10386		      || (mode_width > GET_MODE_BITSIZE (tmode)
10387			  && mode_width <= BITS_PER_WORD)
10388#endif
10389		      || (mode_width <= GET_MODE_BITSIZE (tmode)
10390			  && subreg_lowpart_p (XEXP (op0, 0))))
10391		  && GET_CODE (XEXP (op0, 1)) == CONST_INT
10392		  && mode_width <= HOST_BITS_PER_WIDE_INT
10393		  && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
10394		  && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
10395		  && (c1 & ~GET_MODE_MASK (tmode)) == 0
10396		  && c1 != mask
10397		  && c1 != GET_MODE_MASK (tmode))
10398		{
10399		  op0 = simplify_gen_binary (AND, tmode,
10400					     SUBREG_REG (XEXP (op0, 0)),
10401					     gen_int_mode (c1, tmode));
10402		  op0 = gen_lowpart (mode, op0);
10403		  continue;
10404		}
10405	    }
10406
10407	  /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0).  */
10408	  if (const_op == 0 && equality_comparison_p
10409	      && XEXP (op0, 1) == const1_rtx
10410	      && GET_CODE (XEXP (op0, 0)) == NOT)
10411	    {
10412	      op0 = simplify_and_const_int
10413		(NULL_RTX, mode, XEXP (XEXP (op0, 0), 0), (HOST_WIDE_INT) 1);
10414	      code = (code == NE ? EQ : NE);
10415	      continue;
10416	    }
10417
10418	  /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
10419	     (eq (and (lshiftrt X) 1) 0).
10420	     Also handle the case where (not X) is expressed using xor.  */
10421	  if (const_op == 0 && equality_comparison_p
10422	      && XEXP (op0, 1) == const1_rtx
10423	      && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
10424	    {
10425	      rtx shift_op = XEXP (XEXP (op0, 0), 0);
10426	      rtx shift_count = XEXP (XEXP (op0, 0), 1);
10427
10428	      if (GET_CODE (shift_op) == NOT
10429		  || (GET_CODE (shift_op) == XOR
10430		      && GET_CODE (XEXP (shift_op, 1)) == CONST_INT
10431		      && GET_CODE (shift_count) == CONST_INT
10432		      && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
10433		      && (INTVAL (XEXP (shift_op, 1))
10434			  == (HOST_WIDE_INT) 1 << INTVAL (shift_count))))
10435		{
10436		  op0 = simplify_and_const_int
10437		    (NULL_RTX, mode,
10438		     gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count),
10439		     (HOST_WIDE_INT) 1);
10440		  code = (code == NE ? EQ : NE);
10441		  continue;
10442		}
10443	    }
10444	  break;
10445
10446	case ASHIFT:
10447	  /* If we have (compare (ashift FOO N) (const_int C)) and
10448	     the high order N bits of FOO (N+1 if an inequality comparison)
10449	     are known to be zero, we can do this by comparing FOO with C
10450	     shifted right N bits so long as the low-order N bits of C are
10451	     zero.  */
10452	  if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10453	      && INTVAL (XEXP (op0, 1)) >= 0
10454	      && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
10455		  < HOST_BITS_PER_WIDE_INT)
10456	      && ((const_op
10457		   & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
10458	      && mode_width <= HOST_BITS_PER_WIDE_INT
10459	      && (nonzero_bits (XEXP (op0, 0), mode)
10460		  & ~(mask >> (INTVAL (XEXP (op0, 1))
10461			       + ! equality_comparison_p))) == 0)
10462	    {
10463	      /* We must perform a logical shift, not an arithmetic one,
10464		 as we want the top N bits of C to be zero.  */
10465	      unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
10466
10467	      temp >>= INTVAL (XEXP (op0, 1));
10468	      op1 = gen_int_mode (temp, mode);
10469	      op0 = XEXP (op0, 0);
10470	      continue;
10471	    }
10472
10473	  /* If we are doing a sign bit comparison, it means we are testing
10474	     a particular bit.  Convert it to the appropriate AND.  */
10475	  if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10476	      && mode_width <= HOST_BITS_PER_WIDE_INT)
10477	    {
10478	      op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10479					    ((HOST_WIDE_INT) 1
10480					     << (mode_width - 1
10481						 - INTVAL (XEXP (op0, 1)))));
10482	      code = (code == LT ? NE : EQ);
10483	      continue;
10484	    }
10485
10486	  /* If this an equality comparison with zero and we are shifting
10487	     the low bit to the sign bit, we can convert this to an AND of the
10488	     low-order bit.  */
10489	  if (const_op == 0 && equality_comparison_p
10490	      && GET_CODE (XEXP (op0, 1)) == CONST_INT
10491	      && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10492		 == mode_width - 1)
10493	    {
10494	      op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10495					    (HOST_WIDE_INT) 1);
10496	      continue;
10497	    }
10498	  break;
10499
10500	case ASHIFTRT:
10501	  /* If this is an equality comparison with zero, we can do this
10502	     as a logical shift, which might be much simpler.  */
10503	  if (equality_comparison_p && const_op == 0
10504	      && GET_CODE (XEXP (op0, 1)) == CONST_INT)
10505	    {
10506	      op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
10507					  XEXP (op0, 0),
10508					  INTVAL (XEXP (op0, 1)));
10509	      continue;
10510	    }
10511
10512	  /* If OP0 is a sign extension and CODE is not an unsigned comparison,
10513	     do the comparison in a narrower mode.  */
10514	  if (! unsigned_comparison_p
10515	      && GET_CODE (XEXP (op0, 1)) == CONST_INT
10516	      && GET_CODE (XEXP (op0, 0)) == ASHIFT
10517	      && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10518	      && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10519					 MODE_INT, 1)) != BLKmode
10520	      && (((unsigned HOST_WIDE_INT) const_op
10521		   + (GET_MODE_MASK (tmode) >> 1) + 1)
10522		  <= GET_MODE_MASK (tmode)))
10523	    {
10524	      op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
10525	      continue;
10526	    }
10527
10528	  /* Likewise if OP0 is a PLUS of a sign extension with a
10529	     constant, which is usually represented with the PLUS
10530	     between the shifts.  */
10531	  if (! unsigned_comparison_p
10532	      && GET_CODE (XEXP (op0, 1)) == CONST_INT
10533	      && GET_CODE (XEXP (op0, 0)) == PLUS
10534	      && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10535	      && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
10536	      && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
10537	      && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10538					 MODE_INT, 1)) != BLKmode
10539	      && (((unsigned HOST_WIDE_INT) const_op
10540		   + (GET_MODE_MASK (tmode) >> 1) + 1)
10541		  <= GET_MODE_MASK (tmode)))
10542	    {
10543	      rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
10544	      rtx add_const = XEXP (XEXP (op0, 0), 1);
10545	      rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
10546						   add_const, XEXP (op0, 1));
10547
10548	      op0 = simplify_gen_binary (PLUS, tmode,
10549					 gen_lowpart (tmode, inner),
10550					 new_const);
10551	      continue;
10552	    }
10553
10554	  /* ... fall through ...  */
10555	case LSHIFTRT:
10556	  /* If we have (compare (xshiftrt FOO N) (const_int C)) and
10557	     the low order N bits of FOO are known to be zero, we can do this
10558	     by comparing FOO with C shifted left N bits so long as no
10559	     overflow occurs.  */
10560	  if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10561	      && INTVAL (XEXP (op0, 1)) >= 0
10562	      && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10563	      && mode_width <= HOST_BITS_PER_WIDE_INT
10564	      && (nonzero_bits (XEXP (op0, 0), mode)
10565		  & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
10566	      && (((unsigned HOST_WIDE_INT) const_op
10567		   + (GET_CODE (op0) != LSHIFTRT
10568		      ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
10569			 + 1)
10570		      : 0))
10571		  <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
10572	    {
10573	      /* If the shift was logical, then we must make the condition
10574		 unsigned.  */
10575	      if (GET_CODE (op0) == LSHIFTRT)
10576		code = unsigned_condition (code);
10577
10578	      const_op <<= INTVAL (XEXP (op0, 1));
10579	      op1 = GEN_INT (const_op);
10580	      op0 = XEXP (op0, 0);
10581	      continue;
10582	    }
10583
10584	  /* If we are using this shift to extract just the sign bit, we
10585	     can replace this with an LT or GE comparison.  */
10586	  if (const_op == 0
10587	      && (equality_comparison_p || sign_bit_comparison_p)
10588	      && GET_CODE (XEXP (op0, 1)) == CONST_INT
10589	      && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10590		 == mode_width - 1)
10591	    {
10592	      op0 = XEXP (op0, 0);
10593	      code = (code == NE || code == GT ? LT : GE);
10594	      continue;
10595	    }
10596	  break;
10597
10598	default:
10599	  break;
10600	}
10601
10602      break;
10603    }
10604
10605  /* Now make any compound operations involved in this comparison.  Then,
10606     check for an outmost SUBREG on OP0 that is not doing anything or is
10607     paradoxical.  The latter transformation must only be performed when
10608     it is known that the "extra" bits will be the same in op0 and op1 or
10609     that they don't matter.  There are three cases to consider:
10610
10611     1. SUBREG_REG (op0) is a register.  In this case the bits are don't
10612     care bits and we can assume they have any convenient value.  So
10613     making the transformation is safe.
10614
10615     2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
10616     In this case the upper bits of op0 are undefined.  We should not make
10617     the simplification in that case as we do not know the contents of
10618     those bits.
10619
10620     3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
10621     UNKNOWN.  In that case we know those bits are zeros or ones.  We must
10622     also be sure that they are the same as the upper bits of op1.
10623
10624     We can never remove a SUBREG for a non-equality comparison because
10625     the sign bit is in a different place in the underlying object.  */
10626
10627  op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
10628  op1 = make_compound_operation (op1, SET);
10629
10630  if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
10631      && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10632      && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
10633      && (code == NE || code == EQ))
10634    {
10635      if (GET_MODE_SIZE (GET_MODE (op0))
10636	  > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
10637	{
10638	  /* For paradoxical subregs, allow case 1 as above.  Case 3 isn't
10639	     implemented.  */
10640	  if (REG_P (SUBREG_REG (op0)))
10641	    {
10642	      op0 = SUBREG_REG (op0);
10643	      op1 = gen_lowpart (GET_MODE (op0), op1);
10644	    }
10645	}
10646      else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10647		<= HOST_BITS_PER_WIDE_INT)
10648	       && (nonzero_bits (SUBREG_REG (op0),
10649				 GET_MODE (SUBREG_REG (op0)))
10650		   & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
10651	{
10652	  tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
10653
10654	  if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
10655	       & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
10656	    op0 = SUBREG_REG (op0), op1 = tem;
10657	}
10658    }
10659
10660  /* We now do the opposite procedure: Some machines don't have compare
10661     insns in all modes.  If OP0's mode is an integer mode smaller than a
10662     word and we can't do a compare in that mode, see if there is a larger
10663     mode for which we can do the compare.  There are a number of cases in
10664     which we can use the wider mode.  */
10665
10666  mode = GET_MODE (op0);
10667  if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10668      && GET_MODE_SIZE (mode) < UNITS_PER_WORD
10669      && ! have_insn_for (COMPARE, mode))
10670    for (tmode = GET_MODE_WIDER_MODE (mode);
10671	 (tmode != VOIDmode
10672	  && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
10673	 tmode = GET_MODE_WIDER_MODE (tmode))
10674      if (have_insn_for (COMPARE, tmode))
10675	{
10676	  int zero_extended;
10677
10678	  /* If the only nonzero bits in OP0 and OP1 are those in the
10679	     narrower mode and this is an equality or unsigned comparison,
10680	     we can use the wider mode.  Similarly for sign-extended
10681	     values, in which case it is true for all comparisons.  */
10682	  zero_extended = ((code == EQ || code == NE
10683			    || code == GEU || code == GTU
10684			    || code == LEU || code == LTU)
10685			   && (nonzero_bits (op0, tmode)
10686			       & ~GET_MODE_MASK (mode)) == 0
10687			   && ((GET_CODE (op1) == CONST_INT
10688				|| (nonzero_bits (op1, tmode)
10689				    & ~GET_MODE_MASK (mode)) == 0)));
10690
10691	  if (zero_extended
10692	      || ((num_sign_bit_copies (op0, tmode)
10693		   > (unsigned int) (GET_MODE_BITSIZE (tmode)
10694				     - GET_MODE_BITSIZE (mode)))
10695		  && (num_sign_bit_copies (op1, tmode)
10696		      > (unsigned int) (GET_MODE_BITSIZE (tmode)
10697					- GET_MODE_BITSIZE (mode)))))
10698	    {
10699	      /* If OP0 is an AND and we don't have an AND in MODE either,
10700		 make a new AND in the proper mode.  */
10701	      if (GET_CODE (op0) == AND
10702		  && !have_insn_for (AND, mode))
10703		op0 = simplify_gen_binary (AND, tmode,
10704					   gen_lowpart (tmode,
10705							XEXP (op0, 0)),
10706					   gen_lowpart (tmode,
10707							XEXP (op0, 1)));
10708
10709	      op0 = gen_lowpart (tmode, op0);
10710	      if (zero_extended && GET_CODE (op1) == CONST_INT)
10711		op1 = GEN_INT (INTVAL (op1) & GET_MODE_MASK (mode));
10712	      op1 = gen_lowpart (tmode, op1);
10713	      break;
10714	    }
10715
10716	  /* If this is a test for negative, we can make an explicit
10717	     test of the sign bit.  */
10718
10719	  if (op1 == const0_rtx && (code == LT || code == GE)
10720	      && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10721	    {
10722	      op0 = simplify_gen_binary (AND, tmode,
10723					 gen_lowpart (tmode, op0),
10724					 GEN_INT ((HOST_WIDE_INT) 1
10725						  << (GET_MODE_BITSIZE (mode)
10726						      - 1)));
10727	      code = (code == LT) ? NE : EQ;
10728	      break;
10729	    }
10730	}
10731
10732#ifdef CANONICALIZE_COMPARISON
10733  /* If this machine only supports a subset of valid comparisons, see if we
10734     can convert an unsupported one into a supported one.  */
10735  CANONICALIZE_COMPARISON (code, op0, op1);
10736#endif
10737
10738  *pop0 = op0;
10739  *pop1 = op1;
10740
10741  return code;
10742}
10743
10744/* Utility function for record_value_for_reg.  Count number of
10745   rtxs in X.  */
10746static int
10747count_rtxs (rtx x)
10748{
10749  enum rtx_code code = GET_CODE (x);
10750  const char *fmt;
10751  int i, ret = 1;
10752
10753  if (GET_RTX_CLASS (code) == '2'
10754      || GET_RTX_CLASS (code) == 'c')
10755    {
10756      rtx x0 = XEXP (x, 0);
10757      rtx x1 = XEXP (x, 1);
10758
10759      if (x0 == x1)
10760	return 1 + 2 * count_rtxs (x0);
10761
10762      if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
10763	   || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
10764	  && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
10765	return 2 + 2 * count_rtxs (x0)
10766	       + count_rtxs (x == XEXP (x1, 0)
10767			     ? XEXP (x1, 1) : XEXP (x1, 0));
10768
10769      if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
10770	   || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
10771	  && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
10772	return 2 + 2 * count_rtxs (x1)
10773	       + count_rtxs (x == XEXP (x0, 0)
10774			     ? XEXP (x0, 1) : XEXP (x0, 0));
10775    }
10776
10777  fmt = GET_RTX_FORMAT (code);
10778  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
10779    if (fmt[i] == 'e')
10780      ret += count_rtxs (XEXP (x, i));
10781
10782  return ret;
10783}
10784
10785/* Utility function for following routine.  Called when X is part of a value
10786   being stored into last_set_value.  Sets last_set_table_tick
10787   for each register mentioned.  Similar to mention_regs in cse.c  */
10788
10789static void
10790update_table_tick (rtx x)
10791{
10792  enum rtx_code code = GET_CODE (x);
10793  const char *fmt = GET_RTX_FORMAT (code);
10794  int i;
10795
10796  if (code == REG)
10797    {
10798      unsigned int regno = REGNO (x);
10799      unsigned int endregno
10800	= regno + (regno < FIRST_PSEUDO_REGISTER
10801		   ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
10802      unsigned int r;
10803
10804      for (r = regno; r < endregno; r++)
10805	reg_stat[r].last_set_table_tick = label_tick;
10806
10807      return;
10808    }
10809
10810  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
10811    /* Note that we can't have an "E" in values stored; see
10812       get_last_value_validate.  */
10813    if (fmt[i] == 'e')
10814      {
10815	/* Check for identical subexpressions.  If x contains
10816	   identical subexpression we only have to traverse one of
10817	   them.  */
10818	if (i == 0 && ARITHMETIC_P (x))
10819	  {
10820	    /* Note that at this point x1 has already been
10821	       processed.  */
10822	    rtx x0 = XEXP (x, 0);
10823	    rtx x1 = XEXP (x, 1);
10824
10825	    /* If x0 and x1 are identical then there is no need to
10826	       process x0.  */
10827	    if (x0 == x1)
10828	      break;
10829
10830	    /* If x0 is identical to a subexpression of x1 then while
10831	       processing x1, x0 has already been processed.  Thus we
10832	       are done with x.  */
10833	    if (ARITHMETIC_P (x1)
10834		&& (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
10835	      break;
10836
10837	    /* If x1 is identical to a subexpression of x0 then we
10838	       still have to process the rest of x0.  */
10839	    if (ARITHMETIC_P (x0)
10840		&& (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
10841	      {
10842		update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
10843		break;
10844	      }
10845	  }
10846
10847	update_table_tick (XEXP (x, i));
10848      }
10849}
10850
10851/* Record that REG is set to VALUE in insn INSN.  If VALUE is zero, we
10852   are saying that the register is clobbered and we no longer know its
10853   value.  If INSN is zero, don't update reg_stat[].last_set; this is
10854   only permitted with VALUE also zero and is used to invalidate the
10855   register.  */
10856
10857static void
10858record_value_for_reg (rtx reg, rtx insn, rtx value)
10859{
10860  unsigned int regno = REGNO (reg);
10861  unsigned int endregno
10862    = regno + (regno < FIRST_PSEUDO_REGISTER
10863	       ? hard_regno_nregs[regno][GET_MODE (reg)] : 1);
10864  unsigned int i;
10865
10866  /* If VALUE contains REG and we have a previous value for REG, substitute
10867     the previous value.  */
10868  if (value && insn && reg_overlap_mentioned_p (reg, value))
10869    {
10870      rtx tem;
10871
10872      /* Set things up so get_last_value is allowed to see anything set up to
10873	 our insn.  */
10874      subst_low_cuid = INSN_CUID (insn);
10875      tem = get_last_value (reg);
10876
10877      /* If TEM is simply a binary operation with two CLOBBERs as operands,
10878	 it isn't going to be useful and will take a lot of time to process,
10879	 so just use the CLOBBER.  */
10880
10881      if (tem)
10882	{
10883	  if (ARITHMETIC_P (tem)
10884	      && GET_CODE (XEXP (tem, 0)) == CLOBBER
10885	      && GET_CODE (XEXP (tem, 1)) == CLOBBER)
10886	    tem = XEXP (tem, 0);
10887	  else if (count_occurrences (value, reg, 1) >= 2)
10888	    {
10889	      /* If there are two or more occurrences of REG in VALUE,
10890		 prevent the value from growing too much.  */
10891	      if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
10892		tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
10893	    }
10894
10895	  value = replace_rtx (copy_rtx (value), reg, tem);
10896	}
10897    }
10898
10899  /* For each register modified, show we don't know its value, that
10900     we don't know about its bitwise content, that its value has been
10901     updated, and that we don't know the location of the death of the
10902     register.  */
10903  for (i = regno; i < endregno; i++)
10904    {
10905      if (insn)
10906	reg_stat[i].last_set = insn;
10907
10908      reg_stat[i].last_set_value = 0;
10909      reg_stat[i].last_set_mode = 0;
10910      reg_stat[i].last_set_nonzero_bits = 0;
10911      reg_stat[i].last_set_sign_bit_copies = 0;
10912      reg_stat[i].last_death = 0;
10913      reg_stat[i].truncated_to_mode = 0;
10914    }
10915
10916  /* Mark registers that are being referenced in this value.  */
10917  if (value)
10918    update_table_tick (value);
10919
10920  /* Now update the status of each register being set.
10921     If someone is using this register in this block, set this register
10922     to invalid since we will get confused between the two lives in this
10923     basic block.  This makes using this register always invalid.  In cse, we
10924     scan the table to invalidate all entries using this register, but this
10925     is too much work for us.  */
10926
10927  for (i = regno; i < endregno; i++)
10928    {
10929      reg_stat[i].last_set_label = label_tick;
10930      if (!insn || (value && reg_stat[i].last_set_table_tick == label_tick))
10931	reg_stat[i].last_set_invalid = 1;
10932      else
10933	reg_stat[i].last_set_invalid = 0;
10934    }
10935
10936  /* The value being assigned might refer to X (like in "x++;").  In that
10937     case, we must replace it with (clobber (const_int 0)) to prevent
10938     infinite loops.  */
10939  if (value && ! get_last_value_validate (&value, insn,
10940					  reg_stat[regno].last_set_label, 0))
10941    {
10942      value = copy_rtx (value);
10943      if (! get_last_value_validate (&value, insn,
10944				     reg_stat[regno].last_set_label, 1))
10945	value = 0;
10946    }
10947
10948  /* For the main register being modified, update the value, the mode, the
10949     nonzero bits, and the number of sign bit copies.  */
10950
10951  reg_stat[regno].last_set_value = value;
10952
10953  if (value)
10954    {
10955      enum machine_mode mode = GET_MODE (reg);
10956      subst_low_cuid = INSN_CUID (insn);
10957      reg_stat[regno].last_set_mode = mode;
10958      if (GET_MODE_CLASS (mode) == MODE_INT
10959	  && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10960	mode = nonzero_bits_mode;
10961      reg_stat[regno].last_set_nonzero_bits = nonzero_bits (value, mode);
10962      reg_stat[regno].last_set_sign_bit_copies
10963	= num_sign_bit_copies (value, GET_MODE (reg));
10964    }
10965}
10966
10967/* Called via note_stores from record_dead_and_set_regs to handle one
10968   SET or CLOBBER in an insn.  DATA is the instruction in which the
10969   set is occurring.  */
10970
10971static void
10972record_dead_and_set_regs_1 (rtx dest, rtx setter, void *data)
10973{
10974  rtx record_dead_insn = (rtx) data;
10975
10976  if (GET_CODE (dest) == SUBREG)
10977    dest = SUBREG_REG (dest);
10978
10979  if (!record_dead_insn)
10980    {
10981      if (REG_P (dest))
10982	record_value_for_reg (dest, NULL_RTX, NULL_RTX);
10983      return;
10984    }
10985
10986  if (REG_P (dest))
10987    {
10988      /* If we are setting the whole register, we know its value.  Otherwise
10989	 show that we don't know the value.  We can handle SUBREG in
10990	 some cases.  */
10991      if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
10992	record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
10993      else if (GET_CODE (setter) == SET
10994	       && GET_CODE (SET_DEST (setter)) == SUBREG
10995	       && SUBREG_REG (SET_DEST (setter)) == dest
10996	       && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
10997	       && subreg_lowpart_p (SET_DEST (setter)))
10998	record_value_for_reg (dest, record_dead_insn,
10999			      gen_lowpart (GET_MODE (dest),
11000						       SET_SRC (setter)));
11001      else
11002	record_value_for_reg (dest, record_dead_insn, NULL_RTX);
11003    }
11004  else if (MEM_P (dest)
11005	   /* Ignore pushes, they clobber nothing.  */
11006	   && ! push_operand (dest, GET_MODE (dest)))
11007    mem_last_set = INSN_CUID (record_dead_insn);
11008}
11009
11010/* Update the records of when each REG was most recently set or killed
11011   for the things done by INSN.  This is the last thing done in processing
11012   INSN in the combiner loop.
11013
11014   We update reg_stat[], in particular fields last_set, last_set_value,
11015   last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
11016   last_death, and also the similar information mem_last_set (which insn
11017   most recently modified memory) and last_call_cuid (which insn was the
11018   most recent subroutine call).  */
11019
11020static void
11021record_dead_and_set_regs (rtx insn)
11022{
11023  rtx link;
11024  unsigned int i;
11025
11026  for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
11027    {
11028      if (REG_NOTE_KIND (link) == REG_DEAD
11029	  && REG_P (XEXP (link, 0)))
11030	{
11031	  unsigned int regno = REGNO (XEXP (link, 0));
11032	  unsigned int endregno
11033	    = regno + (regno < FIRST_PSEUDO_REGISTER
11034		       ? hard_regno_nregs[regno][GET_MODE (XEXP (link, 0))]
11035		       : 1);
11036
11037	  for (i = regno; i < endregno; i++)
11038	    reg_stat[i].last_death = insn;
11039	}
11040      else if (REG_NOTE_KIND (link) == REG_INC)
11041	record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
11042    }
11043
11044  if (CALL_P (insn))
11045    {
11046      for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
11047	if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
11048	  {
11049	    reg_stat[i].last_set_value = 0;
11050	    reg_stat[i].last_set_mode = 0;
11051	    reg_stat[i].last_set_nonzero_bits = 0;
11052	    reg_stat[i].last_set_sign_bit_copies = 0;
11053	    reg_stat[i].last_death = 0;
11054	    reg_stat[i].truncated_to_mode = 0;
11055	  }
11056
11057      last_call_cuid = mem_last_set = INSN_CUID (insn);
11058
11059      /* We can't combine into a call pattern.  Remember, though, that
11060	 the return value register is set at this CUID.  We could
11061	 still replace a register with the return value from the
11062	 wrong subroutine call!  */
11063      note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
11064    }
11065  else
11066    note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
11067}
11068
11069/* If a SUBREG has the promoted bit set, it is in fact a property of the
11070   register present in the SUBREG, so for each such SUBREG go back and
11071   adjust nonzero and sign bit information of the registers that are
11072   known to have some zero/sign bits set.
11073
11074   This is needed because when combine blows the SUBREGs away, the
11075   information on zero/sign bits is lost and further combines can be
11076   missed because of that.  */
11077
11078static void
11079record_promoted_value (rtx insn, rtx subreg)
11080{
11081  rtx links, set;
11082  unsigned int regno = REGNO (SUBREG_REG (subreg));
11083  enum machine_mode mode = GET_MODE (subreg);
11084
11085  if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
11086    return;
11087
11088  for (links = LOG_LINKS (insn); links;)
11089    {
11090      insn = XEXP (links, 0);
11091      set = single_set (insn);
11092
11093      if (! set || !REG_P (SET_DEST (set))
11094	  || REGNO (SET_DEST (set)) != regno
11095	  || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
11096	{
11097	  links = XEXP (links, 1);
11098	  continue;
11099	}
11100
11101      if (reg_stat[regno].last_set == insn)
11102	{
11103	  if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
11104	    reg_stat[regno].last_set_nonzero_bits &= GET_MODE_MASK (mode);
11105	}
11106
11107      if (REG_P (SET_SRC (set)))
11108	{
11109	  regno = REGNO (SET_SRC (set));
11110	  links = LOG_LINKS (insn);
11111	}
11112      else
11113	break;
11114    }
11115}
11116
11117/* Check if X, a register, is known to contain a value already
11118   truncated to MODE.  In this case we can use a subreg to refer to
11119   the truncated value even though in the generic case we would need
11120   an explicit truncation.  */
11121
11122static bool
11123reg_truncated_to_mode (enum machine_mode mode, rtx x)
11124{
11125  enum machine_mode truncated = reg_stat[REGNO (x)].truncated_to_mode;
11126
11127  if (truncated == 0 || reg_stat[REGNO (x)].truncation_label != label_tick)
11128    return false;
11129  if (GET_MODE_SIZE (truncated) <= GET_MODE_SIZE (mode))
11130    return true;
11131  if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
11132			     GET_MODE_BITSIZE (truncated)))
11133    return true;
11134  return false;
11135}
11136
11137/* X is a REG or a SUBREG.  If X is some sort of a truncation record
11138   it.  For non-TRULY_NOOP_TRUNCATION targets we might be able to turn
11139   a truncate into a subreg using this information.  */
11140
11141static void
11142record_truncated_value (rtx x)
11143{
11144  enum machine_mode truncated_mode;
11145
11146  if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
11147    {
11148      enum machine_mode original_mode = GET_MODE (SUBREG_REG (x));
11149      truncated_mode = GET_MODE (x);
11150
11151      if (GET_MODE_SIZE (original_mode) <= GET_MODE_SIZE (truncated_mode))
11152	return;
11153
11154      if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (truncated_mode),
11155				 GET_MODE_BITSIZE (original_mode)))
11156	return;
11157
11158      x = SUBREG_REG (x);
11159    }
11160  /* ??? For hard-regs we now record everything.  We might be able to
11161     optimize this using last_set_mode.  */
11162  else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
11163    truncated_mode = GET_MODE (x);
11164  else
11165    return;
11166
11167  if (reg_stat[REGNO (x)].truncated_to_mode == 0
11168      || reg_stat[REGNO (x)].truncation_label < label_tick
11169      || (GET_MODE_SIZE (truncated_mode)
11170	  < GET_MODE_SIZE (reg_stat[REGNO (x)].truncated_to_mode)))
11171    {
11172      reg_stat[REGNO (x)].truncated_to_mode = truncated_mode;
11173      reg_stat[REGNO (x)].truncation_label = label_tick;
11174    }
11175}
11176
11177/* Scan X for promoted SUBREGs and truncated REGs.  For each one
11178   found, note what it implies to the registers used in it.  */
11179
11180static void
11181check_conversions (rtx insn, rtx x)
11182{
11183  if (GET_CODE (x) == SUBREG || REG_P (x))
11184    {
11185      if (GET_CODE (x) == SUBREG
11186	  && SUBREG_PROMOTED_VAR_P (x)
11187	  && REG_P (SUBREG_REG (x)))
11188	record_promoted_value (insn, x);
11189
11190      record_truncated_value (x);
11191    }
11192  else
11193    {
11194      const char *format = GET_RTX_FORMAT (GET_CODE (x));
11195      int i, j;
11196
11197      for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
11198	switch (format[i])
11199	  {
11200	  case 'e':
11201	    check_conversions (insn, XEXP (x, i));
11202	    break;
11203	  case 'V':
11204	  case 'E':
11205	    if (XVEC (x, i) != 0)
11206	      for (j = 0; j < XVECLEN (x, i); j++)
11207		check_conversions (insn, XVECEXP (x, i, j));
11208	    break;
11209	  }
11210    }
11211}
11212
11213/* Utility routine for the following function.  Verify that all the registers
11214   mentioned in *LOC are valid when *LOC was part of a value set when
11215   label_tick == TICK.  Return 0 if some are not.
11216
11217   If REPLACE is nonzero, replace the invalid reference with
11218   (clobber (const_int 0)) and return 1.  This replacement is useful because
11219   we often can get useful information about the form of a value (e.g., if
11220   it was produced by a shift that always produces -1 or 0) even though
11221   we don't know exactly what registers it was produced from.  */
11222
11223static int
11224get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
11225{
11226  rtx x = *loc;
11227  const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
11228  int len = GET_RTX_LENGTH (GET_CODE (x));
11229  int i;
11230
11231  if (REG_P (x))
11232    {
11233      unsigned int regno = REGNO (x);
11234      unsigned int endregno
11235	= regno + (regno < FIRST_PSEUDO_REGISTER
11236		   ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
11237      unsigned int j;
11238
11239      for (j = regno; j < endregno; j++)
11240	if (reg_stat[j].last_set_invalid
11241	    /* If this is a pseudo-register that was only set once and not
11242	       live at the beginning of the function, it is always valid.  */
11243	    || (! (regno >= FIRST_PSEUDO_REGISTER
11244		   && REG_N_SETS (regno) == 1
11245		   && (! REGNO_REG_SET_P
11246		       (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start,
11247			regno)))
11248		&& reg_stat[j].last_set_label > tick))
11249	  {
11250	    if (replace)
11251	      *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11252	    return replace;
11253	  }
11254
11255      return 1;
11256    }
11257  /* If this is a memory reference, make sure that there were
11258     no stores after it that might have clobbered the value.  We don't
11259     have alias info, so we assume any store invalidates it.  */
11260  else if (MEM_P (x) && !MEM_READONLY_P (x)
11261	   && INSN_CUID (insn) <= mem_last_set)
11262    {
11263      if (replace)
11264	*loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11265      return replace;
11266    }
11267
11268  for (i = 0; i < len; i++)
11269    {
11270      if (fmt[i] == 'e')
11271	{
11272	  /* Check for identical subexpressions.  If x contains
11273	     identical subexpression we only have to traverse one of
11274	     them.  */
11275	  if (i == 1 && ARITHMETIC_P (x))
11276	    {
11277	      /* Note that at this point x0 has already been checked
11278		 and found valid.  */
11279	      rtx x0 = XEXP (x, 0);
11280	      rtx x1 = XEXP (x, 1);
11281
11282	      /* If x0 and x1 are identical then x is also valid.  */
11283	      if (x0 == x1)
11284		return 1;
11285
11286	      /* If x1 is identical to a subexpression of x0 then
11287		 while checking x0, x1 has already been checked.  Thus
11288		 it is valid and so as x.  */
11289	      if (ARITHMETIC_P (x0)
11290		  && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11291		return 1;
11292
11293	      /* If x0 is identical to a subexpression of x1 then x is
11294		 valid iff the rest of x1 is valid.  */
11295	      if (ARITHMETIC_P (x1)
11296		  && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11297		return
11298		  get_last_value_validate (&XEXP (x1,
11299						  x0 == XEXP (x1, 0) ? 1 : 0),
11300					   insn, tick, replace);
11301	    }
11302
11303	  if (get_last_value_validate (&XEXP (x, i), insn, tick,
11304				       replace) == 0)
11305	    return 0;
11306	}
11307      /* Don't bother with these.  They shouldn't occur anyway.  */
11308      else if (fmt[i] == 'E')
11309	return 0;
11310    }
11311
11312  /* If we haven't found a reason for it to be invalid, it is valid.  */
11313  return 1;
11314}
11315
11316/* Get the last value assigned to X, if known.  Some registers
11317   in the value may be replaced with (clobber (const_int 0)) if their value
11318   is known longer known reliably.  */
11319
11320static rtx
11321get_last_value (rtx x)
11322{
11323  unsigned int regno;
11324  rtx value;
11325
11326  /* If this is a non-paradoxical SUBREG, get the value of its operand and
11327     then convert it to the desired mode.  If this is a paradoxical SUBREG,
11328     we cannot predict what values the "extra" bits might have.  */
11329  if (GET_CODE (x) == SUBREG
11330      && subreg_lowpart_p (x)
11331      && (GET_MODE_SIZE (GET_MODE (x))
11332	  <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
11333      && (value = get_last_value (SUBREG_REG (x))) != 0)
11334    return gen_lowpart (GET_MODE (x), value);
11335
11336  if (!REG_P (x))
11337    return 0;
11338
11339  regno = REGNO (x);
11340  value = reg_stat[regno].last_set_value;
11341
11342  /* If we don't have a value, or if it isn't for this basic block and
11343     it's either a hard register, set more than once, or it's a live
11344     at the beginning of the function, return 0.
11345
11346     Because if it's not live at the beginning of the function then the reg
11347     is always set before being used (is never used without being set).
11348     And, if it's set only once, and it's always set before use, then all
11349     uses must have the same last value, even if it's not from this basic
11350     block.  */
11351
11352  if (value == 0
11353      || (reg_stat[regno].last_set_label != label_tick
11354	  && (regno < FIRST_PSEUDO_REGISTER
11355	      || REG_N_SETS (regno) != 1
11356	      || (REGNO_REG_SET_P
11357		  (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start,
11358		   regno)))))
11359    return 0;
11360
11361  /* If the value was set in a later insn than the ones we are processing,
11362     we can't use it even if the register was only set once.  */
11363  if (INSN_CUID (reg_stat[regno].last_set) >= subst_low_cuid)
11364    return 0;
11365
11366  /* If the value has all its registers valid, return it.  */
11367  if (get_last_value_validate (&value, reg_stat[regno].last_set,
11368			       reg_stat[regno].last_set_label, 0))
11369    return value;
11370
11371  /* Otherwise, make a copy and replace any invalid register with
11372     (clobber (const_int 0)).  If that fails for some reason, return 0.  */
11373
11374  value = copy_rtx (value);
11375  if (get_last_value_validate (&value, reg_stat[regno].last_set,
11376			       reg_stat[regno].last_set_label, 1))
11377    return value;
11378
11379  return 0;
11380}
11381
11382/* Return nonzero if expression X refers to a REG or to memory
11383   that is set in an instruction more recent than FROM_CUID.  */
11384
11385static int
11386use_crosses_set_p (rtx x, int from_cuid)
11387{
11388  const char *fmt;
11389  int i;
11390  enum rtx_code code = GET_CODE (x);
11391
11392  if (code == REG)
11393    {
11394      unsigned int regno = REGNO (x);
11395      unsigned endreg = regno + (regno < FIRST_PSEUDO_REGISTER
11396				 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
11397
11398#ifdef PUSH_ROUNDING
11399      /* Don't allow uses of the stack pointer to be moved,
11400	 because we don't know whether the move crosses a push insn.  */
11401      if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
11402	return 1;
11403#endif
11404      for (; regno < endreg; regno++)
11405	if (reg_stat[regno].last_set
11406	    && INSN_CUID (reg_stat[regno].last_set) > from_cuid)
11407	  return 1;
11408      return 0;
11409    }
11410
11411  if (code == MEM && mem_last_set > from_cuid)
11412    return 1;
11413
11414  fmt = GET_RTX_FORMAT (code);
11415
11416  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11417    {
11418      if (fmt[i] == 'E')
11419	{
11420	  int j;
11421	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11422	    if (use_crosses_set_p (XVECEXP (x, i, j), from_cuid))
11423	      return 1;
11424	}
11425      else if (fmt[i] == 'e'
11426	       && use_crosses_set_p (XEXP (x, i), from_cuid))
11427	return 1;
11428    }
11429  return 0;
11430}
11431
11432/* Define three variables used for communication between the following
11433   routines.  */
11434
11435static unsigned int reg_dead_regno, reg_dead_endregno;
11436static int reg_dead_flag;
11437
11438/* Function called via note_stores from reg_dead_at_p.
11439
11440   If DEST is within [reg_dead_regno, reg_dead_endregno), set
11441   reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET.  */
11442
11443static void
11444reg_dead_at_p_1 (rtx dest, rtx x, void *data ATTRIBUTE_UNUSED)
11445{
11446  unsigned int regno, endregno;
11447
11448  if (!REG_P (dest))
11449    return;
11450
11451  regno = REGNO (dest);
11452  endregno = regno + (regno < FIRST_PSEUDO_REGISTER
11453		      ? hard_regno_nregs[regno][GET_MODE (dest)] : 1);
11454
11455  if (reg_dead_endregno > regno && reg_dead_regno < endregno)
11456    reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
11457}
11458
11459/* Return nonzero if REG is known to be dead at INSN.
11460
11461   We scan backwards from INSN.  If we hit a REG_DEAD note or a CLOBBER
11462   referencing REG, it is dead.  If we hit a SET referencing REG, it is
11463   live.  Otherwise, see if it is live or dead at the start of the basic
11464   block we are in.  Hard regs marked as being live in NEWPAT_USED_REGS
11465   must be assumed to be always live.  */
11466
11467static int
11468reg_dead_at_p (rtx reg, rtx insn)
11469{
11470  basic_block block;
11471  unsigned int i;
11472
11473  /* Set variables for reg_dead_at_p_1.  */
11474  reg_dead_regno = REGNO (reg);
11475  reg_dead_endregno = reg_dead_regno + (reg_dead_regno < FIRST_PSEUDO_REGISTER
11476					? hard_regno_nregs[reg_dead_regno]
11477							  [GET_MODE (reg)]
11478					: 1);
11479
11480  reg_dead_flag = 0;
11481
11482  /* Check that reg isn't mentioned in NEWPAT_USED_REGS.  For fixed registers
11483     we allow the machine description to decide whether use-and-clobber
11484     patterns are OK.  */
11485  if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
11486    {
11487      for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11488	if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
11489	  return 0;
11490    }
11491
11492  /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
11493     beginning of function.  */
11494  for (; insn && !LABEL_P (insn) && !BARRIER_P (insn);
11495       insn = prev_nonnote_insn (insn))
11496    {
11497      note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
11498      if (reg_dead_flag)
11499	return reg_dead_flag == 1 ? 1 : 0;
11500
11501      if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
11502	return 1;
11503    }
11504
11505  /* Get the basic block that we were in.  */
11506  if (insn == 0)
11507    block = ENTRY_BLOCK_PTR->next_bb;
11508  else
11509    {
11510      FOR_EACH_BB (block)
11511	if (insn == BB_HEAD (block))
11512	  break;
11513
11514      if (block == EXIT_BLOCK_PTR)
11515	return 0;
11516    }
11517
11518  for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11519    if (REGNO_REG_SET_P (block->il.rtl->global_live_at_start, i))
11520      return 0;
11521
11522  return 1;
11523}
11524
11525/* Note hard registers in X that are used.  This code is similar to
11526   that in flow.c, but much simpler since we don't care about pseudos.  */
11527
11528static void
11529mark_used_regs_combine (rtx x)
11530{
11531  RTX_CODE code = GET_CODE (x);
11532  unsigned int regno;
11533  int i;
11534
11535  switch (code)
11536    {
11537    case LABEL_REF:
11538    case SYMBOL_REF:
11539    case CONST_INT:
11540    case CONST:
11541    case CONST_DOUBLE:
11542    case CONST_VECTOR:
11543    case PC:
11544    case ADDR_VEC:
11545    case ADDR_DIFF_VEC:
11546    case ASM_INPUT:
11547#ifdef HAVE_cc0
11548    /* CC0 must die in the insn after it is set, so we don't need to take
11549       special note of it here.  */
11550    case CC0:
11551#endif
11552      return;
11553
11554    case CLOBBER:
11555      /* If we are clobbering a MEM, mark any hard registers inside the
11556	 address as used.  */
11557      if (MEM_P (XEXP (x, 0)))
11558	mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
11559      return;
11560
11561    case REG:
11562      regno = REGNO (x);
11563      /* A hard reg in a wide mode may really be multiple registers.
11564	 If so, mark all of them just like the first.  */
11565      if (regno < FIRST_PSEUDO_REGISTER)
11566	{
11567	  unsigned int endregno, r;
11568
11569	  /* None of this applies to the stack, frame or arg pointers.  */
11570	  if (regno == STACK_POINTER_REGNUM
11571#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
11572	      || regno == HARD_FRAME_POINTER_REGNUM
11573#endif
11574#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
11575	      || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
11576#endif
11577	      || regno == FRAME_POINTER_REGNUM)
11578	    return;
11579
11580	  endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
11581	  for (r = regno; r < endregno; r++)
11582	    SET_HARD_REG_BIT (newpat_used_regs, r);
11583	}
11584      return;
11585
11586    case SET:
11587      {
11588	/* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
11589	   the address.  */
11590	rtx testreg = SET_DEST (x);
11591
11592	while (GET_CODE (testreg) == SUBREG
11593	       || GET_CODE (testreg) == ZERO_EXTRACT
11594	       || GET_CODE (testreg) == STRICT_LOW_PART)
11595	  testreg = XEXP (testreg, 0);
11596
11597	if (MEM_P (testreg))
11598	  mark_used_regs_combine (XEXP (testreg, 0));
11599
11600	mark_used_regs_combine (SET_SRC (x));
11601      }
11602      return;
11603
11604    default:
11605      break;
11606    }
11607
11608  /* Recursively scan the operands of this expression.  */
11609
11610  {
11611    const char *fmt = GET_RTX_FORMAT (code);
11612
11613    for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11614      {
11615	if (fmt[i] == 'e')
11616	  mark_used_regs_combine (XEXP (x, i));
11617	else if (fmt[i] == 'E')
11618	  {
11619	    int j;
11620
11621	    for (j = 0; j < XVECLEN (x, i); j++)
11622	      mark_used_regs_combine (XVECEXP (x, i, j));
11623	  }
11624      }
11625  }
11626}
11627
11628/* Remove register number REGNO from the dead registers list of INSN.
11629
11630   Return the note used to record the death, if there was one.  */
11631
11632rtx
11633remove_death (unsigned int regno, rtx insn)
11634{
11635  rtx note = find_regno_note (insn, REG_DEAD, regno);
11636
11637  if (note)
11638    {
11639      REG_N_DEATHS (regno)--;
11640      remove_note (insn, note);
11641    }
11642
11643  return note;
11644}
11645
11646/* For each register (hardware or pseudo) used within expression X, if its
11647   death is in an instruction with cuid between FROM_CUID (inclusive) and
11648   TO_INSN (exclusive), put a REG_DEAD note for that register in the
11649   list headed by PNOTES.
11650
11651   That said, don't move registers killed by maybe_kill_insn.
11652
11653   This is done when X is being merged by combination into TO_INSN.  These
11654   notes will then be distributed as needed.  */
11655
11656static void
11657move_deaths (rtx x, rtx maybe_kill_insn, int from_cuid, rtx to_insn,
11658	     rtx *pnotes)
11659{
11660  const char *fmt;
11661  int len, i;
11662  enum rtx_code code = GET_CODE (x);
11663
11664  if (code == REG)
11665    {
11666      unsigned int regno = REGNO (x);
11667      rtx where_dead = reg_stat[regno].last_death;
11668      rtx before_dead, after_dead;
11669
11670      /* Don't move the register if it gets killed in between from and to.  */
11671      if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
11672	  && ! reg_referenced_p (x, maybe_kill_insn))
11673	return;
11674
11675      /* WHERE_DEAD could be a USE insn made by combine, so first we
11676	 make sure that we have insns with valid INSN_CUID values.  */
11677      before_dead = where_dead;
11678      while (before_dead && INSN_UID (before_dead) > max_uid_cuid)
11679	before_dead = PREV_INSN (before_dead);
11680
11681      after_dead = where_dead;
11682      while (after_dead && INSN_UID (after_dead) > max_uid_cuid)
11683	after_dead = NEXT_INSN (after_dead);
11684
11685      if (before_dead && after_dead
11686	  && INSN_CUID (before_dead) >= from_cuid
11687	  && (INSN_CUID (after_dead) < INSN_CUID (to_insn)
11688	      || (where_dead != after_dead
11689		  && INSN_CUID (after_dead) == INSN_CUID (to_insn))))
11690	{
11691	  rtx note = remove_death (regno, where_dead);
11692
11693	  /* It is possible for the call above to return 0.  This can occur
11694	     when last_death points to I2 or I1 that we combined with.
11695	     In that case make a new note.
11696
11697	     We must also check for the case where X is a hard register
11698	     and NOTE is a death note for a range of hard registers
11699	     including X.  In that case, we must put REG_DEAD notes for
11700	     the remaining registers in place of NOTE.  */
11701
11702	  if (note != 0 && regno < FIRST_PSEUDO_REGISTER
11703	      && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11704		  > GET_MODE_SIZE (GET_MODE (x))))
11705	    {
11706	      unsigned int deadregno = REGNO (XEXP (note, 0));
11707	      unsigned int deadend
11708		= (deadregno + hard_regno_nregs[deadregno]
11709					       [GET_MODE (XEXP (note, 0))]);
11710	      unsigned int ourend
11711		= regno + hard_regno_nregs[regno][GET_MODE (x)];
11712	      unsigned int i;
11713
11714	      for (i = deadregno; i < deadend; i++)
11715		if (i < regno || i >= ourend)
11716		  REG_NOTES (where_dead)
11717		    = gen_rtx_EXPR_LIST (REG_DEAD,
11718					 regno_reg_rtx[i],
11719					 REG_NOTES (where_dead));
11720	    }
11721
11722	  /* If we didn't find any note, or if we found a REG_DEAD note that
11723	     covers only part of the given reg, and we have a multi-reg hard
11724	     register, then to be safe we must check for REG_DEAD notes
11725	     for each register other than the first.  They could have
11726	     their own REG_DEAD notes lying around.  */
11727	  else if ((note == 0
11728		    || (note != 0
11729			&& (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11730			    < GET_MODE_SIZE (GET_MODE (x)))))
11731		   && regno < FIRST_PSEUDO_REGISTER
11732		   && hard_regno_nregs[regno][GET_MODE (x)] > 1)
11733	    {
11734	      unsigned int ourend
11735		= regno + hard_regno_nregs[regno][GET_MODE (x)];
11736	      unsigned int i, offset;
11737	      rtx oldnotes = 0;
11738
11739	      if (note)
11740		offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
11741	      else
11742		offset = 1;
11743
11744	      for (i = regno + offset; i < ourend; i++)
11745		move_deaths (regno_reg_rtx[i],
11746			     maybe_kill_insn, from_cuid, to_insn, &oldnotes);
11747	    }
11748
11749	  if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
11750	    {
11751	      XEXP (note, 1) = *pnotes;
11752	      *pnotes = note;
11753	    }
11754	  else
11755	    *pnotes = gen_rtx_EXPR_LIST (REG_DEAD, x, *pnotes);
11756
11757	  REG_N_DEATHS (regno)++;
11758	}
11759
11760      return;
11761    }
11762
11763  else if (GET_CODE (x) == SET)
11764    {
11765      rtx dest = SET_DEST (x);
11766
11767      move_deaths (SET_SRC (x), maybe_kill_insn, from_cuid, to_insn, pnotes);
11768
11769      /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
11770	 that accesses one word of a multi-word item, some
11771	 piece of everything register in the expression is used by
11772	 this insn, so remove any old death.  */
11773      /* ??? So why do we test for equality of the sizes?  */
11774
11775      if (GET_CODE (dest) == ZERO_EXTRACT
11776	  || GET_CODE (dest) == STRICT_LOW_PART
11777	  || (GET_CODE (dest) == SUBREG
11778	      && (((GET_MODE_SIZE (GET_MODE (dest))
11779		    + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
11780		  == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
11781		       + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
11782	{
11783	  move_deaths (dest, maybe_kill_insn, from_cuid, to_insn, pnotes);
11784	  return;
11785	}
11786
11787      /* If this is some other SUBREG, we know it replaces the entire
11788	 value, so use that as the destination.  */
11789      if (GET_CODE (dest) == SUBREG)
11790	dest = SUBREG_REG (dest);
11791
11792      /* If this is a MEM, adjust deaths of anything used in the address.
11793	 For a REG (the only other possibility), the entire value is
11794	 being replaced so the old value is not used in this insn.  */
11795
11796      if (MEM_P (dest))
11797	move_deaths (XEXP (dest, 0), maybe_kill_insn, from_cuid,
11798		     to_insn, pnotes);
11799      return;
11800    }
11801
11802  else if (GET_CODE (x) == CLOBBER)
11803    return;
11804
11805  len = GET_RTX_LENGTH (code);
11806  fmt = GET_RTX_FORMAT (code);
11807
11808  for (i = 0; i < len; i++)
11809    {
11810      if (fmt[i] == 'E')
11811	{
11812	  int j;
11813	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11814	    move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_cuid,
11815			 to_insn, pnotes);
11816	}
11817      else if (fmt[i] == 'e')
11818	move_deaths (XEXP (x, i), maybe_kill_insn, from_cuid, to_insn, pnotes);
11819    }
11820}
11821
11822/* Return 1 if X is the target of a bit-field assignment in BODY, the
11823   pattern of an insn.  X must be a REG.  */
11824
11825static int
11826reg_bitfield_target_p (rtx x, rtx body)
11827{
11828  int i;
11829
11830  if (GET_CODE (body) == SET)
11831    {
11832      rtx dest = SET_DEST (body);
11833      rtx target;
11834      unsigned int regno, tregno, endregno, endtregno;
11835
11836      if (GET_CODE (dest) == ZERO_EXTRACT)
11837	target = XEXP (dest, 0);
11838      else if (GET_CODE (dest) == STRICT_LOW_PART)
11839	target = SUBREG_REG (XEXP (dest, 0));
11840      else
11841	return 0;
11842
11843      if (GET_CODE (target) == SUBREG)
11844	target = SUBREG_REG (target);
11845
11846      if (!REG_P (target))
11847	return 0;
11848
11849      tregno = REGNO (target), regno = REGNO (x);
11850      if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
11851	return target == x;
11852
11853      endtregno = tregno + hard_regno_nregs[tregno][GET_MODE (target)];
11854      endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
11855
11856      return endregno > tregno && regno < endtregno;
11857    }
11858
11859  else if (GET_CODE (body) == PARALLEL)
11860    for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
11861      if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
11862	return 1;
11863
11864  return 0;
11865}
11866
11867/* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
11868   as appropriate.  I3 and I2 are the insns resulting from the combination
11869   insns including FROM (I2 may be zero).
11870
11871   ELIM_I2 and ELIM_I1 are either zero or registers that we know will
11872   not need REG_DEAD notes because they are being substituted for.  This
11873   saves searching in the most common cases.
11874
11875   Each note in the list is either ignored or placed on some insns, depending
11876   on the type of note.  */
11877
11878static void
11879distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2, rtx elim_i2,
11880		  rtx elim_i1)
11881{
11882  rtx note, next_note;
11883  rtx tem;
11884
11885  for (note = notes; note; note = next_note)
11886    {
11887      rtx place = 0, place2 = 0;
11888
11889      next_note = XEXP (note, 1);
11890      switch (REG_NOTE_KIND (note))
11891	{
11892	case REG_BR_PROB:
11893	case REG_BR_PRED:
11894	  /* Doesn't matter much where we put this, as long as it's somewhere.
11895	     It is preferable to keep these notes on branches, which is most
11896	     likely to be i3.  */
11897	  place = i3;
11898	  break;
11899
11900	case REG_VALUE_PROFILE:
11901	  /* Just get rid of this note, as it is unused later anyway.  */
11902	  break;
11903
11904	case REG_NON_LOCAL_GOTO:
11905	  if (JUMP_P (i3))
11906	    place = i3;
11907	  else
11908	    {
11909	      gcc_assert (i2 && JUMP_P (i2));
11910	      place = i2;
11911	    }
11912	  break;
11913
11914	case REG_EH_REGION:
11915	  /* These notes must remain with the call or trapping instruction.  */
11916	  if (CALL_P (i3))
11917	    place = i3;
11918	  else if (i2 && CALL_P (i2))
11919	    place = i2;
11920	  else
11921	    {
11922	      gcc_assert (flag_non_call_exceptions);
11923	      if (may_trap_p (i3))
11924		place = i3;
11925	      else if (i2 && may_trap_p (i2))
11926		place = i2;
11927	      /* ??? Otherwise assume we've combined things such that we
11928		 can now prove that the instructions can't trap.  Drop the
11929		 note in this case.  */
11930	    }
11931	  break;
11932
11933	case REG_NORETURN:
11934	case REG_SETJMP:
11935	  /* These notes must remain with the call.  It should not be
11936	     possible for both I2 and I3 to be a call.  */
11937	  if (CALL_P (i3))
11938	    place = i3;
11939	  else
11940	    {
11941	      gcc_assert (i2 && CALL_P (i2));
11942	      place = i2;
11943	    }
11944	  break;
11945
11946	case REG_UNUSED:
11947	  /* Any clobbers for i3 may still exist, and so we must process
11948	     REG_UNUSED notes from that insn.
11949
11950	     Any clobbers from i2 or i1 can only exist if they were added by
11951	     recog_for_combine.  In that case, recog_for_combine created the
11952	     necessary REG_UNUSED notes.  Trying to keep any original
11953	     REG_UNUSED notes from these insns can cause incorrect output
11954	     if it is for the same register as the original i3 dest.
11955	     In that case, we will notice that the register is set in i3,
11956	     and then add a REG_UNUSED note for the destination of i3, which
11957	     is wrong.  However, it is possible to have REG_UNUSED notes from
11958	     i2 or i1 for register which were both used and clobbered, so
11959	     we keep notes from i2 or i1 if they will turn into REG_DEAD
11960	     notes.  */
11961
11962	  /* If this register is set or clobbered in I3, put the note there
11963	     unless there is one already.  */
11964	  if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
11965	    {
11966	      if (from_insn != i3)
11967		break;
11968
11969	      if (! (REG_P (XEXP (note, 0))
11970		     ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
11971		     : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
11972		place = i3;
11973	    }
11974	  /* Otherwise, if this register is used by I3, then this register
11975	     now dies here, so we must put a REG_DEAD note here unless there
11976	     is one already.  */
11977	  else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
11978		   && ! (REG_P (XEXP (note, 0))
11979			 ? find_regno_note (i3, REG_DEAD,
11980					    REGNO (XEXP (note, 0)))
11981			 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
11982	    {
11983	      PUT_REG_NOTE_KIND (note, REG_DEAD);
11984	      place = i3;
11985	    }
11986	  break;
11987
11988	case REG_EQUAL:
11989	case REG_EQUIV:
11990	case REG_NOALIAS:
11991	  /* These notes say something about results of an insn.  We can
11992	     only support them if they used to be on I3 in which case they
11993	     remain on I3.  Otherwise they are ignored.
11994
11995	     If the note refers to an expression that is not a constant, we
11996	     must also ignore the note since we cannot tell whether the
11997	     equivalence is still true.  It might be possible to do
11998	     slightly better than this (we only have a problem if I2DEST
11999	     or I1DEST is present in the expression), but it doesn't
12000	     seem worth the trouble.  */
12001
12002	  if (from_insn == i3
12003	      && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
12004	    place = i3;
12005	  break;
12006
12007	case REG_INC:
12008	case REG_NO_CONFLICT:
12009	  /* These notes say something about how a register is used.  They must
12010	     be present on any use of the register in I2 or I3.  */
12011	  if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
12012	    place = i3;
12013
12014	  if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
12015	    {
12016	      if (place)
12017		place2 = i2;
12018	      else
12019		place = i2;
12020	    }
12021	  break;
12022
12023	case REG_LABEL:
12024	  /* This can show up in several ways -- either directly in the
12025	     pattern, or hidden off in the constant pool with (or without?)
12026	     a REG_EQUAL note.  */
12027	  /* ??? Ignore the without-reg_equal-note problem for now.  */
12028	  if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
12029	      || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
12030		  && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12031		  && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
12032	    place = i3;
12033
12034	  if (i2
12035	      && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
12036		  || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
12037		      && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12038		      && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
12039	    {
12040	      if (place)
12041		place2 = i2;
12042	      else
12043		place = i2;
12044	    }
12045
12046	  /* Don't attach REG_LABEL note to a JUMP_INSN.  Add
12047	     a JUMP_LABEL instead or decrement LABEL_NUSES.  */
12048	  if (place && JUMP_P (place))
12049	    {
12050	      rtx label = JUMP_LABEL (place);
12051
12052	      if (!label)
12053		JUMP_LABEL (place) = XEXP (note, 0);
12054	      else
12055		{
12056		  gcc_assert (label == XEXP (note, 0));
12057		  if (LABEL_P (label))
12058		    LABEL_NUSES (label)--;
12059		}
12060	      place = 0;
12061	    }
12062	  if (place2 && JUMP_P (place2))
12063	    {
12064	      rtx label = JUMP_LABEL (place2);
12065
12066	      if (!label)
12067		JUMP_LABEL (place2) = XEXP (note, 0);
12068	      else
12069		{
12070		  gcc_assert (label == XEXP (note, 0));
12071		  if (LABEL_P (label))
12072		    LABEL_NUSES (label)--;
12073		}
12074	      place2 = 0;
12075	    }
12076	  break;
12077
12078	case REG_NONNEG:
12079	  /* This note says something about the value of a register prior
12080	     to the execution of an insn.  It is too much trouble to see
12081	     if the note is still correct in all situations.  It is better
12082	     to simply delete it.  */
12083	  break;
12084
12085	case REG_RETVAL:
12086	  /* If the insn previously containing this note still exists,
12087	     put it back where it was.  Otherwise move it to the previous
12088	     insn.  Adjust the corresponding REG_LIBCALL note.  */
12089	  if (!NOTE_P (from_insn))
12090	    place = from_insn;
12091	  else
12092	    {
12093	      tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
12094	      place = prev_real_insn (from_insn);
12095	      if (tem && place)
12096		XEXP (tem, 0) = place;
12097	      /* If we're deleting the last remaining instruction of a
12098		 libcall sequence, don't add the notes.  */
12099	      else if (XEXP (note, 0) == from_insn)
12100		tem = place = 0;
12101	      /* Don't add the dangling REG_RETVAL note.  */
12102	      else if (! tem)
12103		place = 0;
12104	    }
12105	  break;
12106
12107	case REG_LIBCALL:
12108	  /* This is handled similarly to REG_RETVAL.  */
12109	  if (!NOTE_P (from_insn))
12110	    place = from_insn;
12111	  else
12112	    {
12113	      tem = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
12114	      place = next_real_insn (from_insn);
12115	      if (tem && place)
12116		XEXP (tem, 0) = place;
12117	      /* If we're deleting the last remaining instruction of a
12118		 libcall sequence, don't add the notes.  */
12119	      else if (XEXP (note, 0) == from_insn)
12120		tem = place = 0;
12121	      /* Don't add the dangling REG_LIBCALL note.  */
12122	      else if (! tem)
12123		place = 0;
12124	    }
12125	  break;
12126
12127	case REG_DEAD:
12128	  /* If we replaced the right hand side of FROM_INSN with a
12129	     REG_EQUAL note, the original use of the dying register
12130	     will not have been combined into I3 and I2.  In such cases,
12131	     FROM_INSN is guaranteed to be the first of the combined
12132	     instructions, so we simply need to search back before
12133	     FROM_INSN for the previous use or set of this register,
12134	     then alter the notes there appropriately.
12135
12136	     If the register is used as an input in I3, it dies there.
12137	     Similarly for I2, if it is nonzero and adjacent to I3.
12138
12139	     If the register is not used as an input in either I3 or I2
12140	     and it is not one of the registers we were supposed to eliminate,
12141	     there are two possibilities.  We might have a non-adjacent I2
12142	     or we might have somehow eliminated an additional register
12143	     from a computation.  For example, we might have had A & B where
12144	     we discover that B will always be zero.  In this case we will
12145	     eliminate the reference to A.
12146
12147	     In both cases, we must search to see if we can find a previous
12148	     use of A and put the death note there.  */
12149
12150	  if (from_insn
12151	      && from_insn == i2mod
12152	      && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
12153	    tem = from_insn;
12154	  else
12155	    {
12156	      if (from_insn
12157		  && CALL_P (from_insn)
12158		  && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
12159		place = from_insn;
12160	      else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
12161		place = i3;
12162	      else if (i2 != 0 && next_nonnote_insn (i2) == i3
12163		       && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12164		place = i2;
12165	      else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
12166			&& !(i2mod
12167			     && reg_overlap_mentioned_p (XEXP (note, 0),
12168							 i2mod_old_rhs)))
12169		       || rtx_equal_p (XEXP (note, 0), elim_i1))
12170		break;
12171	      tem = i3;
12172	    }
12173
12174	  if (place == 0)
12175	    {
12176	      basic_block bb = this_basic_block;
12177
12178	      for (tem = PREV_INSN (tem); place == 0; tem = PREV_INSN (tem))
12179		{
12180		  if (! INSN_P (tem))
12181		    {
12182		      if (tem == BB_HEAD (bb))
12183			break;
12184		      continue;
12185		    }
12186
12187		  /* If the register is being set at TEM, see if that is all
12188		     TEM is doing.  If so, delete TEM.  Otherwise, make this
12189		     into a REG_UNUSED note instead. Don't delete sets to
12190		     global register vars.  */
12191		  if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
12192		       || !global_regs[REGNO (XEXP (note, 0))])
12193		      && reg_set_p (XEXP (note, 0), PATTERN (tem)))
12194		    {
12195		      rtx set = single_set (tem);
12196		      rtx inner_dest = 0;
12197#ifdef HAVE_cc0
12198		      rtx cc0_setter = NULL_RTX;
12199#endif
12200
12201		      if (set != 0)
12202			for (inner_dest = SET_DEST (set);
12203			     (GET_CODE (inner_dest) == STRICT_LOW_PART
12204			      || GET_CODE (inner_dest) == SUBREG
12205			      || GET_CODE (inner_dest) == ZERO_EXTRACT);
12206			     inner_dest = XEXP (inner_dest, 0))
12207			  ;
12208
12209		      /* Verify that it was the set, and not a clobber that
12210			 modified the register.
12211
12212			 CC0 targets must be careful to maintain setter/user
12213			 pairs.  If we cannot delete the setter due to side
12214			 effects, mark the user with an UNUSED note instead
12215			 of deleting it.  */
12216
12217		      if (set != 0 && ! side_effects_p (SET_SRC (set))
12218			  && rtx_equal_p (XEXP (note, 0), inner_dest)
12219#ifdef HAVE_cc0
12220			  && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
12221			      || ((cc0_setter = prev_cc0_setter (tem)) != NULL
12222				  && sets_cc0_p (PATTERN (cc0_setter)) > 0))
12223#endif
12224			  )
12225			{
12226			  /* Move the notes and links of TEM elsewhere.
12227			     This might delete other dead insns recursively.
12228			     First set the pattern to something that won't use
12229			     any register.  */
12230			  rtx old_notes = REG_NOTES (tem);
12231
12232			  PATTERN (tem) = pc_rtx;
12233			  REG_NOTES (tem) = NULL;
12234
12235			  distribute_notes (old_notes, tem, tem, NULL_RTX,
12236					    NULL_RTX, NULL_RTX);
12237			  distribute_links (LOG_LINKS (tem));
12238
12239			  SET_INSN_DELETED (tem);
12240
12241#ifdef HAVE_cc0
12242			  /* Delete the setter too.  */
12243			  if (cc0_setter)
12244			    {
12245			      PATTERN (cc0_setter) = pc_rtx;
12246			      old_notes = REG_NOTES (cc0_setter);
12247			      REG_NOTES (cc0_setter) = NULL;
12248
12249			      distribute_notes (old_notes, cc0_setter,
12250						cc0_setter, NULL_RTX,
12251						NULL_RTX, NULL_RTX);
12252			      distribute_links (LOG_LINKS (cc0_setter));
12253
12254			      SET_INSN_DELETED (cc0_setter);
12255			    }
12256#endif
12257			}
12258		      else
12259			{
12260			  PUT_REG_NOTE_KIND (note, REG_UNUSED);
12261
12262			  /*  If there isn't already a REG_UNUSED note, put one
12263			      here.  Do not place a REG_DEAD note, even if
12264			      the register is also used here; that would not
12265			      match the algorithm used in lifetime analysis
12266			      and can cause the consistency check in the
12267			      scheduler to fail.  */
12268			  if (! find_regno_note (tem, REG_UNUSED,
12269						 REGNO (XEXP (note, 0))))
12270			    place = tem;
12271			  break;
12272			}
12273		    }
12274		  else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
12275			   || (CALL_P (tem)
12276			       && find_reg_fusage (tem, USE, XEXP (note, 0))))
12277		    {
12278		      place = tem;
12279
12280		      /* If we are doing a 3->2 combination, and we have a
12281			 register which formerly died in i3 and was not used
12282			 by i2, which now no longer dies in i3 and is used in
12283			 i2 but does not die in i2, and place is between i2
12284			 and i3, then we may need to move a link from place to
12285			 i2.  */
12286		      if (i2 && INSN_UID (place) <= max_uid_cuid
12287			  && INSN_CUID (place) > INSN_CUID (i2)
12288			  && from_insn
12289			  && INSN_CUID (from_insn) > INSN_CUID (i2)
12290			  && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12291			{
12292			  rtx links = LOG_LINKS (place);
12293			  LOG_LINKS (place) = 0;
12294			  distribute_links (links);
12295			}
12296		      break;
12297		    }
12298
12299		  if (tem == BB_HEAD (bb))
12300		    break;
12301		}
12302
12303	      /* We haven't found an insn for the death note and it
12304		 is still a REG_DEAD note, but we have hit the beginning
12305		 of the block.  If the existing life info says the reg
12306		 was dead, there's nothing left to do.  Otherwise, we'll
12307		 need to do a global life update after combine.  */
12308	      if (REG_NOTE_KIND (note) == REG_DEAD && place == 0
12309		  && REGNO_REG_SET_P (bb->il.rtl->global_live_at_start,
12310				      REGNO (XEXP (note, 0))))
12311		SET_BIT (refresh_blocks, this_basic_block->index);
12312	    }
12313
12314	  /* If the register is set or already dead at PLACE, we needn't do
12315	     anything with this note if it is still a REG_DEAD note.
12316	     We check here if it is set at all, not if is it totally replaced,
12317	     which is what `dead_or_set_p' checks, so also check for it being
12318	     set partially.  */
12319
12320	  if (place && REG_NOTE_KIND (note) == REG_DEAD)
12321	    {
12322	      unsigned int regno = REGNO (XEXP (note, 0));
12323
12324	      /* Similarly, if the instruction on which we want to place
12325		 the note is a noop, we'll need do a global live update
12326		 after we remove them in delete_noop_moves.  */
12327	      if (noop_move_p (place))
12328		SET_BIT (refresh_blocks, this_basic_block->index);
12329
12330	      if (dead_or_set_p (place, XEXP (note, 0))
12331		  || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
12332		{
12333		  /* Unless the register previously died in PLACE, clear
12334		     last_death.  [I no longer understand why this is
12335		     being done.] */
12336		  if (reg_stat[regno].last_death != place)
12337		    reg_stat[regno].last_death = 0;
12338		  place = 0;
12339		}
12340	      else
12341		reg_stat[regno].last_death = place;
12342
12343	      /* If this is a death note for a hard reg that is occupying
12344		 multiple registers, ensure that we are still using all
12345		 parts of the object.  If we find a piece of the object
12346		 that is unused, we must arrange for an appropriate REG_DEAD
12347		 note to be added for it.  However, we can't just emit a USE
12348		 and tag the note to it, since the register might actually
12349		 be dead; so we recourse, and the recursive call then finds
12350		 the previous insn that used this register.  */
12351
12352	      if (place && regno < FIRST_PSEUDO_REGISTER
12353		  && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] > 1)
12354		{
12355		  unsigned int endregno
12356		    = regno + hard_regno_nregs[regno]
12357					      [GET_MODE (XEXP (note, 0))];
12358		  int all_used = 1;
12359		  unsigned int i;
12360
12361		  for (i = regno; i < endregno; i++)
12362		    if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
12363			 && ! find_regno_fusage (place, USE, i))
12364			|| dead_or_set_regno_p (place, i))
12365		      all_used = 0;
12366
12367		  if (! all_used)
12368		    {
12369		      /* Put only REG_DEAD notes for pieces that are
12370			 not already dead or set.  */
12371
12372		      for (i = regno; i < endregno;
12373			   i += hard_regno_nregs[i][reg_raw_mode[i]])
12374			{
12375			  rtx piece = regno_reg_rtx[i];
12376			  basic_block bb = this_basic_block;
12377
12378			  if (! dead_or_set_p (place, piece)
12379			      && ! reg_bitfield_target_p (piece,
12380							  PATTERN (place)))
12381			    {
12382			      rtx new_note
12383				= gen_rtx_EXPR_LIST (REG_DEAD, piece, NULL_RTX);
12384
12385			      distribute_notes (new_note, place, place,
12386						NULL_RTX, NULL_RTX, NULL_RTX);
12387			    }
12388			  else if (! refers_to_regno_p (i, i + 1,
12389							PATTERN (place), 0)
12390				   && ! find_regno_fusage (place, USE, i))
12391			    for (tem = PREV_INSN (place); ;
12392				 tem = PREV_INSN (tem))
12393			      {
12394				if (! INSN_P (tem))
12395				  {
12396				    if (tem == BB_HEAD (bb))
12397				      {
12398					SET_BIT (refresh_blocks,
12399						 this_basic_block->index);
12400					break;
12401				      }
12402				    continue;
12403				  }
12404				if (dead_or_set_p (tem, piece)
12405				    || reg_bitfield_target_p (piece,
12406							      PATTERN (tem)))
12407				  {
12408				    REG_NOTES (tem)
12409				      = gen_rtx_EXPR_LIST (REG_UNUSED, piece,
12410							   REG_NOTES (tem));
12411				    break;
12412				  }
12413			      }
12414
12415			}
12416
12417		      place = 0;
12418		    }
12419		}
12420	    }
12421	  break;
12422
12423	default:
12424	  /* Any other notes should not be present at this point in the
12425	     compilation.  */
12426	  gcc_unreachable ();
12427	}
12428
12429      if (place)
12430	{
12431	  XEXP (note, 1) = REG_NOTES (place);
12432	  REG_NOTES (place) = note;
12433	}
12434      else if ((REG_NOTE_KIND (note) == REG_DEAD
12435		|| REG_NOTE_KIND (note) == REG_UNUSED)
12436	       && REG_P (XEXP (note, 0)))
12437	REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
12438
12439      if (place2)
12440	{
12441	  if ((REG_NOTE_KIND (note) == REG_DEAD
12442	       || REG_NOTE_KIND (note) == REG_UNUSED)
12443	      && REG_P (XEXP (note, 0)))
12444	    REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
12445
12446	  REG_NOTES (place2) = gen_rtx_fmt_ee (GET_CODE (note),
12447					       REG_NOTE_KIND (note),
12448					       XEXP (note, 0),
12449					       REG_NOTES (place2));
12450	}
12451    }
12452}
12453
12454/* Similarly to above, distribute the LOG_LINKS that used to be present on
12455   I3, I2, and I1 to new locations.  This is also called to add a link
12456   pointing at I3 when I3's destination is changed.  */
12457
12458static void
12459distribute_links (rtx links)
12460{
12461  rtx link, next_link;
12462
12463  for (link = links; link; link = next_link)
12464    {
12465      rtx place = 0;
12466      rtx insn;
12467      rtx set, reg;
12468
12469      next_link = XEXP (link, 1);
12470
12471      /* If the insn that this link points to is a NOTE or isn't a single
12472	 set, ignore it.  In the latter case, it isn't clear what we
12473	 can do other than ignore the link, since we can't tell which
12474	 register it was for.  Such links wouldn't be used by combine
12475	 anyway.
12476
12477	 It is not possible for the destination of the target of the link to
12478	 have been changed by combine.  The only potential of this is if we
12479	 replace I3, I2, and I1 by I3 and I2.  But in that case the
12480	 destination of I2 also remains unchanged.  */
12481
12482      if (NOTE_P (XEXP (link, 0))
12483	  || (set = single_set (XEXP (link, 0))) == 0)
12484	continue;
12485
12486      reg = SET_DEST (set);
12487      while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
12488	     || GET_CODE (reg) == STRICT_LOW_PART)
12489	reg = XEXP (reg, 0);
12490
12491      /* A LOG_LINK is defined as being placed on the first insn that uses
12492	 a register and points to the insn that sets the register.  Start
12493	 searching at the next insn after the target of the link and stop
12494	 when we reach a set of the register or the end of the basic block.
12495
12496	 Note that this correctly handles the link that used to point from
12497	 I3 to I2.  Also note that not much searching is typically done here
12498	 since most links don't point very far away.  */
12499
12500      for (insn = NEXT_INSN (XEXP (link, 0));
12501	   (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
12502		     || BB_HEAD (this_basic_block->next_bb) != insn));
12503	   insn = NEXT_INSN (insn))
12504	if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
12505	  {
12506	    if (reg_referenced_p (reg, PATTERN (insn)))
12507	      place = insn;
12508	    break;
12509	  }
12510	else if (CALL_P (insn)
12511		 && find_reg_fusage (insn, USE, reg))
12512	  {
12513	    place = insn;
12514	    break;
12515	  }
12516	else if (INSN_P (insn) && reg_set_p (reg, insn))
12517	  break;
12518
12519      /* If we found a place to put the link, place it there unless there
12520	 is already a link to the same insn as LINK at that point.  */
12521
12522      if (place)
12523	{
12524	  rtx link2;
12525
12526	  for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
12527	    if (XEXP (link2, 0) == XEXP (link, 0))
12528	      break;
12529
12530	  if (link2 == 0)
12531	    {
12532	      XEXP (link, 1) = LOG_LINKS (place);
12533	      LOG_LINKS (place) = link;
12534
12535	      /* Set added_links_insn to the earliest insn we added a
12536		 link to.  */
12537	      if (added_links_insn == 0
12538		  || INSN_CUID (added_links_insn) > INSN_CUID (place))
12539		added_links_insn = place;
12540	    }
12541	}
12542    }
12543}
12544
12545/* Subroutine of unmentioned_reg_p and callback from for_each_rtx.
12546   Check whether the expression pointer to by LOC is a register or
12547   memory, and if so return 1 if it isn't mentioned in the rtx EXPR.
12548   Otherwise return zero.  */
12549
12550static int
12551unmentioned_reg_p_1 (rtx *loc, void *expr)
12552{
12553  rtx x = *loc;
12554
12555  if (x != NULL_RTX
12556      && (REG_P (x) || MEM_P (x))
12557      && ! reg_mentioned_p (x, (rtx) expr))
12558    return 1;
12559  return 0;
12560}
12561
12562/* Check for any register or memory mentioned in EQUIV that is not
12563   mentioned in EXPR.  This is used to restrict EQUIV to "specializations"
12564   of EXPR where some registers may have been replaced by constants.  */
12565
12566static bool
12567unmentioned_reg_p (rtx equiv, rtx expr)
12568{
12569  return for_each_rtx (&equiv, unmentioned_reg_p_1, expr);
12570}
12571
12572/* Compute INSN_CUID for INSN, which is an insn made by combine.  */
12573
12574static int
12575insn_cuid (rtx insn)
12576{
12577  while (insn != 0 && INSN_UID (insn) > max_uid_cuid
12578	 && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE)
12579    insn = NEXT_INSN (insn);
12580
12581  gcc_assert (INSN_UID (insn) <= max_uid_cuid);
12582
12583  return INSN_CUID (insn);
12584}
12585
12586void
12587dump_combine_stats (FILE *file)
12588{
12589  fprintf
12590    (file,
12591     ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
12592     combine_attempts, combine_merges, combine_extras, combine_successes);
12593}
12594
12595void
12596dump_combine_total_stats (FILE *file)
12597{
12598  fprintf
12599    (file,
12600     "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
12601     total_attempts, total_merges, total_extras, total_successes);
12602}
12603
12604
12605static bool
12606gate_handle_combine (void)
12607{
12608  return (optimize > 0);
12609}
12610
12611/* Try combining insns through substitution.  */
12612static unsigned int
12613rest_of_handle_combine (void)
12614{
12615  int rebuild_jump_labels_after_combine
12616    = combine_instructions (get_insns (), max_reg_num ());
12617
12618  /* Combining insns may have turned an indirect jump into a
12619     direct jump.  Rebuild the JUMP_LABEL fields of jumping
12620     instructions.  */
12621  if (rebuild_jump_labels_after_combine)
12622    {
12623      timevar_push (TV_JUMP);
12624      rebuild_jump_labels (get_insns ());
12625      timevar_pop (TV_JUMP);
12626
12627      delete_dead_jumptables ();
12628      cleanup_cfg (CLEANUP_EXPENSIVE | CLEANUP_UPDATE_LIFE);
12629    }
12630  return 0;
12631}
12632
12633struct tree_opt_pass pass_combine =
12634{
12635  "combine",                            /* name */
12636  gate_handle_combine,                  /* gate */
12637  rest_of_handle_combine,               /* execute */
12638  NULL,                                 /* sub */
12639  NULL,                                 /* next */
12640  0,                                    /* static_pass_number */
12641  TV_COMBINE,                           /* tv_id */
12642  0,                                    /* properties_required */
12643  0,                                    /* properties_provided */
12644  0,                                    /* properties_destroyed */
12645  0,                                    /* todo_flags_start */
12646  TODO_dump_func |
12647  TODO_ggc_collect,                     /* todo_flags_finish */
12648  'c'                                   /* letter */
12649};
12650
12651